

Galilean Moons: Potential for Herschel Absolute Calibration

> Mark Gurwell (CfA) Raphael Moreno (ObsPM)

6-8 February 2008

	Ю	Europa	Ganymede	Callisto
Diam (km)	3642	3121	5262	4821
(at 4.5 AU)	1.12"	0.96"	1.61"	1.48"
Max. Δ (R _{JUP})	5.95	9.47	15.10	26.6
(at 4.5 AU)	129"	205"	328"	576"
Period (days)	1.77	3.55	7.15	16.70

6-8 February 2008

Moving Targets...

Ganymede & Callisto: What do we know?

•Thermal IR - Ground-based observations and Voyager IRIS Spectra (both 1 and 2) G: 136-147 C: 147-158 K

 Radio/mm/submm - Single dish and interferometric observations show conflicting results (see Muhleman and Berge 1991)
 G: C: cm: < 70 K ~90 K submm: ~110 K ~130 K
 Extremely low temperatures for Ganymede in radio very low emissivities = very high dielectric constants

Voyager IRIS

Discussed extensively in work by John Spencer, inc. his dissertation (1989) where I've cribbed some figures...

TB ~ 140 -150 K for Callisto, 130 - 143 K for Ganymede, no obvious spectral features in 10--50 micron region.

Historical Brightness Measurements

Recent mm/submm calibration

IRAM PdBI 6x15m

SMA 8x6m

6-8 February 2008

Herschel Calibration Workshop #2

Ganymede: New measurements

6-8 February 2008

Callisto: New Measurements

CALLISTO 150 \mathfrak{T} ___ ⊢ DISK AVG. 100 HERSCHEL 50 10⁴ 10⁵ 1000 10 100 WAVELENGTH (MICRON)

6-8 February 2008

Herschel Calibration Workshop #2

Voyager IRIS modeling: diurnal variability

Continued into mm/submm regime by R. Moreno

1 layer and 2 layer models considered, as with Spencer etc.

Thermal modeling example: Callisto

6-8 February 2008

Herschel Calibration Workshop #2

6-8 February 2008

Model Flux Densities

6-8 February 2008

Herschel Calibration Workshop #2

Surface Features

Ganymede: Relative Calibration

6-8 February 2008

Spectral Features? ISO observations

6-8 February 2008

Summary

Ganymede and Callisto are good alternatives for absolute flux calibration standards, with Callisto being preferred as it is:

•Warmer

Typically far* from Jupiter
Surface emissivity better understood at least at longer wavelengths

Absolute errors are estimated to be less than 7% in T_B which might be acceptable at >200 micron

Bonus Material: Titan!

Titan Atmospheric Structure

6-8 February 2008

Herschel Calibration Workshop #2

Titan Thermal Continuum

Formed from N_2 - N_2 , N_2 - CH_4 collision induced absorption

Scales as $P^2 T^{-5} v^2$ (in submm, more complicated into far IR)

Temperature structure stable and well known (due to Cassini observations).

MANY lines throughout spectral range

Titan: comparison of CIRS data (T12 flyby) with synthetic spectrum (from R. Courtin) (Resolutions: CIRS=2.5 cm⁻¹; synth.=0.03 cm⁻¹)

160 20 40 60 80 100 120 140 3,0e-7 3.0e-7 CIRS - T12 flyby Marten model Radiance (W.m⁻².sr⁻¹/cm⁻¹) 2,5e-7 2,5e-7 2,0e-7 2,0e-7 1,5e-7 1,5e-7 1,0e-7 1,0e-7 5,0e-8 5,0e-8 0,0 0.0 20 60 80 100 120 140 160 40 Wavenumber (cm⁻¹)

6-8 February 2008

Submillimeter Titan Model

6-8 February 2008

Herschel Calibration Workshop #2