Introduction to the Splinter on Mars and the Giant Planets

Carsten Kramer

based in parts on earlier presentations of M.Gerin, F.Herpin, and R. Moreno

- The need for celestial calibrators
- Constraints of Herschel (Pointing, Speed, PSF, Visibility)
- Selection criteria
- Potential primary flux calibrators:
 - Uranus: the pros and cons
 - Neptune
 - Mars
- Open questions

Introduction to the Splinter on Mars and the Giant Planets

Why are celestial calibrators essential?

- Pointing
- Photometric Calibration (telescope coupling efficiencies)
- Properties of the antenna diagrams:
 Beam widths (beam profiles)
 The exact beam profiles can only be determined in-orbit.
- **Instrument properties:**Spectrometers: frequency calibration (resolution, line shape, shifts, strengths, ...)
- Observing modes

Expected properties of Herschel

Pointing accuracy

Absolute 1σ pointing error (APE)

requirement: 3.7" (results in a flux error of 20% at 158 µm for point source)

goal: 1.5" (error of 4% at 158 μ m)

Beam widths & Aperture efficiencies

Expected values:

```
500 GHz (600 μm) 45" 72%
1.9 THz (158 μm) 12" 64%
```

How is the remaing power distributed, i.e. how does the PSF couple to the sky?

Slewing times

```
~15 min for 90 degrees
```

Need for clever observing strategy.

Need for many calibrators.

Visibility of Herschel

• Visibility is very restricted!
One source is not sufficient!!

Visibility of Herschel

• Not even Mars, Uranus, and Neptune are sufficient!!

Requirements on calibration sources

Point-like sources HIFI (12" beam), SPIRE (18" beam), PACS (6")

Non-variable HIFI, SPIRE, PACS

Good sky distribution HIFI, SPIRE, PACS

Photometric calibration:

Well modelled SED HIFI, SPIRE, PACS (< 10%)

no (few) lines HIFI, SPIRE, PACS

brightness HIFI: bright continuum source

SPIRE: Not too bright (Neptune is at upper end of dynamic range)

PACS: Uranus & Neptune

Frequency calibration:

Compact sources with rich spectrum HIFI, SPIRE, PACS

Simple line profiles

Line fluxes known or predicted

Different sources for different questions

Body	Date	D	$T_{_{\rm B}}$	Flux	HIFI
		["]	[K]	[Jy]	
Saturn	15.5.2007	16.9	135	55100	strong, large
Mars	1.10.2007	9.8	226	36200	strong
Uranus	1.7.2007	3.6	60	662	weak, point-like
Ceres	1.1.2008	0.6	196	94	very weak

at 1.9 Thz (HIFI Spatial Response Framework document)

<u>Different sources for different questions</u> <u>Suitability estimate for HIFI:</u>

Spectroscopy

Aperture Beam

Efficiency Shape

Saturn No Yes (30 dB) Maybe

Mars Yes (30 dB) Yes (H₂O, CO)

Uranus Yes No Restricted (H₂O)

Ceres Yes No! No!

The potential photometric calibrators:

Uranus (cf. Talk of Glenn Orton)

Emission is pretty weak/too strong

- Con:
- Stratosphere: H₂O, CO
 Others:
 H₂, He, NH₃, PH₃, H₂S, CH₄ ...

 Variability visible in NIR Keck AO observations (see HST photo)

Model of R.Moreno (1998)

• Temperature variations of the low atmosphere (cm observations of Hofstadter & Butler 2003) Talk of Mark Hofstadter

The potential photometric calibrators:

<u>Uranus</u>

Con:

- Emission is pretty weak/too strong
- Stratosphere: H₂O, CO Others: H₂, He, NH₃, PH₃, H₂S, CH₄

 Variability visible in NIR Keck AO observations

The potential photometric calibrators

<u>Uranus:</u>

Pro:

- No surface Continuum due to H₂, He, CH₄ €
- Fast rotation
- Pointlike (3.5")
- ISO/LWS prime flux calibrator, cf. Burgdorf ea 98
- Atmospheric model exists: R.Moreno's thesis (1998)

Figure 5.1: Uranus model used in the LWS photometric calibration.

- Voyager/IRIS data (5-50 μm): temperature verticle profile well known
- Observations at centimeter (Hofstadter & Butler), millimeter (Gurwell & Butler), submm wavelengths (Serabyn & Pardo et al.), HST & Keck IR (dePater et al., Hammel et al.), Spitzer (G.Orton) *Infos from Bryan*

The potential photometric calibrators Neptune:

- Too weak (HIFI) / strong (SPIRE, PACS)
- Similar to Uranus

Con:

Many atmospheric lines

Pro:

• Atmospheric model exists: R.Moreno's thesis (1998)

• Frequency calibrator? (HIFI)

eg andid Brightness Temperature (K)

The potential photometric calibrators:

Mars

Con:

- Teneous but rich atmosphere: H₂O, CO, CO₂, ...
- Water lines are very broad
 (>1 GHz from SWAS, ODIN)
- Seasonal variations of Water lines (science case!)
- Dust storms (change of atmospheric temperature structure)
- Surface features (dust, ice caps, seasons)

The potential photometric calibrators: Mars

Pro:

- Bright ($T_B \sim 210K$) and compact (<13")
- Thermophysical model by Rudy (Rudy et al. 1987, Icarus, 71, 159)
- Agreement between model and ISO/LWS 43 to 196 μm data: ~3%
 (Sidher, Griffin, et al. 2000, Icarus, 147, 35)
- Other models by T.Encrenaz, E.Lellouch, R.Moreno (LESIA) with F.Forget (LMD); P.Hartogh (MPAE)
- Very well studied object also by in-situ observations (but not in the FIR)
- Often used as the primary calibrator (SWAS, Griffin & Orton, ...)

Talks of Glenn Ortin, Bryan Butler, and Paul Hartogh

The potential photometric calibrators: Mars

Martian surface temperature (LMD model, Forget et al. 2001)

Simulated Herschel observation at 1.9 THz (Moreno, Kramer) for two extreme models. Peak fluxes agree within +-5%.

Introduction to the Splinter on Mars and the Giant Planets Some Questions:

- •Which of the details can be ignored?
- •Mars: can we ignore the atmosphere in the "windows"?
- •Giant Planets: can we ignore the lines in the atmospheric windows?
- •Identify incompleteness of models?

```
•Preparatory observations:
ground-based (FTS/CSO, ...)
space (ASTRO-F, Cassini/CIRS (Titan, Saturn, Jupiter), BLAST, SOFIA, ...
+ Herschel!)
```

