The Photodetector Array Camera & Spectrometer

ESLAB 2010 Herschel First Results Symposium

A. Poglitsch for the PACS Consortium

œ

Contents

- Instrument Concept
- Observing Modes and AOT Release Status
- PACS-relevant Herschel Satellite Performance
- PACS Instrument Characterization Key Results/Issues
 - Spectrometer
 - Photometer
- Outlook and Future Work

Instrument Concept

spectral dimension

Imaging photometry

- two bands simultaneously (60-85 or 85-125 µm and 125-210 µm) with dichroic beam splitter
- two filled bolometer arrays (32x16 and 64x32 pixels, full beam sampling)
- point source detection limit \sim 5 mJy (5 σ , 1h)

Integral field line spectroscopy

- range 55 210 µm with 5x5 pixels, image slicer, and long-slit grating spectrograph (R ~ 1500)
- two 16x25 Ge:Ga photoconductor arrays (stressed/unstressed)
- point source detection limit $3...20 \times 10^{-18} \text{ W/m}^2 (5\sigma, 1h)$

Instrument Concept

Imaging photometry

- two bands simultaneously (60-85 or 85-125 µm and 125-210 µm) with dichroic beam splitter
- two filled bolometer arrays (32x16 and 64x32 pixels, full beam sampling)
- point source detection limit \sim 5 mJy (5 σ , 1h)

Integral field line spectroscopy

- range 55 210 µm with 5x5 pixels, image slicer, and long-slit grating spectrograph (R ~ 1500)
- two 16x25 Ge:Ga photoconductor arrays (stressed/unstressed)
- point source detection limit $3...20 \times 10^{-18} \text{ W/m}^2 (5\sigma, 1h)$

Instrument Concept

Imaging photometry

- two bands simultaneously (60-85 or 85-125 µm and 125-210 µm) with dichroic beam splitter
- two filled bolometer arrays (32x16 and 64x32 pixels, full beam sampling)
- point source detection limit $\sim 5 \text{ mJy} (5\sigma, 1h)$

Integral field line spectroscopy

- range 55 210 µm with 5x5 pixels, image slicer, and long-slit grating spectrograph (R ~ 1500)
- two 16x25 Ge:Ga photoconductor arrays (stressed/unstressed)
- point source detection limit
 3...20 x10⁻¹⁸ W/m² (5σ, 1h)

Spectrometer Observing Modes

- Line Spectroscopy: observation of individual line(s)
 - Chop/nod or "wavelength switching"
 - Staring or mapping
 - R ~ 1500
- Range Spectroscopy: observation of extended range(s)
 - Chop/nod or off position
 - Staring or mapping
 - High sampling or SED mode

16 x 25 pixel detector array

Spectrometer Observing Modes

- Line Spectroscopy: observation of individual line(s)
 - Chop/nod or "wavelength switching"
 - Staring or mapping
 - R ~ 1500
- Range Spectroscopy: observation of extended range(s)
 - Chop/nod or off position
 - Staring or mapping
 - High sampling or SED mode

Photometer Observing Modes

4 AOTs in photometry channel

Point source photometry:

4-positions

2 chop/nod cycles

Repeat basic cycle to gain more sensitivity

Dual Band: 70+160 μm **or** 100+160 μm

Extended source Mapping:

Options are Scan (shown) or chopped Raster

Maximum size 4-deg

3 scan speeds or fixed chopping

Small source photometry: Small 2x2 raster 200"x100" FOV

Dither to cover inter-matrix gaps

Photometer Observing Modes

4 AOTs in photometry channel

Point source photometry:

4-positions

2 chop/nod cycles

Repeat basic cycle to gain more sensitivity

Dual Band: 70+160 μm **or** 100+160 μm

Extended source Mapping:

Options are Scan (shown) or chopped Raster

Maximum size 4-deg

3 scan speeds or fixed chopping

Small source photometry: Small 2x2 raster 200"x100" FOV Dither to cover inter-matrix gaps

Photometer Observing Modes

4 AOTs in photometry channel

Point source photometry:

4-positions

2 chop/nod cycles

Repeat basic cycle to gain more sensitivity

Dual Band: 70+160 μm **or** 100+160 μm

Extended source Mapping:

