

The high-redshift sub-millimeter galaxy population of Herschel-ATLAS

PACS & SPIRE parallel mode. 550 sq. degrees total. 14 sq. degrees in SDP (GAMA 9-hour field).

~6800 sources down to 32, 36, 45 mJy (5 σ) at 250, 350, 500 μm

sub-mm colors as a mechanism to select z > 2 galaxies

Color-color diagrams for sources detected at > 5σ in central band and > 3σ in other two bands.

158 sources (selected PACS 160) SPIRE 250 & PACS 100

402 sources (selected SPIRE 250) SPIRE 350/PACS 160

Background colors: isothermal SED models with $f_{\nu} = \epsilon_{\nu} B_{\nu} \propto \nu^{3+\beta} / [\exp(\frac{h\nu}{kT_{d}}) - 1]$. 10⁶ models: 10K < T < 60K, 0 < β < 2

 $350 \mu m$ selected galaxies > 5σ are at mostly at z = 2.2 \pm 0.6

(Amblard et al. A&A special issue)

1686 sources (selected SPIRE 350 > 35 mJy) SPIRE 250 & 500 (>3σ) The "statistical" redshift distribution implied by SPIRE colors for the 1686 sources

[equivalent to fitting each SED with a single-temp model and marginalizing over T,β] (Hughes et al 2002; Aretxaga et al. 2007)

350µm selected galaxies > 5 σ are at mostly at z = 2.2 ± 0.6

(Amblard et al. A&A special issue)

How confident are we on this statement? check sub-mm photo-z method on galaxies reliably (> 0.9) identified with SDSS at z < 1.0

SPIRE 350 selected: sub-mm SED biases somewhat redshifts higher (there may also be issues with IDs). Need a mechanism to establish redshifts of our sources!

 $\langle z \rangle = 2.2 \pm 0.6$ is consistent with previous SMG determinations!

350µm selected galaxies > 5σ are at mostly at z = 2.2 ± 0.6

(Amblard et al. A&A special issue)

Others? close to 2200 sources are identified through SDSS/GAMA to be at z < 1 (Smith et al. in prep)</th>~50 to 60 Galactic debris disks, rare Bok globules(Thompson et al.A&A special issue)

Properties of the 350 μ m selected sub-mm galaxies

(Amblard et al. A&A special issue)

$T_{\rm d} = T_0 + \alpha \log(L_{FIR}/L_{\odot})$ $T_0 = -20.5 \text{K}$ $\overline{\alpha} = 4.4$

Table 1. Average dust temperatures as a function of redshift for the 331 H-ATLAS galaxies (column 2) and for all the data (column 4) presented in Fig. 2 and 3 (including H-ATLAS).

z-range	H-ATLAS N _{srcs}	T _d	all data N _{srcs}	all data T _d
All z	331	28 ± 8	658	30 ± 9
0 < z < 0.1	106	27 ± 8	235	32 ± 9
0.1 < z < 0.5	186	29 ± 8	260	28 ± 8
0.5 < z < 1	33	23 ± 5	67	24 ± 7
z > 1	6	32 ± 8	96	37 ± 10

Luminosity-temperature relation: Evidence for SMGs with cold (T < 20K) dust? (expected due to peak of SED when z < 1 at cold dust end of the BB spectrum).

Luminous z < I sub-mm galaxies with T < 20K cold dust

(Keck u,g,i; g>24 mag)

Spatial distribution of $350\mu m$ selected sub-mm galaxies

Some evidence for strong clustering with correlation length~10 Mpc for "red" (350/250>0.75) sources (Maddox et al A&A special issue)

At z > 2 find proto-clusters! (bright SMGs are unlikely to be in virialized clusters by large numbers, but should trace large overdensities before collapse when galaxies are still undergoing massive starformation)

ATLAS

Herschel-ATLAS

z > 4 sources?

We find 281 sources with $S_{500} > S_{350}$ 55 of these sources are detected above 5σ (>45 mJy), while others are detected at > 3σ 49 detected above 5σ in all 3 bands. One of these is a blazar at z~1.02, in Fermi all-sky catalog.

Are all the 281 sources at z > 4?

Unclear, again we need significant follow-up data, especially at near-IR. Also CO-line redshifts?

Assuming all 281 sources are z > 4, a rough lower limit on the surface density of z > 4 sources down to S₅₀₀ > 20 mJy is ~20/deg² (~50% uncertainty)

The surface density of 350 μ m selected sources (z~2 to 3) S₃₅₀ > 35 mJy is ~100/deg²

Cross-correlation with optical (GAMA redshifts)

SPIRE 3 color

SDSS 5 color

Cross-correlation with optical (GAMA redshifts)

Using ~900 SPIRE sources with spectroscopy ~7000 GAMA redshifts

What's next for H-ATLAS?

GAMA-15 field, 45+ sq. degrees

Summary

100

1.1.1.

Summary

100

We think "red" 350 μ m selected population is at z ~ 2. We should also have ~20/deg² z~4 sources (500 micron peakers) - or they must have very cold dust.

We are finding rare, luminous (> $10^{12} L_{sun}$) sub-mm galaxies with cold (T < 20K) dust.

We think we can find z ~ 2 protoclusters of sub-mm galaxies tracing overdensities of a few at 10-20Mpc scales. (hierarchical picture suggests one such an overdensity per ten sq. degrees).

There is a clear need for large followup studies.