

SPIRE In-Flight Performance

Matt Griffin

on behalf of the SPIRE Consortium

Herschel First Results Symposium - ESLAB 2010

May 4 – 7 2010

The SPIRE Consortium

- Cardiff University, UK
- CEA Service d'Astrophysique, Saclay, France
- Institut d'Astrophysique Spatiale, Orsay, France
- Imperial College, London, UK
- Instituto de Astrofisica de Canarias, Tenerife, Spain
- Istituto di Fisica dello Spazio Interplanetario, Rome, Italy
- Jet Propulsion Laboratory/Caltech, Pasadena, USA
- Laboratoire d'Astronomie Spatiale, Marseille, France
- Mullard Space Science Laboratory, Surrey, UK
- NAOC, Beijing, China
- Observatoire de Paris, Meudon, France
- Rutherford Appleton Laboratory, Oxfordshire, UK
- Stockholm Observatory, Sweden
- UK Astronomy Technology Centre, Edinburgh, UK
- University of Colorado, USA
- University of Lethbridge, Canada
- Università di Padova, Italy
- University of Sussex, UK

The Herschel-SPIRE instrument and its in-flight performance *

M. J. Griffin¹, A. Abergel², A. Abreu³, P. A. R. Ade¹, P. André⁴, J.-L. Augueres⁴, T. Babbedge⁵, Y. Bae⁶, T. Baillie⁷, J.-P. Baluteau⁸, M. J. Barlow⁹, G. Bendo⁵, D. Benielli⁸, J. J. Bock⁶, P. Bonhomme¹⁰, D. Brisbin¹¹, C. Brockley-Blatt¹⁰, M. Caldwell¹², C. Cara⁴, N. Castro-Rodriguez¹³, R. Cerulli¹⁴, P. Chanial^{5,4}, S. Chen¹⁵, E. Clark¹², D. L. Clements⁵, L. Clerc16, J. Coker10, D. Communal16, L. Conversi3, P. Cox17, D. Crumb6, C. Cunningham7, F. Daly4, G. R. Davis18, P. De Antoni⁴, J. Delderfield¹², N. Devin⁴, A. Di Giorgio¹⁴, I. Didschuns¹, K. Dohlen⁸, M. Donati⁴, A. Dowell¹², C. D. Dowell⁶, L. Duband¹⁶, L. Dumaye⁴, R. J. Emery¹², M. Ferlet¹², D. Ferrand⁸, J. Fontignie⁴, M. Fox⁵, A. Franceschini¹⁹. M. Frerking⁶, T. Fulton²⁰, J. Garcia⁸, R. Gastaud⁴, W. K. Gear¹, J. Glenn²¹, A. Goizel¹², D. K. Griffin¹², T. Grundy¹² S. Guest¹², L. Guillemet¹⁶, P. C. Hargrave¹, M. Harwit¹¹, P. Hastings⁷, E. Hatziminaoglou^{13,22}, M. Herman⁶, B. Hinde⁶, V. Hristov²³, M. Huang¹⁵, P. Imhof²⁰, K. J. Isaak^{1,24}, U. Israelsson⁶, R. J. Ivison⁷, D. Jennings²⁵, B. Kiernan¹, K. J. King¹², A. E. Lange⁺²³, W. Latter²⁶, G. Laurent²¹, P. Laurent⁸, S. J. Leeks¹², E. Lellouch²⁷, L. Levenson²³, B. Li¹⁵, J. Li¹⁵, J. Lilienthal⁶, T. Lim¹², J. Liu¹⁴, N. Lu²⁶, S. Madden⁴, G. Mainetti¹⁹, P. Marliani²⁴, D. McKay¹², K. Mercier²⁸, S. Molinari¹⁴, H. Morris¹², H. Moseley²⁵, J. Mulder⁶, M. Mur⁴, D. A. Navlor²⁹, H. Nguyen⁶, B. O'Halloran⁵, S. Oliver³⁰, H. Olofsson³¹, H.-G. Olofsson³¹, R. Orfei¹⁴, M. J. Page¹⁰, I. Pain⁷, P. Panuzzo⁴, A. Papageorgiou¹, G. Parks⁶, P. Parr-Burman⁷, A. Pearce¹², C. Pearson^{12,29}, I. Pérez-Fournon¹³, F. Pinsard⁴, G. Pisano^{1,32}, J. Podosek⁶, M. Pohlen¹, E. T. Polehampton^{12,29}, D. Pouliquen⁸, D. Rigopoulou¹², D. Rizzo⁵, I. G. Roseboom³⁰, H. Roussel³³, M. Rowan-Robinson⁵, B. Rownd²⁰, P. Saraceno¹⁴, M. Sauvage⁴, R. Savage³⁰, G. Savini^{1,9}, E. Sawyer¹², C. Scharmberg⁸, D. Schmitt^{4,24}, N. Schneider⁴, B. Schulz²⁶, A. Schwartz²⁶, R. Shafer²⁵, D. L. Shupe²⁶, B. Sibthorpe⁷, S. Sidher¹², A. Smith¹⁰, A. J. Smith³⁰, D. Smith¹², L. Spencer^{29,1}, B. Stobie⁷, R. Sudiwala¹, K. Sukhatme⁶, C. Surace⁸, J. A. Stevens³⁴, B. M. Swinyard¹², M. Trichas⁵, T. Tourette⁴, H. Triou⁴, S. Tseng⁶, C. Tucker¹, A. Turner⁶, M. Vaccari¹⁹, I. Valtchanov³, L. Vigroux^{4,33}, E. Virique⁴, G. Voellmer²⁵, H. Walker¹², R. Ward³⁰, T. Waskett¹, M. Weilert⁶, R. Wesson⁹, G. J. White¹², N. Whitehouse¹, C. D. Wilson³⁵, B. Winter¹⁰, A. L. Woodcraft⁷, G. S. Wright⁷, C. K. Xu²⁶, A. Zavagno⁸, M. Zemcov²³, L. Zhang²⁶, and E. Zonca⁴

