Herschel MPE PACS	Fields and Double Stars for Spatial Calibration	```Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date : 16-Oct-03 Page : 1 of 29```

PACS

Sky Fields and Double Stars for Spatial Calibration

	Name	Function	Date	Signature
Prepared by	D. Lutz, B. Ali		16-Oct-03	
Checked by				
Approved by				
Approved by				
Approved by				
Authorized by				
Authorized by				

Doc. ref. : PACS-ME-TN-035
Issue/Rev.: 1.0
Date : 16-Oct-03
Page : 2 of 29

DOCUMENT CHANGE RECORD

Issue / Rev.	Date	Change Notice Number	Modified Pages or Paragraphs	Remarks / Nature of Change
Draft 0.1	08-Jul-02	Initial draft		
Draft 0.2	24-Jun-03	Rev 1	Section 3	Included 2MASS K-band search results
Draft 0.3	29-Jul-03		$\begin{aligned} & \hline \text { All } \\ & 3.2 \\ & 3.4 .1 \\ & \\ & 5.2 \end{aligned}$	Small changes, fixed typos etc. Added coordinates to table Added discussion of Herbig AeBe stars Added discussion of Condon et al. BGS double galaxies
Draft 0.4	13-Aug-03		All	Minor text changes
			6.2	More info on Saturn satellites
Draft 0.5	14-Oct-03		All, Appendix	Added HIRES/2MASS quicklook, minor changes in text
Issue 1.0	16-Oct-03		Appendix	Changed HIRES/2MASS images for stars to correctly contoured ones.

Herschel PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date $:$ $16-$ Oct- 03 Page $: 3$ of 29

Table of Content

1 Scope and Assumptions 3
2 Applicable and Reference Documents 4
3 Stars 4
3.1 Optical Star Clusters 4
3.2 Bright Binaries (V-band search) 4
3.3 Bright Binaries (K-band search) 5
3.4 Other stellar sources 8
3.4.1 Herbig Ae/Be stars observed with ISOPHOT 8
4 Galactic ISOCAM fields 9
5 Galaxies 9
5.1 Quasars and AGN from Veron catalogue 9
5.2 Galaxy pairs 9
5.2.1 Galaxy pairs from the IRAS Bright Galaxy Sample with VLA radio observations 10
6 Solar system objects 11
6.1 Asteroid conjunctions 11
6.2 Planetary satellites 12
Appendix A: 2MASS images of fields with suitable double stars from K-band search 14
Appendix B: HIRES/2MASS overlays for double stars from K-band search 20
Appendix C: HIRES/2MASS overlays for double galaxies. 26

1 Scope and Assumptions

This document summarizes the status of the search for fields with multiple far-infrared objects that are suited for spatial calibration of PACS. In addition to tasks requiring single point sources, the PCD (AD-1) identifies a need for fields containing binary or multiple point sources or clusters of sufficient brightness over scales of typically a few arcminutes (Requirements 2.6.3, 3.1.2, 3.1.3). The purposes of these requirements are accurate verifications of pixel scales, optical distortions, and of chopper throw. The use of multiple sources with accurate far-infrared positions could bypass the errors induced by multiple pointings of the satellite on a single source. Ideally, these multiple sources all should have farinfrared positions accurate to the sub-arcsecond level. This document describes the results of several approaches to this problem, including unsuccessful ones.

As an indication for the required fluxes, we follow PCD 3.1.2 asking for 160 mJy in the PACS bands to achieve $\mathrm{S} / \mathrm{N} 20$ in 1 min . PCD 2.6 .3 asks for yet brighter objects. The local farinfrared background has to be checked in all cases to avoid disturbances. As a working assumption, we searched for multiplicity roughly on the 0.5^{\prime} to 5^{\prime} scale. It is important to cover several position angles since the PACS chop angle cannot be varied freely - only for objects near the ecliptic poles all angles are accessible, by repeated observations over a one year period.

Herschel PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date 16-Oct-03 Page $: 4$ of 29

This document does not address the fallback options of using for some spatial calibrations bright and heavily structured fields that do not have a priori positional information, and of stepping over single point sources at the expense of including satellite positioning errors.

