Probing InterStellar Molecules with Absorption line Studies (PRISMAS)

M. Gerin¹, T. Bell², J. Black³, F. Boulanger⁴, J. Cernicharo⁵, E. Dartois⁴, P. Encrenaz¹, E. Falgarone¹, T. Giesen⁶, J. R. Goicoechea^{1,5}, P. Goldsmith⁷, C. Gry⁸, P. Hennebelle¹, E. Herbst¹⁰, P. Hily-Blant²², C. Joblin¹¹, R. Kolos¹², J. Krelowski¹³, D. C. Lis², J. Martin-Pintado⁵, B. Mookerjea¹⁴, D. Neufeld¹⁵, J. Pearson⁷, T. G. Phillips², R. Plume¹⁶, M. Salez¹, M. Schmidt²¹, J. Stutzki⁶, D. Teyssier¹⁷, C. Vastel¹¹, A. Contursi¹⁸, K. Menten¹⁹, T. Geballe²⁰

¹ LERMA, CNRS-UMR 8112, Observatoire de Paris, ENS, Universités Paris 6 and Cergy-Pontoise, France. ² California Institute of Technology, USA. ³ Chalmers University of Technology, Sweden. ⁴ Institut d'Astrophysique Spatiale (IAS), CNRS, Orsay, France. ⁵ IEM-CSIC, Madrid, Spain. ⁶ I. Physikalisches Institut, University of Cologne, Germany. ⁷ Jet Propulsion Laboratory (JPL), California Institute of Technology, USA. ⁸ Laboratoire d'Astrophysique de Marseille (LAM), CNRS-UMR, France. ⁹ IRAM (France). ¹⁰ Department of Physics, Astronomy and Chemistry, USA. ¹¹ CESR, CNRS-UMR, Toulouse, France ¹² Institute of Physical Chemistry, Polish Academy of Sciences, Poland ¹³ Toruń Center for Astronomy, Nicolaus Copernicus University, Toruń, Poland. ¹⁴ Department of Astronomy, UNIVERSITY of maryland, USA. ¹⁵ Department of Physics and Astronomy of the Johns Hopkins University, USA. ¹⁶ Department of Physics and Astronomy, University of Calgary, Canada. ¹⁷ European Space Astronomy Centre, ESA, Spain. ¹⁸ Max Planck Institute für Extraterrestrische Physik, Garching, Germany. ¹⁹Max Planck Institute für Radioastronomie, Bonn, Germany. ²⁰ Gemini telescope, Hilo Hawaii. ²¹ Nicolaus Copernicus Astronomical Center, Torun, Poland. ²² LAOG, Observatoire de Grenoble, CNRS and Université J. Fourier, France.

Figure 2: Spectra of ¹⁴NH₃ and ¹⁵NH₃ obtained by ODIN towards Orion and SgrB2 (Hjalmarson et al. 2006, Adv. Space Research, submitted). While the lines appear in emission in the nearby source Orion, the spectrum towards the distant, bright continuum source SgrB2 shows many absorption features, from the SgrB2 source and from diffuse clouds along the line of sight. The SgrB2 sight-line will be studied as part of the HEXOS programme, while other similar sight-lines will be sampled by us.

Figure 1: SWAS spectra obtained towards the star forming region W49 by Plume et al. (2004, ApJ 605, 247). Top : the ground state water line at 557 GHz, Middle : the fine structure line of carbon at 492 GHz. Diffuse clouds along the line of sight show up as absorption features in the H_2O spectrum and as emission lines in the [CI] spectrum. Absorption spectroscopy in ground state transitions provides sensitive means to probe the diffuse ISM.

ABSTRACT

This Herschel programme is dedicated to key molecules, which are not accessible from the ground at FIR/submillimeter wavelengths, but which bear essential information on the physical and chemical processes ruling the ISM. Complementary investigations are proposed in the HEXOS and "The Warm and dense ISM" programmes.

HYDRIDE MOLECULES

Hydrides play a central role in interstellar chem-

We will carry out a comprehensive spectroscopic istry, both as significant reservoirs of heavy elements

