\relax \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{chap:aot}{{\rEfLiNK{x1-300003}{\csname\string :autoref\endcsname{chapter}3}}{\rEfLiNK{x1-300003}{\csname\string :autoref\endcsname{chapter}51}}{\rEfLiNK{x1-300003}{\csname\string :autoref\endcsname{chapter}Observing with SPIRE}}{chapter.1}{}} \newlabel{sec_aot_intro}{{\rEfLiNK{x1-310003.1}{\csname\string :autoref\endcsname{section}3.1}}{\rEfLiNK{x1-310003.1}{\csname\string :autoref\endcsname{section}51}}{\rEfLiNK{x1-310003.1}{\csname\string :autoref\endcsname{section}Introduction}}{section.1}{}} \newlabel{fig_lmap_scan}{{\rEfLiNK{x1-340011}{\csname\string :autoref\endcsname{Large Map build up with telescope scanning, showing the scan angle, the scan legs and the guaranteed map area.}3.1}}{\rEfLiNK{x1-340011}{\csname\string :autoref\endcsname{Large Map build up with telescope scanning, showing the scan angle, the scan legs and the guaranteed map area.}54}}{\rEfLiNK{x1-340011}{\csname\string :autoref\endcsname{Large Map build up with telescope scanning, showing the scan angle, the scan legs and the guaranteed map area.}Description}}{figure.1}{}} \citation{griffin10} \citation{madmap} \newlabel{fig_lmap_cover}{{\rEfLiNK{x1-340022}{\csname\string :autoref\endcsname{Large Map coverage showing the scan direction with respect to the SPIRE arrays, the scan leg separation step and the uniform sensitivity coverage region. The darker the shading the deeper the coverage.}3.2}}{\rEfLiNK{x1-340022}{\csname\string :autoref\endcsname{Large Map coverage showing the scan direction with respect to the SPIRE arrays, the scan leg separation step and the uniform sensitivity coverage region. The darker the shading the deeper the coverage.}57}}{\rEfLiNK{x1-340022}{\csname\string :autoref\endcsname{Large Map coverage showing the scan direction with respect to the SPIRE arrays, the scan leg separation step and the uniform sensitivity coverage region. The darker the shading the deeper the coverage.}Description}}{figure.1}{}} \newlabel{fig_lmap_angles}{{\rEfLiNK{x1-340033}{\csname\string :autoref\endcsname{Large Map scan angles.}3.3}}{\rEfLiNK{x1-340033}{\csname\string :autoref\endcsname{Large Map scan angles.}60}}{\rEfLiNK{x1-340033}{\csname\string :autoref\endcsname{Large Map scan angles.}Description}}{figure.1}{}} \newlabel{fig_hspot_lmap1}{{\rEfLiNK{x1-350014}{\csname\string :autoref\endcsname{Large Map parameters in HSpot}3.4}}{\rEfLiNK{x1-350014}{\csname\string :autoref\endcsname{Large Map parameters in HSpot}62}}{\rEfLiNK{x1-350014}{\csname\string :autoref\endcsname{Large Map parameters in HSpot}User inputs}}{figure.1}{}} \newlabel{sec_lmap_cover}{{\rEfLiNK{x1-360003.2.1}{\csname\string :autoref\endcsname{subsubsection}3.2.1}}{\rEfLiNK{x1-360003.2.1}{\csname\string :autoref\endcsname{subsubsection}63}}{\rEfLiNK{x1-360003.2.1}{\csname\string :autoref\endcsname{subsubsection}Coverage Maps}}{subsubsection.1}{}} \newlabel{fig_lmap_cover2}{{\rEfLiNK{x1-360015}{\csname\string :autoref\endcsname{Example coverage maps for Large Map mode for the three photometer arrays, PSW (left), PMW (centre) and PLW (right). The top row is for a single scan A observation. The bottom row is for a cross-linked scan of $30 \times 30$ arcmin field, the white circle is the user requested area. The pixel size is (6,10,14) arcsec for (PSW, PMW, PLW) and the colour code represents the number of bolometer hits in each sky pixel.