Options are Scan (shown) or chopped Raster

Maximum size 4-deg

3 scan speeds or fixed chopping

AOT Release Status

- All photometer AOTs have been released, but with modifications compared to pre-flight
 - scan speed optimization
 - replacement of all chopped observations by scan map mode, except for point source mode
- All spectrometer AOTs have been released, again, with some modifications
 - execution times of AOT "building blocks" have changed
 - wavelength switching modified; imminent (potential) change
- Pipeline versions in HIPE exist for all released modes, except for wavelength-switching line spectroscopy
 - support available from NHSC

Satellite Performance: Pointing

- Pointing Performance:
 - Relative Pointing Error (RPE): Requirement <0.3" Goal <0.3"
 - Absolute Pointing Error (APE): Requirement <3.7" Goal <1.5"
 - Spatial Relative Pointing Error: Requirement <1" achieved ~2"
 - RPE Scanning: Requirement <1.2" Goal <0.8"

 Solar Aspect Angle: Requirement: -30° to +30°
 Actual: -20° to +30°

Satellite Performance: Pointing

- **Pointing Performance:**
 - Goal < 0.3" Relative Pointing Error (RPE): Requirement <0.3"
 - Absolute Pointing Error (APE): Requirement <3.7" Goal <1.5" -
 - Spatial Relative Pointing Error: Requirement <1''achieved ~2"
 - RPE Scanning: Requirement <1.2" Goal < 0.8"

- Solar Aspect Angle: **Requirement:** -30° to +30° Actual: -20° to +30°

8

Pointing Match Chop/Nod (Spectroscopy)

- From (still limited) statistics, no problem for small chopper throw
- With large chopper throw (±3'), APE seems to apply for "Nod A" and "Nod B" individually sometimes ok, sometimes a problem

Satellite (+Instrument) Performance (4)

- Straylight
 - Observation of Mars
 - No hint of straylight around boresight

Satellite + Instrument: Interferences

- SC
- They affect only the blue photometer
- Amplitude is variable (from faint to severe)
- They are rare (i.e. a large fraction of the observations is unaffected)
- The root cause has not yet been found (solar array?)

Spectrometer Wavelength Calibration

W Hya PACS observation, continuum divided

Spectrometer Wavelength Calibration

- Wavelength shift + skew with source offset from slit center (cross-slit direction, not along slit)
- Characterization + corrections underway
- Do not over-interpret line shapes in maps

Spectrometer Spectral Resolution

 Measured resolution in fair agreement with lab test and calculated resolution

ESLAB 2010

Spectrometer "Problem Zones" - Leakage

Spectrometer Sensitivity

Spectrometer Sensitivity: Deep Integration

Source	line	OD	OBSID	$n_{rep} \times n_{cvc}^{a}$	aor duration	flux ^b	continuum flux
				1 090	[sec]	$[10^{-18} \text{W/m}^2]$	density [mJy]
MIPS J1428	[O III] 52	205	1342187779	2×7	5348	3.7 (0.8)	117 (35)
F10214	[O III] 52	179	1342186812	10×4	24827	0.9 (0.3)	445 (130)

Chop/Nod vs. Wavelength Switching

- No major degradation from wavelengthswitching [for not too faint sources]
- Pipeline (will) provide(s) different "demodulation" techniques

Wavelength Switching Scheme

- Pre-launch: Modulate between on-line and off-line in spectral domain
- Improved wavelength switching strategy (smaller jumps in flux on detectors):
 - Modulate with step of a fraction of the FWHM
 - Use differential profile
- Might be replaced with continuous scan

Wavelength Switching Scheme

- Pre-launch: Modulate between on-line and off-line in spectral domain
- Improved wavelength switching strategy (smaller jumps in flux on detectors):
 - Modulate with step of a fraction of the FWHM
 - Use differential profile
- Might be replaced with continuous scan

Spectrometer PSF Sheet1

- Modeled/measured at 62µm and 124µm /on Neptune
- "Trifoliate" structure, also seen in photometer

Spectrometer "Beam Efficiency"