fully survey the far infrared domain including medium size carbon clusters. Once we obtain accurate frequencies from laboratory spectroscopy of heavy carbon clusters, we propose to perform deep integrations with HIFI on selected frequencies.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Molecule		Frequency
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			(GHz)
$\begin{array}{cccccccc} \mathrm{o-H_2O} & 1_{1,0} - 1_{0,1} & 556.936 \\ \mathrm{p-H_2O} & 2_{1,1} - 2_{0,2} & 752.033 \\ \mathrm{p-H_2O} & 2_{0,2} - 1_{1,1} & 987.927 \\ \mathrm{p-H_2^{18}O} & 1_{1,1} - 0_{0,0} & 1101.698 \\ \mathrm{p-H_2O} & 1_{1,1} - 0_{0,0} & 1113.343 \\ \mathrm{o-H_2^{18}O} & 2_{1,2} - 1_{0,1} & 1655.868 \\ \mathrm{o-H_2O} & 2_{1,2} - 1_{0,1} & 1669.905 \\ \mathrm{OH^+} & ^3\Sigma^- 1, 2, 5/2 - 0, 1, 3/2 & 971.804 \\ \mathrm{o-H_3O^+} & 0_0^ 1_0^+ & 984.697 \\ \mathrm{p-H_3O^+} & 1_{1,-} - 1_{1}^+ & 1655.814 \\ \mathrm{H_2O^+} & 1_{1,0} - 1_{0,1} & 607.224 \\ \mathrm{H_2O^+} & 1_{1,0} - 1_{0,1} & 607.224 \\ \mathrm{H_2O^+} & 1_{1,0} - 1_{0,1} & 631.773 \\ 1^3\mathrm{CH^+} & 1 - 0 & 830.131 \\ \mathrm{CH^+} & 1 - 0 & 830.131 \\ \mathrm{CH^+} & 1 - 0 & 835.079 \\ \mathrm{CH^+} & 2 - 1 & 1670.16 \\ \mathrm{CH} & ^2\Pi_{3/2} 1, 2 - ^2\Pi_{1/2} 1, 1 & 532.724 \\ \mathrm{CH} & ^2\Pi_{3/2} 1, 2 - ^2\Pi_{1/2} 1, 1 & 532.724 \\ \mathrm{CH} & ^2\Pi_{3/2} 1, 2 - ^2\Pi_{1/2} 1, 1 & 532.104 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} 1, 2 - ^2\Pi_{1/2} 1, 1 & 532.104 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} 1, 2 - ^2\Pi_{3/2} 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} 1, 2 - ^2\Pi_{3/2} 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} 1, 2 - ^2\Pi_{3/2} 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{5/2} 2, 3 - ^2\Pi_{3/2} 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{5/2} 2, 3 - ^2\Pi_{3/2} 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{5/2} 1, 1 - 2_{1,2} & 945.839 \\ \mathrm{NH} & ^{3\Sigma^-} 1, 1/2 - 0, 1/2 & 974.479 \\ \mathrm{NH^+} & ^{3}\Pi_{1/2} J = 3/2 - 1/2 & 1012.561 \\ \mathrm{NH_2} & 952.578 \\ \mathrm{NH_3} & 1_0 - 0_0 & 572.498 \\ \mathrm{NH_3} & 2_0 - 1_0 & 1214.859 \\ \mathrm{NH_3} & 2_1 - 1_1 & 1215.245 \\ \hline \mathrm{HF} & 1 - 0 & 1232.476 \\ \mathrm{P-D_2H^+} & 1_{10} - 1_{01} & 691.660 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(10) & 1654.082 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \end{array}$	o-H2 ¹⁸ O	$1_{1,0} - 1_{0,1}$	547.676
$\begin{array}{ccccccc} \mathrm{P}\mathrm{-H}_2\mathrm{O} & 2_{1,1}-2_{0,2} & 752.033 \\ \mathrm{P}\mathrm{-H}_2\mathrm{O} & 2_{0,2}-1_{1,1} & 987.927 \\ \mathrm{P}\mathrm{+H}_2^{18}\mathrm{O} & 1_{1,1}-0_{0,0} & 1101.698 \\ \mathrm{P}\mathrm{-H}_2\mathrm{O} & 1_{1,1}-0_{0,0} & 1113.343 \\ \mathrm{o}\mathrm{-H}_2^{18}\mathrm{O} & 2_{1,2}-1_{0,1} & 1655.868 \\ \mathrm{o}\mathrm{-H}_2\mathrm{O} & 2_{1,2}-1_{0,1} & 1669.905 \\ \mathrm{OH}^+ & ^3\Sigma^- & 1,2,5/2-0,1,3/2 & 971.804 \\ \mathrm{o}\mathrm{-H}_3\mathrm{O}^+ & 0_0^- & -1_0^+ & 984.697 \\ \mathrm{P}\mathrm{-H}_3\mathrm{O}^+ & 1_1^- & -1_1^+ & 1655.814 \\ \mathrm{H}_2\mathrm{O}^+ & 1_{1,0}-1_{0,1} & 607.224 \\ \mathrm{H}_2\mathrm{O}^+ & 1_{1,0}-1_{0,1} & 631.773 \\ 1^3\mathrm{CH}^+ & 1-0 & 830.131 \\ \mathrm{CH}^+ & 1-0 & 835.079 \\ \mathrm{CH}^+ & 2-1 & 1670.16 \\ \mathrm{CH} & ^2\Pi_{3/2} & 1,2-^2\Pi_{1/2} & 1,1 & 532.724 \\ \mathrm{CH} & ^2\Pi_{3/2} & 1,2-^2\Pi_{3/2} & 1,2 & 1656.961 \\ \mathrm{CH} & ^2\Pi_{5/2} & 2,3-^2\Pi_{3/2} & 1,2 & 1656.961 \\ \mathrm{CH} & ^2\Pi_{5/2} & 2,3-^2\Pi_{3/2} & 1,2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} & 1,2-^2\Pi_{1/2} & 1,1 & 532.104 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} & 1,2-^2\Pi_{1/2} & 1,1 & 536.113 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} & 1,2-^2\Pi_{3/2} & 1,2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} & 1,2-^2\Pi_{3/2} & 1,2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} & 1,2-^2\Pi_{3/2} & 1,2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} & 1,2-^2\Pi_{3/2} & 1,2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{3/2} & 1,2-^2\Pi_{3/2} & 1,2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{5/2} & 2,3-^2\Pi_{3/2} & 