}3.5}}{\rEfLiNK{x1-360015}{\csname\string :autoref\endcsname{Example coverage maps for Large Map mode for the three photometer arrays, PSW (left), PMW (centre) and PLW (right). The top row is for a single scan A observation. The bottom row is for a cross-linked scan of $30 \times 30$ arcmin field, the white circle is the user requested area. The pixel size is (6,10,14) arcsec for (PSW, PMW, PLW) and the colour code represents the number of bolometer hits in each sky pixel.}65}}{\rEfLiNK{x1-360015}{\csname\string :autoref\endcsname{Example coverage maps for Large Map mode for the three photometer arrays, PSW (left), PMW (centre) and PLW (right). The top row is for a single scan A observation. The bottom row is for a cross-linked scan of $30 \times 30$ arcmin field, the white circle is the user requested area. The pixel size is (6,10,14) arcsec for (PSW, PMW, PLW) and the colour code represents the number of bolometer hits in each sky pixel.}Coverage Maps}}{figure.1}{}} \newlabel{fig_hspot_lmap_times}{{\rEfLiNK{x1-370016}{\csname\string :autoref\endcsname{Large Map time estimation and sensitivity for a filed of $60\times 60$ and one repetition for a cross-linked (scan A and B, left) and single scan direction (right).}3.6}}{\rEfLiNK{x1-370016}{\csname\string :autoref\endcsname{Large Map time estimation and sensitivity for a filed of $60\times 60$ and one repetition for a cross-linked (scan A and B, left) and single scan direction (right).}68}}{\rEfLiNK{x1-370016}{\csname\string :autoref\endcsname{Large Map time estimation and sensitivity for a filed of $60\times 60$ and one repetition for a cross-linked (scan A and B, left) and single scan direction (right).}Time estimation and sensitivity}}{figure.1}{}} \newlabel{fig_smap_hspot}{{\rEfLiNK{x1-410037}{\csname\string :autoref\endcsname{User inputs in HSpot for Small Map AOT (left) and Small Map mode time estimation, sensitivity estimate for one repetition of the map.}3.7}}{\rEfLiNK{x1-410037}{\csname\string :autoref\endcsname{User inputs in HSpot for Small Map AOT (left) and Small Map mode time estimation, sensitivity estimate for one repetition of the map.}72}}{\rEfLiNK{x1-410037}{\csname\string :autoref\endcsname{User inputs in HSpot for Small Map AOT (left) and Small Map mode time estimation, sensitivity estimate for one repetition of the map.}User inputs}}{figure.1}{}} \newlabel{fig_small_cover}{{\rEfLiNK{x1-430018}{\csname\string :autoref\endcsname{Example coverage maps for Small Map mode for the three photometer arrays, PSW (left), PMW (centre) and PLW (right), taken from a real observaiton. The white circle is with 5 arcmin diameter. The pixel size is (6,10,14) arcsec for (PSW, PMW, PLW) and the colour code represents the number of bolometer hits in each sky pixel.}3.8}}{\rEfLiNK{x1-430018}{\csname\string :autoref\endcsname{Example coverage maps for Small Map mode for the three photometer arrays, PSW (left), PMW (centre) and PLW (right), taken from a real observaiton. The white circle is with 5 arcmin diameter. The pixel size is (6,10,14) arcsec for (PSW, PMW, PLW) and the colour code represents the number of bolometer hits in each sky pixel.}75}}{\rEfLiNK{x1-430018}{\csname\string :autoref\endcsname{Example coverage maps for Small Map mode for the three photometer arrays, PSW (left), PMW (centre) and PLW (right), taken from a real observaiton. The white circle is with 5 arcmin diameter. The pixel size is (6,10,14) arcsec for (PSW, PMW, PLW) and the colour code represents the number of bolometer hits in each sky pixel.