2 Applicable and Reference Documents

AD-1 PACS-MA-GS-001 PACS Calibration Document Draft 7 (PCD)
RD-1 Potential ISOCAM fields for PACS spatial calibration, B. Ali, 17-May-2002
RD-2 Solar System Objects as Calibrators for Herschel, T. Müller, e-mail, 05-Jul-2002

3 Stars

Stars are excellent candidates because of usually accurate positions, and pointlike nature. The second property implies that objects with structure spatially resolved by PACS, e.g. large dust shells or WR star ejecta, have to be avoided. Assuming photospheric emission, the required brightness of an object with 160 mJy at $75 \mu \mathrm{~m}$ can be estimated using the formula of Engelke (AJ 104, 1248 (1992)) which is valid for late type stars. The resulting requirement of $\mathrm{K} \leq 1.8$ implies severe limitations for the use of 'normal' well-behaved stars as PACS spatial calibrators.

3.1 Optical Star Clusters

Globular cluster stars are too faint and too densely packed. Some open clusters match the desired spatial structure but stars are too faint, again. The brightest stars of an amateur's open cluster like Praesepe, for example, are around $\mathrm{V}=7$ and intermediate spectral types, i.e. clearly out of reach.

3.2 Bright Binaries (V-band search)

Bright Binaries with V <5 mag (for both components) and separations between 30 " and 300 " were searched by (1) direct query of the Washington Visual Double Star Catalogue in Vizier and (2) searching for $\mathrm{V}<5$ objects with such separations in the Bright Star Catalogue. After weeding out a few objects where one or both components are double themselves on the arcsecond scale, the following three candidate pairs remain:

Name	Sep.	J2000 coordinates	Type	V	K
	arcsec			mag	mag
HR 3206 Gam1Vel	42.9	$080929.33-472043.0$	B1IV	4.27	4.87
HR 3207 Gam2Vel		$080931.95-472011.7$	WC8+O9I	1.78	1.98
HR 4618	269.1	$120805.22-503940.6$	B6IIIe	4.47	4.92
HR 4621 Del Cen		$120821.50-504320.7$	B2Ivne	2.60	2.49
HR 6554 Nu1Dra	61.2	$173210.57+551103.3$	A6V	4.88	4.24
HR 6555 Nu2Dra		$173216.03+551022.7$	A4m	4.87	4.16

MPE	HPSSChel	Fields and Double Stars for		
Spatial Calibration				Doc. ref. : PACS-ME-TN-035
:---				
Issue/Rev.: 1.0				
Date $\quad: 16$-Oct-03				
Page $\quad: 5$ of 29				

Given their magnitudes, even those few bright objects are at best marginally suited for PACS. The local FIR background has not yet been verified! There may be disturbing diffuse farinfrared emission.

3.3 Bright Binaries (K-band search)

The 2MASS all-sky catalog was searched based on the following two criteria: (i) both components must have 2MASS K-short magnitudes less than 3 mag. (ii) The total separation between the components must be less than 5 arc-minutes. A total of 33 fields qualified both criteria. These are listed below. The 2MASS gif images of the tiles on which the first star (Star 1 below) appears are shown in Appendix A (the star is not centered on the tile).
As already mentioned in Section 3, the optimal flux limit for PACS spatial calibration purposes is $\mathrm{K}<1.8$ mag. Fields 15 and 30 are the only ones with both stars (roughly) qualify under this flux limit. These two fields should probably be given first priority for any followup work. Note, however, that for the bright stars considered here the 2MASS photometric uncertainty is $\sim 20 \%$.
Subsequent analysis of the fields shows some duplication, which has been noted in the table below.
The color-color plot for the stars is shown in the Figure below. Stars labelled in blue are those listed as Star 1 in the table. Stars labelled in red are those listed under Star 2 in the table. For comparison, the colors of the normal dwarfs and giants are shown as solid black lines. The dashed black lines show the effects of extinction on the colors of dwarfs and giant stars.
We additionally obtained HIRES images of the 2MASS fields discussed here. The HIRES technique uses IRAS (InfraRed Astronomical Satellite) data but employs Maximum Correlation Method (MCM, Aumann et al. 1990, AJ, 99, 1674) to produce images with better than the nominal resolution of the IRAS data. The resulting IRAS/HIRES images are shown as contour overlays on the 2MASS fields in Appendix B. We selected the IRAS $60 \mu \mathrm{~m}$ band for these images. For each IRAS/HIRES image, 10 contour levels were drawn between the mininum and the maximum value.

