Probing the small dust properties in the diffuse galactic plane using the Spitzer – Herschel synergy

Studying the dust evolution

• Dust has a great impact on ISM physics and chemistry
 • This impact depends on their properties
 • Dust properties evolves depending on the physical properties of the ISM

Dust evolution physical processes characterization
 → dust impact on the ISM all-over the ISM cycle
 → build physical scenario for SED interpretations
Aims - Goals

Full (mid-IR - submm) SED fitting using a dust model:

- (Demonstration of) the Spitzer–Herschel synergy to study the dust evolution

- Why does PACS 70 looks like shorter wavelengths?
 - What lights up PACS observed emission?
 - What is the contribution of very small stochastically heated grains (VSGs) to the PACS observed emission?

- What does the IRAC 8 µm trace?
The data: Hi-Gal / MIPSGAL / GLIMPSE

• Spitzer: GLIMPSE and MIPSGAL (8 & 24 µm)
 – These are zodi-subtracted
 – IRAC 8µm is point sources subtracted

• PACS 70 is the ROMAGAL map X-calibrated on MIPS70 (zodi corrected)

• PACS 160, SPIRE 250 & SPIRE 350
 – ROMAGAL maps & official calibration
 – Offset correction (Planck, private comm.)

• All data brought in the SPIRE350 resolution and grid
 – Resolution matching using a Gaussian of appropriate width
Hi-Gal SDP field $l=59^\circ$

SPIRE 350
SPIRE 250
PACS 160
PACS 70
MIPS 24
IRAC 8

l (degree)

b (degree)

I (degree)
DUSTEM model (I)

• DUSTEM provides dust extinction and emission (and soon a spinning dust component, the polarization, $\beta(T)$ and $\beta(\lambda)$)

• dP/dT computation based on Désert, Boulanger & Shore (1986)

• DUSTEM is a versatile & user friendly model:
 ✓ Arbitrary number of dust population
 ✓ All dust properties defined through input files
 ✓ Tabulated (arbitrary) size distribution allowed
 ✓ Includes a Interactive Data Language (IDL) wrapper for the SED fitting
 → new dust properties easily implemented

• Publicly available online in couple of weeks, after the paper submission (Compiègne, Verstraete et al., 2010 : watch astro-ph !)
• Reference SED: Diffuse High Galactic Latitude SED for \(|b| > 15^\circ\) and \(I_{\text{HI}} < 300 \text{ K Km s}^{-1}\)
• Reference SED: Diffuse High Galactic Latitude SED for $|b| > 15^\circ$ and $I_{HI} < 300$ K Km s$^{-1}$

• DUSTEM \rightarrow reference dust properties from the reference SED

3 grain types:
- PAHs
- Amorphous carbon
- Astro-Silicates

- Also satisfies the measured extinction, albedo and abundances
The SED fitting procedure (I)

- DUSTEM populations merged:
 - PAHs
 - SamC + SaSil = VSGs
 - LamC + LaSil = BGs

- Fitting of the photometric point by adjusting:
 - Y_{PAH} and Y_{VSG}: abundance relative to BGs
 - N_H: Column density
 - G_0: scaling factor of the radiation filed

- BG properties are constants (e.g. emissivity and abundance)

- Effect of extinction on the line of sight is accounted for (important at 8 µm)
 assuming $I_\lambda = I_{0,\lambda} \frac{1-e^{-\tau_\lambda}}{\tau_\lambda}$
The SED fitting procedure (II)

- Thermal equilibrium grains spectrum shape = $\text{fct}(G_0)$
- PACS160, SPIRE250 and 350 → N_H & G_0
 IRAC 8, MIPS24 → Y_{PAH}
 MIPS24, PACS70 → Y_{VSG}
- For higher G_0, smaller species at thermal equilibrium
 → degeneracy between N_H and Y_{VSG} then Y_{PAH}
Fitting products

- Y_{VSG}
- N_H
- SPIRE 350
- Y_{PAH}
- G_0
- PACS 70
Fitting products

\[Y_{VSG} \quad N_H \quad \text{SPIRE 350} \]

\[Y_{PAH} \quad G_0 \quad \text{PACS 70} \]
Fitting produced quantities

\(Y_{PAH} \) and \(Y_{VSG} \): PAH and VSG abundances relative to BG. 1 is the value for DHGL medium (\(|b| > 15^\circ|\)"

\(G_0 \): Scaling factor of the Mathis, Mezger, Panagia, (1983) radiation field intensity

\(N_H \): column density in unit of \(10^{20} \text{ H cm}^{-2}\)
First conclusions

- Y_{PAH}, Y_{VSG}, N_H and G_0 have consistent values and behavior
- Y_{PAH} and Y_{VSG} decrease toward dense filamentary structures
- Lack of correlation of Y_{PAH} and Y_{VSG} especially at large spatial scales.
What lights up PACS 70 µm?

In this field, PACS 70 is enlightened by VSGs (stochastically heated) and Wien part of the BGs spectrum

→ Very sensitive to G_0
 → Looks like shorter wavelengths

→ VSG contribution can vary depending on Y_{VSG} and G_0
PACS 70 VSG contribution (I)

- From the modeled PACS images resulting from the fit:

 \[\rightarrow \text{PACS 70 VSG relative contributions: 56\% and 9\%} \]

 \[\rightarrow \text{PACS 100: 23\% and 3\%} \]

 \[\rightarrow \text{PACS 160: 9\% and 1\%} \]
At a given G_0, the contribution scales linearly with Y_{VSG}.

At a given Y_{VSG}, VSG contribution decreases with G_0 increasing.

$Y_{VSG} = 1$

Asymptotic for $G_0 > 100$ cause VSGs starts being at thermal equilibrium and behave like BGs.
What does the IRAC 8 µm trace?

• IRAC8 does not trace Y_{PAH}

Stochastically heated particles:

$I_{\text{PAH},\lambda} \propto G_0 \times N_H \times Y_{\text{PAH}}$

• Now by constraining N_H and G_0 with BGs emission - we can actually constrain Y_{PAH}

• Extinction in IRAC8 map regarding $G_0 \times N_H \times Y_{\text{PAH}}$
Summary

• PACS70 looks like shorter wavelengths cause it’s enlighten by Wien part of BG emission (at $G_0<100$) and by VSGs
 → Very sensitive to G_0 (regarding longer wavelengths)

• VSG contribution can be very important in PACS70 (up to 56% in our field)
 → Dust model is needed to account for it depending on Y_{VSG} and G_0 (a grey body does not do a good job)

• “Spitzer – Herschel” synergy + dust model fitting is very promising to quantify dust properties evolution on the entire galactic plan
 → Very near future :
 ✓ Correlation with BGs emissivity evolution (implemented in the fitting process)
 ✓ Correlation with gas physical properties (CO and HI cubes available)
 ✓ Can do that systematically and homogeneously overall the galactic plane