Filamentary Structures and Compact Objects in the Aquila and Polaris Clouds Observed by *Herschel*

Gould Belt GT KP

SPIRE SAG3

Alexander Men'shchikov

energie atomique · energies alternatives

Ph. André, P. Didelon, V. Könyves, N. Schneider,

F. Motte, S. Bontemps, D. Arzoumanian, M. Attard

A. Abergel, J.-P. Baluteau, J.-Ph. Bernard, L. Cambrésy, P. Cox,
J. Di Francesco, M. Griffin, P. Hargrave, M. Huang, J. Kirk, J. Z. Li, P. Martin,
V. Minier, M.-A. Miville-Deschênes, S. Molinari, G. Olofsson, S. Pezzuto,
H. Roussel, D. Russeil, P. Saraceno, M. Sauvage, B. Sibthorpe, L. Spinoglio,
L. Testi, G. White, C. D. Wilson, A. Woodcraft, A. Zavagno

Herschel Science Demonstration

- Part of the large Gould Belt KP survey of the nearby star-forming regions
 - More results in talks by Philippe André, Vera Könyves, Sylvain Bontemps
- Aquila Rift and Polaris Flare fields ($D \sim 260$ pc and ~ 150 pc)
 - Cores in active star-forming region vs. high-latitude cirrus clouds
 - SPIRE/PACS parallel mode at 70, 160, 250, 350, 500 μm
 - Angular resolutions of ~8, 13, 18, 25, 37 arcsec
 - Fields ~3×3°, cross-scans at 60"/s

Herschel Images of the Aquila and Polaris Fields

Aquila and Polaris: PACS 70 µm resolution ~8"

3.3°

3.3°

Aquila and Polaris: PACS 160 µm resolution ~13"

3.3°

3.3°

Aquila and Polaris: SPIRE 250 µm resolution ~18"

Aquila and Polaris: SPIRE 350 µm resolution ~25"

Aquila and Polaris: SPIRE 500 µm resolution ~37"

Aquila and Polaris: SPIRE/PACS RGB 350+160+70 μm and 350+250+160 μm

3.3°

3.3°

Aquila and Polaris: SPIRE/PACS RGB 350+160+70 µm and 350+250+160 µm

3.3°

3.3°

Aquila and Polaris: SPIRE/PACS RGB 350+160+70 µm and 350+250+160 µm

3.3°

3.3°

Extracting Sources

Multi-Scale, Multi-Wavelength Extraction

- New method and code *getsources* developed and used at CEA Saclay
 - No *multi-wavelength* extraction techniques existed for our *Herschel* projects
 - Must use higher resolution or sensitivity information across wavelengths
- Extensively verified at each step of its development
 - Multiple test images, simulated star-forming regions for *Herschel*
 - Star-forming regions NGC 2264, NGC 2068, W 43, Cyg X
- Benchmarked for the Gould Belt consortium, along with several other algorithms using simulated skies of various degree of complexity
 - gaussclumps (Stutzki & Guesten 1990)
 - *sextractor* (Bertin & Arnouts 1996)
 - *derivatives* (Molinari et al. 2010)
 - *reinhold* (CUPID software)

- *clumpfind* (Williams et al. 1994)
- *mre-gcl* (Motte et al. 2007)
- *csar* (J. Kirk, private comm.)
- *fellwalker* (CUPID software)

Benchmark 1: Simple Images 139 objects at 250 µm: effects of S/N, sizes, and separation

Benchmarks 2 and 3: All *Herschel* Bands 350 cores and 100 protostars, shown at 350 µm

1.0°

background: Bate, Bonnell, & Bromm (2003)

constellation

Outline of the getsources Algorithm

- Cleaning: original observed images at each wavelength λ
 - Create a set of filtered "single scales" separated by a factor of ~1.05
 successive unsharp masking: I_i(λ) = G_{i-1}*I(λ) G_i*I(λ), j=1, 2, ..., N
 - Clean each of those scales of noise/background by iterating to $5\sigma_{\lambda}$ cut-offs
 - Re-normalize clean scales, sum up over all λ into *combined* detection images
- Detection: combined single-scale detection images, independent of λ
 - Track objects' appearance, "evolution", and disappearance: small to large scales
 - Find objects' positions, S/N, characteristic scales, and footprints
- Measurements: original observed images at each λ
 - Subtract background under the footprints and deblend overlapping objects
 - Measure their fluxes, sizes, and intensity profiles at each wavelength

Aquila and Polaris: SPIRE at 250 µm single scale ~10"

Aquila and Polaris: SPIRE at 250 µm single scale ~20"

3.3°

3.3°

Aquila and Polaris: SPIRE at 250 µm single scale ~40"

Aquila and Polaris: SPIRE at 250 µm single scale ~80"

3.3°

^{3.3°}

Aquila and Polaris: SPIRE at 250 µm single scale ~160"

Aquila and Polaris: SPIRE at 250 µm single scale ~320"

Example of Test "Filaments": Cylinder getsources does not break uniform filaments

full image

single scale

Example of Test "Filaments": Lena getsources finds significant peaks that are present

200 220 0.5 1.5 120 140 160 180

full image

single scale

Extracting Filaments

Morphological Component Analysis

- The MCA method and code *cb_mca* developed by J.-L. Starck et al. (2004)
 - Decompose a signal into its morphological building blocks represented by the isotropic wavelets, ridgelets, or curvelets
- Applied the method to analyze large, complex *Herschel* images
 - Separate filamentary structures from the more isotropic structures
 - Decompose images alternating between the curvelet and wavelet transforms
 - Iterate until convergence in both wavelet and curvelet representations

