

Secondary standards for ISOPHOT

Péter Ábrahám, A. Moór, Sz. Csizmadia, Cs. Kiss, Á. Kóspál abraham@konkoly.hu

> Infrared Space Astronomy Group Konkoly Observatory, Budapest

> > Herschel Calibration workshop Leiden, 1-3 December 2004

Introduction

- □ The concept of secondary standards
- □ Flux prediction methods
- The use of secondary standards to validate/refine ISOPHOT photometry
- □ Could ISOPHOT data verify stellar models?
- Could ISOPHOT data help to select standards for Herschel (with possible contribution from Spitzer)?

Summary

Introduction

□ ISOPHOT: the photometer on-board the *Infrared Space Observatory*

ISOPHOT was calibrated during the ISO mission by an expert group at VilSpa/Heidelberg (the work is documented, published)

Legacy Archive was produced

- At Konkoly Observatory, Budapest, we work on further refinement of the ISOPHOT calibration
- Some of our methods/results might be interesting to the Herschel community

Konkoly IR Space Astronomy Group

- Mid-2001 : ISOPHOT group established via ESA's PRODEX programme
- Today : 4 scientists, 1 PhD student, 3 graduate students
- 2002-06 : Contract with the ISO Data Centre to produce "Highly Processed Data Products" (7 man-yr)
- : 2 Spitzer GO proposals accepted 2004
- 2004-07 : ESA contract for contribution to the Herschel calibration (8 man-yr)
 - Goals: preserve ISOPHOT calibration knowledge
 - maintain and develop ISOPHOT data reduction skills (PIA)
 - help and collaborate with people working on ISOPHOT data

encourage students to use ISOPHOT

Methods:

very practical, down-to-the-earth methods intensive interactive data analysis close collaboration with MPIA

Concept of "secondary standards"

- □ ISOPHOT was calibrated using a library of stellar/asteroidal/planet models (primary standards). Not all objects were observed.
- Observations of these standards do not cover all measurement configurations, and all flux ranges
- Our strategy: (1) define a homogeneous ISOPHOT data set, (2) develop correction algorithms specifically for this data set.
- □ We need standard objects to check/validate/improve the photometry!
- Not enough dedicated standard observation in the selected data set?
 Collect science observations and use them as "secondary standards"!

Which type of objects could be used?

- Normal stars, from ISOPHOT debris disk programmes (but: possible excess, source confusion in crowded open clusters)
- Non-variable objects with good IRAS meas. (must be relatively bright and compact)
- At NIR/MIR wavelengths: non-variable objects with ground-based photometry
- Regular variable objects (e.g. Mira-stars)

Konko

Observatory

Flux prediction for normal stars from V-magnitude and [B-V] colour

- □ There is no Cohen template for each normal star...
- Habing et al. (Plets PhD) predicted photospheric fluxes in the IRAS bands from V-mag and B-V
- A similar method can be used to predict stellar fluxes in the ISOPHOT filter bands

Herschel

Konkoly Observatory

Flux prediction from K-magnitude

- □ Higher accuracy can be achieved with the K-mag + [B-V] relationship
- □ From 2MASS accurate Ks-magnitudes are available at K>4.5 mag
- **Given Stars Stars Check e.g. ISO GBPP (TCS, ESO)**
- **2MASS TCS transformation**

Prediction of photospheric flux density at 25 micron 2.0 1.5 Flux(Pred) / Flux(Model) 1.0 0.5 Cohen Hammersley 0.0 0.5 0.0 1.0 1.5 2.0 B-V [mag]

Konkoly

Observatory

Fluxes predicted via IRAS

Census of normal star observations

		B	Α	F	G	Κ	Μ
Main-sequence	Mini-map	16	19	66	57	26	0
	Sparse map	8	21	28	37	7	0
Giant	Mini-map	1	1	0	3	10	4
	Sparse map	0	1	0	3	15	1
No lum., class	Mini-map	6	7	12	10	3	0

How to utilise secondary standards?

- Process the selected
 "secondary standards"
 (normal stars), using the best possible data reduction
- E.g. ISOPHOT mini-maps: transient correction, correction for slow baseline variation, PSF photometry with measured beam profile
- Perform error analysis with special care; derive reliable uncertainties
- Compare measured and predicted fluxes
- Fit systematic trend

Could ISOPHOT verify stellar models?

Konkoly

Observatory

But: systematic differences among stellar groups could be studied!

□ No detectable far-infrared excess

check if the star is situated "in the crowd"

No detectable far-infrared excess
 check if the star is situated "in the crowd"
 Smooth sky background
 look at ISOPHOT maps and mini-maps

Sky background towards Sirius

Candidates for Herschel standard stars

 No detectable far-infrared excess check if the star is situated "in the crowd"
 Smooth sky background look at ISOPHOT maps and mini-maps
 Low predicted sky confusion noise check e.g. the all-sky maps of Cs. Kiss Konkoly

Observator

See talk of Cs. Kiss.

Candidates for Herschel standard stars

No detectable far-infrared excess check if the star is situated "in the crowd" Smooth sky background look at ISOPHOT maps and mini-maps Low predicted sky confusion noise check e.g. the all-sky maps of Cs. Kiss No source confusion in the far-infrared check ISOPHOT or Spitzer/MIPS maps

Konkoly

Observatory

Source confusion towards HR 6132

ISOPHOT raster map of HR 6132 at 90 micron ISOPHOT raster map of HR 6132 at 175 micron

Data reduction: no drift correction, interpolation to a finer grid PA 16-Nov-96

Konkoly Observatory

Data reduction: no drift correction, interpolation to a finer grid PA 14-Nov-96

Source confusion towards an F-star

Herschel Calibrat

Candidates for Herschel standard stars

No detectable far-infrared excess check if the star is situated "in the crowd" Smooth sky background look at ISOPHOT maps and mini-maps Low predicted sky confusion noise check e.g. the all-sky maps of Cs. Kiss No source confusion in the far-infrared check ISOPHOT or Spitzer/MIPS maps On the basis of ISOPHOT data a list of standard star candidates for Herschel could be compiled.

Konkol

Observatory

- Debris-disk programmes will provide lists of non-excess stars
- MIPS maps available in the Spitzer archive could help to avoid source confusion
- Dedicated HSC proposals to check the environment of (faint) standard star candidates

Summary

- In order to refine the calibration of selected ISOPHOT observing modes also scientific targets have to be utilised as "secondary standard"
- Best objects are normal stars, mainly from the debris disk programmes
- Flux prediction from 2MASS Ks and [B-V] gives satisfactory accuracy at farinfrared wavelengths
- In mini-map mode the photometric uncertainty is 14 mJy for faint objects and 10% for brighter objects (60 micrometer)
- These kind of analyses cannot verify theoretical models in absolute sense, but could give hints whether the models worked equally well for different classes
- Several important aspects of choosing good faint standards for Herschel can be checked from ISOPHOT data. We could prepare a list of suitable candidates
- Spitzer measurements (existing or new ones) could help to avoid source confusion and far-infrared excess

Thank you for your attention!

Infrared Space Astronomy Group Konkoly Observatory, Budapest

E-mail: abraham@konkoly.hu

Home page: http://kisag.konkoly.hu

