

Planets are formed in disks around young stars. With an age of ~ 10 Myr, TW Hya is one of the nearest T Tauri stars that is still surrounded by a relatively massive disk. In addition a large number of molecules has been found in the TW Hya disk, making TW Hya the perfect test case in a large survey of disks with Herschel-PACS to study directly their gaseous component. We aim to constrain the gas and dust mass of the circumstellar disk around TW Hya. We observed the fine-structure lines of [O I] and [C II] as part of the Open-time large program GASPS. We complement this continuum data and ground-based ¹²CO 3-2 and ¹³CO 3-2 observations. We simultaneously model the continuum and the line fluxes with the 3D Monte-Carlo code MCFOST and the thermo-chemical code ProDiMo to derive the gas and dust masses. We detect the [O I] line at 63 µm. The other lines that were observed, [O I] at 145 µm, [C II] at 157 µm, are not detected. No extended emission has been found. Preliminary modelling of the photometric and line data assuming [¹²CO]/[¹³CO]=69 suggests a dust mass with grain radius < 1mm of ~ 1.9×10^{-4} M_o (total solid mass of 3×10^{-3} M_o) and a gas mass of (0.5–5) \times 10⁻³ M_o. The gas-to-dust mass may be lower than the standard interstellar value of 100.

Fig.3. Three series of model results compared to observations. The blue boxes enclose the model outputs for disk gas mass between 5×10^{-4} M_{\odot} and 5×10^{-3} M₀. Panel a shows the predictions and observation of the OI 63 μ m line. The 3 σ uncertainty range is plotted as dashed lines. Panel b and c show the predicted fluxes and the 3σ upper limits for the OI 145 μ m and CII lines. The two lower panels (d and e) are the comparison between observations and model outputs for 12°C 0.3-2 emission and the ¹²CO/³¹CO 3-2 ratio. Panel f shows the normalized cumulative fluxes for a 10⁻³ M₀ model (series 1). The diamonds ($\circ R_{out}$ =174 AU model, $\circ R_{out}$ =120 AU model) show the predictions for TW Hya from GH08.

Ref. GH08: Gorti & Hollenbach 2008 ApJ, 683, 287; M08: Meijerink et al. 2008, ApJ, 676, 518; MCFOST: Pinte, C. et al. ,2006, A&A, 459, 797; ProDIMo: Woitke, P. et al 2009, A&A, 501, 383

Figure 1 above shows our best fit to the SED and Fig. 2 on your left shows the three observed finestructure lines. The fluxes and comparison with published predictions are summarized below.

Table 1. Lines observed by Herschel-PACS. The errors and upper limits are 3 σ. The calibration error adds an extra ~ 30% uncertainty. The CO data also have uncertainties of 30%

Line	Cont. flux (Jy)	Obs. (10 ⁻¹⁸	GH08 ³ W m ⁻²)	M08
$\begin{array}{c} & \text{OI} \ {}^{3}\text{P}_{1} \rightarrow {}^{3}\text{P}_{2} \\ & \text{OI} \ {}^{3}\text{P}_{0} \rightarrow {}^{3}\text{P}_{1} \\ & \text{CII} \ {}^{2}\text{P}_{3/2} \rightarrow {}^{2}\text{P}_{1/2} \\ & \text{CO} \ 3-2 \\ \\ & {}^{13}\text{CO} \ 3-2 \end{array}$	2.9 ± 0.14 7.0 ±0.05 8.2 ±0.08 n.a. n.a.	$36.5 \pm 12.1 < 5.5 < 6.5 0.42 4.4 \times 10^{-2}$	103-138 20-34 0.7-10 0.2-0.5 n.a.	412 11 0.06 n.a. n.a.

We modelled the SED and line fluxes with the combined MCFOST-ProDiMo codes. The best fit to the SED is overplotted on the observations in Fig. 1. Fig. 3 shows the results for the line data. The disk parameters for our best model are given in Table 2 below.

Table 2. Disk parameters for the modelling

1	Fixed parameters				
		Inner cavity	Outer ring		
Stellar mass	$M_*(\mathbf{M}_{\odot})$	0.	6		
Stellar luminosity	$L_{s}(L_{\odot})$	0.23			
Effective temperature	$T_{\rm eff}(\mathbf{K})$	4000			
Solid material mass density	$\rho_{dust}(g \text{ cm}^{-3})$	3.5			
Inner radius	$R_{in}(AU)$	0.25	4		
Outer radius	$R_{out}(AU)$	4	196		
ISM UV field	X	1.0			
α viscosity parameter	α	0.0			
Turbulent velocity	v_{turb} (km s ⁻¹)	0.05			
Disk inclination	i	7			
CO isotopologue ratio	[12CO]/[13CO]	69			
MCFOST best fit parameters					
Column density index	ε	1			
Reference scale height	$H_0(AU)$	2.0	10.0		
Reference radius		100	100		
Flaring index	γ	0.6	1.12		
Minimum grain size	$a_{\min}(\mu m)$	3×10^{-2}			
Maximum grain size	$a_{\rm max}(\rm cm)$	10			
Dust size distribution index	р	3.4			
Dust mass ($a < 1 \text{ mm}$)	$M_{\rm dust}(M_{\odot})$	1.2×10^{-9}	1.9×10^{-4}		
Solid mass	$M_{\rm solid}({\rm M}_{\odot})$	2.0×10^{-8}	3.0×10^{-3}		
ProDiMo parameter range					
Disk gas mass	$M_{gas}(M_{\odot})$	$3 \times 10^{-4} - 0.3$			
UV excess	$F_{\rm UV}$	0.018			
Fraction of PAHs w.r.t. ISM	f_{PAH}	0.01, 0.1			
Cosmic ray flux	$\zeta(s^{-1})$	$(1.7-17) \times 10^{-17}$			

[CII] ²P₂₂-²P₁₀

158

145

Wavelength [µm]

159

[OI] ³P₀-³P

146

MK7 6AA, UK and Th