# The HERSCHEL prestellar core population in the Aquila Rift Complex

# Initial results from the Gould Belt survey



Vera Könyves SAP, CEA/Saclay, France

Ph. André, A. Men'shchikov, N. Schneider, D. Arzoumanian, S. Bontemps, M. Attard, F. Motte, P. Didelon, A. Maury

#### **SPIRE SAG 3 consortium:**

A. Abergel, J.-P. Baluteau, J.-Ph. Bernard, L. Cambrésy, P. Cox, J. Di Francesco, A.-M. di Giorgo, M. Griffin, P. Hargrave, M. Huang, J. Kirk, J. Z. Li, P. Martin,
V. Minier, S. Molinari, G. Olofsson, S. Pezzuto, H. Roussel, D. Russeil, P. Saraceno, M. Sauvage, B. Sibthorpe, L. Spinoglio, L. Testi, D. Ward-Thompson, G. White, C. D. Wilson, A. Woodcraft, and A. Zavagno

#### ESLAB 2010

Aquila 250µm/160µm/70µm

#### THE HERSCHEL GOULD BELT KP

**Probing the origin of the stellar initial mass function:** A wide-field Herschel photometric survey of nearby star-forming cloud complexes

http://gouldbelt-herschel.cea.fr/

Scientific motivations

- What determines the distribution of stellar masses at birth (IMF)? What is the link between the prestellar CMF and the stellar IMF?
- What generates prestellar cores in molecular clouds and governs their evolution to protostars?
- Is core/star formation generally a slow, quasi-static, or a fast, dynamic process?

#### EARLIER WORKS ON CMF / IMF

Ground-based (sub)-millimeter dust continuum surveys of nearby, compact cluster-forming clouds (e.g.  $\rho$  Ophiuchi, Serpens, Orion B):

- Give 'complete' but small samples of prestellar cores
- Their associated core mass functions (CMF) resemble the stellar IMF



E.g.: Motte et al. 1998; Testi & Sargent 1998; Johnstone et al. 2000; Stanke et al. 2006; Enoch et al. 2006; Nutter & Ward-Thompson 2007; Alves et al. 2007; André et al. 2007.

Cumulative mass distribution of 57 starless condensations in  $\rho$  Oph (André et al. 2007)

Favored theoretical scenario: The IMF of solar-type stars is largely determined by pre-collapse cloud fragmentation (Padoan & Nordlund 2002; Hennebelle & Chabrier 2008).

#### **SDP Observations**

#### **SPIRE/PACS parallel-mode observations** of the Aquila Rift complex:

- Observed on 24 October 2009
- A common  $\sim 11 \text{ deg}^2$  area was covered by both SPIRE/PACS
- Scan maps were taken with 60"sec<sup>-1</sup> scanning speed

#### **Data reduction**

#### SPIRE (250/350/500 µm):

- Using HIPE version 2.0 with modified pipeline scripts, delivered with this version.
- Map making with 'naive' method.

#### PACS (70/160 µm):

- With HIPE version 3.0, applying standard steps of the default pipeline with modifications.
- Map making with photProject task (later on with madMap).
- Many thanks to M. Sauvage, B. Ali, H. Aussel, N. Billot, B. Altieri, P. Chanial, ...

#### **SPIRE MAPS**



ESLAB 2010 – Vera Könyves – Prestellar cores in Aquila

#### **SPIRE MAPS**



ESLAB 2010 – Vera Könyves – Prestellar cores in Aquila

#### **SPIRE MAPS**



ESLAB 2010 – Vera Könyves – Prestellar cores in Aquila

#### PACS MAPS



ESLAB 2010 – Vera Könyves – Prestellar cores in Aquila

#### PACS MAPS



ESLAB 2010 – Vera Könyves – Prestellar cores in Aquila

#### **RGB COMPOSITE IMAGE**



ESLAB 2010 – Vera Könyves – Prestellar cores in Aquila

#### PRESTELLAR CORES IN AQUILA DERIVATION OF PHYSICAL PARAMETERS

**Dust temperature (T**<sub>d</sub>) and column density ( $\Sigma$ ) maps, constructed from HERSCHEL SPIRE/PACS data:

- Weighted SEDs constructed for all map pixels from the 5 SPIRE/PACS wavelengths.
- SEDs fitted by a greybody,  $I_v = B_v(T_d)(1 e^{-\tau v})$  $I_v$ : observed surface brightness at v;  $\tau_v = \kappa_v \Sigma$ : dust optical dept;  $\kappa_v$ : dust opacity per unit (dust+gas) mass,  $\beta = 2$  (e.g. Hildebrand 1983).
- The two free parameters T<sub>d</sub> and Σ were derived from the greybody fit to the 5 Herschel data points for all pixels.

