THE FIRST DAYS OF DEBRIS

Exciting Results and Unexpected (Good) Surprises

Jane Greaves (St Andrews), for Brenda Matthews (HIA) & The DEBRIS team

INTRODUCTION

5/6/10

ESLAB 2010: Herschel First Results

- Debris discs are rarefied discs
 - parent population of (invisible) rocky/icy planetestimals
 - second-generation dust produced by their collisions
- For older, fainter discs, need sensitivity and resolution to detect them, due to confusion with background galaxies

K Annu. Rev. Astron. Astrophys. 46:339–83

THE DEBRIS SURVEY: SCIENCE

- <u>D</u>isc <u>E</u>mission via a <u>B</u>ias-free <u>R</u>econnaissance in the <u>Infrared/S</u>ubmillimetre
- Four primary science goals:
 - To establish the incidence of discs statistically
 - To place the solar system in context (common or unusual)
 - To characterize the debris disc population
 - To resolve discs and model their structure

THE DEBRIS SURVEY: SAMPLE

5/6/10

- Targets drawn from Unbiased Nearby Stars sample (Phillips et al. 2010)
- ~90 each of A, F, G, K and M type primaries (446)
- Sp. Type samples volume-limited, with confusion cut Volume limits: 46, 24, 21, 16, 8.6 (A-M)

THE DEBRIS SURVEY: SENSITIVITY

• Driven by 100 micron sensitivity

- 1 sigma rms = 1.2 mJy at 100 micron
- PACS 100/160
- SPIRE followup for 98 targets (confusion limited)

5

DEBRIS: STATUS

• SDP observations

- Seven targets observed with PACS
 All but one known disc hosts
- Six discs detected
- Single M star observed: no disc OR STAR detected
- 62 targets observed as of day 353 with PACS 100/160
- 5 targets observed with SPIRE (SDP)

FIRST RESULTS: DISC PARAMETERS

Parameter	β Leo	β UMa	η Corvi
$f_D = L_{IR}/L^*$	2.2×10^{-5}	1.4×10^{-5}	3.6×10^{-4}
T_{disc} [K]	112	109	31, 354
R_{dust} [AU]	23	51	174, 1.4
$R_{obs}{}^a$ [AU]	~ 39	~ 47	~ 145

^a derived from FWHM

- Beta Leo and Beta UMa measured disc sizes ~ R_{KB}
- Beta Leo
 - R_{dust} < R_{obs} (BB fit radius is too small)
 - grains are small, inefficient radiators
 - characteristic particle size, $a < \lambda/2\pi = 16$ micron
- Beta UMa
 - $R_{dust} = R_{obs}$
 - blackbody grains present in this disc
 - blackbody fit unconstrained in submm
- SPIRE data forthcoming for both sources

10

FIRST RESULTS: DISC PARAMETERS

Parameter	β Leo	β UMa	η Corvi
$\overline{f_D} = \overline{L_{IR}}/L^*$	2.2×10^{-5}	1.4×10^{-5}	3.6×10^{-4}
T_{disc} [K]	112	109	31, 354
R_{dust} [AU]	23	51	174, 1.4
$R_{obs}{}^{a}$ [AU]	~ 39	~ 47	~ 145

^a derived from FWHM

• Eta Corvi is well resolved, as expected

- 150 AU radius measured at 450 micron
- Similar morphologies at 160 and 450 micron
- 100 micron morphology suggests warmer component within cool (31 K) outer ring (proposed by Chen et al. 2006)
- Generally suggests radial distribution of material is broader than the two ring system of Wyatt et al. (2005)
- As for Beta UMa, $R_{obs} = R_{dust}$
 - absence of small, inefficiently radiating grains
- SPIRE data forthcoming

5/6/10

SUMMARY

• Resolution impact is immediate

- Beta Leo and Beta UMa discs resolved for the first time (Beta UMa along one axis only)
- Disc sizes are comparable to Kuiper Belt (40-50 AU)
- Among smallest discs yet resolved
- Target sensitivity limits are reachable in scanmapping mode F037 – PACS 100 1
 - 1.2 mJy/beam at 100 micron
 - vs. 5 mJy/beam at 70 micron from Spitzer (Trilling et al. 2008)
- More results are coming fast!

12