PACS Images of a Kuiper-Like Belt around the Planet-Host Star q¹ Eri

Analyzed with the DUNES Modeling Toolbox

Jean-Charles Augereau & Alexander Krivov & the DUNES team

Debris disks in planetary systems

Debris dust tell us much about planetesimals and planets and sheds light to formation and evolution of planetary systems

KALAS et al. 2008

The q¹ Eri planetary system

pre-Herschel understanding

THE STAR

- Spectral type: F8
- CR Distance : 17.4 pc
- $\bigcirc Age : \sim 2 \text{ Gyr}$

A JUPITER-MASS PLANET

- CR M sin i: 0.93 M_{Jupiter}
- Semi-major axis: 2.03 AU
- C Eccentricity : 0.1

MAYOR et al. 2003, BUTLER et al. 2006

A KUIPER-LIKE BELT

- RAS, ISO and Spitzer: cold dust, with a luminosity 1000 times that of the Kuiper Belt
- Sub-mm APEX/LABOCA images: disk extent is up to several tens of arcsec (*LISEAU et al. 2008*)
- HST images suggest a peak at 83AU (4.8", *STAPELFELDT et al., in prep.*)

PACS observations of q¹ Eri

See A&A Letter and poster by **LISEAU** et al.

- New PACS photometric measurements at 70, 100 and 160 μm, consistent with previous observations
- SED fitting : known degeneracy between dust properties and disk structure
- Images required to break the degeneracy

PACS observations of q¹ Eri

See A&A Letter and poster by **LISEAU** et al.

- Disk spatially resolved at all PACS wavelengths
- \bigcirc Disk marginally resolved along the minor axis: inclination > 55 deg
- Deconvolved images suggest a ~40AU wide ring at ~ 85AU, and inclination > 63 deg

Detailed <u>simultaneous</u> modeling of the SED and PACS images required to unveil the disk structure, dust properties and dynamical history

The DUNES modeling toolbox

Two modeling approaches, Three fitting strategies, Five codes

Classical:

- Radiative transfer, assuming power laws for the surface density and size distribution
- Two radiative transfer codes, with different fitting strategies:
 - **GRATER (GRENOBLE)** : bayesian statistical analysis
 - SAND (KIEL) : simulated annealing minimization scheme

Collisional:

- Radiative transfer, fed by results from collisional code ACE that generates and evolves the disk "from the sources"

Advantages & limitations of the codes

GRATER [Grenoble, J.-C. AUGEREAU & J. LEBRETON]

- ⓒ Fast exploration of large parameter spaces
- Stored grid for statistical analysis (24 million models for q¹ Eri)
- \bigcirc Post-processing easy (e.g. re-computation of χ^2 with different weights)
- Simplistic description of the disk properties
- 😕 No direct link to parent bodies

○ SAND [Kiel, S. ERTEL & S. WOLF]

- \bigcirc Fast: finds fit among ~10¹¹ models in ~70 hours
- ⓒ Large number of free parameters possible
- © Limited initial constraints on disk physics
- Simplistic description of the disk properties
- 😕 No direct link to parent bodies

ACE + SEDUCE + SUBITO [Jena, A. KRIVOV, T. LÖHNE, S. MÜLLER]

- ③ Deep physical modeling of the disk from the sources
- ③ Realistic description of disk properties
- ③ Mass and dynamical excitation of unseen parent bodies
- CPU-demanding : 20 models in 3 months

Classical Approach

- No initial constraints outer disk radius
- **Best fit** $(\chi_r^2 = 1.24)$:
 - CR Dust disk :
 - \bigcirc Mass : 0.05 M_{Earth}
 - \bigcirc Surface density: $r^{+0.9}$
 - CR Disk extent: 17-210AU
 - Grain properties:

 - \curvearrowright Minimum grain size ~ 0.7 μ m
 - Size distribution: -3.3 power law index

Classical Approach

- Constraint: fixed outer disk radius to sufficiently large value (600AU)
- **Best fit** $(\chi_r^2 = 1.4)$:
 - R Dust disk :
 - \bigcirc Mass : 0.055 M_{Earth}
 - Surface density: r⁻²
 - Relt peak position: 75-80AU
 - Grain properties:

 - \curvearrowright Minimum grain size ~ 0.4 μ m
 - Size distribution: -3.3 power law index

Collisional Approach

- Rest fit:
 - OR Dust disk & grain properties:
 - \bigcirc Mass : 0.02 M_{earth}

 - Coupled radial-size distribution
 - \bigcirc Weaker dust (Q_D*~10⁷erg/g)
 - Real Parent belt:
 - CR Location: 75-125 AU
 - Recentricities: 0.0...0.1

Summary of model results

- Consistent results between the three codes:
 - CR Dust mass
 - Grain size distribution
 - OR Dust composition (ice likely)
 - \bigcirc Parent belt position at ~ 80AU
 - Dust surface density consistent
 with a collisionally active debris disk
- - C car Lacking inner (<5") 70µm emission (ACE)
 - SAnD also finds an alternative fit

The second secon

Conclusions

○ OBSERVATIONS

- Images of the exosolar Kuiper belt with unprecedented resolution and sensitivity
- Inner gap seen in thermal emission at <100µm for the first time (after deconvolution)</p>

MODELS:

- Degeneracy between dust properties and disk structure broken thanks to the PACS images
- Real Probing dust composition: silicate-ice mixture likely (F8V!)
- Probing collisional history: support to delayed stirring
 (self-stirring by Plutos. or stirring by q¹Eri c, or even by q¹Eri b)
- Rough constraints on material strength: weaker dust
- **DUNES** "toolbox" works fine, we are ready for more data

 \bigcirc More about q^1 Eri:

poster by LISEAU

More about OTKP DUNES: talk by EIROA