# HerCULES Herschel Comprehensive (U)LIRG Emission Survey



Paul van der Werf

Leiden Observatory



ESLAB Conference May 7, 2010

# HerCULES in a nutshell



HerCULES will uniformly and statistically measure the neutral gas cooling lines in a flux-limited sample of (U)LIRGs.

➤ Sample:

- > all IRAS RBGS ULIRGs with  $S_{60} > 12.19$  Jy (6 sources)
- > all IRAS RBGS LIRGs with  $S_{60} > 16.8$  Jy (23 sources)

#### > Observations:

- SPIRE/FTS full high-resolution scans: 200 to 670 μm at R ≈ 600, covering CO 5– 4 to 13–12 and [CI] (+ other lines?)
- PACS line scans of [CII] and both [OI] lines
- All targets observed to same (expected) S/N
- Extended sources observed at several positions



## Who is HerCULES?

Paul van der Werf (Leiden; PI) Susanne Aalto (Onsala) Lee Armus (Spitzer SC) Vassilis Charmandaris (Crete) Kalliopi Dasyra (CEA) Aaron Evans (Stony Brook) Jackie Fischer (NRL) Yu Gao (Purple Mountain) Eduardo Gonzalez-Alfonso (Henares) Thomas Greve (MPIA/Copenhagen) Rolf Güsten (MPIfR) Andy Harris (U Maryland) Chris Henkel (MPIfR) Kate Isaak (Cardiff/ESTEC) Frank Israel (Leiden) Carsten Kramer (IRAM) Edo Loenen (Leiden) Steve Lord (NASA Herschel SC)

Jesus Martín-Pintado (Madrid) Joe Mazzarella (IPAC) Rowin Meijerink (Leiden) David Naylor (Lethbridge) Padelis Papadopoulos (Bonn) Adam Rykala (Cardiff) Dave Sanders (U Hawaii) Giorgio Savini (Cardiff/UCL) Howard Smith (CfA) Marco Spaans (Groningen) Luigi Spinoglio (Rome) Gordon Stacey (Cornell) Sylvain Veilleux (U Maryland) Cat Vlahakis (Leiden) Fabian Walter (MPIA) Axel Weiß (MPIfR) Martina Wiedner (Paris) Manolis Xilouris (Athens)



## Aims of HerCULES



- > develop use of the CO rotational ladder as a diagnostic
- inventory of neutral gas cooling
- > statistically robust approach
- Iow-z benchmark for ALMA observations
- > spectroscopically probe uncharted territory

#### A local benchmark for high-z galaxies 12CO flux density PSS J2322+1944 (z=4.1) 12CO line SED MW (center) (Weiß, Walter *et al.*) 20 10 Ľ. 15 co [10 11 Jy kms<sup>-1</sup> s, co [mJy] 10 5 3 4 5 6 7 8 9 1 Rotational Quantum Number Jugge 10 11 5 2 3 6 7 ٩ 4 8 Rotational Quantum Number J

- Even in ALMA era, limited spatial resolution on high-z galaxies, but many lines available
- HerCULES will provide an empirical framework for interpreting these data.

#### PDRs vs. XDRs



#### Four differences:

- X-rays penetrate much larger column densities than UV photons
- Solution Gas heating efficiency in XDRs is  $\approx 10-50\%$ , compared to <1% in PDRs
- Dust heating much more efficient in PDRs than in XDRs
- High ionization levels in XDRs drive ion-molecule chemistry



#### PDRs vs. XDRs: CO lines





- XDRs produce larger column densities of warmer gas
- Identical incident energy densities give very different CO spectra
- Very high J CO lines are excellent XDR tracers
- Need good coverage of CO ladder

<sup>(</sup>Spaans & Meijerink 2008)