}Coverage maps}}{figure.1}{}} \newlabel{sec_phot_dither}{{\rEfLiNK{x1-450003.2.3}{\csname\string :autoref\endcsname{subsection}3.2.3}}{\rEfLiNK{x1-450003.2.3}{\csname\string :autoref\endcsname{subsection}76}}{\rEfLiNK{x1-450003.2.3}{\csname\string :autoref\endcsname{subsection}Dithering of SPIRE scan maps}}{subsection.1}{}} \newlabel{fig_phot_dither2}{{\rEfLiNK{x1-450029}{\csname\string :autoref\endcsname{Offsets for the 19-point dithering pattern, with the target position at (0, 0). The drawing shows the PSW array, with the holes for the currently dead PSW bolometers.}3.9}}{\rEfLiNK{x1-450029}{\csname\string :autoref\endcsname{Offsets for the 19-point dithering pattern, with the target position at (0, 0). The drawing shows the PSW array, with the holes for the currently dead PSW bolometers.}78}}{\rEfLiNK{x1-450029}{\csname\string :autoref\endcsname{Offsets for the 19-point dithering pattern, with the target position at (0, 0). The drawing shows the PSW array, with the holes for the currently dead PSW bolometers.}Dithering of SPIRE scan maps}}{figure.1}{}} \newlabel{fig_phot_dither1}{{\rEfLiNK{x1-4500510}{\csname\string :autoref\endcsname{Coverage maps, convolved with the beam, for no dithering (top) and 19-point dithering (bottom), for 250 \microns \ (left), 350 \microns \ (middle) and 500 \microns \ (right). The white square shows a $30\times 30$ arcmin field. Note that the colour scales are different for the top and bottom panels.}3.10}}{\rEfLiNK{x1-4500510}{\csname\string :autoref\endcsname{Coverage maps, convolved with the beam, for no dithering (top) and 19-point dithering (bottom), for 250 \microns \ (left), 350 \microns \ (middle) and 500 \microns \ (right). The white square shows a $30\times 30$ arcmin field. Note that the colour scales are different for the top and bottom panels.}82}}{\rEfLiNK{x1-4500510}{\csname\string :autoref\endcsname{Coverage maps, convolved with the beam, for no dithering (top) and 19-point dithering (bottom), for 250 \microns \ (left), 350 \microns \ (middle) and 500 \microns \ (right). The white square shows a $30\times 30$ arcmin field. Note that the colour scales are different for the top and bottom panels.}Dithering of SPIRE scan maps}}{figure.1}{}} \newlabel{fig_7pt_make}{{\rEfLiNK{x1-4700311}{\csname\string :autoref\endcsname{Left: the 7-point hexagonal jiggle pattern. Note that the central point is revisited at the end. The seven points are used to fit the 2-D beam as shown in the drawing. Right: the image shows the central co-aligned pixels as they appear on the sky. The circles numbered 1 and 2 show the detectors on which a point source is viewed via the chopping and nodding which is described in detail in the text. The angular positions of detectors are also shown.}3.11}}{\rEfLiNK{x1-4700311}{\csname\string :autoref\endcsname{Left: the 7-point hexagonal jiggle pattern. Note that the central point is revisited at the end. The seven points are used to fit the 2-D beam as shown in the drawing. Right: the image shows the central co-aligned pixels as they appear on the sky. The circles numbered 1 and 2 show the detectors on which a point source is viewed via the chopping and nodding which is described in detail in the text. The angular positions of detectors are also shown.}85}}{\rEfLiNK{x1-4700311}{\csname\string :autoref\endcsname{Left: the 7-point hexagonal jiggle pattern. Note that the central point is revisited at the end. The seven points are used to fit the 2-D beam as shown in the drawing. Right: the image shows the central co-aligned pixels as they appear on the sky. The circles numbered 1 and 2 show the detectors on which a point source is viewed via the chopping and nodding which is described in detail in the text. The angular positions of detectors are also shown.