SPIRE FTS observations of DR21 and other sources

Glenn J. White, A. Abergel, L. Spencer, N. Schneider, D.A. Naylor, L.D. Anderson, C. Joblin, P. Ade, P. André, H. Arab, J.-P. Baluteau, J.-P. Bernard, K. Blagrave, S. Bontemps, F. Boulanger, M. Cohen, M. Compiegne, P. Cox, E. Dartois, G. Davis, R. Emery, T. Fulton, B. Gom, M. Griffin, C. Gry, E. Habart, M. Huang, S. Jones, J.M. Kirk, G. Lagache, S. Leeks, T. Lim, S. Madden, G. Makiwa, P. Martin, M.-A. Miville-Deschênes, S. Molinari, H. Moseley, F. Motte, K. Okumura, D. Pinheiro Gocalvez, E. Polehampton, T. Rodet, J.A. Rodón, D. Russeil, P. Saraceno, S. Sidher, B.M. Swinyard, D. Ward-Thompson, A. Zavagno;

The SPIRE ICC and InstrumentTeam

SPIRE FTS Spectra by SDP test sources 1st pass pipeline

A real data cube – The Orion Bright Bar – from Habart et al this meeting

Rosette Cold Core and N7023 reflection nebulae – 800 and 2000 seconds integration

Right ascension

^{08.0 06.0 04.0 02.0 20:39:00.0 58.0 56.0 54.0 38:52.0} Right ascension

DR21 core – 550 seconds integration

Central PIXEL DR21 fluxes

Species	Transition	Wave	Integ Flux	Flux Error
		$\mu { m m}$	$\rm W \ m^{-2} \ sr^{-1}$	$\rm W \ m^{-2} \ sr^{-1}$
CO	J = 4 - 3	650.1	$2.85 \ 10^{-8}$	$6.93 \ 10^{-10}$
CI	${}^{3}P_{1} - {}^{3}P_{0}$	609.0	$4.86 10^{-9}$	$9.96 10^{-10}$
HCO^+	J = 6 - 5	560.5	$3.99 10^{-9}$	$4.29 10^{-10}$
^{13}CO	J = 5 - 4	544.1	$1.66 10^{-8}$	$5.04 10^{-10}$
CO	J = 5 - 4	520.3	$6.81 10^{-8}$	$3.39 10^{-10}$
HCO^+	J = 7 - 6	480.3	$1.02 10^{-8}$	$1.35 10^{-9}$
^{13}CO	J = 6 - 5	453.5	$2.44 10^{-8}$	$3.21 10^{-9}$
CO	J = 6 - 5	433.5	$1.15 10^{-7}$	$1.47 10^{-8}$
HCO^+	J = 8 - 7	420.3	$1.32 10^{-8}$	$2.10 10^{-9}$
H_2O	2_{11} - 2_{02}	398.6	$2.33 \ 10^{-8}$	$3.03 10^{-9}$
^{13}CO	J = 7 - 6	388.7	$3.66 10^{-8}$	$5.88 \ 10^{-9}$
CO	J = 7 - 6	371.6	$2.14 10^{-7}$	$1.29 10^{-9}$
CI	${}^{3}P_{2} - {}^{3}P_{1}$	370.5	$3.03 10^{-8}$	$1.26 10^{-9}$
^{13}CO	J = 8 - 7	340.1	$6.79 10^{-8}$	$1.80 10^{-8}$
CO	J = 8 - 7	325.2	$3.15 10^{-7}$	$4.56 10^{-8}$
CO	J = 9 - 8	289.1	$4.89 10^{-7}$	$4.23 10^{-9}$
CO	J = 10 - 9	260.2	$5.94 10^{-7}$	$1.01 10^{-8}$
CO	J = 11 - 10	236.6	$7.26 10^{-7}$	$5.46 {10}^{-9}$
CO	J=12-11	216.9	$7.44 10^{-7}$	$6.72 10^{-9}$
NII	${}^{3}P_{1} - {}^{3}P_{0}$	205.2	$1.45 10^{-7}$	$4.71 10^{-8}$
CO	J = 13 - 12	200.3	$6.90 10^{-7}$	$3.96 \ 10^{-8}$

FTS pros and cons

- High sensitivity lines ~ 1 K antenna temperature possible
- Avoid hot cores because of line confusion
- Lines with a significant self-absorbed component will be cancelled out and missed (CH⁺, HF from David Neufeld's talk)
- Poor velocity resolution and continuum contrast
- Multi pixel maps
- Complete bandheads in short time (e.g. CO)
- Consistent calibration and beam sizes on individual detectors
- Optimised on broad lines with less pixel dilution

Continuum and faint line recovery

Modelling the excitation

• Line ratios

Matched beam areas and cospatial pixels – use same detectors and locations

• Line profiles

Sets the contributions of shocks, turbulence, chemistry

• UV excitation

• Radiative transfer

Modelling the DR21 CO lines

High J–lines from Jakob et al 2007

Low J-lines from JCMT (this work) and IRAM (Nicola Schneider et al in prep) Lane et al 1990 showing that shock emission overwhelmed by far-UV excitation Many public domain Radiative Transfer codes – e.g. RADEX/RATRAN, CASSIS Markus Röllig et al Poster outside Excitation of carbon species in DR21 P2.14

Conclusions

- The SPIRE FTS sparse mode works very well even in the SDP tests !
- SDP observations completed of DR21, Rosette, NGC7023, Orion Bright Bar. Remarkable diversity of lines, despite the moderate spectral resolution
- Complete inventory of gas + dust with 10 1000 μm using ISO, HERSCHEL, Ground based submm
- Sparse sampling is able to detect outflow morphologies and spatial distributions on sub-arcmin scale fully sampled soon
- All test sources show high-J lines above simple LTE models warm gas ~ a few hundred K.
- DR21 situation has a very complex flow scenario uv, shocks needed -> higher spectral resolution: T ~ 125 – 185K n ~ 7 x 10⁴ cm⁻³; plus lower excitation material an T ~ 80K – similar estimates to ground based.
- High J-lines accessible even in low density dark clouds
- CO, ¹³CO, C¹⁸O, HCO⁺, CI, H₂O, NII all easily detectable in galactic sources ~ 10 minute integrations
- Thanks to the SPIRE FTS team, and all of our HERSCHEL Instrument and support colleagues