Models of the Giant Planets

Raphaël Moreno

Observatoire de Paris-Meudon (LESIA)

- •Knowledge of giant planets
- •Radiative transfer Modelling

•Giant planets submm spectrum and uncertainties

Thermal Structure of Giant Planets

•Thermal Profiles : P(T) Troposphere : From Voyager radio-occultation Stratosphere : From IR continuum and Line

Trospospheric Variations with latitudes:

 $\Delta T/T < 2\%$

Thermal Profiles

Composition of Giant Planets

•Major species H₂ H_e

•Minor species $CH_4 NH_3 PH_3 H_2S$

•Cloud Chemistry: $NH_3(g) + H_2S(g) \leftrightarrow NH_4SH(s)$

Jupiter and Saturn Clouds

Modelling

•Radiative Transfert

 $J_{tot}(v) = J_{S}(v) \exp^{-\tau_{m}} + \int \tau_{m} S(v) \exp^{-\tau} d\tau$

•Spherical geometry

Modelling (II)

Collision induced opacity : H₂- H₂; H₂- H_e; H₂- CH₄ (Birnbaum 1996, Borysow and Frommhold 1986)
See A.Borissow web page

- Molecular Opacity : NH_3 ; CH_4 , CO, H_2O
- -- Absorption Coefficient (JPL Catalog)
- -- Pressure broadening coefficient
- -- Lineshape: Ben-Reuven, Van-Vleck & Weisskopf,

Lorentz, Voigt, Doppler

Modelling (III)

Physical parameters Inputs :

- •Thermal Structure
- •He/H₂
- •Vertical distribution of minor species

Jupiter mm spectrum

Model comparison with CSO data (<10%)

Saturn mm spectrum

Jupiter submm spectrum

CIRS spectrum of Jupiter

→Improvement of Jupiter spectrum in the submm/FIR

Saturn : Constrains from Cassini/CIRS data

Régis Courtin and Raphaël Moreno

CIRS: FTS 10-1400 cm-1 (1000-7 µm)

+X

Comparison with synthetic spectrum based on Voyager results

Model fit to observed center-to-limb variation

Full-disk radiance integration (without rings!)

$$\mu = 1/m = \cos(\theta) = \cos(\phi')\cos(\psi')$$

with $\phi' = \phi$ -B and $\psi' = |\psi - \psi_{cM}|$

 ϕ =latitude ; B: Saturnicentric latitude of the Earth ψ =longitude ; ψ_{CM} =longitude of Central Meridian

Results: disk profiles and full-disk radiances

Saturn mm-submm Spectrum

Comparison with CSO data (<5%)

Saturn's ring brightness in the submm

From De Pater 89

Saturn's ring visibility

Saturn Summary

- CIRS measurements : absolute accuracy < 2%
- FIR Simulated spectra within uncertainties
- Submm model uncertainty : composition 1-2%
- in 2009 : small ring contributions to Saturn
- Sarturn is a very good absolute flux calibrator

Uranus

Rings and satellites contribution are negligible (<0.2%)

Vertical Structure of Uranus

Uranus mm spectrum

Continuum uncertainties

	Δ	$\Delta TB/TB$ (%)
		500 / 2000 / 5000
Abs. Coefficient	+10%	-1.5 / -0.8 / -0.8
He	+3%	+0.6 / 0.0 / -0.2
CH ₄	+0.6%	-0.3 / 0.0 / 0.0
Total		2% / 0.8% / 1%

Model Comparison: < 1%

Uranus cm-mm variations

RED cm (Hofstadter)- BLUE mm (Kramer)

Uranus' Variations

- Time variation of Uranus' brightness temperature at frequencies < 90 GHz start to be predictable.
- At frequencies > 500 GHz, we probe at higher altitudes, less sensitive to NH3 or other Deep opacities.
- The possible time variation at v > 500 GHz is still not established, and accurate ground-based measurements at 230-690 GHz are absolutely needed to disentangle this problem.

New mm measurements

- 2004 SMA 230 GHz M. Gurwell (Neptune)
- 2005 IRAM-30m 86 GHz C. Kramer (2nd Cal)
- May 2007 ATCA 93 GHz T. Mueller (Mars)
- May 2007 PdBI 215 GHz R.Moreno (Mars)

Uranus mm-submm spectrum

Uranus FIR spectrum

Brightness Temperature (K)

Possible Uranus amplitude variation during Herschel

Thermal Structure Uncertainties

P(T) Uncertainties

 \rightarrow 1 % in P(T) is 1% in Calibration

Brightness Temperature (K)

Line-to-Continuum ratio

Line-to-Continuum ratio (2)

Possible Improvement

CH₄ Line-to-Continuum ratio vary with Temperature : $\rightarrow 1\%$ / 10K (Detectable)

But HUMIDITY ...

CH₄ Humidity

PRESSURE (mbar)

CH₄ Humidity Line-to-Continuum ratio

Constrains on Humidity

• CH_4 humidity Uncertainties on the Line-to-Continuum ratio can be ~ 0.5% (1%/10 K for P(T))

•Measuring the stratospheric CH₄ could give some constrains on its humidity (HIFI)

•Nevertheless, CH_4 detection constraint the minimum temperature close to the tropopause

→ May improve the continuum spectrum

Uranus' summary

- Model uncertainties 1-2%
- Comparison with Orton's Model within 1%
- Current Absolute uncertainties limited by our knowledge of the thermal structure (5%)
- CH_4 detection may improve the P(T) accuracy

Neptune

Vertical Structure of Neptune

Pressure (mbar)

Neptune mm-submm spectrum

Neptune FIR spectrum

NEPTUNE - $\Delta \nu = 1$ GHz

Thermal Structure Uncertainties

Pressure (mbar)

P(T) Uncertainties

Line-to-Continuum ratio

CO on Neptune

- Observations of CO absorption lines
 - Constraints on tropospheric CO and Thermal structure

CO on Neptune (2)

NEPTUNE $\Delta \nu = 1$ GHz

Neptune Summary

•CO/CH4 Line-to-Continuum variation with Temperature : 0.1 % / K

• Each Kelvin known relative to the standard P(T) is a gain of ~1.5% in the Herschel Absolute calibration

•Obtain a large bandwidth spectrum (PACS/SPIRE) with 0.1% relative accuracy and HIFI spectrum (stratospheric CH4) - Integration time needed ~ 1 hour

Conclusions

- Giant Planets are well known/modeled in the submm/FIR
- \rightarrow Good Calibrators (absolute uncertainties <5%)
- Improvement : Better knowledge of thermal structure
 Jupiter/Saturn : constraint with Cassini/CIRS (absolute uncertainties <2%)
- Uranus/Neptune accurate CO/CH4 measurements with Herschel →Constraints the Thermal structure
- Herschel measurement of the full spectrum of Giant Planets and Cross-calibration with Mars, satellites, ...