PACS Spectrometer Wavelength Calibration

H. Feuchtgruber

Max-Planck Institut für extraterrestrische Physik

Description of the Calibration Problem

Calibration Method (1)

The Littrow grating equation for PACS can be written as:

$$\lambda = rac{g}{n} [sin(lpha - \delta lpha) + sin(eta + \delta eta + \delta pix imes (pix - 8))]$$

 $\alpha = \beta$; $\delta \alpha = \delta \beta = 0.6253^{\circ}$; $g_{LHe} = 117.175 \mu m$; n = [1, 2, 3]; pix=[1..16]

 $\alpha = \alpha_0 + (p_1-1)^*(\text{gratpos/dgrat}) + p_2^*(\text{gratpos/dgrat})^2 + p_3^*(\text{gratpos/dgrat})^3$

with dgrat = 23301 [steps/°]

$$\delta pix_n = constant(n); n=[1,2,3,2']$$

Calibration Method (2)

- Calculate model spectra (at expected PACS spectral resolution) for the wavelength range under investigation and define spectral intervals for correlation analysis or fitting
- Determine λ -calibration offsets for each interval
- Store 3rd order polynomial parameters fitted to offsets vs. (gratpos/dgrat) for <u>each pixel</u>
- $\alpha_{new} = \alpha_{old}$ + polynomial fit

"Frown" & "Smile"

Signals beyond cut level in white

Status

- Initial <u>uplink calibration available</u> (from ILT)
- Not all FM ILT data analyzed
- FM ILT3 data only for chopper position zero
- Accuracies mostly in spec, single pixel outliers to be corrected
- Initial PV target and line lists available
- Preparation of detailed observations started

Accuracies

- PCD V8.0 (sec. 4.2.1): Required accuracy: "Peak position to within 10-20% of a spectral resolution element"
- In general the requirement is met throughout all bands however at band borders, due to leakage effects and lower S/N the calibration accuracy (in terms of σ over all pixels) is closer to 20% of a spectral resolution element, while in band centers, σ values even better than 10% are obtained.

 σ =stdev(all_pixels residual λ -shift vs. model)

- Absolute verification against Laser and CO lines
- Relative verification by combining all pixels
- <u>Be aware</u>: relative position of point sources within slit can have significant effect

$1e - 17W/m^{2}$ **PACS FM ILT Results** absorption Combination of all pixels into single 0.1% \Diamond spectrum (4.5h+4.5h scans on gas and vacuum) Faintest lines ~3e-18W/m² 0 Wavelength $[\mu m]$ n=3, 2' n=2 n=1 C=1pF 1.00 C=0.2pF0.98 C=0.1pF 0.95 Cut Level H_O= 5e-23 [cm-1 here a subsection of the sector of the secto 1.00 70 100 110 Wavelength [µm] 60 80 160 170 210 Leak models PACS Wavelength Calibration 8

Open Work

- Investigate/recalibrate few outlying pixels found during verification against Laser lines. The reason is essentially the poor S/N in the measurements during FM ILT 2.
- Calibrate –L/+L chopper throws, spot checks indicate that there is no significant change in calibration...
- Provide Report and Calfiles (version as of this presentation provided for PACS spectrometer pipeline)
- Calibration using FMILT 3 measurements in progress
- Code WaveCal into PacsCal_WaveCal observation → done !
- Code an equivalent to WaveCal with chopping into PacsCal_xxx

Wavelength Calibration in Flight (1)

- Observing modes for calibration measurements:
 - Use standard SpecRangeScan AOT
 - Use WaveCal mode with pointing request
 - Use chopped WaveCal with pointing request
 - Do we need/want chopping on the very high flux regime ?
- Suitable target list containing strong molecular lines:
 - PICC-ME-TN-013, "Use of late type stars for PACS wavelength calibration", (D. Lutz)
 - "Photometric and Spectroscopic Calibration of Herschel Instruments with Planets and Satellites", (Th. Encrenaz, R. Moreno, A. Coustenis)
 - Uranus(H₂O), Neptune(H₂O, CO), Saturn(H₂O, NH₃, PH₃)
 - Jupiter (H_2O , NH_3 , PH_3 ; fills entire 5x5 field of view !)

