





# Probing the small dust properties in the diffuse galactic plane using the Spitzer – Herschel synergy

M. Compiègne, N. Flagey , A. Noriega-Crespo , P. G. Martin, J.-P. Bernard , R. Paladini, and the Hi-Gal, GLIMPSE, MIPSGAL team

## Studying the dust evolution



dust life cycle

- Dust has a great impact on ISM physics and chemistry
- This impact depends on their properties
- Dust properties evolves depending on the physical properties of the ISM

Dust evolution physical processes characterization  $\rightarrow$  dust impact on the ISM all-over the ISM cycle  $\rightarrow$  build physical scenario for SED interpretations

#### Aims - Goals

Full (mid-IR - submm) SED fitting using a dust model :

- (Demonstration of) the Spitzer–Herschel synergy to study the dust evolution
- Why does PACS 70 looks like shorter wavelengths ?
  - What lights up PACS observed emission ?
  - What is the contribution of very small stochastically heated grains (VSGs) to the PACS observed emission ?
- What does the IRAC 8  $\mu m$  trace ?

## The data : Hi-Gal / MIPSGAL / GLIMPSE

- Spitzer : GLIMPSE and MIPSGAL (8 & 24 μm)
  - These are zodi-subtracted
  - IRAC 8µm is point sources subtracted
- PACS 70 is the ROMAGAL map X-calibrated on MIPS70 (zodi corrected)
- PACS 160, SPIRE 250 & SPIRE 350
  - ROMAGAL maps & official calibration
  - Offset correction (Planck, private comm.)
- All data brought in the SPIRE350 resolution and grid
  - Resolution matching using a Gaussian of appropriate width

#### Hi-Gal SDP field I=59°





DUSTEM model (I)



- DUSTEM provides dust extinction and emission (and soon a spinning dust component, the polarization,  $\beta(T)$  and  $\beta(\lambda)$ )
- dP/dT computation based on Désert, Boulanger & Shore (1986)
- DUSTEM is a versatile & user friendly model :
  - ✓ Arbitrary number of dust population
  - $\checkmark$  All dust properties defined through input files
  - $\checkmark$  Tabulated (arbitrary) size distribution allowed
  - ✓ Includes a Interactive Data Language (IDL) wrapper for the SED fitting
    - ightarrow new dust properties easily implemented
- Publicly available online in couple of weeks, after the paper submission (Compiègne, Verstraete et al., 2010 : watch astro-ph !)



• *Reference SED* : Diffuse High Galactic Latitude SED for  $|b| > 15^{\circ}$  and  $I_{HI} < 300$  K Km s<sup>-1</sup>









- Reference SED : Diffuse High Galactic Latitude SED for  $|b| > 15^{\circ}$  and  $I_{HI} < 300$  K Km s<sup>-1</sup>
- DUSTEM  $\rightarrow$  reference dust properties from the reference SED



3 grain types :

- PAHs
- Amorphous carbon
- Astro-Silicates

• Also satisfies the measured extinction, albedo and abundances

## The SED fitting procedure (I)



• DUSTEM populations merged:

PAHs SamC + SaSil = VSGs LamC + LaSil = BGs

• Fitting of the photometric point by adjusting :

✓ Y<sub>PAH</sub> and Y<sub>VSG</sub>: abundance
relative to BGs
✓ N<sub>H</sub>: Column density

 $\checkmark G_0$  : scaling factor of the radiation filed

• BG properties are constants (e.g. emissivity and abundance)

• Effect of extinction on the line of sight is accounted for (important at 8 µm) assuming  $I_{\lambda} = I_{0,\lambda} \frac{1-e^{-\tau_{\lambda}}}{\tau_{\lambda}}$ 

## The SED fitting procedure (II)



- Thermal equilibrium grains spectrum shape = fct(G<sub>0</sub>)
- PACS160, SPIRE250 and  $350 \rightarrow N_H \& G_0$ IRAC 8, MIPS24  $\rightarrow Y_{PAH}$ MIPS24, PACS70  $\rightarrow Y_{VSG}$
- For higher G<sub>0</sub>, smaller species at thermal equilibrium → degeneracy between N<sub>H</sub> and Y<sub>VSG</sub> then Y<sub>PAH</sub>

#### Fitting products



#### Fitting products



#### Fitting produced quantities

Y<sub>PAH</sub> and Y<sub>vsg</sub>: PAH and VSG abundances relative to BG. 1 is the value for DHGL medium (|b| > 15°)

G<sub>0</sub>: Scaling factor of the Mathis, Mezger, Panagia, (1983) radiation field intensity

 $N_{H}$  : column density in unit of 10<sup>20</sup> H cm<sup>-2</sup>



## First conclusions

- $Y_{PAH}$ ,  $Y_{VSG}$ ,  $N_H$  and  $G_0$  has consistent values and behavior
- Y<sub>PAH</sub> and Y<sub>VSG</sub> decrease toward dense filamentary structures
- Lack of correlation of  $Y_{\text{PAH}}$  and  $Y_{\text{VSG}}$  especially at large spatial scales.



## What lights up PACS 70 µm ?



In this field, PACS 70 is enlighten by VSGs (stochastically heated) and Wien part of the BGs spectrum

→ Very sensitive to  $G_0$ → Looks like shorter wavelengths

→ VSG contribution can varies depending on  $Y_{VSG}$  and  $G_0$ 



## PACS 70 VSG contribution (I)



## PACS 70 VSG contribution (II)



• At a given  $G_0$ , the contribution scales linearly

contribution decrease with G<sub>0</sub>

| G <sub>0</sub> | VSG<br>contrib. |
|----------------|-----------------|
| 0.5            | 37%             |
| 1              | 25%             |
| 10             | 11%             |
| 100            | 9%              |
|                | 0.5<br>1<br>10  |

✓ Asymptotic for  $G_0$ >100 cause VSGs starts being at thermal equilibrium and behave like BGs.

#### What does the IRAC 8 $\mu$ m trace ?



## Summary

- PACS70 looks like shorter wavelengths cause it's enlighten by Wien part of BG emission (at G<sub>0</sub><100) and by VSGs</li>
  - $\rightarrow$  Very sensitive to G<sub>0</sub> (regarding longer wavelengths)
- VSG contribution can be very important in PACS70 (up to 56% in our field)
  - → Dust model is needed to account for it depending on  $Y_{VSG}$  and  $G_0$  (a grey body does not do a good job)
- "Spitzer Herschel" synergy + dust model fitting is very promising to quantify dust properties evolution on the entire galactic plan
  - $\rightarrow$  Very near future :
    - Correlation with BGs emissivity evolution (implemented in the fitting process)
    - ✓ Correlation with gas physical properties (CO and HI cubes available)
    - ✓ Can do that systematically and homogeneously overall the galactic plane