Splinter session #3: Stars & Secondary Calibrators

Joris Blommaert & Martin Groenewegen

Points to be discussed

- Status of the models for "normal" stars:
 - Accuracies (vs instrument requirements)
 - Dependencies on Teff, metallicity, gravity, ...
 - Model assumptions
- Model improvements: What needs to be done?
- Network of calibration stars
- Far-IR excess: chromospheres / debris disks
- Available observations to constrain the models ISOPHT, (sub-)mm programs, Spitzer,...
 Is more needed, if so, how?

Points to be discussed

- What is the role of secondary calibrators?
 - Possible variability of AGB stars
 - Possibly extended
- How well are (emission, absorption) lines known of (post-)AGB, PNe, HII regions?
 - How useful as wvl calibrators / line profile determination?
 - Spatial extent will be an issue, e.g. PACS case: source sizes ranging from <2" to ~1'
- Need for further modelling and observations
- Spatial distribution

Requirements per instrument – SPIRE

- (Spectro-) photometer
 - Point-like sources (18" beam)
 - >~ 100mJy (well above confusion limit)
 - <~ 200Jy (non-linearity)
 - Non-variability or known variability
 - Good sky distribution
 - Well known models/SEDs better than 10%
 - No line contamination is desirable

Requirements per instrument – SPIRE

- Spectrometer
 - Point-like sources (18" beam)
 - Dynamic range similar to photometer (numbers TBC)
 - Non-variability
 - Line fluxes known or predicted
 - Several observable lines available (if possible)
 - Lines must be well isolated
 - Good sky distribution

Joris Blommaert & Martin Groenewegen Lorentz Centre, 2 December 2004 Instituut voor Sterrenkunde

Requirements per instrument – PACS

- Photometer
 - Point-like sources
 - For routine calibration: > 100mJy (at central wavelengths of bands)
 - < ~1000Jy (non-linearity)
 - These sources will also be useful for calibration of FOV distortion, relative pointing, PSF measurements
 - Extension down to ~10mJy (PV); normal stars
 - Non-variability or known variability
 - Good sky distribution (high visibility zone)
 - Well known models/SEDs better than 10%

Joris Blommaert & Martin Groenewegen

Lorentz Centre, 2 December 2004 Instituut voor Sterrenkunde

Requirements per instrument – PACS

- Spectrometer
 - Flux calibration: Well known models/SEDs better than 10%; >~50Jy, normal stars too weak (except for shortest wvl for brightest stars)
 - Non-variability or known variability
 - Spatial: Distortions: Bright sources with well known lines 10⁻²⁰ W/cm² from point-like to extended, up to 1': PNe, AGB water lines, HII regions
 - Lines well isolated, accurate radial velocity (uncertainty <5km/s), low outflow velocities (<10km/s)

Requirements per instrument – HIFI

- Only for line measurements, not continuum
- Point-like sources (or well known brightness distribution)
- Bright lines: 0.14K @ 500GHz and 0.5K @ 2000GHz
- One source / 2 hour angle / half hemisphere
- Three strong lines per mixer band
- Variability below calibration accuracy (baseline 10%, goal 3%)