}Description}}{figure.1}{}} \newlabel{fig_hspot_point}{{\rEfLiNK{x1-4700612}{\csname\string :autoref\endcsname{HSpot user inputs for Point Source mode (left) and the HSpot time estimation for Point Source mode (right).}3.12}}{\rEfLiNK{x1-4700612}{\csname\string :autoref\endcsname{HSpot user inputs for Point Source mode (left) and the HSpot time estimation for Point Source mode (right).}88}}{\rEfLiNK{x1-4700612}{\csname\string :autoref\endcsname{HSpot user inputs for Point Source mode (left) and the HSpot time estimation for Point Source mode (right).}Description}}{figure.1}{}} \newlabel{tab_point_sense}{{\rEfLiNK{x1-490012}{\csname\string :autoref\endcsname{Point source mode sensitivities.}3.2}}{\rEfLiNK{x1-490012}{\csname\string :autoref\endcsname{Point source mode sensitivities.}95}}{\rEfLiNK{x1-490012}{\csname\string :autoref\endcsname{Point source mode sensitivities.}Time estimation and sensitivity}}{table.1}{}} \newlabel{fig_7pt_chop}{{\rEfLiNK{x1-5000113}{\csname\string :autoref\endcsname{Example of possible chop area on a realistic background.}3.13}}{\rEfLiNK{x1-5000113}{\csname\string :autoref\endcsname{Example of possible chop area on a realistic background.}98}}{\rEfLiNK{x1-5000113}{\csname\string :autoref\endcsname{Example of possible chop area on a realistic background.}When to use this mode}}{figure.1}{}} \newlabel{sec_aot_spec}{{\rEfLiNK{x1-510003.3}{\csname\string :autoref\endcsname{section}3.3}}{\rEfLiNK{x1-510003.3}{\csname\string :autoref\endcsname{section}99}}{\rEfLiNK{x1-510003.3}{\csname\string :autoref\endcsname{section}SPIRE Spectrometer AOT}}{section.1}{}} \newlabel{fig_fts_hspot_init}{{\rEfLiNK{x1-5100314}{\csname\string :autoref\endcsname{The HSpot initial screen for the SPIRE Spectrometer AOTs, point source mode (left) and raster (right)}3.14}}{\rEfLiNK{x1-5100314}{\csname\string :autoref\endcsname{The HSpot initial screen for the SPIRE Spectrometer AOTs, point source mode (left) and raster (right)}101}}{\rEfLiNK{x1-5100314}{\csname\string :autoref\endcsname{The HSpot initial screen for the SPIRE Spectrometer AOTs, point source mode (left) and raster (right)}SPIRE Spectrometer AOT}}{figure.1}{}} \newlabel{sec_aot_fts_res}{{\rEfLiNK{x1-520003.3.1}{\csname\string :autoref\endcsname{subsection}3.3.1}}{\rEfLiNK{x1-520003.3.1}{\csname\string :autoref\endcsname{subsection}102}}{\rEfLiNK{x1-520003.3.1}{\csname\string :autoref\endcsname{subsection}Spectral Resolution}}{subsection.1}{}} \newlabel{fig_fts_scan}{{\rEfLiNK{x1-5200115}{\csname\string :autoref\endcsname{Diagram to show how the SMEC moves (in terms of optical path difference) during one repetition for High, Medium and Low spectral resolution. The low resolution SMEC scan range is always covered during High or Medium resolution observations.}3.15}}{\rEfLiNK{x1-5200115}{\csname\string :autoref\endcsname{Diagram to show how the SMEC moves (in terms of optical path difference) during one repetition for High, Medium and Low spectral resolution. The low resolution SMEC scan range is always covered during High or Medium resolution observations.}104}}{\rEfLiNK{x1-5200115}{\csname\string :autoref\endcsname{Diagram to show how the SMEC moves (in terms of optical path difference) during one repetition for High, Medium and Low spectral resolution. The low resolution SMEC scan range is always covered during High or Medium resolution observations.