1,2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{5/2} & 2,3-^2\Pi_{3/2} & 1,2 & 1661.107 \\ 1^3\mathrm{CH} & ^2\Pi_{5/2} & 2,3-^2\Pi_{3/2} & 1,2 & 1661.107 \\ \mathrm{O}\mathrm{-CH_2} & 1_{1,1} - 2_{1,2} & 945.839 \\ \mathrm{NH} & ^3\Sigma^- 1, 1/2 - 0, 1/2 & 974.479 \\ \mathrm{NH}^+ & ^2\Pi_{1/2} & J = 3/2 - 1/2 & 1012.561 \\ \mathrm{NH_2} & 952.578 \\ \mathrm{NH_3} & 1_0 - 0_0 & 572.498 \\ \mathrm{NH_3} & 2_0 - 1_0 & 1214.859 \\ \mathrm{NH_3} & 2_0 - 1_0 & 1232.476 \\ \mathrm{P}\mathrm{-D_2H^+} & 1_{10} - 1_{01} & 691.660 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(10) & 1654.082 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(2) & 1890.558 \\ \end{array}$	$ m o-H_2O$	$1_{1,0} - 1_{0,1}$	556.936
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$p-H_2O$	$2_{1,1} - 2_{0,2}$	752.033
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$p-H_2O$	$2_{0,2} - 1_{1,1}$	987.927
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\mathrm{p\text{-}H_2}^{18}\mathrm{O}$	$1_{1,1} - 0_{0,0}$	1101.698
$\begin{array}{ccccccc} \mathrm{o-H_2}^{18}\mathrm{O} & 2_{1,2}-1_{0,1} & 1655.868 \\ \mathrm{o-H_2}\mathrm{O} & 2_{1,2}-1_{0,1} & 1669.905 \\ \mathrm{OH}^+ & {}^3\Sigma^- & 1, 2, 5/2-0, 1, 3/2 & 971.804 \\ \mathrm{o-H_3}\mathrm{O}^+ & 0_0^- & 1_0^+ & 984.697 \\ \mathrm{p-H_3}\mathrm{O}^+ & 1_1^- & -1_1^+ & 1655.814 \\ \mathrm{H_2}\mathrm{O}^+ & 1_{1,1}-0_{0,0} & 1115.150 \\ \mathrm{H_2}\mathrm{O}^+ & 1_{1,0}-1_{0,1} & 607.224 \\ \mathrm{H_2}\mathrm{O}^+ & 1_{1,0}-1_{0,1} & 631.773 \\ 1^3\mathrm{CH}^+ & 1-0 & 830.131 \\ \mathrm{CH}^+ & 1-0 & 830.131 \\ \mathrm{CH}^+ & 2-1 & 1670.16 \\ \mathrm{CH} & {}^2\Pi_{3/2} & 1, 2-{}^2\Pi_{1/2} & 1, 1 & 532.724 \\ \mathrm{CH} & {}^2\Pi_{3/2} & 1, 2-{}^2\Pi_{1/2} & 1, 1 & 536.761 \\ \mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1656.961 \\ \mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & {}^2\Pi_{3/2} & 1, 2-{}^2\Pi_{1/2} & 1, 1 & 536.113 \\ 1^3\mathrm{CH} & {}^2\Pi_{3/2} & 1, 2-{}^2\Pi_{1/2} & 1, 1 & 536.113 \\ 1^3\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ 1^3\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ 0-\mathrm{CH_2} & 1_{1,1}-2_{1,2} & 945.839 \\ \mathrm{NH} & {}^3\Sigma^- & 1, 1/2-0, 1/2 & 974.479 \\ \mathrm{NH}^+ & {}^2\Pi_{1/2} & J = 3/2-1/2 & 1012.561 \\ \mathrm{NH_2} & 952.578 \\ \mathrm{NH_3} & 1_0-0_0 & 572.498 \\ \mathrm{NH_3} & 2_1-1_1 & 1215.245 \\ \mathrm{HF} & 1-0 & 1232.476 \\ \mathrm{P-D_2H^+} & 1_{10}-1_{01} & 691.660 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(10) & 1654.082 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C_3} & \nu 2 \mathrm{P}(2) & 1890.558 \\ \end{array}$	$p-H_2O$	$1_{1,1} - 0_{0,0}$	1113.343
$\begin{array}{cccccccc} \mathrm{o-H_2O} & 2_{1,2}-1_{0,1} & 1669.905 \\ \mathrm{OH}^+ & ^3\Sigma^- & 1,2,5/2-0,1,3/2 & 971.804 \\ \mathrm{o-H_3O^+} & 0_0^ 1_0^+ & 984.697 \\ \mathrm{p-H_3O^+} & 1_1^ 1_1^+ & 1655.814 \\ \mathrm{H_2O^+} & 1_{1,0}-0_{0,0} & 1115.150 \\ \mathrm{H_2O^+} & 1_{1,0}-1_{0,1} & 607.224 \\ \mathrm{H_2O^+} & 1_{1,0}-1_{0,1} & 631.773 \\ \hline 1^3\mathrm{CH}^+ & 1-0 & 830.131 \\ \mathrm{CH}^+ & 1-0 & 835.079 \\ \mathrm{CH}^+ & 2-1 & 1670.16 \\ \mathrm{CH} & ^2\Pi_{3/2} & 1, 2-^2\Pi_{1/2} & 1, 1 & 532.724 \\ \mathrm{CH} & ^2\Pi_{3/2} & 1, 2-^2\Pi_{3/2} & 1, 2 & 1656.961 \\ \mathrm{CH} & ^2\Pi_{5/2} & 2, 3-^2\Pi_{3/2} & 1, 2 & 1661.107 \\ \hline 1^3\mathrm{CH} & ^2\Pi_{5/2} & 2, 3-^2\Pi_{3/2} & 1, 2 & 1661.107 \\ \hline 1^3\mathrm{CH} & ^2\Pi_{3/2} & 1, 2-^2\Pi_{1/2} & 1, 1 & 532.104 \\ \hline 1^3\mathrm{CH} & ^2\Pi_{5/2} & 2, 3-^2\Pi_{3/2} & 1, 2 & 1661.107 \\ \hline 1^3\mathrm{CH} & ^2\Pi_{5/2} & 2, 3-^2\Pi_{3/2} & 1, 2 & 1661.107 \\ \hline 1^3\mathrm{CH} & ^2\Pi_{5/2} & 2, 3-^2\Pi_{3/2} & 1, 2 & 1647.239 \\ \hline 1^3\mathrm{CH} & ^2\Pi_{5/2} & 2, 3-^2\Pi_{3/2} & 1, 2 & 1661.107 \\ \hline 0-\mathrm{CH}_2 & 1_{1,1}-2_{1,2} & 945.839 \\ \mathrm{NH} & ^3\Sigma^- & 1, 1/2-0, 1/2 & 974.479 \\ \mathrm{NH}^+ & ^2\Pi_{1/2} & J = 3/2 - 1/2 & 1012.561 \\ \mathrm{NH}_2 & 952.578 \\ \mathrm{NH}_3 & 1_0 - 0_0 & 572.498 \\ \mathrm{NH}_3 & 2_0 - 1_0 & 1214.859 \\ \mathrm{NH}_3 & 2_0 - 1_0 & 1232.476 \\ \hline \mathrm{P-D_2H^+} & 1_{10} - 1_{01} & 691.660 \\ \mathrm{C}_3 & \nu 2 \mathrm{P}(10) & 1654.082 \\ \mathrm{C}_3 & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C}_3 & \nu 2 \mathrm{Q}(2) & 1890.558 \\ \end{array}$	$\mathrm{o}\text{-}\mathrm{H_2}^{18}\mathrm{O}$	$2_{1,2} - 1_{0,1}$	1655.868
