Stellar calibrators for Herschel and their models

Eva Bauwens

Herschel Calibration Workshop Madrid, 7 February 2008

Joris Blommaert, Leen Decin , Bart Vandenbussche, Martin Groenewegen, Sofie Dehaes

(4 同) (4 回) (4 回)

Introduction

in orbit spectrophotometric calibration of PACS \rightarrow need fiducial standards with accurate atmosphere models

we will present a set of stellar sources and models appropriate for this task

向下 イヨト イヨト

Theoretical atmosphere models

Requirements on the theoretical models

- ▶ up to 250 µm
- accuracy $\leq 5\%$

(4回) (4回) (4回)

Theoretical atmosphere models

Requirements on the theoretical models

- ▶ up to 250 µm
- ▶ accuracy ≤ 5%

Status of the MARCS models

- ▶ tested and evaluated for $\lambda \leq 25 \mu m$ with high accuracy data
- ► modelling up to 200µm (Decin et al 2007), no accurate observational data available for verification

向下 イヨト イヨト

Marcs models

Assumptions

- 1. spherical stratification in homogeneous stationary layers
- 2. hydrostatic equilibrium
- 3. energy conservation for radiative and convective flux
- 4. local thermodynamic equilibrium (LTE)

向下 イヨト イヨト

Example: α Boo

parameters

- T_{eff} = 4320 K, log g = 1.50 cm/s², M = 1.1 M_{sun}
- ξ_t=2km/s, [Fe/H]=-0.50
- $\epsilon(C) = 7.96, \epsilon(N) = 7.61, \epsilon(O) = 8.68, \epsilon(Mg) = 7.33, \epsilon(Si) = 7.20$
- $\sim {}^{12}C/{}^{13}C=7$

important features

- CO and SiO absorption lines
- absorption lines up to 30% in high resolution
- absorption reduced to ≤ 3% in PACS resolution

Example : α Boo

Eva Bauwens Stellar calibrators for Herschel and their models

Overview accuracy

Description	Uncertainty	Туре	λ region
 dependency on stellar parameters 			
\rightarrow molecular features	up to 8%	G-K	around 2.3, 4.0, 4.2, 8 μ m
\rightarrow continuum	up to 4%	A-M	2-200 μm
• uncertainties on $T(\tau)$			
\rightarrow continuum flux (without high-res data)	3.5%	A-M	2-200 μm
\rightarrow continuum flux (with high-res data)	1-2%	A-M	2-200 μm
• presence of chromosphere/ionised wind	10%	G-M	$\lambda > 100 \ \mu$ m
presence of circumstellar dust	10%	A-M	$\lambda > 2 \ \mu m$
 continuous opacity by H -ff 	1%	A-M	2-200 μm
• line lists	3%	A0-M0	2-200 µm
OVERALL BUDGET:	1-2%	A0-M0	near-IR
for approved standards with	\sim 3%	A0-M0	mid-IR
high-resolution data constraints	${\sim}5\%$	A0-M0	far-IR

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Different models

- no constrains from observations (IRAS: 1σ errors, should be 20%)
- black body not suitable
- Engelke function + Cohen templates: significant difference
- theoretical models: consistent and known what is incorporated

The Sources

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

æ

First candidate list

16 candidate calibration sources presented in the Herschel Calibration Steering Group (2005)

 14 ISOPHOT standard stars, 2 A stars with ISOPHOT minimap mode observations

Selection criteria:

- \blacktriangleright brightness: from 100mJy up to \leq 10 Jy from 90 μ m onwards
- different spectral types (A,G, K, M)
- check for cirrus confusion noise
- well documented stellar parameters to construct accurate models
- sky visibility: at least 1 object at any time

・ 同 ト ・ ヨ ト ・ ヨ ト

Observational constrains

Needed to rule out flux excess SEST, IRAM, CSO and VLA data obtained

(4) (3) (4) (3) (4)

Observational constrains

Needed to rule out flux excess SEST, IRAM, CSO and VLA data obtained

In terms of brightness temperature

Legend: \bigtriangledown = upper limit, \star = measurement with error bars

In terms of brightness temperature

Legend: \bigtriangledown = upper limit, \star = measurement with error bars

イロト イポト イヨト イヨト

Э

Reduced list of sources

- ▶ 8 fiducial standards:
 - *α* Boo

 - β And
 - ▶ β Peg
 - γ Dra
 - Sirius
 - ▶ α Cet
 - β UMi
- spectral types: A, K, M
- all have ISO SWS, IRAM and/or SEST, MIPS observations and high resolution optical spectra

→ 문 → < 문 →</p>

Visibility

Eva Bauwens Stellar calibrators for Herschel and their models

< ∃>

Fiducial stars at blue PACS wavelength

Eva Bauwens Stellar calibrators for Herschel and their models

Fiducial stars at red PACS wavelength

Eva Bauwens Stellar calibrators for Herschel and their models

Absolute flux calibration

- 2 possibilities:
 - based on an ideal 'Vega' theoretical spectrum
 - based on a spectrum of the K2III giant Alpha Boo

1. Calibration based on 'Vega' (Rieke et al. 2008)

- theoretical (Kurucz) 'ideal' Vega model
- absolute flux measurements at 10.6μ m: 35.07 ± 0.3 Jy
- extrapolated via SED to 2.22 µm (649±10Jy) compare to direct measurements at 2.2µm corrected for disk excess (1.29%) (645±15Jy)

・ 同 ト ・ ヨ ト ・ ヨ ト

1. Calibration based on 'Vega' (Rieke et al. 2008)

- theoretical (Kurucz) 'ideal' Vega model
- absolute flux measurements at 10.6μ m: 35.07 ± 0.3 Jy
- extrapolated via SED to 2.22 µm (649±10Jy) compare to direct measurements at 2.2µm corrected for disk excess (1.29%) (645±15Jy)