}Spectral Resolution}}{figure.1}{}} \newlabel{sec_aot_fts_pointing}{{\rEfLiNK{x1-570003.3.2}{\csname\string :autoref\endcsname{subsection}3.3.2}}{\rEfLiNK{x1-570003.3.2}{\csname\string :autoref\endcsname{subsection}106}}{\rEfLiNK{x1-570003.3.2}{\csname\string :autoref\endcsname{subsection}Pointing Modes}}{subsection.1}{}} \newlabel{fig_fts_raster0}{{\rEfLiNK{x1-5900116}{\csname\string :autoref\endcsname{Ratser map with the SPIRE FTS.}3.16}}{\rEfLiNK{x1-5900116}{\csname\string :autoref\endcsname{Ratser map with the SPIRE FTS.}109}}{\rEfLiNK{x1-5900116}{\csname\string :autoref\endcsname{Ratser map with the SPIRE FTS.}Raster Pointing Mode:}}{figure.1}{}} \newlabel{fig_fts_raster}{{\rEfLiNK{x1-5900217}{\csname\string :autoref\endcsname{Spectrometer raster example to show spacing of the individual pointings for the long wavelength array (SLW, left) and the short wavelength array (SSW, right) for intermediate image sampling.}3.17}}{\rEfLiNK{x1-5900217}{\csname\string :autoref\endcsname{Spectrometer raster example to show spacing of the individual pointings for the long wavelength array (SLW, left) and the short wavelength array (SSW, right) for intermediate image sampling.}112}}{\rEfLiNK{x1-5900217}{\csname\string :autoref\endcsname{Spectrometer raster example to show spacing of the individual pointings for the long wavelength array (SLW, left) and the short wavelength array (SSW, right) for intermediate image sampling.}Raster Pointing Mode:}}{figure.1}{}} \newlabel{sec_aot_fts_sampling}{{\rEfLiNK{x1-600003.3.3}{\csname\string :autoref\endcsname{subsection}3.3.3}}{\rEfLiNK{x1-600003.3.3}{\csname\string :autoref\endcsname{subsection}113}}{\rEfLiNK{x1-600003.3.3}{\csname\string :autoref\endcsname{subsection}Image Sampling}}{subsection.1}{}} \newlabel{fig_fts_sampling}{{\rEfLiNK{x1-6000418}{\csname\string :autoref\endcsname{SPIRE Spectrometer spatial sampling: sparse (left), intermediate (centre) and full (right). The small green and magenta circles indicate the regions where spectra will be observed for different spatial samplings. The green circles show SSW and the magenta show SLW, the large red circle of 2 arcmin diameter is to guide the eye for the unvignetted field of view.}3.18}}{\rEfLiNK{x1-6000418}{\csname\string :autoref\endcsname{SPIRE Spectrometer spatial sampling: sparse (left), intermediate (centre) and full (right). The small green and magenta circles indicate the regions where spectra will be observed for different spatial samplings. The green circles show SSW and the magenta show SLW, the large red circle of 2 arcmin diameter is to guide the eye for the unvignetted field of view.}115}}{\rEfLiNK{x1-6000418}{\csname\string :autoref\endcsname{SPIRE Spectrometer spatial sampling: sparse (left), intermediate (centre) and full (right). The small green and magenta circles indicate the regions where spectra will be observed for different spatial samplings. The green circles show SSW and the magenta show SLW, the large red circle of 2 arcmin diameter is to guide the eye for the unvignetted field of view.}Image Sampling}}{figure.1}{}} \newlabel{fig_fts_mapping}{{\rEfLiNK{x1-6300119}{\csname\string :autoref\endcsname{The FTS mapping with intermediate image sampling for SSW and SLW (4-point jiggle, top) and full sampling (16 point jiggle, bottom). The red circle shows the 2' unvignetted field of view of the FTS.