No.	Star 1	Star 2	δ RA	δ Dec	K1	K2
			(')	(')	(mag)	(mag)
1	$\begin{aligned} & 20012749+5002325, \\ & \text { Z Cyg, } \end{aligned}$	$\begin{aligned} & \text { 20012157+5006167, } \\ & \text { e Cyg, } \\ & \text { IRAS 19599+4957, } \\ & \text { BD+49 3158D } \end{aligned}$	1.48	-3.74	2.557	2.607
2	$\begin{array}{\|l\|} \hline 20110615+3606488 \\ \text { V429 Cyg } \\ \hline \end{array}$	20110744+3607510	-0.32	-1.04	2.777	2.869
3	$\begin{aligned} & \text { 20314523+3231213, } \\ & \text { Al Cyg } \\ & \hline \end{aligned}$	$\begin{aligned} & 20313652+3233524, \\ & \text { AD Cyg } \\ & \hline \end{aligned}$	2.18	-2.52	1.510	2.051
4	21065341+3844529, PPM 86045, V1803 Cyg	$\begin{aligned} & 21065473+3844265, \\ & \text { NSV } 13546 \end{aligned}$	-0.33	0.44	2.248	2.544
5	$\begin{aligned} & \text { 20473679+3552184, } \\ & \text { IRAS 20456+3541 } \end{aligned}$	20472904+3553289, IRAS 20455+3542, V375 Cyg	1.94	-1.18	2.737	2.475
6	19122126+4118133,	19121741+4114156,	0.96	3.96	2.906	1.940

Fields and Double Stars for Spatial Calibration

Doc. ref. : PACS-ME-TN-035
Issue/Rev.: 1.0
Date : 16-Oct-03
Page : 6 of 29

No.	Star 1	Star 2	δ RA	δ Dec	K1	K2
			(')	(')	(mag)	(mag)
	RU Lyr	V552 Lyr				
7	22065167+4827557, IRAS 22049+4813, AP Lac	$22063991+4827068 \text {, }$ CT Lac, LEE 346	2.94	0.82	2.763	2.722
8	$\begin{array}{\|l\|} \hline 02232409+5712430, \\ \text { V403 Per } \\ \hline \end{array}$	$\begin{aligned} & 02231106+5711579, \\ & \text { V439 Per } \end{aligned}$	3.26	0.75	2.985	2.690
9	$\begin{aligned} & 01555447+3716400, \\ & \text { HD 11727, } \\ & \text { IRAS 01529+3702 } \\ & \text { BD+36 } 349 \end{aligned}$	01560933+3715066, 56 And, IRAS 01531+3700	-3.71	1.56	1.618	2.949
10	$\begin{aligned} & 13235563+5455292, \\ & \text { ZI 1000, } \\ & \text { IRAS 13219+5511? } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 13235629+5455183, } \\ & \text { IRAS 13219+5511? } \end{aligned}$	-0.16	0.18	1.603	2.821
11	$\begin{array}{\|l\|} \hline 06471981+0802143, \\ 17 \text { Mon } \\ \hline \end{array}$	$\begin{aligned} & 06470582+0800535, \\ & \text { ST Mon } \end{aligned}$	3.50	1.35	1.584	2.820
12	$\begin{array}{\|l} \hline 04075574+4303113, \\ \text { HD } 25892 \\ \hline \end{array}$	$\begin{aligned} & 04075741+4300475 \text {, } \\ & \text { IY Per } \end{aligned}$	-0.42	2.40	2.741	1.683
13	$\begin{aligned} & 05301775+6303195, \\ & \mathrm{BD}+62760 \end{aligned}$	$\begin{aligned} & 05301020+6304017, \\ & \text { NSV } 2003 \end{aligned}$	1.89	-0.70	2.913	1.203
14	$\begin{aligned} & 12193788-1915218, \\ & \text { R Crv } \\ & \hline \end{aligned}$	12194260-1911560, UW Crv	-1.18	-3.43	2.027	2.186
15	$\begin{aligned} & \text { 16202077-7841448, } \\ & \text { del01 Aps } \end{aligned}$	$\begin{aligned} & \text { 16202690-7840031, } \\ & \text { HD } 145388 \\ & \hline \end{aligned}$	-1.53	-1.70	-0.775	1.913
16	$\begin{aligned} & \text { 17260749-5041059, } \\ & \text { CGCS } 3822 \end{aligned}$	17260004-5038004, kap Ara, IRAS 17220-5035	1.86	-3.09	2.248	2.804
17	16470309-4552189, Westerlund 1 BKS B	16470468-4551238, IRAS 16434-4545, Hen 3-1250, Westerlund 1 BKS D	-0.40	-0.92	2.177	2.610
18	$\begin{array}{\|l\|} \hline 05285171+3225223, \\ \text { V400 Aur } \\ \hline \end{array}$	$\begin{aligned} & \text { 05285288+3228391, } \\ & \text { V401 Aur, } \\ & \text { BD+32 996B, } \\ & \text { HD } 243918 \end{aligned}$	-0.29	-3.28	1.987	0.911
19	18111163-2630028	$\begin{aligned} & \text { 18112756-2629324, } \\ & \text { OH 5.0-3.8, } \\ & \text { HD } 315326 \end{aligned}$	-3.98	-0.51	2.442	2.360
20	$\begin{array}{\|l} \hline 04195087+4107417, \\ \text { GM Per } \\ \hline \end{array}$	$\begin{aligned} & 04200316+4103500 \text {, } \\ & \text { IR Per } \end{aligned}$	-3.07	3.86	2.990	0.095
21	$\begin{array}{\|l\|} \hline 06451737+1253438, \\ \text { ZI } 572 \\ \hline \end{array}$	$\begin{aligned} & 06452314+1251504, \\ & \text { AT Gem } \end{aligned}$	-1.44	1.89	1.688	2.856
22	$\begin{aligned} & 13220982-6413078 \text {, } \\ & \text { UX Cen } \end{aligned}$	$\begin{aligned} & \text { 13220842-6408188, } \\ & \text { IRAS 13188-6352 } \end{aligned}$	0.35	-4.82	1.948	2.345
23	$\begin{aligned} & 23080938+5815581, \\ & \text { IRAS } 23060+5759 \\ & \hline \end{aligned}$	$\begin{aligned} & 23075597+5814423, \\ & \text { IRAS } 23057+5758 \\ & \hline \end{aligned}$	3.35	1.26	2.996	2.907
24	$\begin{aligned} & 17411041-3020537, \\ & \text { CD-30 14574, } \\ & \text { GH20 358.29+00.08 } \end{aligned}$	17405413-3022380, IRAS 17376-3021	4.07	1.74	2.263	2.266
25	Duplicate of 24					