$\begin{array}{cccccccc} {\rm OH}^+ & {}^3\Sigma^- & 1, 2, 5/2 - 0, 1, 3/2 & 971.804 \\ {\rm o-H_3O}^+ & {\rm O}_0^ {\rm I}_0^+ & 984.697 \\ {\rm p-H_3O}^+ & {\rm I}_1^ {\rm I}_1^+ & 1655.814 \\ {\rm H_2O}^+ & {\rm I}_{1,0} - {\rm I}_{0,1} & 607.224 \\ {\rm H_2O}^+ & {\rm I}_{1,0} - {\rm I}_{0,1} & 631.773 \\ \hline {\rm I^3CH}^+ & {\rm I}^- 0 & 830.131 \\ {\rm CH}^+ & {\rm I}^- 0 & 835.079 \\ {\rm CH}^+ & {\rm 2}^- {\rm I} & 1670.16 \\ {\rm CH} & {}^2\Pi_{3/2} & {\rm I}, 2 - {}^2\Pi_{1/2} & {\rm I}, 1 & 532.724 \\ {\rm CH} & {}^2\Pi_{3/2} & {\rm I}, 2 - {}^2\Pi_{3/2} & {\rm I}, 2 & 1656.961 \\ {\rm CH} & {}^2\Pi_{5/2} & {\rm 2}, 3 - {}^2\Pi_{3/2} & {\rm I}, 2 & 1656.961 \\ {\rm CH} & {}^2\Pi_{5/2} & {\rm 2}, 3 - {}^2\Pi_{3/2} & {\rm I}, 2 & 1661.107 \\ {}^{13}{\rm CH} & {}^2\Pi_{3/2} & {\rm I}, 2 - {}^2\Pi_{1/2} & {\rm I}, 1 & 532.104 \\ {}^{13}{\rm CH} & {}^2\Pi_{3/2} & {\rm I}, 2 - {}^2\Pi_{1/2} & {\rm I}, 1 & 532.104 \\ {}^{13}{\rm CH} & {}^2\Pi_{3/2} & {\rm I}, 2 - {}^2\Pi_{1/2} & {\rm I}, 1 & 536.113 \\ {}^{13}{\rm CH} & {}^2\Pi_{5/2} & {\rm 2}, 3 - {}^2\Pi_{3/2} & {\rm I}, 2 & 1647.239 \\ {}^{13}{\rm CH} & {}^2\Pi_{5/2} & {\rm 2}, 3 - {}^2\Pi_{3/2} & {\rm I}, 2 & 1647.239 \\ {}^{13}{\rm CH} & {}^2\Pi_{5/2} & {\rm 2}, 3 - {}^2\Pi_{3/2} & {\rm I}, 2 & 1647.239 \\ {}^{13}{\rm CH} & {}^3\Sigma^- {\rm I}, {\rm I}/2 - 0, {\rm I}/2 & 974.479 \\ {\rm NH}^+ & {}^2\Pi_{1/2} & J = 3/2 - {\rm I}/2 & 1012.561 \\ {\rm NH}_2 & {}952.578 \\ {\rm NH}_3 & {}1_0 - 0_0 & 572.498 \\ {\rm NH}_3 & {}2_0 - {}1_0 & 1214.859 \\ {\rm NH}_3 & {}2_1 - {}1_1 & 1215.245 \\ {\rm HF} & {}1 - 0 & 1232.476 \\ {\rm p-D_2H}^+ & {}1_{10} - {}1_{01} & 691.660 \\ {\rm C}_3 & \nu 2 P(10) & 1654.082 \\ {\rm C}_3 & \nu 2 P(8) & 1696.528 \\ {\rm C}_3 & \nu 2 P(8) & 1696.528 \\ {\rm C}_3 & \nu 2 Q(2) & 1890.558 \\ \end{array}$	$o-H_2O$	$2_{1,2} - 1_{0,1}$	1669.905
$o-H_3O^+$ $0_0^ 1_0^+$ 984.697 $p-H_3O^+$ $1_1^ 1_1^+$ 1655.814 H_2O^+ $1_{1,0} - 1_{0,1}$ 607.224 H_2O^+ $1_{1,0} - 1_{0,1}$ 607.224 H_2O^+ $1_{1,0} - 1_{0,1}$ 631.773 $^{13}CH^+$ $1 - 0$ 830.131 CH^+ $2 - 1$ 1670.16 CH $^2\Pi_{3/2}$ $1, 2 -^2 \Pi_{1/2}$ $1, 1$ $2\Pi_{3/2}$ $1, 2 -^2 \Pi_{1/2}$ CH $^2\Pi_{3/2}$ $1, 2 -^2 \Pi_{3/2}$ CH $^2\Pi_{3/2}$ $1, 2 -^2 \Pi_{3/2}$ CH $^2\Pi_{5/2}$ $2, 3 -^2 \Pi_{3/2}$ CH $^2\Pi_{5/2}$ $2, 3 -^2 \Pi_{3/2}$ CH $^2\Pi_{3/2}$ $1, 2 -^2 \Pi_{1/2}$ 1^3CH $^2\Pi_{3/2}$ $1, 2 -^2 \Pi_{1/2}$ 1^3CH $^2\Pi_{5/2}$ $2, 3 -^2 \Pi_{3/2}$ NH^+ $^2\Pi_{1/2}$ $J = 3/2 - 1/2$ NH_3 $1_0 - 0_0$ 572.498 NH_3 $2_0 - 1_0$ 1214.859 NH_3 $2_0 - 1_0$ 1214.859 NH_3 $2_1 - 1_1$ 1215.245 HF $1 - 0$ 1232.476 $p - D_2H^+$ $1_{10} - 1_{01}$ 691.660 <	OH^+	${}^{3}\Sigma^{-}$ 1,2,5/2-0,1,3/2	971.804
$p-H_3O^+$ $1_1^ 1_1^+$ 1655.814 H_2O^+ $1_{1,1} - 0_{0,0}$ 1115.150 H_2O^+ $1_{1,0} - 1_{0,1}$ 607.224 H_2O^+ $1_{1,0} - 1_{0,1}$ 631.773 $^{13}CH^+$ $1 - 0$ 830.131 CH^+ $2 - 1$ 1670.16 CH $2\Pi_{3/2}$ $1, 2 - ^2 \Pi_{1/2}$ $1, 1$ CH^+ $2 - 1$ 1670.16 CH $^2\Pi_{3/2}$ $1, 2 - ^2 \Pi_{1/2}$ $1, 1$ CH $^2\Pi_{3/2}$ $1, 2 - ^2 \Pi_{1/2}$ $1, 1$ CH $^2\Pi_{5/2}$ $2, 3 - ^2 \Pi_{3/2}$ $1, 2$ CH $^2\Pi_{5/2}$ $2, 3 - ^2 \Pi_{3/2}$ $1, 2$ CH $^2\Pi_{3/2}$ $1, 2 - ^2 \Pi_{1/2}$ $1, 1$ ^{13}CH $^2\Pi_{3/2}$ $1, 2 - ^2 \Pi_{1/2}$ $1, 1$ ^{13}CH $^2\Pi_{5/2}$ $2, 3 - ^2 \Pi_{3/2}$ $1, 2$ ^{13}CH $^2\Pi_{5/2}$ $2, 3 - ^2 \Pi_{3/2}$ $1, 2$ ^{13}CH $^2\Pi_{5/2}$ $2, 3 - ^2 \Pi_{3/2}$ $1, 2$ ^{13}CH $^2\Pi_{5/2}$ $2, 3 - ^2 \Pi_{3/2}$ $1, 2$ ^{13}CH $^2\Pi_{5/2}$ $2, 3 - ^2 \Pi_{3/2}$ $1, 2$ 14 $^{2}\Pi_{1/2}$ $J = 3/2 - 1/2$ 1012.561 NH_2 952.578 NH_3 $2_0 - 1_0$ 1214.859 NH_3 $2_0 - 1_0$ 1232.476 $p-D_2H^+$ $1_{10} - 1_{01}$ 691.660 C_3 $\nu 2$ P(10) 1654.082 C_3 $\nu 2$ P(8) 1696.528 C_3 $\nu 2$ P(2) 1890.558	$o-H_3O^+$	$0_0^ 1_0^+$	984.697