Aquila and Polaris Sub-Fields 1: PACS 70 µm curvelet components by *cb_mca*

Aquila and Polaris Sub-Fields 1: PACS 160 µm curvelet components by cb_mca

Aquila and Polaris Sub-Fields 1: SPIRE 250 µm curvelet components by *cb_mca*

1.2°

Aquila and Polaris Sub-Fields 1: SPIRE 350 µm curvelet components by *cb_mca*

Aquila and Polaris Sub-Fields 1: SPIRE 500 µm curvelet components by *cb_mca*

Filamentary Structures at All *Herschel* Wavelengths

Aquila and Polaris: PACS 70 µm single scales ~40" by getsources

Aquila and Polaris: PACS 160 µm single scales ~40" by getsources

Aquila and Polaris: SPIRE 250 µm single scales ~40" by *getsources*

3.3°

Aquila and Polaris: SPIRE 350 µm single scales ~40" by getsources

3.3°

Aquila and Polaris: SPIRE 500 µm single scales ~40" by getsources

3.3°

Herschel SPIRE/PACS and Planck 350 µm angular resolutions ~30" and 300"

Images: ESA, SPIRE, PACS, HFI Consortia, Gould Belt Key Project; http://www.esa.int/esa-mmg

Intimate Physical Relationship of the Filaments and Cores

Aquila and Polaris Sub-Fields 1: SPIRE/PACS RGB 350+160+70 µm and 350+250+160 µm

1.2°

Aquila and Polaris Sub-Fields 1: SPIRE/PACS column densities N(H₂)

Aquila and Polaris Sub-Fields 1: SPIRE/PACS column densities N(H₂)

Aquila and Polaris Sub-Fields 1: SPIRE/PACS column densities N(H₂)

Aquila and Polaris Sub-Fields 1: SPIRE single scales ~40": high-contrast filaments and objects

Aquila and Polaris Sub-Fields 1: SPIRE single scales ~40" + naive visual detection

Aquila and Polaris Sub-Fields 1: SPIRE single scales ~40" + starless cores by *getsources*

Aquila and Polaris Sub-Fields 1: SPIRE 350 µm curvelet component by *cb_mca* + starless cores by *getsources*

Aquila and Polaris Sub-Fields 2: SPIRE/PACS RGB 350+160+70 µm and 350+250+160 µm

1.2°

Alexander Men'shchikov – ESLAB 2010 Symposium – May 4, 2010, Noordwijk – Page 48

Aquila and Polaris Sub-Fields 2: SPIRE single scales ~40": high-contrast filaments and objects

Aquila and Polaris Sub-Fields 2: SPIRE single scales ~40" + naive visual detection

Alexander Men'shchikov – ESLAB 2010 Symposium – May 4, 2010, Noordwijk – Page 50

Aquila and Polaris Sub-Fields 2: SPIRE

single scales ~ 40 " + starless cores by *getsources*

Aquila and Polaris Sub-Fields 3: SPIRE/PACS RGB 350+160+70 µm and 350+250+160 µm

1.2°

1.2°

Aquila and Polaris Sub-Fields 3: SPIRE single scales ~40": high-contrast filaments and objects

Aquila and Polaris Sub-Fields 3: SPIRE single scales ~40" + naive visual detection

Aquila and Polaris Sub-Fields 3: SPIRE single scales ~40" + starless cores by *getsources*

Two Methods, Same Structures column density, curvelet component, and single scale

Filaments' Properties and Existing Models

Basic Properties of the Filaments

• Several well-behaved filaments in column density images, original images

Field	Colum H ₂	Temper	<fwhm>deconv</fwhm>	Maximum length	Density
Aquila	$< 1.4 \times 10^{23}$	7.5-15 K	35"±12 ~9000 AU	~0.5 deg ~few pc	$\rho \sim r^{-1.5}$
Polaris	< 9×10 ²¹	10-15 K	60"±12 ~9000 AU	~0.5 deg ~few pc	$ ho \sim r^{-2}$

 Maps of the filaments' mass per unit length (talk by Ph. André): many Aquila filaments are gravitationally unstable, Polaris filaments are stable

Formation of Filaments and Cores a few selected models

- MHD simulations of supersonic turbulent motions in weakly magnetized clouds (Padoan et al. 2001): complex system of shocks creating high-density sheets, filaments, and cores
- MHD simulations of turbulent, more strongly magnetized molecular clouds with ambipolar diffusion (Nakamura & Li 2008): sheets, filaments, and cores
- Observed profiles ρ ~ r^{-1.5} and ρ ~ r⁻² are inconsistent with those of nonmagnetic models of hydrostatic filaments, ρ ~ r⁻⁴ (Ostriker 1964)
- Models of filaments with primarily toroidal or helical magnetic fields can account for profiles \(\rho \sim r^{-1}\) to \(\rho \sim r^{-2}\), in agreement with observations (Fiege & Pudritz 2000)

Turbulent Fragmentation, Padoan et al. (2001) slices of the 3D density and velocity fields, Mach ~10

density

|velocity|

Turbulent Fragmentation, Padoan et al. (2001) structural resemblance to the observed filaments

column density

Aquila in SPIRE bands, single scale ~ 40 "

Turbulent Fragmentation, Padoan et al. (2001) structural resemblance to the observed filaments

column density

Aquila at 350 µm, curvelet component

Conclusions

- Fascinating filamentary structures are *everywhere* as deep as we can see with the sensitivity of our instruments
- All extracted objects (starless cores, prestellar cores, embedded protostars) are *physically* related to the filaments
- The observations suggest that, in general, prestellar cores *originate* in the fragmentation of complex filamentary networks
- To unravel the roles and relative importance of gravity, turbulence, and magnetic fields, we need to obtain additional *kinematic* information