Herschel PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date : 16-Oct-03 Page : 7 of 29

No.	Star 1	Star 2	δ RA	δ Dec	K1	K2
			(')	(')	(mag)	(mag)
26	17101368-4046145, IRAS 17067-4042	17100497-4042276, IRAS 17065-4038	2.18	-3.78	2.049	2.726
27	17385481-3459283, IRAS 17355-3457, SCHB 94, Terz V 1847	$\begin{aligned} & \text { 17384548-3457177, } \\ & \text { V492 Sco } \end{aligned}$	2.33	-2.18	2.273	1.541
28	$\begin{aligned} & \text { 17353314-1419286, } \\ & \text { IRAS 17327-1417 } \end{aligned}$	$\begin{aligned} & \text { 17353776-1416088, } \\ & \text { IRC -10372 } \\ & \hline \end{aligned}$	-1.16	-3.33	2.360	2.217
29	14064732-6222274, NSV 20034, CD-61 4219	$\begin{aligned} & \text { 14063742-6219408, } \\ & \text { IRAS 14029-6205 } \end{aligned}$	2.48	-2.78	2.481	2.888
30	$\begin{aligned} & \text { 12472467-5941409, } \\ & C^{*} 2031 \end{aligned}$	12474326-5941194, bet Cru IRAS 12448-5925	-4.65	-0.36	1.601	1.978
31	$\begin{aligned} & \text { 07474521-1600519, } \\ & \text { NSV } 3741 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 07473853-1559263, } \\ & \text { QY Pup } \end{aligned}$	1.67	-1.43	1.965	2.702
32	$\begin{aligned} & \text { 17140992-1459593, } \\ & \text { IRC -10360 } \end{aligned}$	$\begin{aligned} & \text { 17142723-1459209, } \\ & \text { IRAS 17116-1455 } \end{aligned}$	-4.33	-0.64	2.165	2.977
33	$\begin{aligned} & \text { 17070146-4055380, } \\ & \text { IRAS 17035-4051 } \end{aligned}$	$\begin{aligned} & \hline \text { 17065791-4053524, } \\ & \text { IRAS 17034-4049 } \\ & \hline \end{aligned}$	0.89	-1.76	2.822	2.831

Herschel PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date $:$ $16-O c t-03$ Page $: 8$ of 29

