

maps and source detection
source counts
clustering

Steve Maddox and H-ATLAS consortium

The University of

SD observations

- A 4x4 degree field centred on 9hrs 0deg
- Observed in fast-scan parallel mode
- Single nominal and orthogonal scans
- SPIRE maps
 - temperature drifts corrected in time-line data
 - naïve map-maker essentially no filtering
- PACS maps difficulties with
 - pcal flashes
 - deglitching
 - large maps memory issues for MADMAP

SPIRE Maps

no filtering
cirrus background
almost confused

PACS Maps

higher noiseneed to filterfewer sources

Source Detection Methods

Plan to do extensive testing of a variety of methods: Sextractor DAOPHOT SUSSEXtractor MADX Mexican hat wavelet Multi-wavelength Matrix filter For SD data used MADX and Sextractor

Source detection

(see poster by Rigby)

MADX used for 250, 350 and 500
 Multiband Algorithm for Detection and eXtraction
 Developed for H-ATLAS at Nottingham
 Detects sources with matched filter in multiple bands
 Point source fluxes recovered from individual bands

Sextractor used for 110 and 160

Source detection - SPIRE

Source detection - SPIRE

- Total 5-sigma limits including confusion noise 33, 36 and 45mJy
- 6878 sources are detected at more than 5 sigma in any of the 3 SPIRE bands
- Extended sources identified from optical counterparts, and fluxes replaced by aperture measurements
 - 200 sources extended at 250
 - 83 sources extended at 350.

Source detection - PACS

3-σ detections

- fluxes measured using aperture photometry
- matched to SPIRE catalogue
- 5-σ limits 132 and 126 mJy
 - 337 sources at 110525 sources at 160

 Comparison to IRAS fluxes at 100 micron shows good agreement

Simulations

- 250,350 and 500 micron fluxes chosen from Negrello model, scaled to match observed counts
- exponential galaxy profiles with 3kpc scale length
- non-uniform background from SFD IRAS maps
- filter with instrumental PSF for each band
- use pixel scale appropriate for each band
- Gaussian noise with amplitude from real coverage maps

Simulations - 2

 Use simulations to test reliability, completeness, and noise of source detection

 Recovered counts match the input counts with small corrections

Source counts

(see Clements et al poster, and A&A paper)

- Differential counts corrected for completeness and flux boosting by comparing to simulations
 very steep below 100mJy
- consistent with BLAST P
 (d) analysis
- no model matches well

Source counts

Negrello model matches the steep slope, but is too high at 350 and 250

Source Counts

- Steep counts are dominated by a population of high z protospheroids
- possible solutions
 - move protospheroids to higher redshifts
 - change the SEDs

 Photometric redshifts from the SPIRE colours suggest that the high z population is at z~2 (see Amblard et al A&A paper)

Source Counts

- Steep counts are dominated by a population of high z protospheroids
- possible solutions
 - move protospheroids to higher redshifts
 - change the SEDs

 Photometric redshifts from the SPIRE colours suggest that the high z population is at z~2 (see Amblard et al A&A paper)

Clustering

(Maddox et al A&A paper)

- Measure w(θ) using Landy & Szalay estimator
- Cirrus is a potential problem
 - tests on simulations with clustered positions
 - recover correct amplitude with background subtraction as implemented
 - mask out worst cirrus regions
- 4 subsamples
 - S₂₅₀>33mJy
 - S₃₅₀>36mJy & 3σ
 - S₅₀₀>45mJy
 - S₃₅₀>36mJy and S₅₀₀/S₂₅₀>0.75

Clustering

The amplitude increases for redder samples

Clustering

- The 250 sample is dominated by low-z galaxies
- The 350 and colour selected samples dominated by the high-z peak (see Amblard et al A&A paper)

- Non-detection at 250 consistent with the low-z population cluster as normal galaxies (r₀~4Mpc)
- The angular amplitude of the 350 samples and Amblard n(z) implies high-z population has intrinsically stronger clustering (r₀~10Mpc)

Conclusions

SD data: 4x4 degree maps in GAMA 9hr field

 \sim ~7000 sources detected at >5 σ

Source counts steeper than most models
 Negrello model with multiple populations fits best

Strong clustering for redder bands
 z>1 population of highly clustered protospheriods
 z<0.5 population of normal galaxies