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Abstract

The study of small hydrides such as CH, CH+, OH+ and H2O
+ is essential to understand the first

steps of interstellar chemistry. In the framework of the Herschel-HIFI key project PRISMAS, we

report the detection of CH+ and 13CH+ absorption lines in the direction of several remote star forming

regions. The CH+ lines are highly saturated. No emission line is detected in any of the three star-

forming regions. The resulting CH+ average abundances along W49N and W51 are found in excellent

agreement with those derived from 13CH+ CSO submillimeter observations [1] and a few times larger

than those inferred from visible observations of the local diffuse medium [2],[3],[4].

The average observed abundances still exceed by orders of magnitude those predicted by a UV-

dominated steady-state chemistry because large endo-energetic barriers (several thousands Kelvin)

have to be overcome in the cold gas. It has been proposed [6] that supersonic turbulence pervading

the medium is a possible energy reservoir. We show that the predictions of the TDR (Turbulent

Dissipation Regions) model, in which dissipation of turbulent energy in magnetized structures locally

triggers a specific warm chemistry compare well with observations.

I HIFI observations of CH+ (0-1) and 13CH+ (0-1)

1. Observations
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Source: W51 The above figures and the figure on the left

show the CH+ (0-1) HIFI absorption spectra

displaying the different LO tunings used to di-

sentangle lines from the upper and lower side-

bands. In some cases, the saturated parts of

the profiles fall below half the continuum level

(green line), suggesting a gain sideband ratio

different from unity. Note that no CH+ (1-0)

emission line is detected. The emission lines

are from a different molecular species.

2. Data analysis

12CH+ and 13CH+ are displayed for the rest fre-

quencies ν = 835137.5 and ν = 830214.0 MHz

respectively, [7],[8]. The non-saturated parts of

the absorption profiles are decomposed into dis-

tinct velocity components. The opacity per com-

ponent is inferred from a multi-Gaussian fitting

procedure based on the Levenberg-Marquardt al-

gorithm [9].
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3. CH+ column densities
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The CH+ column densities inferred from the HIFI
13CH+ lines are computed for an isotopic ratio of

50 and compared to other samples : CSO submilli-

meter data in red [1] and visible data from absorp-

tion lines towards nearby stars [2],[3],[4]. They are

displayed versus to the total H column density on

each line of sight, inferred from K extinction [5].

The scatter of the data points are large. However,

the average CH+ abundances are about 3 times

larger among the inner Galaxy sources than in the

Solar Neighborhood : [CH+]/[H] = (3 ± 2) × 10−8

and (8 ± 5) × 10−9 respectively.

II Model of turbulent dissipation regions (TDR)

1. Chemical and thermal evolution of a magnetized vortex

The TDR code is a 1-D model in which the che-

mical and thermal evolutions of a turbulent dissi-

pative burst followed by a long lasting relaxation

period are computed (right panel). The induced

heating terms are sufficient to trigger a warm che-

mistry, i.e. not only driven by the UV photons.

The chemical network is fundamentally modified

because many endothermicities and activation bar-

riers are overcome (bottom panels). During both

the dissipation and relaxation stages, the abun-

dances of CH+, HCO+, OH, H2O, CN and many

others molecules rise from 2 to 5 orders of magni-

tude over the whole structure (∼ 102 AU).

2. Modelling of a random line of sight across the diffuse ISM

A random line of sight intercepts three kinds of dif-

fuse gas (left panel) : (1) the ambient medium (with

a filling factor larger than 90 %) in which the che-

mistry is driven by the UV radiation field, (2) the

active vortices where the chemistry is enhanced by

the dissipation of turbulent energy, and (3) the re-

laxation stages where the gas previously heated and

enriched cools down to its original state. The to-

tal number of active vortices is fixed by the average

turbulent transfer rate ε in the cascade.

III TDR model predictions

The average CH+ abundance depends on the density and the UV-illumination conditions of the gas

in which the bursts occur. For 10 < nH < 500 cm−3 and 0.2 < AV < 1.0, it scales as

N(CH+)

NH
∼ 1.9 × 10−9 ε

2 × 10−25erg.cm−3.s−1

( nH

50cm−3

)−2.33
(

AV

0.4

)−1

(1)

for χ = 1 (in units of the Draine’s UV interstellar radiation field). Depending on the parameters, the

fraction of CH+ formed in the active stages varies between 40 % and 100 % (bottom panels).

Thefigures on the left illustrate the in-

fluence of the UV-shielding (top left), gas

density (top right) and turbulent rate of

strain a (bottom left) on the chemistry

of 4 species. They display the relative

contribution of each phase (ambient me-

dium, active or relaxation phase of the

dissipation burst) to the abundance of a

given molecule. The symbols increase as

the parameter increases in each triangle.
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