In-Flight Calibration of the *Herschel*-SPIRE Instrument*

B. M. Swinyard¹, P. Ade², J-P. Baluteau³, H. Aussel¹⁶, M. J. Barlow⁴, G. J. Bendo⁵, D. Benielli³, J. Bock⁶, D. Brisbin⁷, A. Conley⁸, L. Conversi⁹, A. Dowell¹, D. Dowell⁶, M. Ferlet¹, T. Fulton¹⁰, J. Glenn¹¹, A. Glauser¹⁸, D. Griffin¹, M. Griffin², S. Guest¹, P. Imhof¹⁰, K. Isaak², S. Jones¹⁴, K. King¹, S. Leeks¹, L. Levenson¹², T. L. Lim¹, N. Lu¹³, G. Makiwa¹⁴, D. Naylor¹⁴, H. Nguyen⁶, S. Oliver¹⁵, P. Panuzzo¹⁶, A. Papageorgiou², C. Pearson^{1,14}, M. Pohlen², E. Polehampton^{1,14}, D. Pouliquen³, D. Rigopoulou^{1,19}, S. Ronayette^{1,16}, H. Roussel¹⁷, A. Rykala², G. Savini⁴, B. Schulz¹³, A. Schwartz¹³, D. Shupe¹³, B. Sibthorpe¹⁸, S. Sidher¹, A. Smith¹⁵, L. Spencer², M. Trichas⁵, H. Triou¹⁶, I. Valtchanov⁹, R. Wesson⁴, A. Woodcraft¹⁸, C. K. Xu¹³, M. Zemcov¹¹, and L. Zhang¹³

SPIRE Block Diagram

Photometer

Photometer Layout and Optics

Photometer Observing Modes

Point source: 7-point jiggle

Scan-map

Herschel First Results Symposium - ESLAB 2010

AOT Status: Photometer

- Scan Map and SPIRE-PACS Parallel Mode
 - Released and widely used in SD Phase
- Small Map
 - Change mode from 64-point jiggle to small scan map
- Point Source (Seven-point Jiggle)
 - Chopping with SPIRE Beam Steering Mirror
 - Telescope nodding
 - Now fully evaluated and released
- Bright source settings
 - Recommended for $S_v > 200 \text{ Jy}$
 - Usable for S_{ν} up to (3.2, 2.4, 1.4) kJy at (250, 350, 500) μ m
 - Sensitivity penalty factor: (3.8, 3.2, 2.6) at (250, 350, 500) μm

CRE Reason for change from Jiggle-Map to Small Scan Map

Better data quality and wider coverage for similar observation time

May 4 – 7 2010

Scan-Map Sensitivity

Pre-launch (HSpot) estimates (instrument noise)

- Nominal scan rate (30"/s)
- One repeat = two cross-linked scans
- For (250, 350, 500 μm)
 - 1- σ for one repeat:

Achieved instrument noise

- 1-σ for one repeat at 30"/s: (9.0, 7.5, 10.8) mJy in beam
- Numbers for 60"/s scale very precisely as sqrt(2)

Extragalactic confusion levels

Measured 1-σ confusion noise for (250, 350, 500 μm):
(5.8, 6.3, 6.8) mJy in beam for (6, 10, 14)" map pixels

