

[CII] Studies of PDRs Towards Molecular Clouds

Jorge.Pineda@jpl.nasa.gov

Jot C+? Jorge L. Pineda, Thangasamy Velusamy, William D. Langer, Paul F. Goldsmith, Di Li, Harold W. Yorke Jet Propulsion Laboratory, Caltech, Pasadena, California, USA

Introduction

• The [CII] fine-structure line at 158µm, is an excellent tracer of the warm diffuse gas and Photon Dominated Regions (PDRs) interface between the molecular clouds and their surrounding atomic envelopes.

• Here we present the first results on the molecular cloud-atomic cloud interface from the Galactic Observations of Terahertz C+ (GOT C+), a Herschel Key Project study of [CII] emission in different environments in our Galaxy.

• We have collected data along a dozen lines of sight passing through the inner Galactic disk between

Conclusions

• We identify forty six [CII] components that are associated with dense molecular clouds as traced by the ¹³CO emission in our CO survey using the Mopra telescope.

• We combine [CII], ¹²CO, ¹³CO, and C¹⁸O observations to derive the physical conditions of the [CII]-emitting regions in our sample of dense clouds using a PDR model grid.

• Our results suggest that CII emission is a good tool to differentiate between regions of massive star formation (high densities/strong FUV fields) and regions that are distant from massive stars (lower densities/ weaker FUV fields).

longitudes 330 degrees and 25 degrees.

• Since the [CII]/¹²CO and [CII]/¹³CO ratios are predicted to be very sensitive to the strength of the FUV field and H₂ volume density, we use our observations together with a grid of PDR models to contrain the physical conditions of the observed regions.

• In this unbiased sample we find that most of the [CII] emission from PDRs come from weak FUV radiation field regions.

Figure 1: (Upper Panel) Example Hershel/HIFI [CII] spectra showing Gaussian fits of the identified components with and without ¹³CO counterparts. (Lower Panel) Mopra ¹²CO, ¹³CO and C¹⁸O spectra observed towards the [CII] lines-of-sight.

[CII] Components Associated with Dense Molecular Clouds

• We select [CII] components associated with dense molecular gas by searching for ¹³CO counterparts.

• We combine the [CII] data with observations of ¹²CO, ¹³CO and C¹⁸O taken with the Mopra 22m telescope in Australia.

• We find 46 [CII] components with ¹²CO and ¹³CO

FUV field

Comparison with PDR Model Calculations

• We compare the observed [CII]/¹²CO and [CII]/¹³CO line ratios with the results of a PDR model grid in order to determine physical conditions of the [CII]-emitting clouds.

• We use the predictions of a grid of spherical PDR models whose input parameters are the clump mass, H_2 volume density at the clump surface, and strength of the FUV radiation field ($\chi_{UV,0}$; in units of the Draine 1978 field). The model grid was calculated using the KOSMA-tau PDR model (Störzer et al. 1996) and is available on-line.

counterparts. Of those, 12 also show C¹⁸O emission.

• In Figure 2, we present the [CII]/¹²CO, [CII]/¹³CO and [CII]/C¹⁸O integrated intensity ratios for the identified components as a function of the [CII] integrated intensity.

References

Draine, B.T. 1978, ApJS, 36, 595
Störzer, H., Stutzki, J., & Sternberg, A. 1996, A&A, 310, 592

• In Figure 3 we show the constrained values of the H_2 volume density (upper panel) and FUV radiation field (lower panel) for our sample of clouds. The grid provides solutions for M=10⁻³-100 M_{*}. A clump mass of 100 M_{*} always provided the best fit to the observations.

• We find two CII components associated with molecular clouds have high volume densities (>10⁵ cm⁻³) and strong FUV fields (between 10⁴-10⁶ $\chi_{UV,0}$). The remaining components have more moderate volume densities between 10³-10⁵ cm⁻³ and weaker strengths of the FUV field between 1-100 $\chi_{UV,0}$

Line-of-sight

Figure 3: Results of the comparison between [CII]/¹²CO and [CII]/¹³CO ratios for all identified [CII] components and the PDR model grid showing the constrained ranges in H₂ volume density (upper panel) and FUV radiation field (lower panel).

Acknowledgments: Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA. This work was performed by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and SpaceAdministration. JLP is a Caltech Postdoc at JPL supported by NASA funds.