$\begin{array}{ccccccc} H_2O^+ & 1_{1,1} - 0_{0,0} & 1115.150 \\ H_2O^+ & 1_{1,0} - 1_{0,1} & 607.224 \\ H_2O^+ & 1_{1,0} - 1_{0,1} & 631.773 \\ \hline {}^{13}{\rm CH}^+ & 1 - 0 & 830.131 \\ {\rm CH}^+ & 1 - 0 & 835.079 \\ {\rm CH}^+ & 2 - 1 & 1670.16 \\ {\rm CH} & ^{2}\Pi_{3/2} & 1, 2 - ^{2}\Pi_{1/2} & 1, 1 & 532.724 \\ {\rm CH} & ^{2}\Pi_{3/2} & 1, 2 - ^{2}\Pi_{1/2} & 1, 1 & 536.761 \\ {\rm CH} & ^{2}\Pi_{5/2} & 2, 3 - ^{2}\Pi_{3/2} & 1, 2 & 1656.961 \\ {\rm CH} & ^{2}\Pi_{5/2} & 2, 3 - ^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{13}{\rm CH} & ^{2}\Pi_{3/2} & 1, 2 - ^{2}\Pi_{1/2} & 1, 1 & 532.104 \\ {}^{13}{\rm CH} & ^{2}\Pi_{3/2} & 1, 2 - ^{2}\Pi_{1/2} & 1, 1 & 536.113 \\ {}^{13}{\rm CH} & ^{2}\Pi_{5/2} & 2, 3 - ^{2}\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}{\rm CH} & ^{2}\Pi_{5/2} & 2, 3 - ^{2}\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}{\rm CH} & ^{2}\Pi_{5/2} & 2, 3 - ^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{0}{\rm -CH}_2 & 1_{1,1} - 2_{1,2} & 945.839 \\ {\rm NH} & ^{3}{\Sigma}^{-1} & 1, 1/2 - 0, 1/2 & 974.479 \\ {\rm NH}^+ & ^{2}\Pi_{1/2} & J = 3/2 - 1/2 & 1012.561 \\ {\rm NH}_2 & 952.578 \\ {\rm NH}_3 & 1_0 - 0_0 & 572.498 \\ {\rm NH}_3 & 2_0 - 1_0 & 1214.859 \\ {\rm NH}_3 & 2_1 - 1_1 & 1215.245 \\ {\rm HF} & 1 - 0 & 1232.476 \\ \hline {\rm p-D_2H^+} & 1_{10} - 1_{01} & 691.660 \\ {\rm C}_3 & \nu 2 {\rm P}(10) & 1654.082 \\ {\rm C}_3 & \nu 2 {\rm P}(8) & 1696.528 \\ {\rm C}_3 & \nu 2 {\rm Q}(2) & 1890.558 \\ \end{array}$	$p-H_3O^+$	$1^{-}_{1} - 1^{+}_{1}$	1655.814
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H_2O^+	$1_{1,1} - 0_{0,0}$	1115.150
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	H_2O^+	$1_{1,0} - 1_{0,1}$	607.224
$\begin{array}{cccccccc} 1^{13}\mathrm{CH}^+ & 1 - 0 & 830.131 \\ \mathrm{CH}^+ & 1 - 0 & 835.079 \\ \mathrm{CH}^+ & 2 - 1 & 1670.16 \\ \mathrm{CH} & {}^2\Pi_{3/2} & 1, 2 - {}^2\Pi_{1/2} & 1, 1 & 532.724 \\ \mathrm{CH} & {}^2\Pi_{3/2} & 1, 2 - {}^2\Pi_{1/2} & 1, 1 & 536.761 \\ \mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1656.961 \\ \mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{3/2} & 1, 2 - {}^2\Pi_{1/2} & 1, 1 & 532.104 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{0-\mathrm{CH}_2} & 1_{1,1} - 2_{1,2} & 945.839 \\ \mathrm{NH} & {}^3\Sigma^- & 1, 1/2 - 0, 1/2 & 974.479 \\ \mathrm{NH}^+ & {}^2\Pi_{1/2} & J = 3/2 - 1/2 & 1012.561 \\ \mathrm{NH}_2 & & 952.578 \\ \mathrm{NH}_3 & 1_0 - 0_0 & 572.498 \\ \mathrm{NH}_3 & 2_0 - 1_0 & 1214.859 \\ \mathrm{NH}_3 & 2_1 - 1_1 & 1215.245 \\ \mathrm{HF} & 1 - 0 & 1232.476 \\ \mathrm{p-D_2H^+} & 1_{10} - 1_{01} & 691.660 \\ \mathrm{C}_3 & \nu 2 \mathrm{P}(10) & 1654.082 \\ \mathrm{C}_3 & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C}_3 & \nu 2 \mathrm{Q}(2) & 1890.558 \\ \end{array}$	H_2O^+	$1_{1,0} - 1_{0,1}$	631.773
$\begin{array}{cccccc} \mathrm{CH}^+ & 1 - 0 & 835.079 \\ \mathrm{CH}^+ & 2 - 1 & 1670.16 \\ \mathrm{CH} & {}^2\Pi_{3/2} & 1, 2 - {}^2\Pi_{1/2} & 1, 1 & 532.724 \\ \mathrm{CH} & {}^2\Pi_{3/2} & 1, 2 - {}^2\Pi_{1/2} & 1, 1 & 536.761 \\ \mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1656.961 \\ \mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{3/2} & 1, 2 - {}^2\Pi_{1/2} & 1, 1 & 532.104 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3 - {}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{0-\mathrm{CH}_2} & 1_{1,1} - 2_{1,2} & 945.839 \\ \mathrm{NH} & {}^3\Sigma^- & 1, 1/2 - 0, 1/2 & 974.479 \\ \mathrm{NH}^+ & {}^2\Pi_{1/2} & J = 3/2 - 1/2 & 1012.561 \\ \mathrm{NH}_2 & 952.578 \\ \mathrm{NH}_3 & 1_0 - 0_0 & 572.498 \\ \mathrm{NH}_3 & 2_0 - 1_0 & 1214.859 \\ \mathrm{NH}_3 & 2_1 - 1_1 & 1215.245 \\ \mathrm{HF} & 1 - 0 & 1232.476 \\ \mathrm{P}-\mathrm{D}_2\mathrm{H}^+ & 1_{10} - 1_{01} & 691.660 \\ \mathrm{C}_3 & \nu 2 \mathrm{P}(10) & 1654.082 \\ \mathrm{C}_3 & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C}_3 & \nu 2 \mathrm{Q}(2) & 1890.558 \\ \end{array}$	$^{13}\mathrm{CH}^+$	1 - 0	830.131
