SPIRE User's Manual

version 0.8, Document Number: SPIRE-RAL-DOC 003231 30 November 2009

SPIRE User's Manual

Table of Contents

Pre	eface	xii
	1. Versioning	xii
	1.1. Changelog	xii
1.	Introduction	1
	1.1. Scope of this User's Manual	. 1
	1.2. The SPIRE Pipeline	. 1
	1.3. Installation and Startup of HIPE	. 2
2.	Accessing the Raw Data	3
	2.1. Accessing the Data	. 3
3.	Processing the Raw Data: The Engineering Conversion	. 4
	3.1. Introduction	. 4
	3.2. Running the Engineering Conversion Pipeline	5
	3.2.1. Module Description	. 5
	3.2.2. Input Data Products	. 5
	3.2.3. Output Data Products	5
	3.2.4 Input Calibration Products	5
	3.2.5 How to use the <i>Engineering Conversion</i> Pipeline	5
	3.2.6. Parameter Ontions	5
	3.2.0. Furtherer options	. 5
	3.2.8 Error messages	. 0
	3.3 The Engineering Conversion Pineline Step by Step: Converting Level () Products to	0
	Level 0.5 format	7
	2 2 1 Module Description	. /
	2.2.2 Input Data Draduata	. /
	2.2.2. Distant Data Products	. /
	2.2.4 Les t Celliberties Deciliert	. /
	3.3.4. Input Calibration Products	/
	3.3.5. How to use the <i>Format Conversion</i> Module	. /
	3.3.6. Parameter Options	. 7
	3.3.7. Examples	. 7
	3.3.8. Error messages	7
	3.4. The Engineering Conversion Pipeline Step-by-Step: Flagging out of range detectors	_
		. 8
	3.4.1. Module Description	. 8
	3.4.2. Input Data Products	. 8
	3.4.3. Output Data Products	. 8
	3.4.4. Input Calibration Products	8
	3.4.5. How to use the <i>Flag Detectors</i> Module	. 8
	3.4.6. Parameter Options	. 8
	3.4.7. Examples	. 8
	3.4.8. Error messages	8
	3.5. The Engineering Conversion Pipeline Step-by-Step: Masking Bad Detector	
	Channels	. 9
	3.5.1. Module Description	. 9
	3.5.2. Input Data Products	. 9
	3.5.3. Output Data Products	. 9
	3.5.4. Input Calibration Products	9
	3.5.5. How to use the Mask Bad Channels Module	9
	3.5.6. Parameter Options	. 9
	3.5.7. Examples	. 9
	3.5.8. Error messages	10
	3.6. The Engineering Conversion Pipeline Step-by-Step: Time Conversion	10
	3.6.1 Module Description	10
	3.6.2 Input Data Products	10
	3.6.3 Output Data Products	10
	3.6.4 Input Calibration Products	10
	5.5.7. Input Canoration 1100000	10

3.6.5.	How to use the TimeConvReordTask	10
3.6.6.	Parameter Options	10
3.6.7.	Examples	10
3.6.8.	Error messages	11
3.7. The <i>En</i>	gineering Conversion Pipeline Step-by-Step: Calculating the JFET Voltages	11
	Madala Description	11
5.7.1.	Insuit Deta Description	11
5.7.2.	Input Data Products	11
5.7.5.	Uniput Data Products	11
5.7.4.	Input Calibration Products	11
3.7.5. 2.7.6	How to use the Calculate JFET voltages Module	11
3.7.0. 2.7.7	Farameter Options	12
5.7.7.		12
3./.8. 2.9. The Ex	Error messages	12
3.8. The <i>En</i>	gineering Conversion Pipeline Step-by-Step: Calculating the bolometer	10
KNIS Voltag	ge and resistance	13
3.8.1.	Module Description	13
3.8.2.	Input Data Products	13
3.8.3.	Output Data Products	13
3.8.4.	Input Calibration Products	13
3.8.5.	How to use the <i>Calculate JFET Voltages</i> Module	13
3.8.6.	Parameter Options	13
3.8.7.	Examples	13
3.8.8.	Error messages	14
3.9. The <i>En</i>	gineering Conversion Pipeline Step-by-Step: Adding Pointing Meta-Data	
Information	to the Data	14
3.9.1.	Module Description	14
3.9.2.	Input Data Products	14
3.9.3.	Output Data Products	15
3.9.4.	Input Calibration Products	15
3.9.5.	How to use the Add Pointing Meta-Data Module	15
3.9.6.	Input Control Parameters	15
3.9.7.	Examples	15
3.9.8. Error messages 1		
4. Processing Dat	a with the Photometer Large Scan Map Pipeline	16
4.1. Introdu	ction	16
4.2. Conver	sion of the BSM telemetry into Angles on the Sky	17
4.2.1.	Module Description	17
4.2.2.	Input Data Products	17
4.2.3.	Output Data Products	17
4.2.4.	Input Calibration Products	17
4.2.5.	How to use the <i>Compute BSM Angles</i> Module	17
4.2.6.	Parameter Options	17
4.2.7.	Examples	17
4.2.8.	Error messages	18
4.3. SPIRE	Pointing Product	18
4.3.1.	Module Description	18
4.3.2.	Input Observational Data Products	18
4.3.3.	Output Data Products	19
4.3.4.	Input Calibration Products Required	19
4.3.5.	Parameter options	19
4.3.6.	Examples	19
4.3.7.	Error messages	19
4.4. Deglitc	hing the Timeline Data	19
4.4.1.	Module Description	19
4.4.2.	Input Data Products	20
4.4.3.	Output Data Products	20
4.4.4.	Input Calibration Products	20

