

Herschel/SPIRE FTS View of M82

Probing the molecular ISM in M82 starburst

saclay

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

Pasquale Panuzzo (CEA Saclay Irfu/SAp) and SAG2:

N. Rangwala, A. Rykala, K. G. Isaak, J. Glenn, C. D. Wilson, L.
Spinoglio, M. Bradford, R. Auld, M. Baes, M. J. Barlow, G. J. Bendo, J.
J. Bock, A. Boselli, V. Buat, N. Castro-Rodríguez, P. Chanial, S. Charlot, L. Ciesla, D. L. Clements, A. Cooray, D. Cormier, L. Cortese, J. I.
Davies, E. Dwek, S. A. Eales, D. Elbaz, T. Fulton, M. Galametz, F.
Galliano, W. K. Gear, H. L. Gomez, M. Griffin, S. Hony, L. R. Levenson, N. Lu, S. Madden, B. O'Halloran, K. Okumura, S. Oliver, M. J. Page, A.
Papageorgiou, T. J. Parkin, I. Pérez-Fournon, M. Pohlen, E. T.
Polehampton, E. E. Rigby, H. Roussel, N. Sacchi, M. Sauvage, B.
Schulz, M. R. P. Schirm, M. W. L. Smith, J. A. Stevens, S. Srinivasan, M.
Symeonidis, B. Swinyard, M. Trichas, M. Vaccari, L. Vigroux, H.
Wozniak, G. S. Wright, W. W. Zeilinger

i r f u M82 SPIRE FTS observations

saclay

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

Target of the Very Nearby Galaxies Survey (SAG2)
M82 was observed as Performance Verification target

- High resolution (FWHM=0.048 cm⁻¹ R \sim 1000)

M82 is the nearest (3.9Mpc) starburst (~10Msun/yr)

Widely used in cosmology as starburst prototype

Brightest IRAS extragalactic source (1390Jy at 100µm)

- 1332 seconds (10 repetitions)
- Point source mode (single staring pointing)

irfu Data analysis

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

- Processed with customized version of HIPE3 pipeline
 - We used only data of central detectors
 - M82 was detected also on first ring detectors
- Beam size of the FTS bolometers varies with wavelength
- Spatial extent of the M82 central starburst is comparable to the beam size
 - M82 is not a point source nor an extended flat source for **FTS** bolometers

i r f u Source-beam coupling correction

- To compare the SED with models, we need to scale the spectrum to a single beam size with a source-beam coupling factor $\eta(\lambda)$
 - Largest beam size is 43.4"
 - We assume Gaussian beams [b(<u>x</u>,FWHM(λ))] and same light distribution [f(<u>x</u>)] at all wavelengths [λ]
 - CO line maps are not so different from continuum emission distribution
 - The source-beam coupling factor is given by:
 - $\eta(\lambda) = \left[\int f(\underline{x}) b(\underline{x}, FWHM(\lambda)) d\Omega \right] / \left[\int f(\underline{x}) b(\underline{x}, 43.4'') d\Omega \right]$

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

SPIRE

i r f u Source-beam coupling correction (2)

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

- The value of $\int f(\underline{x})b(\underline{x}, FWHM(\lambda))$ $d\Omega$ was determined convolving $\widetilde{P}H_{0.1}^{1.1}$ $M82 250 \mu m$ maps with a gaussian beam $b'(\underline{x}, \sqrt{2})$ $(FWHM^2-18.1''^2))$
- Extended-source flux calibration (based on telescope modelling) is less noisy than point-source flux calibration but gives fluxes 2x fainter than photometry
 - Known problem, under analysis
- We had to multiply by another scaling factor to match photometry in the same beam

irfu

irfu Line extraction

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

- Emission line extraction from un-apodized spectrum with SLIDE tool
 - Remove continuum (graybody + polynomial)
 - Fit strongest line with sincconvolved gaussian
 - Remove the fitted line and iterate on the residual
- Detected lines:
 - ¹²CO J=4-3 up to J=13-12
 - -3^{13} CO lines (+1)
 - 1 HCN line
 - 2 [CI] and [NII] lines
- Additional error ~30% (1σ) from corrections / calibration

