Observations of Planets with SWAS: Calibration and Science

Edwin Bergin University of Michigan

> Mark Gurwell Volker Tolls Gary Melnick SAO

An Explorer for the Submillimeter region

• SWAS is designed to observe five astrophysically important lines that are either difficult or impossible to observe from within the atmosphere (538 to 615 microns)

 H_2O $H_2^{18}O$ O_2 CI ^{13}CO High spectral resolution $(\lambda/\Delta\lambda \sim 300,000 \Leftrightarrow 1 \text{ km s}^{-1})$ Field-of-View: ~ 4 arcminutes (54 x 68 cm = 3.3' x 4.5' at 557 GHz)3-axis stabilized pointing: 5" absolute pointing; 3-5" pointing stability

- First space observatory to carry out pointed observations at submillimeter wavelengths
- Dedicated to the spectroscopic study of star formation and interstellar chemistry
- Provides our first opportunity to study cold water vapor and molecular oxygen in star-forming interstellar gas clouds

An Explorer for the Submillimeter region

- 54 x 68 cm primary; off axis; 11 dB edge taper
- chopper wheel calibration all data on T_A^* scale
- observing modes
 - NOD primary method of observation
 - chop 10' throw (2 Hz and 1/4 Hz)
 - dual beam chopping (complications... V. Tolls)
- SWAS is/was a spectroscopic mission and nearly all science was done using AOS
- SWAS did carry a total power continuum detector primarily designed to use Jupiter to find the sub-mm beam -- star tracker offset

— was used later for science observations in dual beam chopping mode

Melnick et al 2000; Tolls et al 2004

SWAS: Observed Molecules and Transitions

Species	Transition	Energy Above Ground State	Frequency (GHz)	Wavelength (µm)	Critical Density
		(E/k)			(cm^{-3})
O_2	$3,3 \rightarrow 1,2$	26 K	487.249	615.276	10 ³
CI	${}^{3}P_{1} \rightarrow {}^{3}P_{0}$	24 K	492.161	609.134	10^{4}
$H_2^{18}O$	$1_{10} \rightarrow 1_{01}$	26 K	547.676	547.390	10 ⁹
¹³ CO	$J = 5 \rightarrow 4$	79 K	550.926	544.161	3×10^{5}
H ₂ O	$1_{10} \rightarrow 1_{01}$	27 K	556.936	538.289	10 ⁹

Transitions listed in red are ground-state transitions.

SWAS Initial Calibration

- SWAS launch: Dec. 5, 1998
- Mars was used the primary calibrator
 - giant planets were not well characterized in the sub-mm.
 - Mars was not available for observations until April 1999.
 - Used ground-based line observations of neutral carbon for initial calibration checks (Rene Plume's focal reducer on the CSO) - this later provided confirmation of planetary calibration results.
- First "calibration" activity on-orbit was to find the sub-mm beam offset relative to the star tracker pointing.

SWAS Initial Calibration

SWAS LAUNCH and EARLY ORBIT ACTIVITIES

Constraints

- First 5 days of orbit with full sun exposure. Restricts source availability.
- 2) Will not power on instrument (and therefore will not upload timelines) until at least the 3rd day after launch.
- 3) Jupiter available until Dec. 30.
- 4) Orion not available until 9 days after launch.
- 5) Will not reach thermal equilibrium until > Day 5 (normal science ops will not start until eq. reached).
- 6) Will not be able to react to Day 3 results until Day 5. Actually had a 3-5 hour turn-around time

SWAS Initial Calibration: Beam Finding Jupiter Beam Search - Day 3

Area: 2.3 deg. by 2.3 deg.

SWAS

SWAS Initial Calibration: Beam Finding

Jupiter Beam Search Contingency Tree

 Jupiter found at nominal position:
Day 5: perform beam centroiding (9 x 9 map). ← start science observations.
Day 6: if in thermal eq. start Inst. tests. Jupiter beam map. SWAS

Jupiter found and offset confirmed:
Day 5: shift beam-star tracker offset.

Beam Search

 Jupiter found but offset unconfirmed:
Day 5: perform beam centroiding (9 x 9 map). mapping obs. of science targets (if offset large, make map size larger)
Day 6: if in thermal eq. start Inst. tests.
Day 7: Jupiter beam maps.

Jupiter not found: Day 5 + 6: spec. chop on Jupiter search deeper at selected positions. Spec. centroid on IS targets: S140, DR21. (Moon).

SWAS Initial Calibration: Beam Finding

- Mars observed continuously on:
 - 4/17/99 5/2/99 (epoch 1)
 - 6/5/99 6/9/99 (epoch 2)
 - $\theta = 15.6'' \text{ to } 16.2''$
- Martian season was L_s ~ 130 (mid-northern summer).
- Spectra collected over a series of 30 minute observations (called segments). Consists of over 200 segments (> 1800 minutes) in total.
- For calibration used the Rudy thermal model of Martian surface and sub-surface.
 - initially used to calibrated cm wavelength observations
 - extended into mm (M. Gurwell and others)

- 2 channels
 - 1. CI/O₂ (490 GHz)
 - 2. H₂O/¹³CO (553 GHz)
- In channel 2 the water line exceeds the width of the bandpass (350 MHz)
 - cannot get a measurement of continuum level
- I nitial calibration was done on channel 1 and this value was used to estimate the efficiency of channel 2.
 - Ch. 2 efficiency later confirmed by scans of the Moon and by observations of H₂¹⁸O in ch. 2 when Mars was larger.
- Observed flux in ch. 1 was 1.0 ± 0.05 K (DSB)

Some equations: •

 S_M = flux from Mars T_{RJ} = Rayleigh-Jeans corrected brightness temperature from model

