

ISOPHOT-related calibration work at Konkoly Observatory

Péter Ábrahám, Attila Moór, Sz. Csizmadia, Cs. Kiss, Á. Kóspál abraham@konkoly.hu

Infrared Space Astronomy Group Konkoly Observatory, Budapest

> Herschel Calibration workshop Leiden, 1-3 December 2004

ISO activities at Konkoly Observatory

- □ Mid-2001 : ISOPHOT group established via ESA's PRODEX programme
- **Today** : 4 scientists, 1 PhD student, 3 graduate students
- **2002-06** : Contract with the ISO DC to produce HPDPs (7 man-year)
- **2004** : 2 Spitzer GO proposals accepted
- **2004-07** : Contribution to the Herschel/PACS calibration (8 man-year)
 - **Our goals:** collect ISOPHOT calibration knowledge
 - (with MPIA) maintain and develop ISOPHOT data reduction skills (PIA)
 - help and collaborate with people working on ISOPHOT data
 - encourage students to use ISOPHOT

http://www.kisag.konkoly.hu

Konkoly strategy to produce *Highly* Obs Processed Data Products for the ISO Archive

- Select and process well-defined homogeneous ISOPHOT data sets (not necessarily a complete AOT!)
- □ Utilize science observations of normal stars as secondary standards
- Develop dedicated correction algorithms
- □ Empirical photometric correction as the final step of processing
- □ Proceed from one data set to the next one, adapt correction algorithms, use lessons learnt → homogenization of modes
- Produce easy-to-use photometric catalogues (foreseen to be linked to the VO), and atlases (far-IR maps, PHT-S spectrophotometry)

Road map: from mode to mode

Infrared group Konkoly Observatory

Herschel Calibration Workshop - 1 - 3 December 2004

Processing of far-infrared mini-maps

Mini-maps:

- The most efficient observing mode of ISOPHOT
- Each pixel provides independent photometric results
- **ISOPHOT** was calibrated in "mini-map mode"
- **AOT P22**

~1380 TDTNUMs ~360 h total time

In OLP10.0 the mode is scientifically validated. **Open issues:**

- complicated flux extraction for point sources
- aperture photometry is inaccurate at faint level
- improving signal processing
- individual problems

Infrared group Konkoly Observatory

Page 5

Observatory

Improvements in mini-map calibration

□ Flux reconstruction using the 2D beam (measured)

Empirical photometric correction (using secondary standards)

Infrared group Konkoly Observatory

Konkol Observatory

Additional checks: source confusion in the beam; off-centre position; point / extended object;

Infrared group Konkoly Observatory

Improvements in mini-map calibration

Error budget

Faint level: 14.5 mJy @ 60, 90 mm 31 mJy @ 170 mm Bright level: better than 7-9%

30z $\mathbf{20}$ 100 -0.10.00.10.20.30.40.5 F_{meas} - F_{pred} at 60 μ m [Jy]

Quality flags

Mini-map HPDPs produced so far

Catalogue of normal stars	– 555 meas. – 229 objects
□ Catalogue of solar-system objects	– 168 meas. – 11 objects
Catalogue of evolved stars	 – 53 meas. – 50 objects
 Catalogue of miscellaneous far-infrared objects 	 49 meas. – 48 objects
Catalogue of extragalactic objects	– 818 meas. – 336 objects

You can find them in the ISO Data Archive

Processing of far-IR sparse maps

Sparse maps:

- □ AOT P37, P38, P39
- □ C100: only Pixel 5 measures the source
- □ C200: source at the centre of array
- □ separated OFF positions
- 2839 ISOPHOT sparse map observations, 105.5 h total time
- Solar system objects: 0%, Extragalactic objects: 39%, Normal stars: 19%, Evolved stars: 11%, YSO: 9%, ELAIS survey: 9%, Miscellaneous: 13%
- in the normal star catalogue: 507 TDT of 147 stars, 210 different flux values

Similar processing improvements as in mini-maps (*but* IRAS-based drift correction; in situ flat-field).

Pseudo-AAP format for sparse maps

Powerful tool for transforming different observing modes to mini-map scheme.

Improvements in sparse map calibration

Error budget

Faint level: 70 mJy @ 60 mm

Bright level: better than 12 %

□ Additional checks: source confusion in the beam; off-centre position

Infrared group Konkoly Observatory

Herschel Calibration Workshop - 1 - 3 December 2004

PHT-S post-processing package

Most PHT-S spectra in the Legacy Archive are OK, but some individual cases require post-processing:

- Corrections can be made with our IDL-based package.
- We check for too low/high detector temperature.
- Empirical photometric correction is applied at the end of the processing scheme.
- Error estimate from an ensemble of 42 normal star observations.

Infrared group Konkoly Observatory

Konko

Observator

PHT-S atlas of young stars

ISOPHOT-S Spectrophotometric Atlas of Young Stellar Objects

- Standard processing to AAP with PIA V10.0
- Memory from preceeding observation corrected
- DIRBE-based zodiacal spectrum subtracted
- Position offset (DY=+1.0", DZ=-0.6") corrected
- Empirical photometric correction applied

Science highlights: IR sky background

Temperature of the zodiacal light

Herschel Calibration Workshop – 1 -3 December 2004

Fluctuation of the extragalactic bgd.

Page 14

Science highlights: FU Orionis stars

V1057 Cyg V1057 Cyg 10-11 10-12 5. 10⁻¹³ 10-14 10-15 ISO 1996 Δ IRAS 1983 MSX 1997 10-16 2MASS 2000 • NIR 1983 ☆ optical 1983 10 100 1 Wavelength [um]

First study of the temporal variation of FU Ori-type eruptive YSOs in the infrared.

Results: contradiction with present models to explain the origin of far-IR emission.

(Ábrahám et al. 2004)

Science highlights: Vega-phenomenon

- □ Several ISOPHOT key-programmes were devoted to Vega-phen.
- □ No unified homogeneous catalogue was produced
- We are creating such a catalogue based on mini-map and sparse map observations

Konkol

Observatory

Future HPDP plans: C100/C200 nodding, 1D scan, ON- OFF; P1/P2/P3 ON-OFF

Updated versions of the existing HPDP catalogues

Pseudo-AAP utilized everywhere for homogenization of processing

□ Calibration of absolute surface brightness photometry

Thank you for your attention!

Infrared Space Astronomy Group Konkoly Observatory, Budapest

E-mail: abraham@konkoly.hu

Home page: http://kisag.konkoly.hu