Figure 1: 2MASS color-color diagram for bright binaries from the K-band search

3.4 Other stellar sources

3.4.1 Herbig Ae/Be stars observed with ISOPHOT

Ábrahám et al. A\&A 354, 965 (2000) present ISOPHOT data for a number of Herbig Ae/Be stars, including two pairs with interesting spacings (36 and 104 arcsec). The young stellar nature and complex environment calls for some caution about the far-infrared morphology. Indeed there is evidence for a third mid-infrared source in the LkH α 198/V376Cas pair (Lagage et al. 1993), extended emission in the PACS wavelength regime (Natta et al. 1992), and yet another source in the mm (Henning et al. 1998). Extended FIR emission is also seen in the BD +65 1637/LkH $\alpha 234$ region, with the FIR peak likely offset from the optical star LkH $\alpha 234$. While both pairs are FIR bright and scientifically interesting, the prerequisite for

MPE	HPSSChel	Fields and Double Stars for		
Spatial Calibration				Doc. ref. : PACS-ME-TN-035
:---				
Issue/Rev.: 1.0				
Date $\quad: 16-$ Oct-03				
Page $\quad: 9$ of 29				

use as spatial calibrators (accurately predictable FIR morphology at PACS resolution) appears insufficiently met.

4 Galactic ISOCAM fields

We have searched the ISO archive for ISOCAM rasters with low diffuse background but a large number of point sources, with the hope of then using 2MASS astrometry and the ISOCAM photometry to extrapolate to FIR sources. The main advantage offered by this approach is that non-photospheric emission from the program stars (e.g. dust shells, outflows, etc.) is more easily detected at mid-IR wavelengths than near-IR or shorter wavelengths. Knowledge about such emission sources is needed to ensure that the point-source assumption is not invalidated at PACS wavelengths. RD-1 describes this search. Fields with large source densities are indeed identified, but typical $15 \mu \mathrm{~m}$ fluxes are $<1 \mathrm{Jy}$ with few objects above 3Jy, i.e. too faint for PACS if a photospheric extrapolation is assumed. If objects are dusty (HII regions, YSOs, late stars with dust shells) fluxes would be higher but the applicability of 2MASS positions would need more critical investigation for individual objects. This approach is not considered to be as useful as simply obtaining the results from 2MASS and searching for additional information on the 2MASS selected targets with IRAS/ISO data.

5 Galaxies

There is a large number of galaxies sufficiently bright for PACS, some of them conveniently placed in pairs or groups. Inferring the FIR position/structure from other wavelengths is a problem, however, which may be solved easily for compact or distant objects with radio counterparts but not so easily for more normal nearby galaxies.

5.1 Quasars and AGN from Veron catalogue

Bright Quasars are pointlike for PACS and often have accurately known positions. Assuming the mean quasar energy distribution of Elvis et al. ApJS 95, 1 (1994), quasars with $\mathrm{V}<15.5$ are needed to get $>160 \mathrm{mJy}$ at $75 \mu \mathrm{~m}$. We have searched the merged lists of quasars, active galaxies, and BL Lac candidates from the $10^{\text {th }}$ edition of the Veron catalogue (from Vizier) for $\mathrm{V}<15.5, \mathrm{z}>0.01$ objects with separations between 30 " and 300 '. Three pairs are found, all formed of inconspicious nearby Seyfert2 or Liner NGC objects (NGC 70/71, NGC 833/835, NGC7679/7682). For the purpose of PACS spatial calibration these objects are likely no better than other galaxy pairs. Real quasar pairs are found only at fainter magnitudes or larger separations. For test purposes, we also searched for $\mathrm{V}<17.5, \mathrm{z}>0.1$ pairs and found 11 candidates. Only one QSO in one of these pairs has an IRAS FSC counterpart, however. Sufficient far-infrared brightness is hence not ensured.

5.2 Galaxy pairs

The Arp-Madore catalogue or other catalogs of interacting galaxies could provide a long list of galaxy pairs for which total IRAS fluxes can be retrieved, but the issue of flux distribution over the two objects and of precise FIR centroids is difficult to solve accurately without additional information.

Herschel PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date $:$ $16-$ Oct- 03 Page $: 10$ of 29

Objects with interferometric radio continuum data are worth consideration, in case the radio mapping is good enough to (i) estimate accurate centroids for the two components, (ii) estimate a rough FIR brightness ratio by assuming FIR flux ratio = radio flux ratio and (iii) filter out objects which are dominated by off-nuclear regions which have hard to predict morphologies (like the Antennae NGC 4038/39). The following subsection provides a first such list from VLA-observed IRAS BGS sources.