}3.19}}{\rEfLiNK{x1-6300119}{\csname\string :autoref\endcsname{The FTS mapping with intermediate image sampling for SSW and SLW (4-point jiggle, top) and full sampling (16 point jiggle, bottom). The red circle shows the 2' unvignetted field of view of the FTS.}118}}{\rEfLiNK{x1-6300119}{\csname\string :autoref\endcsname{The FTS mapping with intermediate image sampling for SSW and SLW (4-point jiggle, top) and full sampling (16 point jiggle, bottom). The red circle shows the 2' unvignetted field of view of the FTS.}Full Image Sampling:}}{figure.1}{}} \newlabel{sec_fts_params}{{\rEfLiNK{x1-640003.3.4}{\csname\string :autoref\endcsname{subsection}3.3.4}}{\rEfLiNK{x1-640003.3.4}{\csname\string :autoref\endcsname{subsection}119}}{\rEfLiNK{x1-640003.3.4}{\csname\string :autoref\endcsname{subsection}User input parameters for all Spectrometer AOTs.}}{subsection.1}{}} \newlabel{fig_fts_map_coverage}{{\rEfLiNK{x1-6400120}{\csname\string :autoref\endcsname{Intermediate (top) and Full (bottom) spatial sampling coverage maps for SLW (left) and SSW (right) from a real SPIRE FTS mapping observation. The sky spectral pixel (spaxel) sizes are 35 arcsec (top left), 17.5 arcsec (bottom left), 19 arcsec (top right), 9.5 arcsec (bottom right). The number of bolometer hits in each sky pixel are encoded with colour. The holes in the maps, due to dead bolometers, depend on the spacecraft attitude (the focal plane position angle), the grid centre, the pixel scale.}3.20}}{\rEfLiNK{x1-6400120}{\csname\string :autoref\endcsname{Intermediate (top) and Full (bottom) spatial sampling coverage maps for SLW (left) and SSW (right) from a real SPIRE FTS mapping observation. The sky spectral pixel (spaxel) sizes are 35 arcsec (top left), 17.5 arcsec (bottom left), 19 arcsec (top right), 9.5 arcsec (bottom right). The number of bolometer hits in each sky pixel are encoded with colour. The holes in the maps, due to dead bolometers, depend on the spacecraft attitude (the focal plane position angle), the grid centre, the pixel scale.}121}}{\rEfLiNK{x1-6400120}{\csname\string :autoref\endcsname{Intermediate (top) and Full (bottom) spatial sampling coverage maps for SLW (left) and SSW (right) from a real SPIRE FTS mapping observation. The sky spectral pixel (spaxel) sizes are 35 arcsec (top left), 17.5 arcsec (bottom left), 19 arcsec (top right), 9.5 arcsec (bottom right). The number of bolometer hits in each sky pixel are encoded with colour. The holes in the maps, due to dead bolometers, depend on the spacecraft attitude (the focal plane position angle), the grid centre, the pixel scale.}User input parameters for all Spectrometer AOTs.}}{figure.1}{}} \newlabel{sec_hspot_video}{{\rEfLiNK{x1-650003.4}{\csname\string :autoref\endcsname{section}3.4}}{\rEfLiNK{x1-650003.4}{\csname\string :autoref\endcsname{section}122}}{\rEfLiNK{x1-650003.4}{\csname\string :autoref\endcsname{section}Using HSpot to prepare AOR}}{section.1}{}} \@setckpt{spire_om23-aot}{ \setcounter{page}{124} \setcounter{equation}{0} \setcounter{enumi}{0} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{3} \setcounter{mpfootnote}{0} \setcounter{part}{0} \setcounter{chapter}{3} \setcounter{section}{4} \setcounter{subsection}{0} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{20} \setcounter{table}{2} \setcounter{NAT@ctr}{0} \setcounter{LT@tables}{0} \setcounter{LT@chunks}{0} \setcounter{parentequation}{0} \setcounter{subfigure}{0} \setcounter{lofdepth}{1} \setcounter{subtable}{0} \setcounter{lotdepth}{1} \setcounter{section@level}{0} }