### HerCULES sample

| Target           | $\log(L_{\rm IR}/L_{\odot})$ |
|------------------|------------------------------|
| Mrk 231          | 12.51                        |
| IRAS F17207—0014 | 12.39                        |
| IRAS 13120—5453  | 12.26                        |
| Arp 220          | 12.21                        |
| Mrk 273          | 12.14                        |
| IRAS F05189—2524 | 12.11                        |
| Arp 299          | 11.88                        |
| NGC 6240         | 11.85                        |
| IRAS F18293—3413 | 11.81                        |
| Arp 193          | 11.67                        |
| IC 1623          | 11.65                        |
| NGC 1614         | 11.60                        |
| NGC 7469         | 11.59                        |
| NGC 3256         | 11.56                        |

| Target          | $\log(L_{\rm IR}/L_{\odot})$ |
|-----------------|------------------------------|
| C 4687/4686     | 11.55                        |
| NGC 2623        | 11.54                        |
| NGC 34          | 11.44                        |
| ACG+12—02—001   | 11.44                        |
| Ark 331         | 11.41                        |
| RAS 13242—5713  | 11.34                        |
| NGC 7771        | 11.34                        |
| Zw 049.057      | 11.27                        |
| NGC 1068        | 11.27                        |
| NGC 5135        | 11.17                        |
| RAS F11506—3851 | 11.10                        |
| NGC 4418        | 11.08                        |
| NGC 2146        | 11.07                        |
| NGC 7552        | 11.03                        |
| NGC 1365        | 11.00                        |



Mrk231 SPIRE FTS



#### A&A Special Issue papers



LETTER TO THE EDITOR

Loenen talk

#### Black hole accretion and star formation as drivers of gas excitation and chemistry in Mrk 231

P.P. van der Werf<sup>1\*</sup>, K.G. Isaak<sup>2,3</sup>, R. Meijerink<sup>1</sup>, M. Spaans<sup>4</sup>, A. Rykala<sup>2</sup>, T. Fulton<sup>5</sup>, A.F. Loenen<sup>1</sup>, F. Walter<sup>6</sup>, A. Weiß<sup>7</sup>, L. Armus<sup>8</sup>, J. Fischer<sup>9</sup>, F.P. Israel<sup>1</sup>, A.I. Harris<sup>10</sup>, S. Veilleux<sup>10</sup>, C. Henkel<sup>7</sup>, G. Savini<sup>11</sup>, S. Lord<sup>12</sup>, H.A. Smith<sup>13</sup>, E. González-Alfonso<sup>14</sup>, D. Naylor<sup>15</sup>, S. Aalto<sup>16</sup>, V. Charmandaris<sup>17</sup>, K.M. Dasyra<sup>18</sup>, A. Evans<sup>19,20</sup>, Y. Gao<sup>21</sup>, T. Greve<sup>6,22</sup>, R. Güsten<sup>7</sup>, C. Kramer<sup>23</sup>, J. Martín-Pintado<sup>24</sup>, J. Mazzarella<sup>12</sup>, P.P. Papadopoulos<sup>25</sup>, D.B. Sanders<sup>26</sup>, L. Spinoglio<sup>27</sup>, G. Stacey<sup>28</sup>, C. Vlahakis<sup>1</sup>, M.C. Wiedner<sup>29</sup>, and E. Xilouris<sup>30</sup>

(Affiliations can be found after the references)

LETTER TO THE EDITOR

González-Alfonso poster

#### Herschel\* observations of water vapour in Markarian 231

E. González-Alfonso<sup>1</sup>, J. Fischer<sup>2</sup>, K. Isaak<sup>3</sup>, A. Rykala<sup>3</sup>, G. Savini<sup>4</sup>, M. Spaans<sup>5</sup>, P. van der Werf<sup>6</sup>, R. Meijerink<sup>6</sup>, F. P. Israel<sup>6</sup>, A. F. Loenen<sup>6</sup>, C. Vlahakis<sup>6</sup>, H. A. Smith<sup>7</sup>, V. Charmandaris<sup>8</sup>, S. Aalto<sup>9</sup>, C. Henkel<sup>10</sup>, A. Weiss<sup>10</sup>, F. Walter<sup>11</sup>, T. Greve<sup>11</sup>, L. Spinoglio<sup>12</sup>, S. Veilleux<sup>13</sup>, A. I. Harris<sup>13</sup>, L. Armus<sup>14</sup>, S. Lord<sup>14</sup>, J. Mazzarella<sup>14</sup>, E. M. Xilouris<sup>15</sup>, D. B. Sanders<sup>16</sup>, K. M. Dasyra<sup>17</sup>, M. C. Wiedner<sup>18</sup>, C. Kramer<sup>19</sup>, P. P. Papadopoulos<sup>20</sup>, G. J. Stacey<sup>21</sup>, A. S. Evans<sup>22</sup>, and Y. Gao<sup>23</sup>