$\begin{array}{cccc} \mathrm{CH}^+ & 2-1 & 1670.16 \\ \mathrm{CH} & {}^2\Pi_{3/2} & 1, 2-{}^2\Pi_{1/2} & 1, 1 & 532.724 \\ \mathrm{CH} & {}^2\Pi_{3/2} & 1, 2-{}^2\Pi_{1/2} & 1, 1 & 536.761 \\ \mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1656.961 \\ \mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{3/2} & 1, 2-{}^2\Pi_{1/2} & 1, 1 & 532.104 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{3/2} & 1, 2-{}^2\Pi_{1/2} & 1, 1 & 536.113 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^2\Pi_{5/2} & 2, 3-{}^2\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{0-\mathrm{CH}_2} & 1_{1,1}-2_{1,2} & 945.839 \\ \mathrm{NH} & {}^3\Sigma^- & 1, 1/2-0, 1/2 & 974.479 \\ \mathrm{NH}^+ & {}^2\Pi_{1/2} & J = 3/2-1/2 & 1012.561 \\ \mathrm{NH}_2 & 952.578 \\ \mathrm{NH}_3 & 1_0-0_0 & 572.498 \\ \mathrm{NH}_3 & 2_0-1_0 & 1214.859 \\ \mathrm{NH}_3 & 2_1-1_1 & 1215.245 \\ \mathrm{HF} & 1-0 & 1232.476 \\ \mathrm{P-D_2H^+} & 1_{10}-1_{01} & 691.660 \\ \mathrm{C}_3 & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C}_3 & \nu 2 \mathrm{Q}(2) & 1890.558 \\ \end{array}$	CH^+	1 - 0	835.079
$\begin{array}{ccccc} \mathrm{CH} & & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 532.724 \\ \mathrm{CH} & & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 536.761 \\ \mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1656.961 \\ \mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 532.104 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 536.113 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{0-\mathrm{CH}_2} & 1_{1,1} - 2_{1,2} & 945.839 \\ \hline \mathrm{NH} & {}^{3}\Sigma^{-} & 1, 1/2 - 0, 1/2 & 974.479 \\ \mathrm{NH}^{+} & {}^{2}\Pi_{1/2} & J = 3/2 - 1/2 & 1012.561 \\ \mathrm{NH}_2 & 952.578 \\ \mathrm{NH}_3 & 1_0 - 0_0 & 572.498 \\ \mathrm{NH}_3 & 2_0 - 1_0 & 1214.859 \\ \mathrm{NH}_3 & 2_1 - 1_1 & 1215.245 \\ \mathrm{HF} & 1 - 0 & 1232.476 \\ \mathrm{P-D_2H^{+}} & 1_{10} - 1_{01} & 691.660 \\ \mathrm{C}_3 & \nu 2 \mathrm{P}(10) & 1654.082 \\ \mathrm{C}_3 & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C}_3 & \nu 2 \mathrm{Q}(2) & 1890.558 \\ \end{array}$	CH^+	2 - 1	1670.16
$\begin{array}{cccccc} \mathrm{CH} & & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 536.761 \\ \mathrm{CH} & & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1656.961 \\ \mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 532.104 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 536.113 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{o-\mathrm{CH}_2} & 1_{1,1} - 2_{1,2} & 945.839 \\ \mathrm{NH} & {}^{3}\Sigma^{-} & 1, 1/2 - 0, 1/2 & 974.479 \\ \mathrm{NH}^{+} & {}^{2}\Pi_{1/2} & J = 3/2 - 1/2 & 1012.561 \\ \mathrm{NH}_2 & & 952.578 \\ \mathrm{NH}_3 & 1_0 - 0_0 & 572.498 \\ \mathrm{NH}_3 & 2_0 - 1_0 & 1214.859 \\ \mathrm{NH}_3 & 2_1 - 1_1 & 1215.245 \\ \mathrm{HF} & 1 - 0 & 1232.476 \\ \hline \mathrm{p-D_2H^+} & 1_{10} - 1_{01} & 691.660 \\ \mathrm{C}_3 & \nu 2 \ \mathrm{P}(10) & 1654.082 \\ \mathrm{C}_3 & \nu 2 \ \mathrm{P}(8) & 1696.528 \\ \mathrm{C}_3 & \nu 2 \ \mathrm{Q}(2) & 1890.558 \\ \end{array}$	CH	$^{2}\Pi_{3/2}$ 1, 2 $^{-2}$ $\Pi_{1/2}$ 1, 1	532.724
$\begin{array}{ccccc} \mathrm{CH} & & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1656.961 \\ \mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 532.104 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 536.113 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}_{0}\text{-}\mathrm{CH}_{2} & 1_{1,1} - 2_{1,2} & 945.839 \\ \mathrm{NH} & {}^{3}\Sigma^{-} & 1, 1/2 - 0, 1/2 & 974.479 \\ \mathrm{NH}^{+} & {}^{2}\Pi_{1/2} & J = 3/2 - 1/2 & 1012.561 \\ \mathrm{NH}_{2} & 952.578 \\ \mathrm{NH}_{3} & 1_{0} - 0_{0} & 572.498 \\ \mathrm{NH}_{3} & 2_{0} - 1_{0} & 1214.859 \\ \mathrm{NH}_{3} & 2_{1} - 1_{1} & 1215.245 \\ \mathrm{HF} & 1 - 0 & 1232.476 \\ \mathrm{p}\text{-}D_{2}\mathrm{H}^{+} & 1_{10} - 1_{01} & 691.660 \\ \mathrm{C}_{3} & \nu 2 \mathrm{P}(10) & 1654.082 \\ \mathrm{C}_{3} & \nu 2 \mathrm{P}(8) & 1696.528 \\ \mathrm{C}_{3} & \nu 2 \mathrm{Q}(2) & 1890.558 \\ \end{array}$	CH	$^{2}\Pi_{3/2}$ 1, 2 $^{-2}$ $\Pi_{1/2}$ 1, 1	536.761
$\begin{array}{cccccc} \mathrm{CH} & & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 532.104 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{3/2} & 1, 2 - {}^{2}\Pi_{1/2} & 1, 1 & 536.113 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1647.239 \\ {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} & 2, 3 - {}^{2}\Pi_{3/2} & 1, 2 & 1661.107 \\ {}^{o-\mathrm{CH}_2} & 1_{1,1} - 2_{1,2} & 945.839 \\ \mathrm{NH} & {}^{3}\Sigma^{-} & 1, 1/2 - 0, 1/2 & 974.479 \\ \mathrm{NH}^{+} & {}^{2}\Pi_{1/2} & J = 3/2 - 1/2 & 1012.561 \\ \mathrm{NH}_2 & 952.578 \\ \mathrm{NH}_3 & 1_0 - 0_0 & 572.498 \\ \mathrm{NH}_3 & 2_0 - 1_0 & 1214.859 \\ \mathrm{NH}_3 & 2_1 - 1_1 & 1215.245 \\ \mathrm{HF} & 1 - 0 & 1232.476 \\ \hline \mathrm{p-D_2H^+} & 1_{10} - 1_{01} & 691.660 \\ \mathrm{C}_3 & \nu 2 \ \mathrm{P}(10) & 1654.082 \\ \mathrm{C}_3 & \nu 2 \ \mathrm{P}(8) & 1696.528 \\ \mathrm{C}_3 & \nu 2 \ \mathrm{Q}(2) & 1890.558 \\ \end{array}$	CH	$^{2}\Pi_{5/2}$ 2, 3 $-^{2}\Pi_{3/2}$ 1, 2	1656.961