PACS Wavelength Calibration

improved sampling density

Wavelength Calibration in Flight (2)

• Further targets containing strong molecular lines:

Justtanont et al., A&A, 360, 1117-1125 (2000), "ISO-LWS observations of rotational CO lines from C-rich objects"

transition	λ	Line flux ($\times 10^{-19}$ W cm ⁻²)		
	(μm)	AFGL 2688	AFGL 618	NGC 7027
J=14-13	186.00	4.8±0.2	3.1±0.9	2.0±0.1
J=15-14	173.63	4.7±0.2	3.3±0.6	1.7 ± 0.1
J=16-15	162.81	4.5±0.3	4.2 ± 0.7	1.6 ± 0.1
J=17-16	153.27	4.0±0.3	3.6±0.4	1.1 ± 0.1
J=18-17	144.78	5.0±0.7	3.8±1.2	1.1 ± 0.2
J=19-18	137.20	5.8±0.5	3.8±0.7	1.2 ± 0.1
J=20-19	130.37	5.0±0.8	4.0±0.9	1.0 ± 0.1
J=21-20	124.19	4.8±0.9	3.5±1.0	0.7±0.1
J=22-21	118.58	3.6±0.6	3.6±0.7	0.3 ± 0.1
J=23-22	113.46	2.9±0.5	2.9±0.5	0.5±0.1
J=24-23	108.76	3.1±0.5	3.6±0.5	0.7±0.1
J=25-24	104.44	2.6±0.6	4.6±0.4	0.5 ± 0.1
J=26-25	100.46	2.3±0.7	3.2±0.4	0.7 ± 0.1
J=27-26	96.77	1.8 ± 0.8	4.1 ± 1.0	0.5 ± 0.1
J= 28-27	93.35	-	2.8±1.0	-
J=29-28	90.16	-	3.8±2.0	-
J=30-29	87.19	-	2.4 ± 1.4	-
J=31-30	84.41	-	1.1 ± 1.3	-
J=32-31	81.81	-	6.6±2.6	-
J=33-32	79.36	-	1.9 ± 1.3	-
J=34-33	77.06	-	2.6±1.4	-
J=35-34	74.89	-	2.3±1.3	-
J=36-35	72.84	-	3.2±1.3	-
J=37-36	70.91	-	3.1±2.8	-

Wavelength Calibration in Flight (3)

- Suitable target list containing strong atomic fine-structure lines:
 - 19 selected Planetary Nebulae: IC418, IC2501, NGC5315, He2-131, NGC6210, NGC6543, NGC 6572, SwSt1, BD +30 3639, NGC6826, IC4997, NGC7027, NGC7662, NGC40, NGC3242, NGC3918, NGC5882, NGC6302, NGC6905
 - Atomic fine-structure lines within the PACS wavelength range:

[OIII]=51.8145µm; [NIII]=57.317µm; [OI]=63.184µm; [OIII]=88.356µm; [NII]=121.898µm; [OI]=145.525µm; [CII]=157.741µm; [NII]=205.178µm;

- References:

1) ISO 95-015, Planetary nebulae to be used as ISO-SWS Astronomical Calibration Sources, H.W.W. Spoon, K.A. van der Hucht, D. Lutz

2) An Infrared Spectral Line List of Astrophysical Interest (2.4-200 μm) and its use in the SWS and LWS ISO Central Program

3) www.mpe.mpg.de/ir/ISO/linelists/FSlines.html

4) Liu et al., MNRAS, 323, 343, (2001), "ISO LWS observations of planetary nebula fine-structure lines" [provides also observed line fluxes]

Calibration Targets for Molecular Lines

Calibration on bright PNs

Herschel Space Observatory Calibration Workshop #2

6-8 Feb 2008

6-8 Feb 2008