4.4.5. How to use the First Level Deglitching Module	20
4.4.6. Parameter Options	. 20
4.4.7. Examples	21
4.4.8. Error messages	21
4.5. Removing Electrical Crosstalk from the Timeline Data	21
4.5.1. Module Description	21
4.5.2. Input Data Products	21
4.5.3. Output Data Products	21
4.5.4. Input Calibration Products	21
4.5.5. How to use the Remove Electrical Crosstalk Module	22
4.5.6. Parameter Options	. 22
4.5.7. Examples	22
4.5.8. Error messages	22
4.6. Correcting for Electrical Filter Response	22
4.6.1. Module Description	22
4.6.2. Input Data Products	22
4.6.3. Output Data Products	23
4.6.4. Input Calibration Products	23
4.6.5. How to use the <i>Correction for Electrical Filter Response</i> Module	23
4.6.6. Parameter Options	. 23
4.6.7. Examples	23
4.6.8. Error messages	23
4.7. Converting the Detector Timelines into Flux Units	23
471 Module Description	$\frac{23}{23}$
472 Input Data Products	24
473 Output Data Products	24
474 Input Calibration Products	24
47.5 How to use the <i>Flux Conversion</i> Module	$\frac{2}{24}$
476 Parameter Ontions	24
477 Examples	24
478 Frror messages	24
4.8 Removing Correlated Noise from the Detector Timelines	$\frac{2}{24}$
4.8.1 Module Description	24
4.8.2 Input Data Products	25
4.8.3 Output Data Products	25
4.8.5. Output Data Froducts	25
4.8.5 How to use the <i>Remove Correlated Noise</i> Module	25
4.8.6 Parameter Ontions	25
4.8.7 Fyamples	25
188 Error messages	25
4.9 Correcting for the Bolometer Time Response	26
4.9.1 Module Description	26
4.9.7. Input Data Products	26
4.9.3 Output Data Products	26
4.9.5. Output Data Hodaets	26
4.9.5. How to use the <i>Bolometer Time Response Correction</i> Module	26
4.9.6 Parameter Ontions	26
107 Examples	26
4.9.7. Examples	20
4.10 Removing the Effects of Optical Crosstalk from the Data	27
4 10.1 Module Description	27
4 10.2 Input Data Products	27
4 10 3 Output Data Products	27
4.10.4 Input Calibration Products	27
4 10 5 How to use the Ontical Crosstalk Removal Module	∠ / 27
1 10 6 Parameter Options	. ∠1 27
4 10 7 Examples	$\frac{2}{27}$
4 10.8 Frror messages	27
	<i>_</i> /