Advantages: well tested model atmosphere

・ 同 ト ・ ヨ ト ・ ヨ ト

1. Calibration based on 'Vega' (Rieke et al. 2008)

- theoretical (Kurucz) 'ideal' Vega model
- absolute flux measurements at 10.6μ m: 35.07 ± 0.3 Jy
- extrapolated via SED to 2.22 µm (649±10Jy) compare to direct measurements at 2.2µm corrected for disk excess (1.29%) (645±15Jy)

Advantages: well tested model atmosphere Disadvantages:

- problems in connection of IR calibration to the visible possible reason being that Vega is a rapid pole-on rotator
- difficult to use direct Vega measurements in IR due to disk

イロト イポト イヨト イヨト

1. Calibration based on 'Vega' (Rieke et al. 2008)

- theoretical (Kurucz) 'ideal' Vega model
- absolute flux measurements at 10.6μ m: 35.07 ± 0.3 Jy
- ► extrapolated via SED to 2.22 µm (649±10Jy) compare to direct measurements at 2.2µm corrected for disk excess (1.29%) (645±15Jy)

Advantages: well tested model atmosphere Disadvantages:

- problems in connection of IR calibration to the visible possible reason being that Vega is a rapid pole-on rotator
- difficult to use direct Vega measurements in IR due to disk

Question:

Why still use Vega as fundamental calibrator?

2. Calibration based on Arcturus

► High resolution optical and near-IR spectrum → high accuracy stellar parameters (Decin et al., 2003)

2. Calibration based on Arcturus

- ► High resolution optical and near-IR spectrum → high accuracy stellar parameters (Decin et al., 2003)
- ▶ independent high accuracy H and K angular diameter (Verhoelst et al. 2006, Lacour et al, 2008). Accuracy $\leq 1 \%$

・ 同 ト ・ ヨ ト ・ ヨ ト

2. Calibration based on Arcturus

- ► High resolution optical and near-IR spectrum → high accuracy stellar parameters (Decin et al., 2003)
- \blacktriangleright independent high accuracy H and K angular diameter (Verhoelst et al. 2006, Lacour et al, 2008). Accuracy $\leq 1\,\%$
 - \rightarrow confirm model predictions for the rosseland angular diameter

・ 同 ト ・ ヨ ト ・ ヨ ト

2. Calibration based on Arcturus

- ► High resolution optical and near-IR spectrum → high accuracy stellar parameters (Decin et al., 2003)
- \blacktriangleright independent high accuracy H and K angular diameter (Verhoelst et al. 2006, Lacour et al, 2008). Accuracy $\leq 1\,\%$
 - \rightarrow confirm model predictions for the rosseland angular diameter

Disadvantage:

Questionable if radiative equilibrium still holds

伺下 イヨト イヨト

2. Calibration based on Arcturus

- ► High resolution optical and near-IR spectrum → high accuracy stellar parameters (Decin et al., 2003)
- \blacktriangleright independent high accuracy H and K angular diameter (Verhoelst et al. 2006, Lacour et al, 2008). Accuracy $\leq 1\,\%$
 - \rightarrow confirm model predictions for the rosseland angular diameter

Disadvantage:

Questionable if radiative equilibrium still holds

 \rightarrow for all stars in the sky

・ 同 ト ・ ヨ ト ・ ヨ ト

2. Calibration based on Arcturus

- ► High resolution optical and near-IR spectrum → high accuracy stellar parameters (Decin et al., 2003)
- ▶ independent high accuracy H and K angular diameter (Verhoelst et al. 2006, Lacour et al, 2008). Accuracy $\leq 1\%$
 - \rightarrow confirm model predictions for the rosseland angular diameter

Disadvantage:

Questionable if radiative equilibrium still holds

- \rightarrow for all stars in the sky
- \rightarrow far-IR photometric data of α Boo consistent with model predictions.

- 4 回 ト 4 ヨ ト 4 ヨ ト

2. Calibration based on Arcturus

- ► High resolution optical and near-IR spectrum → high accuracy stellar parameters (Decin et al., 2003)
- ▶ independent high accuracy H and K angular diameter (Verhoelst et al. 2006, Lacour et al, 2008). Accuracy ≤ 1 %
 - \rightarrow confirm model predictions for the rosseland angular diameter

Disadvantage:

Questionable if radiative equilibrium still holds

- \rightarrow for all stars in the sky
- \rightarrow far-IR photometric data of α Boo consistent with model predictions.

Advantage:

completely independent from Vega Expected accuracy $\leq 5~\%$

イロト イポト イヨト イヨト

Delivery

Now:

For the 8 fiducial PACS standards:

- absolute calibrated spectra using 'Vega' and Selby K-band photometry
- wavelength range: 2 200 μ m
- ► computed at resolution of $\Delta \lambda = 0.5$ Å, delivered at resolution $\lambda / \Delta \lambda = 4000$

(日本) (日本) (日本)

Delivery

note: 5 fiducial PACS standards have ${\rm S/N}>10$ in all 3 SPIRE bands

- \rightarrow should be used for cross-calibration
- \rightarrow opportunity to connect planet calibration to stellar calibrators

May – June 2008

• computation of model atmosphere spectra up to 700 μ m

・ 同 ト ・ ヨ ト ・ ヨ ト

- MARCS models meet the accuracy and wavelength requirements
- set of 8 fiducial calibrators is presented
- suggestions given for absolute calibration:
 - ▶ 'Vega'
 - Arcturus
- delivery of models up to 200 μ m

向下 イヨト イヨト

2 vacancies PACS instrument team in Leuven:

- PACS calibration scientist
- PACS data analysis scientist

| 4 回 2 4 U = 2 4 U =