#### Estimation of dust temperature, column density, and mass of cores:

- A similar SED fitting procedure (above) was employed.
- These SEDs were constructed from integrated flux densities measured by getsources (Men'shchikov et al. 2010) for the extracted sources.
- Core mass calculation using 260 pc to Aquila (see discussion on distance uncertainty in Bontemps et al. 2010; André et al. 2010), estimated mass uncertainty is a factor of ~2, mainly due to κ<sub>0</sub>.

#### **COLUMN DENSITY MAPS**



Column density map of the Aquila entire field derived from Herschel data. (FWHM = 36").



Near-IR extinction map based on 2MASS data (Bontemps et al. 2010), in units of column density, using the relation  $N_{H2} = 10^{21} \text{ cm}^{-2} \times A_{V}$ (FWHM = 2').

Herschel mapping does not constrain the zero level of the background emission, so we added a uniform offset  $N_{H2}^{off} = 3.8 \times 10^{21} \text{ cm}^{-2}$  to our column density maps to optimize the match with the near-IR extinction map.

#### **STARLESS CORES IN THE FIELD**



#### PRESTELLAR CORES IN AQUILA SOURCE DETECTION AND IDENTIFICATION

#### **Source extraction**

**Compact sources were extracted** from the SPIRE/PACS images **using getsources**, a multi-scale, multi-wavelength source finding algorithm (Men'shchikov et al. 2010).

Only robust sources were considered with significant (S/N > 7.5) detections in at least two SPIRE bands.

**Distinction between starless cores and protostars/YSOs** 

**Aquila main subfield:** Spitzer 24 µm observations + PACS 70 µm data.

- **YSOs:** Detected in emission above the  $5\sigma$  level at 70  $\mu$ m and/or 24  $\mu$ m
- Starless cores: undetected in emission (or detected in absorption) at both 70  $\mu m$  and 24  $\mu m.$
- => 452 starless cores in the Aquila main subfield.

Aquila entire field: Only PACS 70 µm data

=> we identified a total of 541 starless cores and ~170 embedded YSOs (~50 Class 0 protostars, Bontemps et al. 2010).

#### PRESTELLAR CORES IN AQUILA CLOSE UP VIEW OF EXTRACTED SOURCES



ESLAB 2010 – Vera Könyves – Prestellar cores in Aquila

#### PRESTELLAR CORES IN AQUILA PRESTELLAR NATURE OF THE STARLESS CORES I

(I.) We used the critical Bonnor-Ebert (BE) mass,  $M_{BE}^{crit} \approx 2.4 R_{BE} a^2/G$ , as a surrogate for the virial mass, to determine if the cores are gravitationally bound or not.  $R_{BE}$ : BE radius; a: isothermal sound speed; G: gravitational constant.

Assumptions: thermal motions are dominant over non-thermal motions in starless cores (André et al. 2007)

Then, two estimates of the BE mass were derived for each objects:

(1)  $M_{BE}(R_{obs})$ 

(2)  $M_{BE}(\Sigma_{cl})$ , where  $\Sigma_{cl}$  is the column density of the local background cloud

**Good candidate prestellar cores**, selected from starless cores if their BE mass ratio:  $\alpha_{BE} \equiv \max[M_{BE}(R_{obs}), M_{BE}(\Sigma_{cl})] / M_{obs} \le 2.$ 

= ~70 % of the 452 starless cores in the main subfield,

and more than 60 % of the 541 starless cores in the entire field were found to be gravitationally bound.

#### PRESTELLAR CORES IN AQUILA PRESTELLAR NATURE OF THE STARLESS CORES II

(II.) The high fractions of bound objects are consistent with the locations of the Aquila starless cores in a mass vs. size diagram.



Mass vs. size diagram comparing the locations of 314 candidate prestellar cores ( $\triangle$ ), and the rest starless cores ( $\triangle$ ), identified with Herschel in the Aquila main subfield, to both models of critical isothermal BE spheres (at T=7K and T=20K) and observed prestellar cores (Motte et al. 1998, 2001).

#### PRESTELLAR CORES IN AQUILA PRESTELLAR NATURE OF THE STARLESS CORES III

(III.) The self-gravitating character of most Herschel cores in Aquila is supported by their internal column density contrast:  $\Sigma_{peak}$  /  $<\Sigma_{core}$ > (peak and mean column densities of the core).