Additional literature search could probably enlarge the sample significantly, by starting from interacting Galaxy samples and then introducing IRAS and radio information. The NVSS, e.g., may often give a first indication of the radio emission in a galaxy pair but is not well matched in spatial resolution to PACS.

5.2.1 Galaxy pairs from the IRAS Bright Galaxy Sample with VLA radio observations

Condon et al. ApJ Suppl. 73, 359 (1990) and ApJ Suppl. 103, 81 (1996) published a VLA 1.4 GHz atlas of the IRAS Bright Galaxy Sample. With $\mathrm{S}_{60 \mu \mathrm{~m}}>5.24 \mathrm{Jy}$ these are very bright sources at PACS sensitivities, even if several components contribute. The following preliminary list is from a first visual inspection of this atlas. To be listed, an object had to fulfil the following criteria:

1. Mapped in VLA B or C configuration or both (sometimes also A), i.e. at spatial resolution 24arcsec FWHM or better. Objects with only D configuration data were not considered.
2. Double radio source, with each component dominated by a single unresolved or slightly resolved component. Component separation $30 \operatorname{arcsec}<\mathrm{d}<300 \mathrm{arcsec}$.
3. Double radio morphology similar to optical or near-IR (2MASS) double morphology, to include double galaxies but exclude unrelated background radio sources (or double lobe radio galaxies), for which the radio morphology is a bad guess of the far-infrared morphology.

Name	Alias	S60	cz	RA	DEC	Sep	PA	S(1.4GHz)
		Jy	km/s	B1950 !!!	B1950 !!!	arcsec	Deg	mJy
NGC 317A		9.28	5293005449.8	+433151	35	154	2.4	
NGC 317B			005451.2	+433120			44.5	
NGC 633		7.82	5137013410.3	-373434	67	173	20.6	
ESO 297-G012		013411.0	-373540			11.4		
MCG+05-06-036 Mrk 1034	6.74	10083022020.9	+315743	49	52	3		
			022023.9	+315813			32.8	
NGC 2342		7.96	5276070620.4	+204304	151	-144	26.9	
NGC 2341			0070614.1	+204102				
IRAS09111-1007		7.19	16231091110.7	-100704	37	74	24.2	
		091113.1	-100654			13.7		
NGC 2993	Arp 245	10.8	2420094324.1	-140813	177	-32	46.7	
NGC 2992			094317.73	-140542.8			205	
IC2810	UGC 06436	5.6	$10243112308.58+145705.6$	71	114	17.2		
		$112313.06+145636.7$			8			
NGC 3994	Arp313	8.26	3118115502.5	+323320	107	57	43.4	
NGC 3995			115509.6	+323419			8.8	
UGC 08335	Arp 238	12	9230131337.54	+622334.4	34	119	7.8	

Herschel PACS	Fields and Double Stars for Spatial Calibration	```Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date : 16-Oct-03 Page : 11 of 29```

| | | | $131341.83+622317.9$ | | | 41 | |
| :--- | ---: | ---: | ---: | ---: | :--- | :--- | :--- | ---: |
| IC 4518A | | 7.7 | 4875145424.1 | -425553 | 40 | 89 | 120 |
| IC 4518B | | | 145427.7 | -425552 | | | 9.7 |
| UGC 09618 | Arp 302 | 6.68 | 10103145447.8 | +244824 | 40 | 9 | 4.4 |
| | | | 145448.24 | +244903.9 | | | 46.4 |
| NGC 5953 | Arp 091 | 11.6 | 1965153213.2 | +152135 | 47 | 60 | 17.1 |
| NGC 5954 | | | 153216.0 | +152158 | | | 3.6 |
| NGC 6285 | Arp 293 | 9.87 | 5691165737.4 | +590150 | 90 | 139 | 6 |
| NGC 6286 | | | 165745.0 | +590042 | | | 61.3 |
| NGC 7253A | Arp 278 | 6.97 | 4718221710.0 | +290839 | 41 | 131 | 25.2 |
| NGC 7253B | | | 221712.4 | +290812 | | | 2.2 |
| NGC 7465 | | 5.5 | 1968225932.0 | +154145 | 142 | -65 | 11.7 |
| NGC 7463 | | | 225923.1 | +154246 | | | 1.9 |
| NGC 7469 | Arp 298 | 27.7 | 4892230044.4 | +083616 | 79 | 26 | 145 |
| IC 5283 | | | 230046.7 | +083727 | | | 9.2 |
| NGC 7674 | Arp 182 | 5.28 | $8671232524.41+083012.6$ | 32 | 66 | 162 | |
| NGC 7674A | | | 232526.4 | +083026 | | | 2.2 |

This list needs individual verification and transformation of all (1950!) coordinates before use in actual calibrations. The sources are not ideal 'double point sources'. Some extended radio emission at PACS resolution may still be present for many objects despite rejecting the most complex objects.

