SPIRE spectroscopy of the prototypical Orion Bar Photodissociation Region

SPIRE ISM consortium

<u>E. Habart, E. Dartois, A. Abergel, J.-P. Baluteau, D. Naylor, E. Polehampton, C. Joblin,</u> P. Ade, L.D. Anderson, P. André, H. Arab, J.-P Bernard, K. Blagrave, F. Boulanger,
M. Cohen, M. Compiegne, P. Cox, G. Davis, R. Emery, T. Fulton, C. Gry, M. Huang, C. Joblin, S. C. Jones, G. Lagache, T. Lim, S. Madden, G. Makiwa, P. Martin, M.-A. Miville-Deschênes, S. Molinari, H. Moseley, F. Mott, D. Naylor, K. Okumura, D. Pinheiro Gocalvez, J. Rodon, D. Russeil, P. Saraceno, M. Sauvage, S. Sidher, L. Spencer, B. Swinyard, D. Ward-Thompson, G. J. White, A. Zavagno

As part of the Key project 'Evolution of interstellar dust' (Abergel talk)

Selected sources in nearby galactic regions,

with precise and well understood excitation conditions and geometry, in order to derive both the dust and gas properties from the observations

Combination of Mapping and Spectroscopy (SPIRE and PACS), with a strong emphasis on the spatial information within individual objects

Total SPIRE spectroscopy : 88 hours

10 Classical PDRs	d(pc)	Teff (K), star	SPIRE spectroscopy	
Orion Bar	440	40,000, O6	Single+Full Sampling, High+Low resolution	2×6317 s
NGC 2023 N	450	23,000, B1.5V	Single+Full Sampling, High+Low resolution	2×6317 s
NGC 7023	440	17,000, B3Ve	Single+Full Sampling, High+Low resolution	1×6317 s
IC 63	230	30,000, B0.5IV	Single+Full Sampling, High+Low resolution	1×6317 s
Rho Oph	160	22,000, B2V	Single+Full Sampling, High+Low resolution	1×6317 s
Horsehead	450	33,000, O9.5V	Single+Full Sampling, High+Low resolution	3×6317 s
Ced 201	420	10,500, B9.5V	Single+Full Sampling, High+Low resolution	1×6317 s
NGC 7023 E	440	17,000, B3Ve	Single+Full Sampling, High+Low resolution	1×6317 s
IC 59	230	30,000, B0.5IV	Single+Full Sampling, High+Low resolution	3×1769 s
L1721	130	22,000, B2IV	Single+Full Sampling, High+Low resolution	8×641 s
California	3500	37,000, 07	Single+Full Sampling, High+Low resolution	3×1769 s

Orion Bar

J2000 Dec.

- one of the best-studied PDRs
- exposed to a strong stellar UV flux
- PDR is wrapped around the HII region and changes from a face-on to an edge-on geometry where the emission peak

(Pellegrini et al. 2009)

SPIRE/FTS observation

- Single pointing (coverig all the Bar)
- FWHM beam-widths (SSW : 17-21'') (SLW : 29-42'')
- High resolution

(∆σ**=0.04 cm**⁻¹)

- 2 scans/repetition
- Duration: 266.45 s

data reduction & line fitting E. Polehampton, D. Naylor

J2000 Dec.

Average apodized spectra on the three arrays on the Bar (corrected for obliquity effects)

A wealth of bright narrow ¹²CO & ¹³CO rotational lines

Other fainter lines could be detected but confirmation will be improved with deeper SPIRE observations and HIFI complementary data (which will help to assign some lines that could be merged in the lower resolution SPIRE)

Spectro-imagery in the CO (and isotopes) transitions

Color map ¹²CO J= $6\rightarrow 5$ from the ground (Lis et al. 1998)

Effects of optical depth and excitation

¹²CO optically thick comes from the surface layers, ¹³CO less abundant probes the denser shielded regions Higest rotational lines very sensitive to the density and temperature show strong and peaked emission on the Bar

Color map ¹²CO J= $6\rightarrow 5$ from the ground (Lis et al. 1998)

-50

-100

0 Delta(") -100

100

0 Delta(") -50

-100

50

-50

-100

0 Delta(")

-100

100

50

-100

100

50

Mapping CO and ¹³CO lines (SLW) Warning: Unproperly sampled Full sampling observing mode to be released Off-axis calibration not guaranteed

illustrating FTS line mapping capabilities

Mapping CO and ¹³CO lines (SLW) Warning: Unproperly sampled Full sampling observing mode to be released Off-axis calibration not guaranteed

illustrating FTS line mapping capabilities

CO excitation towards the Bar

CO excitation towards the Bar

- Observed intensities of the optically thick ¹²CO lines provide an estimate of T~85 K (consistent with many observed transitions from the ground) in agreement with the temperature (50-90K) predicted by PDR model for the CO emitting layers
- However, the high J transitions do not agree with that temperature
- ¹³CO lines become optically thin for Ju \geq 9, while all the ¹²CO lines are optically thick

CO excitation towards the Bar

- Dense & warm component with a significant column density required
- Warm CO may originate from dense clumps @ the PDR surface
- Out-of-equilibrium effects (advection) could enhance the column of warm CO
- Additional heating for the interior like shocks or cosmic rays (Pellegrini et al.) ?

Spatially extended emission of C⁰ and N⁺ fine structure lines emission

Color map ¹²CO J= $6\rightarrow 5$ (Lis et al. 1998)

H₂S line emission

Color map ¹²CO J = $6 \rightarrow 5$ (Lis et al. 1998)

Beam-averaged molecular column densities towards the Bar

In the high-density (LTE) limit and Tk~85 K [50-150 K] (probing different PDR regions): N(H₂S)= 3.1 [2.3-5.2] 10^{13} cm⁻²

• Our value agrees with previously published value of Leurini et al. (2006) which observes the H₂S $3_{30} \rightarrow 3_{21}$ transition with APEX and deduces N(H₂S)=(2.5 ± 1.0) 10^{13} cm⁻²

• Adopting ¹⁶O/¹⁸O=500 &¹⁶O/¹⁷O =1800 (Wilson 1999) and CO/H₂=1.1 10⁻⁴ (Johnston et al. 2003), N(H₂)~9 10²² cm⁻² : $H_2S / H_2 \le 3.4$ [2.6, 5.8] 10⁻¹⁰

• High abundances of sulphur species remain an interesting puzzle for interstellar chemistry (i.e., Goicoechea et al., 2006)

• Observed abundance of species such as H₂S are difficult to interpret in models

 H₂S results from a mixed chemistry involving gas-phase reactions and grainrelated processes

Conclusion

• We have analyzed the FTS complete survey of the Orion Bar spectrum

A wealth of rotational lines of CO (and its isotopologues), fine structure lines of C and N+, and emission lines from radicals and molecules

• We present some maps not fully sampled but illustrating FTS line mapping capabilities

• Next step : fully sampled map will be investigated

- should be associated to HIFI data (help to assign some lines that could be merged in the lower resolution SPIRE spectra and provide missing information on the gas velocity)

- PACS complementary spectroscopic
- High resolution ground based follow-up