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Introduction

HD 100546 is a nearby (103 pc) and isolated Herbig Be star at an age of 10 Myr, To explain the SED, the presence of a gap in the circumstellar disk due to a giant planet
surrounded by a massive, gas-rich circumstellar disk. Due to the uniqueness of its orbiting at approximately 10 AU has been proposed. Such a planet could induce shocks in
protoplanetary disk, HD100546 is one of the most intensely studied intermediate mass the disk or it can gravitationally stir planetesimals inducing a collisionals cascade, which
pre-main sequence systems. The spectral energy distribution and dust composition of the are possible explanations for the large amount of crystalline silicates.

disk of HD 100546 differ considerably from the majority of other Herbig Ae/Be stars. We present a PACS full spectral range scan (52 - 209 pm), obtained during the SDP as
Most remarkable are the large fraction of crystalline grains in the dust population and the part of the observations of the DIGIT key program. The 69 pm feature is analyzed in
striking similarity of the infrared spectrum of HD 100546 with that of the solar system terms of position and shape to derive the dust temperature and composition. Furthermore,
comet Hale Bopp. we detected 32 emission lines from 5 gaseous species and measured their line fluxes.
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Position and FWHM of the 69 pym band depend on temperature and iron content (see WO scen.zf\rios can ex.pla.in. the discrepancy (Fig. 5): Hot forsterite near the midplane.at
Figs. 2 and 3). The FWHM also depends on crystallinity. Assuming pure forsterite, we small radii could be invisible at shorter wavlengths where T = 1 is close to the disk

obtain a temperature of ~200 K through comparison with Fig. 2. This result is supported  surface, while we can see the midplane at 69 pm.
by the fit of a weighted sum of lineprofiles, taken in the laboratory at different On the other hand the shift from the band position in 50 K laboratory data to the one

temperatures, to the data (Fig. 1). observed by PACS could be caused by an admixture of 2-- 3 % iron.
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Figure 5: Two possible scenarios to explain the observed position, shape and strength of
the 69 pm forsterite band: Hot, iron--free forsterite near the midplane or cold crystals
including 2 % iron in the disk atmosphere.

Gas lines
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