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	CH	$^{2}\Pi_{5/2}$ 2, 3 $^{-2}$ $\Pi_{3/2}$ 1, 2	1661.107
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{13}\mathrm{CH}$	$^{2}\Pi_{3/2}$ 1, 2 $^{-2}$ $\Pi_{1/2}$ 1, 1	532.104
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$^{13}\mathrm{CH}$	$^{2}\Pi_{3/2}$ 1, 2 $^{-2}$ $\Pi_{1/2}$ 1, 1	536.113
$\begin{array}{c ccccc} {}^{13}\mathrm{CH} & {}^{2}\Pi_{5/2} \ 2, 3 - {}^{2} \Pi_{3/2} \ 1, 2 & 1661.107 \\ \hline \mathrm{o-CH}_{2} & 1_{1,1} - 2_{1,2} & 945.839 \\ \hline \mathrm{NH} & {}^{3}\Sigma^{-} \ 1, 1/2 - 0, 1/2 & 974.479 \\ \hline \mathrm{NH}^{+} & {}^{2}\Pi_{1/2} \ J = 3/2 - 1/2 & 1012.561 \\ \hline \mathrm{NH}_{2} & 952.578 \\ \hline \mathrm{NH}_{3} & 1_{0} - 0_{0} & 572.498 \\ \hline \mathrm{NH}_{3} & 2_{0} - 1_{0} & 1214.859 \\ \hline \mathrm{NH}_{3} & 2_{1} - 1_{1} & 1215.245 \\ \hline \mathrm{HF} & 1 - 0 & 1232.476 \\ \hline \mathrm{p-D}_{2}\mathrm{H}^{+} & 1_{10} - 1_{01} & 691.660 \\ \hline \mathrm{C}_{3} & \nu 2 \ \mathrm{P}(10) & 1654.082 \\ \hline \mathrm{C}_{3} & \nu 2 \ \mathrm{P}(8) & 1696.528 \\ \hline \mathrm{C}_{3} & \nu 2 \ \mathrm{Q}(2) & 1890.558 \\ \end{array}$	$^{13}\mathrm{CH}$	$^{2}\Pi_{5/2}$ 2, 3 $-^{2}\Pi_{3/2}$ 1, 2	1647.239
o-CH2 $1_{1,1} - 2_{1,2}$ 945.839NH $^{3}\Sigma^{-}$ 1, 1/2 - 0, 1/2974.479NH ⁺ $^{2}\Pi_{1/2} J = 3/2 - 1/2$ 1012.561NH2952.578NH3 $1_{0} - 0_{0}$ 572.498NH3 $2_{0} - 1_{0}$ 1214.859NH3 $2_{1} - 1_{1}$ 1215.245HF $1 - 0$ 1232.476p-D2H ⁺ $1_{10} - 1_{01}$ 691.660C_{3} $\nu 2$ P(10)1654.082C_{3} $\nu 2$ P(8)1696.528C_{3} $\nu 2$ Q(2)1890.558	$^{13}\mathrm{CH}$	$^{2}\Pi_{5/2}$ 2, 3 $^{-2}$ $\Pi_{3/2}$ 1, 2	1661.107
NH ${}^{3}\Sigma^{-}$ 1, 1/2 - 0, 1/2974.479NH ⁺ ${}^{2}\Pi_{1/2} J = 3/2 - 1/2$ 1012.561NH2952.578NH3 $1_{0} - 0_{0}$ 572.498NH3 $2_{0} - 1_{0}$ 1214.859NH3 $2_{1} - 1_{1}$ 1215.245HF $1 - 0$ 1232.476p-D_2H ⁺ $1_{10} - 1_{01}$ 691.660C_{3} $\nu 2$ P(10)1654.082C_{3} $\nu 2$ P(8)1696.528C_{3} $\nu 2$ Q(2)1890.558	o-CH_2	$1_{1,1} - 2_{1,2}$	945.839
NH+ ${}^{2}\Pi_{1/2} J = 3/2 - 1/2$ 1012.561NH2952.578NH3 $1_{0} - 0_{0}$ NH3 $2_{0} - 1_{0}$ 1214.859NH3 $2_{1} - 1_{1}$ 1215.245HF $1 - 0$ 1232.476 $p-D_{2}H^{+}$ $1_{10} - 1_{01}$ 691.660C_{3} $\nu 2 P(10)$ 1654.082C_{3} $\nu 2 P(8)$ 1696.528C_{3} $\nu 2 Q(2)$	NH	$^{3}\Sigma^{-}$ 1,1/2 - 0,1/2	974.479
NH2952.578NH3 $1_0 - 0_0$ 572.498NH3 $2_0 - 1_0$ 1214.859NH3 $2_1 - 1_1$ 1215.245HF $1 - 0$ 1232.476p-D2H+ $1_{10} - 1_{01}$ 691.660C3 $\nu 2$ P(10)1654.082C3 $\nu 2$ P(8)1696.528C3 $\nu 2$ Q(2)1890.558	$\rm NH^+$	$^{2}\Pi_{1/2} J = 3/2 - 1/2$	1012.561
NH3 $1_0 - 0_0$ 572.498NH3 $2_0 - 1_0$ 1214.859NH3 $2_1 - 1_1$ 1215.245HF $1 - 0$ 1232.476p-D2H+ $1_{10} - 1_{01}$ 691.660C3 $\nu 2$ P(10)1654.082C3 $\nu 2$ P(8)1696.528C3 $\nu 2$ Q(2)1890.558	NH_2		952.578
NH3 $2_0 - 1_0$ 1214.859NH3 $2_1 - 1_1$ 1215.245HF $1 - 0$ 1232.476 $p-D_2H^+$ $1_{10} - 1_{01}$ 691.660C_3 $\nu 2 P(10)$ 1654.082C_3 $\nu 2 P(8)$ 1696.528C_3 $\nu 2 Q(2)$ 1890.558	$\rm NH_3$	$1_0 - 0_0$	572.498
NH3 $2_1 - 1_1$ 1215.245HF $1 - 0$ 1232.476p-D2H ⁺ $1_{10} - 1_{01}$ 691.660C3 $\nu 2$ P(10)1654.082C3 $\nu 2$ P(8)1696.528C3 $\nu 2$ Q(2)1890.558	$\rm NH_3$	$2_0 - 1_0$	1214.859
HF $1-0$ 1232.476 $p-D_2H^+$ $1_{10}-1_{01}$ 691.660 C_3 $\nu 2 P(10)$ 1654.082 C_3 $\nu 2 P(8)$ 1696.528 C_3 $\nu 2 Q(2)$ 1890.558	$\rm NH_3$	$2_1 - 1_1$	1215.245
$p-D_2H^+$ $1_{10} - 1_{01}$ 691.660C_3 $\nu 2 P(10)$ 1654.082C_3 $\nu 2 P(8)$ 1696.528C_3 $\nu 2 Q(2)$ 1890.558	HF	1 - 0	1232.476
C_3 $\nu 2 P(10)$ 1654.082 C_3 $\nu 2 P(8)$ 1696.528 C_3 $\nu 2 Q(2)$ 1890.558	$p-D_2H^+$	$1_{10} - 1_{01}$	691.660
C_3 $\nu 2 P(8)$ 1696.528 C_3 $\nu 2 Q(2)$ 1890.558	C ₃	u 2 P(10)	1654.082
C ₃ $\nu 2 Q(2)$ 1890.558	C_3	u 2 P(8)	1696.528
	C_3	$ u 2 \operatorname{Q}(2)$	1890.558