(Affiliations can be found after the references)

## CO excitiation





\* 28 erg cm<sup>-2</sup> s<sup>-1</sup>  $\rightarrow$  G<sub>0</sub>=10<sup>4.2</sup>

## CO excitiation





# High-J lines: PDR or XDR?



➤ High-J CO lines can also be produced by PDR with  $n=10^{6.5}$  cm<sup>-3</sup> and  $G_0=10^5$ , containing half the molecular gas mass.

#### > Does this work?

- ►  $G_0=10^5$  only out to 0.3 pc from O5 star; then we must have half of the molecular gas and dust in 0.7% of volume.
- > With  $G_0=10^5$ , 50% of the dust mass would be at 170K.
- [OH<sup>+</sup>] and [H<sub>2</sub>O<sup>+</sup>] > 10<sup>-9</sup> in dense gas requires efficient and penetrative source of ionization; PDR abundances factor 100–1000 lower

#### XDR strongly favoured



## PDR vs. XDR chemistry





## H<sub>2</sub>O lines in Mrk231







Low lines: cool extended component

- > High lines: warm compact component
- Radiative pumping dominates

(González-Alfonso et al., 2010)

### PDR/XDR model





➢ PDR 1:

- >  $n=10^{3.5}, G_0=10^2, R\sim 500$  pc
- Large scale molecular gas
- > → Low-J CO, low  $H_2O$  lines

➢ PDR 2:

- >  $n=10^5$ ,  $G_0=10^{3.5}$
- Small, dense SF clumps
- → mid-J CO lines

#### > XDR:

- >  $n=10^{4.2}, F_X=28, R\sim 150 \text{pc}$
- Circumnuclear XDR disk
- → High-J CO, OH<sup>+</sup>, H<sub>2</sub>O<sup>+</sup>, <u>high H<sub>2</sub>O lines</u>

17

# HerCULES work in progress



- Comprehensive analysis of Mrk231 data (Meijerink *et al.*, in prep.)
- PDR/XDR separation across the HerCULES sample
- >  $H_2$  mass determination from CO lines at J > 1 (cf., ALMA)
- Cooling budget and the [CII] deficit

## Future steps with Herschel



- ➢ Higher-J CO lines (PACS)
- >  $H_2O$ ,  $H_2O^+$ ,  $OH^+$  line profiles (HIFI)
- > What if we integrate 20 hours in stead of 2?
  - <sup>13</sup>CO, H<sub>2</sub>O, OH, OH<sup>+</sup>, H<sub>2</sub>O<sup>+</sup>, H<sub>3</sub>O<sup>+</sup>, CH, HCN, HNC, HCO<sup>+</sup>, H<sub>2</sub>Cl<sup>+</sup>, NH, NH<sub>2</sub>, NH<sub>3</sub>; possibly HeH<sup>+</sup>

# Connection with high redshift



- > H<sub>2</sub>O, OH<sup>+</sup>, H<sub>2</sub>O<sup>+</sup> emission being followed up with IRAM/PdB
- > Multi-line approach will be crucial interpreting CO
- High-J CO lines are diagnostics for high-z black hole formation (e.g., Spaans & Meijerink 2008, Schleicher et al., 2010)
- > ALMA high-frequency bands crucial for  $z \sim 2$  range
- > Potential for deriving  $f_{Edd}M_{BH}$  using XDR modeling