- Fraction of PSF seen by (centered!) 9.4"x9.4" spatial pixel varies with wavelength
- Point source correction table available in HIPE

Spectrometer Flux Calibration (1)

- Pipeline uses nominal absolute and relative spectral response from ground tests
- In-orbit measurements of flux calibrators (asteroids, Neptune, Uranus, fiducial stars) give first correction factors to ground calibration, yielding a 30% absolute error

Spectrometer Flux Calibration (2)

- Use of internal calibration block under test [compensation for detector drifts]
- Example: observed/model for different sky calibrators in band B2B

Spectrometer Flux Calibration (3)

- Default: Use of "Relative Spectral Response Function", measured on ground for each detector
 - gives absolute flux density (Jy), within ~20...30%
 - does not compensate for (short-term) time-variability of detector response (CR hits, memory effects)
 - may result for faint sources in insufficient cancelation of telescope background
- Alternative for faint sources: "Normalization"
 - ("left" "right")/0.5("left" + "right")
 - continuously uses telescope background as calibrator
 - works only if source ~ fainter than telescope!
 - presently no absolute flux density fraction of telescope background; update planned

RSRF vs. "Normalization" for Faint Source

RSRF vs. "Normalization" for Faint Source

Extended Spectral Line Maps

Extended Spectral Line Maps

Snapshot vs. Mapping

Photometer: "Point Source" Mode(s)

- Chop/nod Point Source mode is delivering very precise photometry for sources above ~50 mJy
 - For faint sources, S/N and background subtraction degraded
- For optimum sensitivity (S/N) and background removal on faint sources, new "Mini-Scan Map" mode recommended as better alternative

instrumental	bgr. conf.		total 5- σ	Note
$0.77\mathrm{mJy}$	$\geq 0.03\mathrm{mJy}$	$\times 5$	\geq 3.9 mJy	instr. limited
$0.82\mathrm{mJy}$	$\geq 0.5\mathrm{mJy}$	$\times 5$	$\geq 4.8\mathrm{mJy}$	instr./confN limited
$1.17\mathrm{mJy}$	$\geq 1.8\mathrm{mJy}$	$\times 5$	$\geq \! 10.7 \mathrm{mJy}$	confN limited

Photometer: Flux Calibration

- Flux calibration is converging; best in chop/nod
- Absolute fluxes, based on primary (stars) and secondary (asteroids, planets) standards highly consistent and reproducible
 - The star γ Dra was observed in blue band 10×, in green band 4× and in red band 14× during the mission phase from OD 108 and OD 320. The scatter between all observations (on basis of a 10" aperture radius in all 3 bands) is (*peak-to-peak*): 8% in blue, 5% in green and 13% in red.

	Obs/N		
Band	with β Peg	without β Peg	Remarks
blue	0.97 ± 0.04	0.97 ± 0.03	18/17 observations
green	0.99 ± 0.03	0.99 ± 0.02	13/12 observations
red	1.01 ± 0.04	1.01 ± 0.04	31/29 observations

- Remarkable agreement between predicted PSF, derived from measured/constructed telescope WFE map, and *central peak* of observed PSF
- Analysis of PSF "outskirts" should confirm (or not) the apparent (somewhat low) Strehl ratio or/and transmission (from point source flux calibration)

- Remarkable agreement between predicted PSF, derived from measured/constructed telescope WFE map, and *central peak* of observed PSF
- Analysis of PSF "outskirts" should confirm (or not) the apparent (somewhat low) Strehl ratio or/and transmission (from point source flux calibration)

- Remarkable agreement between predicted PSF, derived from measured/constructed telescope WFE map, and *central peak* of observed PSF
- Analysis of PSF "outskirts" should confirm (or not) the apparent (somewhat low) Strehl ratio or/and transmission (from point source flux calibration)

1% peak cut, wide range, Vesta

- Remarkable agreement between predicted PSF, derived from measured/constructed telescope WFE map, and *central peak* of observed PSF
- Analysis of PSF "outskirts" should confirm (or not) the apparent (somewhat low) Strehl ratio or/and transmission (from point source flux calibration)