The accuracy of the offset extrapolation to the FIR will depend on morphology/compactness and on the VLA configuration used and has to be estimated for each object individually. It is probably unrealistic to expect many systems with sub-arcsecond accuracy.

Appendix C shows overlaps of 2MASS K-band and HIRES IRAS $60 \mu \mathrm{~m}$ images for the objects listed in the table. The far-infrared morphology is consistent with the radio information listed above - small separations and high contrast systems are of course unresolved in the IRAS data. The plot showing the NGC3994/3995 system has an associated third far-infrared source related to NGC 3991, itself an interacting system for which a farinfrared centroid is not easily specified.

6 Solar system objects

6.1 Asteroid conjunctions

Asteroids provide a large number of effectively pointlike FIR sources slowly moving across the sky. This makes them potential spatial calibrators, pending positive answer to two questions: (1) Is there a sufficient number of $>0.16 \mathrm{mJy}$ asteroids, so that conjunctions on $<5 \operatorname{arcmin}$ scales are reasonably frequent? (2) How good are their orbits? <1arcsec accuracy is needed. See RD-2 for some initial numbers. A crude estimate based RD-2 is: Assume there are ~ 2000 sufficiently bright asteroids in a ± 5 deg strip around the ecliptic. The Herschel visibility zone is one third of that - 666 objects in 1200 square degrees or one object per about 2 square degrees. Assuming a 'cross section' radius for a conjunction of 5' around an object and guessing a relative apparent movement of $0.5^{\prime} /$ hour, an individual asteroid has a $\sim 20 \mathrm{~h}$

MPE	HPSSChel	Fields and Double Stars for		
Spatial Calibration				Doc. ref. : PACS-ME-TN-035
:---				
Issue/Rev.: 1.0				
Date $\quad: 16$-Oct-03				
Page $\quad: 12$ of 29				

long conjunction about every 1500 hours, i.e. there may be a good chance for useful conjunctions at any given period of time.
A prerequisite for using this option will be a tool to obtain accurate Herschel-centric positions for a large number of asteroids.

6.2 Planetary satellites

An inventory of approximate angular separations from the planet, and of FIR fluxes (RD-2) suggests that at least the Galilean satellites of Jupiter and perhaps Titan/Japetus are possible objects. The Galilean satellites are so bright that they should easily stand out of Jupiter straylight. Possible limitations for bolometer operations, from the presence of nearby extremely bright objects, have to be verified.

One disadvantage has to be noted: Position angles of any Jupiter satellite pairs or multiples will always be close to the plane of the Ecliptic. The PACS chopping direction will be approximately orthogonal to the Ecliptic while viewing the Ecliptic. This makes Jovian satellites difficult to use for chop throw calibration. The inclination of the Saturn satellite system during the actual Herschel Mission changes. Using the Saturn Ephemeris Generator 2.2 (http://ringmaster.arc.nasa.gov/tools/ephem2_sat.html), the Saturn ring opening angle towards Earth is:

Date	Ring opening angle (degree)
01-Jan-2007	-12.6
01-Jan-2008	-6.7
01-Jan-2009	-0.8
01-Jan-2010	4.9

For the nominal Herschel launch, first such observations might occur in mid to late 2007. Then, suitable configurations of the bright moons like Titan and Iapetus may still be found (see example in Figure 2 from the Saturn viewer from the same web site). The situation will get worse with time because of the decreasing inclination of the ring system.

