

Gould belt Probing the origin of the stellar initial mass function

A guaranteed time key programme with the Herschel Space Observatory 🦉 🥴 🥵 📾

The Herschel first look at protostars

Gould Belt and HOBYS key programmes

On the behalf of the SPIRE SAG3 consortium

Sylvain Bontemps

special thanks to Ph. André, A. Men'shchikov, M. Hennemann, V. Könyves, N. Schneider, D. Arzoumanian, F. Motte

Herschel imaging survey of OB Young Stellar objects

A guaranteed time key programme with Herschel Space Observatory @esa

Objectives

- Probe the earliest stages of star formation.
- Timescale for proto-stellar evolution.
- Initial conditions for planet/disk formation.
- Discriminate between accretion histories.

The (long) quest for protostars

- The Class I, I and III YSOs after IRAS (80's)
- The Class 0 and pre-stellar cores after MM range surveys (90's)
- Much more complete surveys with ISO and Spitzer (00's)
- What about Herschel? ... let's try to guess a little ... (10's)

The power of Herschel

- full coverage of the peak of the SEDs.
- Spatial resolution in the FIR.
- Sensitivity: down to sub-stellar range.
- Both pre-stellar and protostars at the same time.
- Unprecedented statistics ... up to high-mass stars in HOBYS.

ESA Press Release - Planck consortium

				(1σ) Cirrus		(10σ)	
Cloud complex				Noise	Required	Mass	Required
	Area	Distance	IRAS B_{100}	at $250 \mu m$	$\mathrm{rms}_{250\mu}$	$Sensitivity^1$	Time
	(deg^2)	(pc)	(MJy/sr)	(mJy/beam)	(mJy/beam)	(M_{\odot})	(hr)
Taurus	20	140	35	10	20	0.02	19.5
Taurus	5	140	35	10	10	0.01	19.5
Ophiuchus	10	140	80	35	20	0.02	9.7
Pipe Nebula	3	140	80	35	20	0.02	2.9
Polaris flare	4	150	10	3	10	0.01	15.6
Lupus	3	100	50	15	20	0.01	2.9
Coalsack	1.5	150	150	90	20	0.02	1.5
${\rm Cham}~{\rm I}/{\rm III} + {\rm Musca}$	4	160	20	5	10	0.01	15.6
Corona Australis	3	170	30	ÎÛ	ÎÛ	0.01	11.7
Serpens/Aquila Rift	25	260	70 - 150	30-90	20	0.07	24.3
rerseus	4	300	20-00	0-10	10	0.04	10.0
IC 5146	1	400	90	25	20	0.15	1.0
Cepheus flare	20	440	20	5	20	0.2	19.5
Orion $(A+B)$	20	450	75	20	20	0.2	19.5

Target list - Gould Belt survey

The Aquila Rift / Serpens region

as part of the Gould Belt key programme (André et al.) Talk on Monday and André et al. (2010)

2MASS extinction map - Bontemps et al.

200' x 200' scan map in parallel mode at 60"/sec.
A nearby complex at 260 pc; 3.1 x 10⁴ M_o

2MASS extinction map - Bontemps et al.

pc

Aquila Rift - W40/Sh2-64

Gould Belt key programme

PACS+SPIRE 160, 250, 350 μm

How to recognize protostars?

- Systematic getsources extraction (Men'shchikov et al. 2010; Könyves's talk).
- +24 or 70 μ m point-like.
- Graybody fits of the SEDs.
- Physical sizes ~ 4000 AU (radius).
- Individual protostars resolved out.

Fundamental properties:

- Luminosities.
- Envelope masses.

- In the whole Aquila region 201 protostars; 90% completeness at 0.2 L_{\odot}
- An evolutionary diagram with $L_{70-500\mu m}$ for the whole sample.
- $L_{>350\mu m}/L_{70-500\mu m} > 3 \%$ (green dots); $L_{>350\mu m}/L_{70-500\mu m} < 1 \%$ (red dots). to discriminate Class 0 from Class I YSOs (see André et al. 2000).

Bontemps et al. (2010) A&A special issue

- In the whole Aquila region 201 protostars; 90% completeness at 0.2 L_{\odot}
- An evolutionary diagram with $L_{70-500\mu m}$ for the whole sample.
- $L_{>350\mu m}/L_{70-500\mu m} > 3 \%$ (green dots); $L_{>350\mu m}/L_{70-500\mu m} < 1 \%$ (red dots). to discriminate Class 0 from Class I YSOs (see André et al. 2000).

Bontemps et al. (2010) A&A special issue

- In the whole Aquila region 201 protostars; 90% completeness at 0.2 L_{\odot}
- An evolutionary diagram with $L_{70-500\mu m}$ for the whole sample.
- $L_{>350\mu m}/L_{70-500\mu m} > 3 \%$ (green dots); $L_{>350\mu m}/L_{70-500\mu m} < 1 \%$ (red dots). to discriminate Class 0 from Class I YSOs (see André et al. 2000).

- In the whole Aquila region 201 protostars; 90% completeness at 0.2 L_{\odot}
- An evolutionary diagram with $L_{70-500\mu m}$ for the whole sample.
- $L_{>350\mu m}/L_{70-500\mu m} > 3 \%$ (green dots); $L_{>350\mu m}/L_{70-500\mu m} < 1 \%$ (red dots). to discriminate Class 0 from Class I YSOs (see André et al. 2000).

Bontemps et al. (2010) A&A special issue

The Rosette Molecular Cloud:

- 60' x 80' scan map in parallel mode at 20"/sec.
- More distant cloud at 1600 pc; $3.5 \ge 10^5 M_{\odot}$

as part of HOBYS (Motte et al.) Talk on Friday and Motte et al. (2010)

Higher mass protostars in HOBYS

2MASS extinction map - Bontemps et al.

PACS + SPIRE 70, 160, 250 μm

Rosette Molecular Cloud - HOBYS - Hennemann et al. (2010)

Rosette Molecular Cloud - HOBYS - Hennemann et al. (2010)

Herschel-only protostars

Rosette HOBYS - Hennemann et al. (2010)

Statistics towards high-mass stars in HOBYS

Statistics towards high-mass stars in HOBYS

Hennemann et al. (2010) and see his poster.

Conclusions

- A large number of protostars.
- Individual protostars in nearby regions.
- Between 45 and 60 Class 0s in Aquila
- Hundreds expected in the whole survey.

- Herschel-only protostars discovered.
- Huge statistics to constrain models.
- Decreasing accretion rate?
- ~50 Class 0s, 200 protostars, 550 PSCs...

... many thanks to the

Herschel teams for the wonderful telescope the SPIRE and PACS technical teams for two great instruments.