4.11. Adding Positional Information (WCS) to the Data	28
4.11.1. Module Description	28
4.11.2. Input Data Products	28
4.11.3. Output Data Products	28
4.11.4. Input Calibration Products	28
4.11.5. How to use the Associate Sky Position Module	28
4.11.6. Parameter Options	28
4.11.7. Examples	28
4.11.8. Error messages	28
4.12. Converting the On-Board Time to International Time Standards	28
4.12.1. Module Description	28
4.12.2. Input Data Products	29
4.12.3. Output Data Products	29
4.12.4. Input Calibration Products	29
4.12.5. How to use the <i>Time Correction</i> Module	29
4.12.6. Parameter Options	29
4.12.7. Examples	29
4.12.8. Error messages	29
4.13. Creating Image Scan-Maps	29
4.13.1. Module Description	29
4 13 2 Input Observational Data Products	29
4 13 3 Output Data Products	29
4 13 4 Input Calibration Products Required	30
4 13 5 How to use the <i>Man Making</i> Module	30
4.13.6 Parameter ontions	30
4 13 7 Examples	31
4.13.7. Examples	31
A 14 Point Source Extraction	31
4.14.1 Module Description	31
4.14.2 Input Observational Data Products	31
4.14.2. Input Observational Data Froducts	31
4.14.5. Output Data Floudets	31
4.14.4. Input Calibration Froducts Required	31
4.14.5. How to use the <i>1 out source Extraction</i> Module	31
4.14.0. Falameter options	31
4.14.7. Examples	21
	I
5 Processing Data with the Photometer Lingle Man Dingling	31
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35 35 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35 35 35 35 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35 35 35 35 35 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35 35 35 35 35 35 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 35 35 35 35 35 35 35 35 35 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 35 35 35 35 35 35 35 35 35 35 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 35 35 35 35 35 35 35 35 35 35 35 36 26
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 35 35 35 35 35 35 35 35 35 35 36 36 36
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 36
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 36 36
 5. Processing Data with the Photometer Jiggle Map Pipeline 5.1. Introduction 5.2. Conversion of the BSM telemetry into Angles on the Sky 5.2.1. Module Description 5.2.2. Input Data Products 5.2.3. Output Data Products 5.2.4. Input Calibration Products 5.2.5. How to use the <i>Compute BSM Angles</i> Module 5.2.6. Parameter Options 5.2.7. Examples 5.2.8. Error messages 5.3.1. Module Description 5.3.2. Input Observational Data Products 5.3.3. Output Data Products 5.3.4. Input Calibration Products Required 	31 33 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 36 37 27
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35 35 35 35 35 35 35 35 35 35
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 37 37 37 37
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 37
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 33 35 35 35 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 37
 5. Processing Data with the Photometer Jiggle Map Pipeline	31 33 35 35 35 35 35 35 35 35 35 35 35 35 36 36 36 36 36 37

5.4.3. Output Data Products	38
5.4.4. Input Calibration Products	38
5.4.5. How to use the <i>Extract Chop and Jiggle Positions</i> Module	39
5.4.6. Parameter Options	39
5.4.7. Examples	39
5.4.8. Error messages	39
5.5 Deglitching the Timeline Data	39
5.5.1 Module Description	39
5.5.2 Input Data Products	40
5.5.2. Input Data Products	10
5.5.4 Input Calibration Products	40
5.5.5 How to use the First Level Dealitabing Module	40
5.5.6 Determeter Options	40
5.5.0. Farameter Options	40
5.5.7. Examples	41
5.5.8. Error messages	41
5.6. Removing Electrical Crosstalk from the Timeline Data	41
5.6.1. Module Description	41
5.6.2. Input Data Products	41
5.6.3. Output Data Products	41
5.6.4. Input Calibration Products	41
5.6.5. How to use the <i>Remove Electrical Crosstalk</i> Module	42
5.6.6. Parameter Options	42
5.6.7. Examples	42
5.6.8. Error messages	42
5.7. Converting the Detector Timelines into Flux Units	42
5.7.1. Module Description	42
5.7.2. Input Data Products	42
5.7.3. Output Data Products	43
5.7.4. Input Calibration Products	43
5.7.5. How to use the <i>Flux Conversion</i> Module	43
5.7.6. Parameter Options	43
5.7.7. Examples	43
5.7.8. Error messages	43
5.8 De-Modulating the Timeline Data	43
5.8.1 Module Description	43
5.8.2 Input Observational Data Products	43
5.8.2. Autout Data Products	 ΛΛ
5.8.4 Input Calibration Products Required	 11
5.8.5. How to use the Demodulation Module	44
5.8.6 Determeter entires	44
5.8.7 Encounter	44
5.8.7. Examples	44
5.8.8. Error messages	44
5.9. Averaging the Data of All Jiggle Positions (and Second Level Deglitching)	44
5.9.1. Module Description	44
5.9.2. Input Data Products	45
5.9.3. Output Data Products	45
5.9.4. Input Calibration Products	45
5.9.5. How to use the Second Level Deglitching and Averaging Module	45
5.9.6. Parameter Options	45
5.9.7. Examples	45
5.9.8. Error messages	45
5.10. De-Nodding Observations	45
5.10.1. Module Description	45
5.10.2. Input Observational Data Products	45
5.10.3. Output Data Products	45
5.10.4. Input Calibration Products Required	46
5.10.5. How to use the <i>Denodding</i> Module	46
	16