With some assumptions, this can be **estimated from the core intensity values** in the same form:  $I^{\text{peak}}$  / <I > (peak and mean intensities of the core).

According to theory:  $\Sigma_{\text{peak}} / \langle \Sigma_{\text{core}} \rangle > 3.6$  for supercritical self-gravitating BE spheres (Johnstone et al. 2000).

=> Based on their radial intensity profiles, our Aquila starless cores have a median internal column density contrast ~4.



(IV.) Column density contrast of the Herschel cores over the local background:

=> This test also confirms that most of the starless cores are self-gravitating, and prestellar in nature.

#### **CORE MASS FUNCTIONS I**



Differential mass function of 452 starless cores (a), and of 314 candidate prestellar cores (b) identified in the Aquila main subfield. The mass function is approximated with a lognormal fit, the high-mass end is fitted by a power-law.

- (a) Lognormal fit: peak at ~0.6  $M_{\odot}$ , standard deviation ~0.42 in  $\log_{10}M$ . fitted power-law: dN/dlogM  $\propto M^{-1.5\pm0.2}$
- (b) Lognormal fit: peak at ~0.9  $M_{\odot}$ , standard deviation ~0.30 in  $\log_{10}M$ . fitted power-law: dN/dlogM  $\propto M^{-1.45\pm0.2}$

while the **Salpeter IMF is** dN/dlogM  $\propto$  M<sup>-1.35</sup>.

#### **CORE MASS FUNCTIONS II**



(a) as before





(c) Differential mass function of 368 starless cores, excluding 83 cores toward the PDR region.

(c) Lognormal fit: peak at ~0.7  $M_{\odot}$ , standard deviation ~0.40 in  $\log_{10}M$ . fitted power-law: dN/dlogM  $\propto M^{-1.5\pm0.3}$ 

very close to (a), (b), and to the Salpeter power-law => robustness of our CMF

Column density map with starless cores in the Aqila main subfield. The PDR, with high infrared background emission, around the W40 HII region was defined using  $T_d$  map (Bontemps et al. 2010).

#### **CORE MASS FUNCTIONS II**



(a) as before





(c) Differential mass function of 368 starless cores, excluding 83 cores toward the PDR region.

(c) Lognormal fit: peak at ~0.7  $M_{\odot}$ , standard deviation ~0.40 in  $\log_{10}M$ . fitted power-law: dN/dlogM  $\propto M^{-1.5\pm0.3}$ very close to (a), (b), and to the Salpeter

power-law => robustness of our CMF

Column density map with starless cores in the Aqila main subfield. The PDR, with high infrared background emission, around the W40 HII region was defined using  $T_d$  map (Bontemps et al. 2010). Monte Carlo simulations were preformed to estimate the completeness level of our SPIRE/PACS survey, summarized in the following steps:

- Subtraction of compact sources (getsources) from Herschel maps => clean maps of background emission.
- Radiative transfer simulated objects (Men'shchikov et al. In prep.): ~700 starless cores, ~200 protostars with 0.01 10 M<sub>☉</sub>, and M ∝ R => inserted at quasi random positions in the clean-background images.



Synthetic sky image

#### **COMPLETENESS ANALYSIS II**

• Source extraction (getsources) was performed again on the synthetic skies.



**Estimated completeness level:** 

- for prestellar cores: 75% and 85% above a core mass of  $\sim$ 0.2 and  $\sim$  0.3 M<sub> $_{\odot}</sub>$ </sub>
- for embedded protostars: >90% down to  $L_{hol} \sim 0.2 L_{\odot}$

Herschel Gould Belt survey SDP observations of the Aquila Rift complex with SPIRE and PACS at 500 – 70  $\mu$ m:

- Provided >500 starless cores in the entire field, and >400 in the main subfield, down to ~0.2 – 0.3 M<sub>o</sub>.
- Most of these objects appear to be self-gravitating prestellar cores that will likely form protostars in the near future.
- Our results confirm that the shape of the prestellar CMF resembles the stellar IMF, with much better statistics than earlier sub-millimeter ground-based surveys, and more accurate core masses.
- We conclude that **our mass distributions are robust**, not depending strongly on distance, different sets of extracted sources, and on different locations of the maps.

For more details, see in the A&A Special Issue:

Könyves et al. 2010

André et al. 2010

Bontemps et al. 2010

Men'shchikov et al. 2010