Herschel MPE PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date $:$ $16-O c t-03$ Page $: 13$ of 29

Saturn Viewer Results

Time (UTC): 2007-Oct-8 12:00
Ephemeris: Prometheus fit 2002 (SAT077 + SAT086 + SAT081 + SAT060 + SAT127 + DE405)
Prometheus lag: On
Viewpoint: Earth's center
Moon selection: Mimas-Phoebe
Ring selection: A,B,C

Figure 2: Example view of the Saturn satellite sytem in late 2007

Herschel MPE PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date $:$ $16-O c t-03$ Page $: 14$ of 29

Appendix A: 2MASS images of fields with suitable double stars from K-band search

Fields and Double Stars for
Spatial Calibration

Doc. ref. : PACS-ME-TN-035
Issue/Rev.: 1.0
$\begin{array}{ll}\text { Date } & : 16 \text {-Oct- } 03 \\ \text { Page } & : 15 \text { of } 29\end{array}$

Field 7	Field 8
Field 9	Field 10
Field 11	Field 12

Herschel MPE PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date $:$ $16-$ Oct-03 Page $: 16$ of 29

Herschel MPE PACS	Fields and Double Stars for Spatial Calibration	```Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date : 16-Oct-03 Page : 17 of 29```

Field 19	Field 20
Field 21	Field 22
Field 23	Field 24

Herschel PACS	Fields and Double Stars for Spatial Calibration	```Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date : 16-Oct-03 Page : 18 of 29```

Field 25	Field 26
Field 27	Field 28
Field 29	Field 30

Herschel PACS	Fields and Double Stars for Spatial Calibration	```Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date : 16-Oct-03 Page : 19 of 29```

Field 31	Field 32
Field 33	

MPE	HPSSChel	Fields and Double Stars for		
Spatial Calibration				Doc. ref. : PACS-ME-TN-035
:---				
Issue/Rev.: 1.0				
Date $\quad: 16$-Oct-03				
Page $\quad: 20$ of 29				

Appendix B: HIRES/2MASS overlays for double stars from K-band search

Field 1	Field 2
Field 3	Field 4
Field 5	Field 6

Herschel MPE PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date $:$ $16-$ Oct-03 Page $: 21$ of 29

MPE	HPSSChel	Fields and Double Stars for		
Spatial Calibration				Doc. ref. : PACS-ME-TN-035
:---				
Issue/Rev.: 1.0				
Date $\quad: 16$-Oct-03				
Page $\quad: 22$ of 29				

Field 13	Field 14
Field 15	Field 16
Field 17	Field 18

Herschel MPE PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date $:$ $16-$ Oct-03 Page $: 23$ of 29

Field 19	Field 20
Field 21	Field 22
Field 23	Field 24

MPE	HPSSChel	Fields and Double Stars for		
Spatial Calibration				Doc. ref. : PACS-ME-TN-035
:---				
Issue/Rev.: 1.0				
Date $\quad: 16$-Oct-03				
Page $\quad: 24$ of 29				

Field 25	Field 26
Field 27	Field 28
Field 29	Field 30

MPE	HPSSChel	Fields and Double Stars for		
Spatial Calibration				Doc. ref. : PACS-ME-TN-035
:---				
Issue/Rev.: 1.0				
Date $\quad: 16$-Oct-03				
Page $\quad: 25$ of 29				

Field 31	Field 32
Field 33	

MPE	HPSSChel	Fields and Double Stars for		
Spatial Calibration				Doc. ref. : PACS-ME-TN-035
:---				
Issue/Rev.: 1.0				
Date $\quad: 16$-Oct-03				
Page $\quad: 26$ of 29				

Appendix C: HIRES/2MASS overlays for double galaxies

The displays are overlays of 2MASS Ks-Band (grayscale) and IRAS $60 \mu \mathrm{~m}$ HIRES processed images (contours $0.2,0.5,1,2,5$ etc. MJy/sr). Scale shown is in arcsecond. Because of limited size of the 2MASS image tiles obtained from NED, the size of the panels changes and the object of interest is often not centered on the panel.

Herschel MPE PACS	Fields and Double Stars for Spatial Calibration	Doc. ref. : PACS-ME-TN-035 Issue/Rev.: 1.0 Date $:$ $16-$ Oct-03 Page $: 27$ of 29

NGC3994/3995=Arp313

HPSSChe		Doc. ref. : PACS-ME-TN-035 Fields and Double Stars for Spatial Calibration	Issue/Rev.: 1.0 Date $: 16-O c t-03$ Page $: 28$ of 29

UGC09618=Arp302

NGC6285/6286=Arp293

NGC7469/IC5283=Arp298

MPE	HPSSChel	Fields and Double Stars for		
Spatial Calibration				Doc. ref. : PACS-ME-TN-035
:---				
Issue/Rev.: 1.0				
Date $\quad: 16$-Oct-03				
Page $\quad: 29$ of 29				

