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Why study the evolution of the specific SFR?

The Specific SFR (SSFR) is often used as a measure of
the star formation efficiency of a galaxy, since it
provides information about the fraction of a galaxy’s
mass which could be converted into stars in a given
time.

A higher SSFR means a galaxy will increase its mass by a

greater fraction in a given time than a lower SSFR.
Dunne et al. (2009)
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PEP: PACS Evolutionary Probe (Lutz talk!)
SDP data in the GOODS-North

100 micron 160 micron




SAMPLE SELECTION:

From internal PEP multiwavelength catalog

Spitzer-IRAC 4.5 mag < 23: 4459 sources

1887 with MIPS 24 um SNR>3 and PSF-fitted photometry

351 with a PACS 100 um and/or 160 um SNR>3 and PSF-fitted
photometry

MAIN INGREDIENTS:
1) Masses from stellar SED fitting to the UV-5.8um range (Bruzual &

Charlot 2003 and Maraston 05)
2) SFR < L(IR) from fitting to the whole observed multivelength SEDs
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Mass completeness as a function of redshift for a flux limited sample at [4.5]<23.0, derived from synthetic
stellar population models

BCOJS, Salpeter IMF
Age= 2 Gyt
T Gyr
0.5 Gyr

We use the constant SFR templates of BCO3, different ages, and dust extinction parameters
(E(B-V)=0.3, 0.5,0.8).
In our analysis we adopt the most conservative mass-completeness limit (dot-dashed magenta

line), above which even the oldest (2 Gyr) and highly extincted star-forming galaxy population
would be entirely recovered.
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SED fitting examples: BCO3 + Polletta ‘07
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(See also C. Gruppioni’s Poster, P1.66)



The redshift — mass — IR luminosity space of the IRAC [4.5]<23.00 sample
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Total IR luminosities: Polletta vs Chary&Elbaz
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log(LIR-24pum)-log(LIR-PACS)

IR luminosities: Spitzer versus Herschel

@z-2.0 : MIPS overestimates LIR by a factor ~2

(when including PACS upper limits in the analysis, i.e. by stacking, this factor increases up to
~4! Nordon et al. 2010 A&A special issue, see Poster P2.58 + Elbaz’s talk)
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SFR from stellar fit vs SFR from L(IR) SED fitting
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Stellar Mass vs SFR (LIR SED fitting) for PACS & MIPS sources
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-We observe the existence of a (rather scattered) positive correlations between the SFR and stellar
mass at all redshifts.

-The comparison with Elbaz et al. (2007) at z~1 and Daddi et al. (2007) at z~2 shows that their
observed slope of the SFR-mass relation is not inconsistent with our results.

-A negative trend of SSFR with mass is evident at all redshifts, although the scatter is quite large.
- The bulk of PACS and/or MIPS sources is located above the horizontal dotted line (the inverse of the

age of the Universe), indicating that these systems are experiencing a major episode of star formation,
forming stars more actively than in their recent past and building up a substantial fraction of their final

stellar mass.
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Herschel: constraining tighter high-z relations?

PACS detects only the brightest objects and we cannot than verify that the scatter is intrinsically lower.
However, the fact that at least at high luminosities, at z~2, PACS produces a smaller scatter (because it
provides a more accurate SFR), might suggest that a similar trend should happen also at low luminosities.
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Fig.3. Relation of the stellar mass as a function of the SSFR for PACS
detected sources in various redshift bins: the SFR for red points has
been computed from PACS fluxes. while for black points it has been
extrapolated from the SED fitting from the 24um data.



Going deeper: STACKING analysis on PACS maps

We performed a stacking analysis including all sources of the
original IRAC with [4.5]<23.0 sample.

We splitted the sample in bins of mass and redshift, and stacked
on a residual 160um map.

To exclude passive sources we applied an empirical color
selection of (U-B)rf<1.1, calibrated from our data, and, to recover
massive dusty sources that might fall into the red sequence, we
included in the stacking analysis also sources with (U-B)rf>1.1 and
mag[24]-mag[3.6]>0.5.
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Color bimodality: (U-B)r.f. vs stellar mass
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Color selection to clean the star forming catalog from passive MIPS sources
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Going deeper: STACKING analysis on PACS maps
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The slope of our SSFR-mass relation becomes steeper with redshift.

At z<1, our results are in broad agreement with those based on radio-stacking that found
almost flat relations up to z~2 (Dunne et al. 2009, Pannella et al. 2009) , while at z>1 our

I(Aealy_aS’gilgn evolves toward stronger dependencies. »




Combining far-IR detection and no-detections: STACKING analysis on PACS maps
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Main conclusions:

1) Consistently with other Herschel results, we find that L(IR) based only on 24 um data is
overestimated by a median factor ~2 at z~2 (with our approach). We exploited this calibration
to correct L(IR) based on the MIPS/Spitzer fluxes.

2) The slope of the SSFR-mass relation becomes steeper with redshift (a=-0.25 at z<1 and
a=-0.5 at z~2) at odds with recent works based on radio-stacking analysis at the same redshift
at z™2.

3) The mean SSFR of star-forming sources rises with redshift, up to a factor ~15 for the most
massive galaxies (log(M)>11), implying that galaxies tend to form their stars more actively at
higher redshifts.

4) The mean SSFR seems also to flatten at z>1.5 for log(M)>10.5.

5) The most massive galaxies have the lowest SSFR at any redshift, implying that they have
formed their stars earlier and more rapidly than their low mass counterparts (downsizing).
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