Instrument and Confusion Noise

SPIRE

Improved Pipeline Temperature Drift Correction (in Development)

Point Source Photometry (Seven-Point Jiggle) Sensitivity

- One repeat
 - A-B-B-A nod cycle
 - 256 sec. on-source; 560 sec. total duration
- 1- σ in-beam flux density uncertainty for one repeat:
 - ~7 mJy ($S_n < 1$ Jy) ~9 mJy (1 4 Jy)
 - Already comparable to confusion limit
- For strong sources S/N limited to ~ 100 by pointing errors
- Chop/nod ⇒ differential mode
 - Confusion noise is enhanced
 - Not suitable for sources fainter than ~ 200 mJy
 - Small map will often be a better choice

Photometer Beams

			PSWE8
Band (μm)	Mean Fitted Gaussian FWHM (arcsec)	Mean Ellipticity	
250	18.1	7%	
350	25.2	12%	
500	36.6	9%	0.0

- Main beams very well fitted by Gaussian response
- Individual beam profiles for every detector will eventually be made available

Photometer Beams

- Interim beam maps available via Herschel Science Centre
 - Based on scan-map AOT observations of Neptune
 - Current beam area estimates: (501, 943, 1923) sq. arcsec.
- Fine-scan observations of Neptune being analysed
 - Above numbers will not change much

Photometer Flux Calibration

- Primary calibrator is Neptune
- Est. absolute accuracy ± 5 % (correlated over the Herschel range)

 Current SPIRE pipeline uses interim calibration based on Ceres

- Current overall calibration accuracy ~ 15%
- Neptune observations and non-linearity characterisation
 - Analysis now completed and pipeline to be updated
- Full details of flux calibration scheme will be given in the updated SPIRE Observers' Manual

Photometer Scan-Map Pipeline

- Baseline removal
 - Median baseline removal added to L2 processing before the map making stage
 - Improved temp-drift implementation will significantly reduce the effects
 - Other techniques under evaluation
 - De-correlation using thermistor signals over an entire observation has been very successful

median baseline subtraction

robust linear baseline subtraction per scan

Herschel First Results Symposium - ESLAB 2010

May 4 – 7 2010

SPIRE Scan-Map AOT and Pipeline: Future Plans

- Future pipeline enhancements (pre-mapmaking)
 - Incorporation of updated flux calibration
 - Improved baseline removal
 - Glitch replacement
- Mapmaking
 - Possible implementation of MadMap as standard SPIRE mapmaker

Spectrometer Frequency (GHz)

SPIRE Fourier Transform Spectrometer (FTS) Layout and Optics

- Entire range covered simultaneously
 - Small variations from detector to detector
- Continuum measured as well as spectral lines
- Adjustable spectral resolution : Δv (H, M, L) = (1.2, 7.2, 25) GHz
- Frequency calibration accurate to < 1/20 resolution element

Spectrometer Observing Modes (all now released)

May 4 – 7 2010

Spectrometer Sensitivity

- Better than pre-launch estimate (~ 3 x 10⁻¹⁷ W m⁻² 5 σ 1 hr)
- Current best performance (based on Uranus calibration) requires careful expert data processing but will be implemented in automatic pipeline

May 4 – 7 2010

Overlap Between Bands

- Good agreement in overlap region for point sources
 - Beamsize difference will affect extended sources
- Short-wavelength overlap for cross calibration with PACS

Resolving Power

Resolving Power

May 4 – 7 2010

Spectrometer Beam FWHM vs. λ

Spectrometer Data Processing

Standard calibrators:Point source: UranusExtended emission: the telescope itself

Spectrometer Data Processing

- Noise currently integrates down as N_{Reps}^{1/2} for up to ~ 2500 s (~ 20 repeats) in high-res mode, then more slowly
- Weak targets down to sub-Jy level possible
 - Expert analysis is currently needed to achieve best calibration and instrument background subtraction on faint sources
 - Recommendation to include complementary photometer map (quick)
- Very bright targets (e.g. Orion, Sgr B2, Mars) possible using bright source mode
 - Not formally released at present (will be soon)
 - Provisional cross-over level = Neptune (~ 60/180 Jy for SLW/SSW)

Spectrometer Flux Calibration: Current Status

Spectral Maps

Rich data products:

- Hundreds of pixels
- ~ 1000 independent spectral elements per pixel

Conclusions

- SPIRE is fully functional with performance matching or exceeding pre-launch estimates
- Current pipelines are already producing very high-quality data, and further improvements are being made
- Flux calibration is already very good and will be further improved
- Future work will concentrate on
 - Further improving pipeline products and calibration
 - Supporting observers