The Herschel Lensing Survey (HLS)

Eiichi Egami Steward Observatory University of Arizona

HLS Team Members

(Total: 35, US: 14, ESA 21)

E. Egami (PI)	Arizona	D. Dowell	JPL/Caltech	J. Richard	Durham
M. Rex	Arizona	M. Dessauges- Zavadsky	Geneva	G. Rieke	Arizona
T. Rawle	Arizona	D. Fadda	NHSC	G. Rodighiero	Padova
M. Pereira	Arizona	O. Ilbert	Marseille	D. Schaerer	Geneva
G. Walth	Arizona	R. Ivison	Edinburgh	I. Smail	Durham
B. Altieri	Blain	M. Jauzac	Marseille	G. Smith	Birmingham
A. Blain	Caltech	JP. Kneib	Marseille	G. Tramoy	Marseille
J. Bock	JPL/Caltech	D. Lutz	MPE	I. Valtchanov	ESAC
F. Boone	Toulouse	L. Metcalfe	ESAC	P. Van der Werf	Leiden
C. Bridge	Caltech	A. Omont	IAP	M. Werner	JPL/Caltech
B. Clement	Marseille	R. Pello	Toulouse	M. Zemcov	JPL/Caltech
F. Combs	Paris	P. Perez- Gonzalez	Madrid		

HLS Team Meeting at ESTEC May 3, 2010

Scientific Goals

- To detect and study IR/Submm sources that are below the nominal confusion limit of Herschel using the gravitational lensing power of massive galaxy clusters.
- 2. To study IR/submm properties of galaxies in dense environment (i.e., cluster members).
- 3. To investigate the Sunyaev-Zel'dovich effect (SPIRE can detect increment at 350/500 um).

Penetrating through the Confusion with Cluster Cosmic Telescopes

Without Lensing

With Lensing

7'x7'

Lensing is more Important for SPIRE images, which get confusion-limited quickly.

PACS 100 um

In IR/Submm, massive galaxy clusters act as transparent lenses (well, almost...)

AS 1063 (z= 0.34)

See the poster by Greg Walth

Survey Strategy & Design

- Target: ~40 massive galaxy clusters (GT surveys observe 10 clusters -> OT+GT~50)
- Selected X-ray-luminous clusters with good ancillary data and cluster mass models.
- Close collaboration with two other cluster OTKPs (LoCuSS – PI: G. Smith; BCGs – PI: A. Edge)
- PACS: 100/160um; FOV 8'x8'; 5/10 mJy (5σ)
- SPIRE: 250/350/500 um; FOV 17'x17'; confusion limit ~30 mJy (5σ)
- Total observing time: 292.3 hrs

Five Herschel Special-Issue Papers on the Bullet Cluster (SDP target)

- The Herschel Lensing Survey: Overview (Egami et al.)
- Sources behind the Cluster:
 - 1. Far-IR/Submm SED properties (Rex et al.)
 - 2. Multi-wavelength source matching/photometry and far-IR/submm phot-z's (Perez-Gonzalez et al.)
- Cluster Galaxies: 3. Far-IR/Submm properties of galaxies in dense environment (Rawle et al.)
- Sunyaev-Zel'dovich effect: 4. First detection of SZ increment at < 650 um (Zemcov et al.)

The Bullet Cluster: X-ray-luminous merging cluster at z=0.3

Special thanks to,

Doug Clowe (Magellan/IMACS images)

Jean-Gabriel Cuby (VLT/HAWKI images)

Anthony Gonzalez, Sun Mi Chung (Magellan/IMACS redshifts)

Cathy Horellou, Daniel Johansson and LABOCA team

David Hughes, Itziar Aretxaga and AzTEC team

BLAST vs. SPIRE

Galaxies behind the Bullet Cluster

For the SDP papers, we limited the analysis to well-isolated,

- 15 sources with spectroscopic redshifts
- 4 sources with good photometric redshifts

1. Far-IR/Submm SED Properties

Chary & Elbaz (2001)

Rex et al. (2010); see her poster!

Q: Do the local galaxy SED templates work at high redshift?

Mapping the Full Far-IR/Submm SED of a ULIRG ($2x10^{12} L_{\odot}$) at z=2.8!

Also, see Rex et al. (2009) for BLAST Magnification factor ~x50-100 Observed flux densities : 7.0, 24.5, 65.3, 98.6, 101.4 mJy Corrected for lensing (x75): 0.09, 0.3, 0.9, 1.3, 1.4 mJy

Impossible to detect without lensing!!

HyLIRG (4.4x10¹³ L_{\odot}) at z=1.6

(But not significantly lensed...more like a typical SMG)

Magnification factor ~x1.2 Observed flux densities :

Observed flux densities : 75.4, 164.4, 168.9, 120.0, 58.4 mJy

Star-forming galaxy SED

Properties of High-z Galaxy SEDs

IR/Submm SEDs of high-redshift galaxies appear colder than their local galaxies with Similar IR luminosities. 24um-derived SFRs/LTIR tend to overestimate the true values.

Suggest that there's still a lot to learn about the properties of Far-IR/Submm galaxy SEDs.

2. Multi-Wavelength Source Matching, Photometry & Far-IR/Submm Phot-z's

Perez-Gonzalez et al. (2010)

Z=3.24 giant lensed arc

HST Image Reconstruction in the Source Plane at z=3.24

Full SED of the z=3.24 Lensed Galaxy

IR/Submm Phot-z's

Perez-Gonzalez, in prep

3. IR/Submm Properties of Galxaies in Dense Cluster Environment

Rawle et al. 2010; See his poster!

Comparing the Bullet Cluster (z=0.3) and the z=0.35 background system

Discovery of 100 um-Excess Galaxies

Does the dense cluster environment modify the far-IR/Submm SED properties?

IR/Submm SED Properties: Summary

4. First Detection of the Sunyaev-Zel'dovich Effect Increment at < 650 um _{Zemcov et al.} (2010)

First, some introduction....

Summary

- The Herschel Lensing Survey (HLS) is delivering what it promised (lensed high-z galaxies)...and more (cluster members, SZ effect)!
- SEDs of high-redshift IR-bright galaxies → colder (F_{24um} overpredicts LTIR with local SEDs)
- SEDs of 100um-excess cluster-member galaxies \rightarrow hotter (F_{24um} underpredicts LTIR with local SEDs)
- SZ-effect increment clearly detected at 350/500um
 - \rightarrow Fits the expected SZ spectrum, but suggests relativistic corrections due to fast-moving electrons.
- Road ahead:
 - 39 more clusters to analyze in detail!
 - LABOCA, SCUBA2, LMT and various optical/near-IR observations proposed/planned for the near future.