Table 2: High priority line frequencies

study of key molecular line carriers, probing interstel- and as critical intermediaries in the pathways leading Figure 3: Detection of the C₃ FIR lines with the ISO-LWSspectrometer (Cernicharo et al. 2000, ApJ 534, L199). lar hydrides and carbon chains and rings. Our investi- to more complex molecules. In this Herschel key progation will include high-resolution HIFI spectroscopy gramme, we will carry out a comprehensive study of of some 20 molecules towards 8 sources, and several some 24 hydride molecules towards 8 bright submilspectral scans with PACS. The target hydrides con- limeter continuum sources. The target molecules comtain the elements H, D, C, N, O, F and Cl. We will prise key hydrides and deuterides of the elements, C, take advantage of the strong dust emission from mas- N, O, F and Cl, and include both neutral species and sive star forming regions to detect multiple absorption molecular ions. The proposed observations will simulcomponents from foreground clouds of diverse prop- taneously provide both absorption-line spectroscopy erties that are known to intersect the selected sight- of intervening clouds along the sightline to the target lines, along with emission and absorption intrinsic to sources, together with emission-line spectroscopy of the background sources. Our investigation will pro- hydrides located within the sources themselves (Fig. vide a wealth of new information about interstellar ?? & ??). Two general scientific questions summarize hydrides – addressing key puzzles posed by previous our scientific goals :

observations from the ground since the 1940's, and • What is the role of high temperature reacrecently with ISO, SWAS, and ODIN – and leaving tions in the formation of interstellar molecules. an important Herschel legacy to astrochemistry and and how are such reactions driven? ISM science. We will address the role of high temper-• How do grain surface reactions affect the ature chemical reactions in the formation of interstelabundances of gas-phase molecules? lar molecules, and the question of how such reactions might be driven. We will also investigate the role of grain surface reactions in interstellar chemistry, and the growth of carbon molecules, bridging the gap between molecules and aggregates, as unique spectroscopic signatures of carbon chains and rings, are ac- the carbon clusters (Fig ??) in the diffuse ISM, along FIR/submm continuum sources for this survey. To cessible in the FIR.

Many of the lines that are detectable with Herschel in Carbon clusters are an important family for perform a full PACS scan for 2-3 background sources. the local Universe become accessible to ground-based the carbon chemistry, good diagnostics of the The selected lines are listed in Tables ??, ?? and ?? observatories for redshifted sources. Our programme ISM physical conditions, and closely related to depending on their priority. The background sources will provide an unique benchmark for the studies of larger carbon species and aggregates. HIFI will are listed in Table ??. Fig ?? shows spectra of the be used to probe C_3 , while PACS scans will be used to line of sight clouds towards G10.62–0.39 (W31C). molecular gas at high redshift with ALMA.

CARBON CHAINS AND RINGS

It is our goal to make use of the excellent Herschel

 C_3

Table 1: Absorption line sources

Name	R.A.	Dec	Priority
	(J2000)	(J2000)	
Sgr A*	$17 \ 45 \ 39.95$	-29 00 28.2	2
G005.88–0.39	18 00 30.4	-24 04 00	2
G10.62–0.39	18 10 28.7	-19 55 50	1
W33A	18 14 39.9	-17 51 59	3
G34.3 + 0.1	18 53 18.7	$01 \ 14 \ 58.5$	1
W49N	19 10 13.2	$09 \ 06 \ 12$	1
W51	$19 \ 23 \ 43.9$	$14 \ 30 \ 31.5$	1
DR21(OH)	20 39 00.9	$42 \ 22 \ 38$	1

-0.2 IRAM CS (2-1)10 20 30 V_{lsr} (km/s) 50

Figure 4: Spectra towards W31C obtained with the IRAM-30m and CSO telescopes

PROPOSED OBSERVATIONS

Table 3:	medium	priority	line	frequen	cies

We will search for absorption lines using bright submillimeter continuum sources as background sources. spectroscopic capabilities for making an inventory of We have selected a list of ~ 30 lines and 8 bright the same lines of sight as the hydride species. **Pure** completely cover the FIR/submm domain, we plan to

Molecule		Frequency
		(GHz)
HDO	$1_{1,1} - 0_{0,0}$	893.639
D_2O	$1_{1,1} - 0_{0,0}$	607.350
D_2O	$2_{1,1} - 1_{0,1}$	897.947
ND		522.077
$\rm NH_2D$		494.454
$\mathrm{H}^{37}\mathrm{Cl}$	1 - 0	624.978
$\mathrm{H}^{35}\mathrm{Cl}$	1 - 0	625.919

Table 4: Low priority line frequencies,

Molecule		Frequency
		(GHz)
HCl ⁺	$^{2}\Pi_{3/2}5/2 - 3/2$	1444
DF	1 - 0	651.099