

TNOs are cool: a survey of the trans-neptunian region

The thermal lightcurve of 136108 Haumea

E. Lellouch and the TNOs are cool team

The "TNOs are cool" KP-OT program

- Measurements of the thermal emission of ~140 transneptunian objects
- Goals
 - Determination of diameter & albedo of a large sample of TNOs
 - Size distribution
 - Search for correlations (with other physical color, composition... & orbital properties), diagnostic of physical evolution
 - Detailed studies of a subset of objects (esp. brightest)
 - 6 λ measurements (PACS+SPIRE) \rightarrow SED study, thermophysical and emissivity properties
 - Search for thermal lightcurves
- Volume : 372 hr (~90 % PACS, 10 % SPIRE)
- See talk by T. Müller on Friday morning

Why thermal lightcurves ?

136808 Haumea

• A "classical" TNO, a = 43.32 AU, e=0.19, currently at $R_h = 51 \text{ AU}$, V~18

- "Classical" TNO, a = 43.32 AU, e=0.19, currently at Rh = 51 AU
- Large amplitude ($\Delta m = 0.28 \text{ mag}$) lightcurve and fast rotation ($P \sim 3.9 \text{ hr}$) \rightarrow elongated shape (b/a ~ 0.8, c/a ~ 0.5) and large density ($\rho \sim 2.6 \text{ g cm}^{-3}$) (assuming hydrostatic equilibrium)

- "Classical" TNO, a = 43.32 AU, e=0.19, currently at Rh = 51 AU
- Large amplitude ($\Delta m = 0.28 \text{ mag}$) lightcurve and fast rotation (P ~3.9 hr)
- \rightarrow elongated shape and large density ($\rho \sim 2.6 \text{ g cm}^{-3}$)
- Two satellites
- → Mass known (1/3 Pluto)
 → Axe lengths:
 2000 x 1600 x 1000 km
- Large albedo (> 60 %) (also indicated from Spitzer measurements)

- "Classical" TNO, a = 43.32 AU, e=0.19, currently at Rh = 51 AU
- Large amplitude ($\Delta m = 0.28 \text{ mag}$) lightcurve and fast rotation (P ~3.9 hr)
- \rightarrow elongated shape and large density ($\rho \sim 2.6 \text{ g cm}^{-3}$)
- Large mass, size, albedo
- Crystalline-ice covered (as well as one of its satellites, and several other TNOs with similar orbital parameters)
- → May be the parent of a 1-Gyr old collisional family ?

Double-peaked lightcurve \rightarrow evidence for ulletsurface spot, darker (and redder) than rest of surface. Collisional origin?

Herschel / PACS observations of Haumea

- Mini scan map mode
- 100 μm / 160 μm
- Dates:
 - 23 Dec. 2009 (3.36 hr, i.e. 86 % of lightcurve)
 - 25 Dec. 2009 (40 min; only to verify flux at one phase)
- Data rebinned by periods of 20 min (100 μm) or 40 min (160 μm)
- Phasing : visible observations acquired on Jan. 20, 2010, combined with older (2007) data → extremely accurate period P = 3.915341 hr

Haumea's thermal lightcurve

- Clear 100 μ m L/C
 - Correlated with visible L/C \rightarrow shape confirmed
 - Large amplitude (almost factor of 2 !, vs only factor 1.3 for visible lightcurve)
 - Effect of spot unclear...
- Marginal 160 μm L/C

Radiometric fits (mean fluxes)

- NEATM model (= standard thermal model, instantaneous equilibrium with solar insolation + η parameter): T α (cos (Solar Zenith Angle) / η)^{1/4}
 - $-\eta \sim 1$: Zero thermal inertia
 - $\eta \sim \pi$: Infinite thermal inertia
 - $-\eta < 1$: "beaming" (e.g. self-heating from craters)
 - Spitzer results for TNO: $\eta = 1.2 + -0.3$
- Free parameters: equivalent diameter (D), geometric albedo (p_v) (+ η)

Model	η	D(km)	p _v		100	I	- 1	-1	1			eta=1.0 -	
Fixed η Fixed η Free η	1.0 1.2 1.38±0.71	1230±18 1276±20 1324±167	0.810±0.024 0.752±0.024 0.698 ±0.189		10	-			1	 PA(F CS	ree eta -	
Solu D ~ P _v ~ ໗ ~1	ition: 1300 km 0.75 .4			Flux (mJy)	0.1 0.01	0 30	St) Ditze	r 70 velenati	100 1 (micror	160 neter)	250	

Lightcurve fits

- Approach
 - Adopt physical model (a,b,c, $\rho,\,p_{\text{v}})$ deduced from visible lightcurve
 - Amplitude of visible L/C \rightarrow b/a
 - Rotation period + *hydrostatic equilibrium* assumption (Jacobi ellipsoid) \rightarrow c/a and ρ
 - Mass and $\rho \rightarrow a$, b, c
 - Absolute magnitude $H_V \rightarrow p_V$
 - All values are sensitive on assumed photometric behaviour of surface (e.g. Lambert reflectance, lunar-like reflectance...)
 - This gives a ~940 km, b ~790 km, c~500 km (i.e.

D_{eff} ~1310 km), ρ ~2600 kg m⁻³, **p**_v ~0.72: excellent agreement with radiometric fits

– Fit thermal lightcurve with this shape and geometric albedo, only free parameter = η

- Large aspect ratio (projected a /b ~ 1.3)
- Low η (< 1.15-1.35) \rightarrow low thermal inertia
- Regions of extremely low η (<<1) \rightarrow highly craterized region ?
- Spot not clearly visible

Summary & Conclusions

- The thermal lightcurve of Haumea is clearly detected at 100 µm and more marginally at 160 µm
- It is correlated with the visible lightcurve (→ shape effects) but has a much larger amplitude
- Radiometric fits indicate $\rm D_{eff} \sim 1300~km$ and albedo ~ 0.75
- These agree with inferences from visible lightcurve assuming hydrostatic equilibrium
- The surface has a low thermal inertia (porous regolith?), and is perhaps extremely rough at places
- The presence of a dark spot cannot be confirmed
- More observations expected late June 2010