HERSCHEL/HIFI observations of water in nuclei of actively star forming galaxies

Axel Weiss (MPIfR Bonn Germany) on behalf of the HexGal consortium

R. Güsten (PI)
S. Gracia-Burillo, A. Harris, F. Israel, T. Klein
C. Kramer, S. Lord, J. Martin-Pintado,
M. Requena-Torres, M.Roellig, J. Stutzki,
R. Szezerba, P. van der Werf
with associates and affiliates

The HexGal project:

HexGal:

Aims to study the physical and chemical composition of the ISM in galactic nuclei using HIFI spectroscopy

ISM in the galactic center region
detailed investigation of the GC region

Gas excitation in starbursts and ULIRGs
CO & fine structure line excitation
The extragalactic water trail

O Chemical complexity of extragalactic nuclei
- Line surveys of selected sources
- Absorption line study in selected source

Extragalactic Water so far: SWAS & ODIN not sensitive enough

ISO: detections of H_2O in extragalactic objects, but no observations below 1.5 THz

=> only high excitation lines

HexGal water trail:

First systematic survey for H₂O low-level transitions in active galaxies

Water trail sample:

Sample:

all flavors of nuclear activity in different evolutionary stages:

M82	nuclear SB	LIRG
NGC 253	nuclear SB	LIRG
M83	nuclear SB/AGN	LIRG
NGC 4945	nuclear SB/AGN	LIRG
Centaurus A	nuclear SB/AGN	LIRG
Mrk273	SB/AGN Major Merger	ULIRG
Arp220	SB/AGN Major Merger	ULIRG
Arp299	SB/AGN Major Merger	LIRG
NGC 4038/39	SB Major Merger	LIRG
NGC1068	AGN/SB	LIRG
Mrk 231	AGN/SB	ULIRG
NGC6240	AGN/SB	LIRG

Lines:

 $\begin{array}{lll} p-H_2O~(1_{11}-0_{00}) & 1113~GHz\\ p-H_2O~(2_{02}-1_{11}) & 988~GHz \end{array}$

o-H₂O (1₁₀-1₀₁) 557 GHz

(p-H₂¹⁸O (1₁₁-0₀₀) 1102 GHz)

Water observations in M82:

CO(1-0) OVRO+30m Walter etal 2002

SUBARU multi color optical image

HIFI p-H₂O 1113 GHz results:

Chop/Nod observations (fast chopping) 5600s (2280 on source) rms: 1.6mK @ 8 km/s resolution (H+V) HIPE level 2 reduction: OK

First detection of H_2O and H_2O^+ Surprise: H_2O^+ absorption stronger than H_2O

CO(1-0) beam: 3.5"

HIFI beam: 19" for $p-H_2O(1_{11}-0_{00})$

HIFI p-H₂O 988 GHz results:

Chop/Nod observations (fast chopping) 3680s (1510 on source) rms: 2.0mK @25 km/s resolution (H+V)

Parts of the data affected by baseline instabilities - HIPE 1 level + Class processing

CO(1-0) beam: 3.5"

HIFI beam: 21".5 for p-H₂O(2₀₂-1₁₁)

Comparison to CO line profiles

Water absorption detected in the line wings as well as red-wards of the systemic velocity

The lack of absorption is most likely due to geometry (e.g. located behind the continuum)

Water emission detected at all velocities where CO emission is detected.

 \Rightarrow H₂O abundant in the gas phase at all nuclear velocities

Grey scale & white contours VLA 1.4GHz

Grey scale & white contours VLA 1.4GHz

H₂O absorption region

Comparison to other wavelength

Dense Gas:

greyscale: H¹³CO+ Garcia-Burillo etal 2002 contours: CO(1-0)

PDRs:

greyscale: HCO Garcia-Burillo etal 2002 contours: CO(1-0)

Continuum:

greyscale: 1.4GHz continuum Wills etal 1998 contours: 3mm continuum Weiss etal 1999

Shocks: contours: SIO Garcia-Burillo etal 2001

Water continuum covering factor

Continuum: 61.9 Jy/b (SED model & 3mm distribution: 66Jy/b)

Absorption: H_2O (1₁₁-0₀₀): 4.5 Jy/b H_2O^+ (1₁₁-0₀₀): 8.0 Jy/b

M82 3mm continuum

for τ >>1 absorption depth ~ fc

Continuum covering factor:

- 1) random distribution in beam => H_2O : fc = 7% => H_2O^+ : fc = 13%
- 2) Limited to the region determined from the CO line profiles: => H_2O : fc ~ 45% ! => H_2O^+ : fc ~ 80% !

Water excitation - first steps

 $\mathsf{T}_{\mathsf{line}} \sim \mathsf{f}_{\mathsf{c}} \left(\mathsf{J}(\mathsf{v},\mathsf{T}_{\mathsf{ex}}) - \mathsf{J}(\mathsf{v},\mathsf{T}_{\mathsf{bg}}) \right) \left(1 \text{-} e^{\text{-}\tau} \right)$

Line absorption => $J(v,T_{ex}) < J(v,T_{bg})$

Background derived from dust SED models

Result depends on dust model, in particular the clumpiness of medium (this determines the opacity)

fit to the cold gas with $\beta = 1.8$ and a dust filling factor of 30% yields:

 T_{dust} = 45 K and τ@1113GHz = 0.19 τ= 1 @ 120μm (quite long λ, max. T_{ex})

⇒T_{ex} < 20 K

for H_2O (1₁₁-0₀₀) and H_2O^+ (1₁₁-0₀₀)

Implications & Conclusions

p-H₂O ground transition sub-thermally excited => in agreement with spatial distribution of the H₂O absorption (avoids dense gas)

 H_2O/H_2O^+ absorption in M82 associated with diffuse gas which could have a PDR origin. H_2O^+ more wide spread than H_2O

HIFIs spectral resolution highly required

Relation to H_2O emission not clear yet $\Rightarrow o-H_2O$ will shed more light on its origin

But:

Water excitation is complex (IR pumping important). Higher excited H_2O line (e.g. from SPIRE) highly desirable.

Larger sample of galaxies required...

Mrk 231 SPIRE van der Werf etal. 2010

