First detection of the Methylidyne cation (CH⁺) fundamental rotational line with the Herschel/SPIRE FTS

(on behalf of the ISM SPIRE consortium)

D. A. Naylor , <u>E. Dartois</u>^{*}, E. Habart , A. Abergel , J.-P. Baluteau , S.C. Jones , E. Polehampton , P. Ade , L. D. Anderson , P. André , H. Arab2 , J.-P. Bernard , K. Blagrave , F. Boulanger , M. Cohen , M. Compiegne , P. Cox , G. Davis , R. Emery , T. Fulton , C. Gry , M. Huang , C. Joblin , J. M. Kirk , G. Lagache , T. Lim , S. Madden , G. Makiwa , P. Martin , M.-A. Miville-Deschênes , S. Molinari , H. Moseley , F. Motte , K. Okumura , D. Pinheiro Gocalvez , J. A. Rodon , D. Russeil , P. Saraceno , S. Sidher , L. Spencer , B. Swinyard , D. Ward-Thompson , G. J. White , A. Zavagno

> *emmanuel.dartois@ias.u-psud.fr , naylor@uleth.ca , emilie.habart@ias.u-psud.fr , alain.abergel@ias.u-psud.fr

> > May, 5, 2010

Methylidyne cation CH⁺

One of the first molecules/radicals discovered in the visible 70 years ago (Douglas & Herzberg 1941), shortly after the methylidyne (CH) radical (Swings & Rosenfeld 1937).

 \Box CH⁺ far-IR detections reported the J=2-1 to 4-3 transitions in the NGC7027 PDR (ISO-LWS / Cernicharo et al. 1997). ¹³CH⁺(J=1-0) reported from the ground (Falgarone et al. 2005)

Cernicharo et al., 1997

Falgarone et al., 2005

Production of CH⁺

□ CH⁺ is commonly detected in the visible and found to correlate with rotationally excited H₂

Lambert & Danks, 1986

C⁺ + H₂ -> CH⁺ + H (0.4eV barrier or 4600K)

Overcoming barriers for CH⁺

Several routes examined :

UV pumping

Lambert & Danks, 1986

- The diffuse medium flux seems too weak for that
- The H2 profiles widths indicate a warm component

Gry et al., 2002

Lacour et al., 2005

Overcoming barriers for CH⁺

Several routes examined :

□ Shocks

- expected velocity shifts between different species that are not observed (mutiple shocks or intrinsic velocities dispersion among species)

Overcoming barriers for CH⁺

Several routes examined :

□ Turbulence

TDR

(suggested in articles as a consequence of observed hot H2 not UV pumped)

Godard et al., 2009

SPIRE/FTS : CH⁺ towards HII regions

Res ~ 780 km/s, $\Delta \tau$ obs. = 0.05 => Δv ~ 40 km/s

CH⁺ towards HII regions

CH⁺ and CH with SPIRE FTS in Orion Bar

CH⁺ in Orion

Lis et al, 1998

CH⁺ in Orion Bar

 $1.9 - 3.8 \times 10^{12} \text{ cm}^{-2}$ (50-200K)

$$5.5 - 11 \times 10^{12} \text{ cm}^{-2}$$
 (50-200K)

CH^+ in Orion Bar

Orion PDR modelling

Work in progress...

□ PDR Modeling including detailed physical param for CH+ to examine the excitation (in the rotational levels)

Balms et al., 1993

□ These data represent only few min int time, a fully sampled map will be investigated

□ Should be associated to HIFI data

P1.03 PRISMAS Observations of the Methylidyne Ion (CH+): coupling Turbulence and Chemistry *Falgarone, E.; et al.*

P1.05 Herschel/HIFI Observations of the Methylidyne Ion CH+ in DR21 *Gerin, M.; et al.*

□ SPIRE FTS and HIFI complementary (wavelength coverage, mapping, HR obs.)

Naylor et al., 2010, A&A special issue

Orion PDR modeling

Meudon PDR Code : LePetit et al. 2006, Habart et al. 2010

Orion : CH on the Bar