- For Mars T_{RJ} and Ω_{Mars} will vary with time
- SWAS has data over 2 epochs but T_{RJ} was roughly constant within each epoch
- Ratio of $S_M / \ \Omega_M$ will be nearly constant within each epoch so:

$$\frac{S_{M}}{\Omega_{M}} = \frac{1}{e_{A}} \left\langle \frac{2kT_{A}^{*}}{A_{p}\Omega_{M}} \right\rangle$$
$$e_{A} = \frac{I^{2}}{2k\langle T_{RJ} \rangle} \left\langle \frac{2kT_{A}^{*}}{A_{p}\Omega_{M}} \right\rangle$$

Values in brackets are time-weighted averages.

$$m{e}_{MB} = rac{\Omega_{MB}}{\Omega_A} = rac{\Omega_{MB}}{m{l}^2 / m{e}_A A_p}$$

 $\varepsilon_{\rm MB}$ = main beam efficiency $\Omega_{\rm MB}$ = main beam solid angle

Complications

- Epoch 1:
 - Mars was not properly centered during the observations (offset by 0.15',0.67')
 - Mars was nearing opposition and was drifting with the beam at a rate of 0.91'/hour.
 - Effects of parallax were not accounted for in the timelines
- Epoch 2:
 - Mars centered
 - Effects of parallax not corrected, but segments were shorter and effect is smaller (< 1%)
 - Motion of Mars 0.13' per hour
 - Observation time (~11 hours) significantly less than Epoch 1 (~33 hours)

Complications

- Epoch 1:
 - Mars was not properly centered during the observations (offset by 0.15', 0.67')
 - Mars was nearing opposition and was drifting with the beam at a rate of 0.91'/hour.
 - Effects of parallax were not accounted for in the timelines
- Epoch 2:
 - Mars centered
 - Effects of parallax not corrected, but segments were shorter and effect is smaller (< 1%)
 - Motion of Mars 0.13' per hour
 - Observation time (~11 hours) significantly less than Epoch 1 (~33 hours)

Cumulative effect of errors varies but at maximum was 5% (mostly due to pointing error which could be corrected).

	Epoch 1	Epoch 2	All Data	Preferred Value
ε _A	65±3%	70 ±3%	66 ±3%	66%
ε _M	93 ±7%	100 ±7%	94 ±7%	90%

- Adopted 90% main beam efficiency as it is maximum theoretical limit for a filled antenna with an unblocked aperture with an 11dB edge taper is 90%
- Ch. 2 efficiency assumed to be similar (Ruze formula for 18 µm surface rms suggests efficiency is 4% lower consistent with later results).

Jupiter and Saturn

- Tropospheric water vapor from deep atmosphere known for many years.
 - Galileo NMS detected H₂O at ~ 4 -8 bar (Roos-Serote et al. 1998).
 - Galileo probe mass spectrometer measured H₂O abundance at > 11 bar (Niemann et al. 1998).
- ISO detected H₂O in stratosphere of all four giant planets and Titan: likely derived from impact of micrometeorites and SL9 for Jupiter (Feuchtgruber; Lellouch).
- ⇒ The high spectral resolution of SWAS permitted retrieval of the vertical profile of water, an important test of impact theory.

Stratospheric Water on Jupiter

- Best fit to spectrum obtained with non-uniform water vapor profile, increasing with altitude.
- Consistent with external source model.
- Column density = 2.8×10^{15} cm⁻²; ~1.7 times I SO results (Lellouch et al. 1997).

Bergin et al 2000; Lellouch et al 2002

Stratospheric Water on Saturn

- Spectrum well fit by either constant water vapor profile or with profile increasing with altitude.
- Does show effect of condensation.
- Column density = $1.9-5.4 \times 10^{15}$ cm⁻²; ~2 times I SO results (Moses et al. 2000).
- Analysis suggests rings contribute 29% of flux (depends on viewing angle)

Bergin et al 2000

Mars

- Primary calibration source
- Variable atmospheric temperature profile
- Highly variable water column and profile
- ⇒ 1999: SWAS measured both the atmospheric temperature and water vapor vertical profiles
- ⇒ 2001: SWAS measured atmospheric temperature profile during global dust storm

Mars 1999: ¹³CO and Temperature

- Martian atmosphere ~20 K cooler than during Viking era (e.g. Zurek et al. 1992).
- Verifies cold temperatures found through mm spectroscopy (Clancy et al. 1996).

Gurwell et al 2000

Mars 1999: Water Vapor Profile

- Cold temperatures imply low saturation altitude ~ 7 km; nominal 8 pr micron.
- Best fit by water vapor profile with 100% saturation above 7 km.

Gurwell et al 2000

Mars 2001: Temperature Profile and Global Dust Storm

- SWAS measurements of the ${}^{13}CO(5-4)$ and $H_2O(1_{10}-1_{01})$ rotational transitions allowed retrieval of the temperature profile from the surface to 90 km.
- The global dust storm raised atmospheric temp by up to 40 K above prestorm levels at altitudes of 5-40 km.
- SWAS was the only instrument able to characterize the upper atmosphere of Mars during the storm.

Gurwell et al. 2004

Mars 2001: Surface Temperature and Global Dust Storm

Gurwell et al. 2004

LS

Conclusions

- For calibration:
 - Large wavelength coverage will aid by finding areas free of line emission (use of Uranus as well).
 - Closer planets: movement should be recognized in commanding.
 - Cross-calibration between Herschel instruments will be important.
- For science:
 - Short/Long term monitoring of planets (e.g. Mars) may be difficult because of overhead price (slew, etc.)
 - <u>But</u>... science return can provide information that even observatories orbiting planet (Mars) cannot.
 - Some thought should be placed on how often planets can be re-observed for (cross)calibration checks and science.