Transition name	Frequency	Flux	
	(rest, GHz)	$(10^3 \text{ Jy km s}^{-1})$	$(10^{-16} \text{ W m}^{-2})$
$^{12}CO J = 4-3$	461.041	74.1 ± 2.2	11.32 ± 0.33
12 CO J = 5–4	576.268	80.9 ± 2.3	15.53 ± 0.45
12 CO $J = 6-5$	691.473	74.0 ± 2.0	17.04 ± 0.46
${}^{12}\text{CO} J = 7-6$	806.652	77.7 ± 3.1	20.89 ± 0.84
${}^{12}\text{CO} J = 8-7$	921.800	60.7 ± 2.1	18.64 ± 0.65
${}^{12}\text{CO} J = 9-8$	1036.912	50.5 ± 2.3	17.44 ± 0.79
${}^{12}\text{CO} J = 10-9$	1151.985	32.6 ± 1.3	12.51 ± 0.50
12 CO <i>J</i> = 11–10	1267.014	21.9 ± 1.5	9.28 ± 0.63
${}^{12}\text{CO} J = 12 - 11$	1381.995	14.0 ± 1.2	6.44 ± 0.57
12 CO J = 13–12	1496.922	7.1 ± 1.9	3.53 ± 0.93
13 CO J = 5–4	550.926	5.3 ± 0.7	0.98 ± 0.12
${}^{13}\text{CO} J = 7-6$	771.184	3.2 ± 0.6	0.81 ± 0.16
${}^{13}\text{CO} J = 8-7$	881.273	2.3 ± 0.7	0.68 ± 0.22
HCN $J = 6-5$	531.716	2.9 ± 0.7	0.52 ± 0.12
$[CI]^{3}P_{1} \rightarrow {}^{3}P_{0}$	492.161	20.6 ± 1.6	3.38 ± 0.26
$[CI]^{3}P_2 \rightarrow {}^{3}P_1$	809.342	43.2 ± 0.9	11.66 ± 0.25
$[\mathrm{NII}]^{3}P_{1} \rightarrow {}^{3}P_{0}$	1462.000	124.1 ± 5.8	60.51 ± 2.85

7

irfu M82¹²CO SLED

- The Spectral Line Emission Distribution (SLED) of ¹²CO peaks at J=7-6
 - Low J lines taken from Ward et al (2003) in a similar area
 - Only with Herschel we can determine the peak of the SLED

saclay

irfu RADEX modelling

saclay

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

- We used RADEX (van det Tak et al 2007) non-LTE code to compute ¹²CO and ¹³CO lines for a large parameter grid
 - T_{kin}: 20-1000K; n_{H2}: 100-10⁶cm⁻³; N(¹²CO): 10¹⁵-10¹⁸cm⁻²; N (¹³CO): 10¹³-10¹⁷cm⁻²
- We computed the likelihood of each model
 - A single component was assumed
 - Had to add 20% uncertainty for lines in SLW and 10% in lines in SSW range

i r f u Modelled ¹²CO SLED

œ

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

- SPIRE-detected CO lines well reproduced by a warm $(T_{kin} = 545 \text{ K})$ molecular gas component with mass $1.2 \times 10^7 \text{Msun}$
- Same temperature of H2 S(1) S(2) MIR lines

Quantity	Most Probable Value	range [†]
$T_{\rm kin}$ (K)	545	350 - 825
$\log_{10} n(H_2) (cm^{-3})$	3.7	3.0 - 4.1
$Log_{10}N(^{12}CO)$ (cm ⁻²)	19.0	18.5 – 19.8
$Log_{10} \Phi_A N(^{12}CO)^{\ddagger} (cm^{-2})$	17.4	17.2 – 17.9
$N(^{12}CO)/N(^{13}CO)$	20	15 – 37
$Log_{10}P$ (K cm ⁻³)	6.4	5.8 – 6.7
$M_{\rm gas} \; (\times 10^7 { m M_{\odot}})$	1.2	0.7 - 3.6

i r f u SPIRE + ground-based SLED

- Low J lines dominated by cold gas, as determined by various ground-based works
- The sum of 2 components (cold at ~25K, warm at ~550K) reproduce well the entire SLED (SPIRE + ground data)
 - Mass of cold gas is ~3 times the mass of warm gas
 - Warm and cold components have similar pressure

5/12/10

saclay

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

SPIRE

i r f u Heating and cooling mechanisms

saclay

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

- At ~500K MIR H₂ rotational lines are the dominant coolant - CO luminosity ~ 5 x 10^6 Lsun
 - H_2 luminosity ~ 3 x 10⁷ Lsun (Beirão et al. 2008)
 - [CI] lines (491+809 GHz) ~ 5.4 x 10^5 Lsun
- We considered several heating mechanisms as responsible for the warm molecular gas:
 - UV powered PDRs: observed CO lines too luminous compared with PDR models; would need too high density
 - X-ray powered XDRs: X-ray luminosity too low, and SLED decreases at high J (contrary to XDR-dominate Mkr231 in Loenen talk)
 - Cosmic ray: would need > 10 times CR rate of MW
 - Dissipation of turbulence (Falgarone & Puget 1995, Pan & Padoan 2009): from velocity gradient from RADEX (~35km/ s/pc), turbulence can match the observed cooling

irfu Conclusions

- saclay

CENTER FOR ASTROPHYSICS AND SPACE ASTRONOMY

- We have presented the Herschel-SPIRE spectroscopic observations of the starburst galaxy M82.
- We derived a source-beam coupling correction to scale the observed spectrum to a single beam
- Prominent CO ladder along with [C I] and [N II] lines.
- Modelling of CO lines clearly indicates the presence of a warm gas component at ~550K in addition to the cold (~25K) component found by ground-based studies.
- The temperature and mass of warm gas are in agreement with the H₂ rotational lines observations from Spitzer and ISO.
- H₂ is the dominant coolant instead of CO
- Turbulence generated by stellar winds and supernovae may be the dominant heating mechanism.