Photometer PSF and Scan Speed

- 10"/s and 20"/s PSFs nearly identical
- 60"/s is showing the expected elongation
- Effect further enhanced by frameaveraging in parallel mode

10"/s | 20"/s | 60"/s |60"/s parallel

Photometer: Scan Map Sensitivity

- Most "deep" observations originally used for sensitivity evaluation were performed with "slow" scan speed (10"/s)
- Evidence for significant improvement in sensitivity by going to "medium" scan speed (20"/s)
- This is the official recommendation for scan maps now, at the cost of higher overhead.
 (Data processing might still improve, observing will not.)
- Reduction of the overhead: Each turn costs ~17s, of which only ~5s are "real". Extra dwell time has been removed as of OD221.

Photometer Noise Spectra

- Noise in the PACS bolometers is essentially 1/f^{1/2} over the whole accessible bandpass
- We see excess background/straylight in orbit at long wavelength end, compared to pre-launch conditions

Photometer: Scan Map Sensitivity Analysis

- Comparison of PEP 30h scan map [10'x15'] against pre-launch HSPOT prediction
- Present reduction of GOODS-N/S data:
- Blue : $5\sigma = 3.7 \text{ mJy}$ Green: $5\sigma = 5.0 \text{ mJy}$ Red : $5\sigma = 9.5 \text{ mJy}$
- Improvement going from slow to medium scan speed has materialized

10000 random aperture extractions (R = 1.35 x HWHM)

Photometer: Scan Map Sensitivity Analysis

- Comparison of PEP 30h scan map [10'x15'] against pre-launch HSPOT prediction
- Present reduction of GOODS-N/S data:

+13% •Blue : $5\sigma = 3.7 \text{ mJy}$ +24%Green: $5\sigma = 5.0 \text{ mJy}$ +67%Red : $5\sigma = 9.5 \text{ mJy}$

 Improvement going from slow to medium scan speed has materialized

> 10000 random aperture extractions (R = 1.35 x HWHM)

Scan Map Reconstruction

- PACS is presently using
 - "high pass" filtering + drizzle (MPE): best for point sources
 - Non-linear high-pass method creates artifacts around (bright) sources - can be eliminated by masking of such sources during filtering
 - Mask to be deactivated in final map-making steps!

- MADmap (NHSC): needed for extended structures

ESLAB 2010

What Can MADmap Do?

MADmap is designed to remove 1/f noise effects!

What MADmap Won't Do for You

- Global signal drifts.
 - The MEDIAN signal level of the PACS bolometer array varies systematically in a correlated fashion from start to the end of observation.
 - No thermistors to correct for it as SPIRE

Correlated monotonic drift in the signal over the duration of the observation.

What MADmap Won't Do for You

- Global signal drifts.
 - The MEDIAN signal level of the PACS bolometer array varies systematically in a correlated fashion from start to the end of observation.
 - No thermistors to correct for it as SPIRE

Correlated monotonic drift in the signal over the duration of the observation.

Mitigated by fitting and subtracting baselines.

3 different options are available for baseline fitting.

Parallel Mode

- Calibration blocks interleaved every hour
 - in parallel to PCAL flashes
 - nuisance because of transients effects
 - suppressed starting with OD228
- Homogeneity
 - initially unsatisfactory

-42.4 degrees

42.4 degrees (magic angle)

Parallel Mode

- Calibration blocks interleaved every hour
 - in parallel to PCAL flashes
 - nuisance because of transients effects
 - suppressed starting with OD228
- Homogeneity
 - initially unsatisfactory
 - meanwhile modified, coverage homogeneous to <20%

(do we have a figure to illustrate this?)

Outlook and Future Work

- Decision on final implementation of unchopped/ wavelength switching spectroscopy imminent
- Data processing within HIPE is improving continuously, but don't expect publication-ready results to drop out of the standard pipeline!
- Optimization (for PACS) of MADMap implementation should receive high priority. Alternative algorithms may further improve maps of extended sources
- Final flux calibration in spectroscopy (including "telescope normalization" method) is urgent issue
- Spectral line mapping / full 3D data cube reconstruction is work in progress

Rosette Molecular Cloud

2 pc

