

FIR Fine Structure lines at high-redshift

The Promise of PACS Spectroscopy

A. Verma¹, E. Sturm², J. Graciá-Carpio², S. Hailey-Dunsheath²,
A. Contursi², J. Fischer^{3,2}, E. González-Alfonso⁴, A. Poglitsch²,
A. Sternberg⁵, R. Genzel², D. Lutz², L. Tacconi², N. Christopher¹, J. de Jong²

¹Univ. of Oxford ²M.P.E. ³US Naval Research Lab ⁴Universidad de Alcalá de Henares ⁵Tel Aviv University

Building on ISO & Spitzer's Legacy

Starlight <5um</th>PAHsH2rotational linesFIR cooling linesH-recombination linesVSG continuumAGN torusSF regionsDisk/cirrus

Building on ISO & Spitzer's Legacy

Starlight <5um</th>PAHsH2rotational linesFIR cooling linesH-recombination linesVSG continuumAGN torusSF regionsDisk/cirrus

Spectroscopy with PACS

Projection of focal plane onto spectrometer arrays

47"x47" (5x5 pixels) FOV rearranged via an image slicer on two 16x25 detector arrays Simultaneous 55-98 & 102-210 μ m spectroscopy Performance: $\lambda/d\lambda \approx 1500$ Sensitivity: 3 - 20 x 10⁻¹⁸ W/m2 (5 σ , 1h) This program: Deep integrations 5 - 10 h (A. Poglitsch's talk) Explore the limits of the PACS spectrometer Sensitivity and at high-z

PACS Spectroscopy: z = 2 - 4

Valiante et al. 2007

1.5

Flux density[mJy] 9 SMGs 1.0 0.5 M82+continuum 0.0 8 9 10 Rest wavelength [µm] Coppin et al. 2010 1.5-1025 L_{v} (W Hz¹) 1.0•1025 MANY 5.0.1024 5 6 8 0 10 1 Rest Wavelength (µm)

Diagnostic lines that were well studied by ISO-SWS and Spitzer IRS in z≈0 galaxies fall in the PACS range at high-z

PACS observations at z≈2-to-4 are complementary to Spitzer's results in galaxies at these redshifts

PACS Spectroscopy: z = 2 - 4

GTKP: The Dusty Young Universe PI K. Meisenheimer Co-PI L. Tacconi (PACS Spectroscopy)

4 bright, lensed QSOs and SMGs

Redshifted [SIII]33.5 and [OIV]25.9 (SIII used as a proxy for NeII) SIII (IP=23eV) traces low excitation gas OIV(IP=55eV) traces high excitation gas Starburst/AGN diagnostic

Name	Туре	Z	L _{IR} 10 ¹⁴ L _o	Ma g
IRAS F10214+4724	Sy2	2.29	5.1	12
SMM J14011+0252	SMG	2.57	1.1	3- 30
Cloverleaf	QSO	2.57	8.1	11
APM 08279+5255	QSO	3.91	3.4	85

IRAS F10214+4724

IRAS F10214+4724

PACS Spectroscopy: $z \approx 1$

Comparative to low z sample, spanning AGN, starbursts, low-Z, ULIRGs...

Name	z	Туре	LFIR
MIPS J1428	1.33	SB	2.8
Abell 0370_01	0.72	Arc/SB	0.9
SMM J02399	1.06	Sey/LoBAL	1.8
SDSSJ1772	0.74	Sey2	1.3
ELAISCJ1640	1.10	QSO	2.6

MIPS J142824.0+352619

MIPSJ1428 SED

Deficient FIR FSLs at high-z/high-L?

PDR diagnostic diagram

From ISO data Red new points from SHINING data Crosses - ULIRGs

First time we can combine [CII] and [OI] in a single diagnostic diagram and use PDR modelling to understand the ISM of a galaxy residing in the peak of the SFRD

MIPS J1428 is not like local ULIRGS or Seyferts.

More akin to star-forming galaxies.

Mrk 231 J. Fischer's talk

Summary

- Herschel is heralding a new era in FIR spectroscopy PACS high-z spec. feasible
- First detections of [OI]63.2µm and [OIII]51.8 µm high-z
- First time we can combine OI and CII and use PDR modelling to understand the physics of the ISM of galaxies at the epoch of peak star-formation activity
- Not all (U/H)LIRGs are deficient in FIR fine structure lines MIPSJ1428
- F10214 undetected in [OIV] & [SIII] low OIII/FIR
- Complementarity & implications for observations of high-z galaxies with ALMA
- Much more to come!

Sturm et al. 10, E. Sturm's talk tomorrow