5.10.7. Examples	46
5.10.8. Error messages	46
5.11. Averaging the Data Taken from Different Nod Cycles	47
5.11.1. Module Description	47
5.11.2. Input Data Products	47
5.11.3. Output Data Products	47
5.11.4. Input Calibration Products	47
5.11.5. How to use the Average Nod Cycles Module	47
5.11.6. Parameter Options	47
5.11.7. Examples	47
5.11.8. Error messages	47
5.12. Removing the Effects of Optical Crosstalk from the Data	47
5.12.1. Module Description	47
5.12.2. Input Data Products	47
5.12.3. Output Data Products	48
5.12.4. Input Calibration Products	48
5.12.5. How to use the Optical Crosstalk Removal Module	48
5.12.6. Parameter Options	48
5.12.7. Examples	48
5.12.8. Error messages	48
5.13. Converting the On-Board Time to International Time Standards	48
5.13.1. Module Description	48
5.13.2. Input Data Products	48
5.13.3. Output Data Products	48
5.13.4. Input Calibration Products	48
5.13.5. How to use the <i>Time Correction</i> Module	49
5.13.6. Parameter Options	49
5.13.7. Examples	49
5.13.8. Error messages	49
5.14. Creating Image Maps from the Jiggle Observations	49
5.14.1. Module Description	49
5.14.2. Input Observational Data Products	49
5.14.3. Output Data Products	49
5.14.4. Input Calibration Products Required	49
5.14.5. How to use the <i>Map Making</i> Module	49
5.14.6. Parameter options	50
5.14.7. Examples	50
5.14.8. Error messages	50
5.15. Calculating the Flux and Position of a Source	50
5.15.1. Module Description	50
5.15.2. Input Data Products	51
5.15.3. Output Data Products	51
5.15.4. Input Calibration Products Required	51
5.15.5. How to use the Point Source Flux Density and Position Module	51
5.15.6. Parameter options	51
5.15.7. Examples	51
5.15.8. Error messages	51
6. Processing Data with the Spectrometer Pipeline	52
6.1. Introduction	52
6.2. Conversion of the BSM telemetry into Angles on the Sky	54
6.2.1. Module Description	54
6.2.2. Input Data Products	54
6.2.3. Output Data Products	54
6.2.4. Input Calibration Products	54
6.2.5. How to use the <i>Calculate BSM Angles</i> Module	54
6.2.6. Parameter Options	55
6.2.7. Examples	55
6.2.8. Error messages	55
-	

6.3. Create the SPIRE Pointing Product	55
6.3.1. Module Description	55
6.3.2. Input Observational Data Products	56
6.3.3. Output Data Products	56
6.3.4. Input Calibration Products	56
6.3.5. How to use the Create SPIRE Pointing Product Module	56
6.3.6. Parameter options	56
6.3.7. Examples	56
6.3.8. Error messages	56
6.4. Correcting the Detector Timelines for Electrical Crosstalk	57
6.4.1. Module Description	57
6.4.2. Input Data Products	57
6.4.3. Output Data Products	57
6.4.4. Input Calibration Products	57
6.4.5. How to use the <i>Electrical Cross Talk Correction</i> Module	57
6.4.6. Parameter Options	57
6.4.7. Examples	57
6.4.8. Error messages	58
6.5. Deglitching the Detector Timelines	58
6.5.1. Module Description	58
6.5.2. Input Data Products	58
6.5.3. Output Data Products	58
6.5.4. Input Calibration Data Products	58
6.5.5. How to use the <i>Timeline Deglitching</i> Module	58
6.5.6. Parameter Options	58
6.5.7 Examples	60
6.5.8 Frror messages	61
6.6 Applying the Non-Linearity Correction to the Data	61
6.6.1 Module Description	61
6.6.2 Input Data Products	62
6.6.3 Output Data Products	62
6.6.4 Input Calibration Products	62 62
6.6.5 How to use the Non Lingarity Correction Module	62
6.6.6 Parameter Options	62
6.6.7 Examples	62
6.68 Error massagas	62
6.7 Paraving Correlated Noise due to beth temperature fluctuations from the Date	62
6.7.1 Module Description	62
6.7.2. Input Data Products	62
6.7.2. Input Data Floducts	62
6.7.4 Input Calibration Products	03 62
6.7.5. How to use the Bath Town and two Elucitudian Connection Module	03 62
6.7.6. Decompton Options	03 62
6.7.0. Parameter Options	03
6.7.9. Error measure	03
6.7.8. Error messages	64
6.8. Correcting for Clipped Data	64
6.8.1. Module Description	64
6.8.2. Input Data Products	65
6.8.3. Output Data Products	65
6.8.4. Input Calibration Products	65
6.8.5. How to use the <i>Clipping Correction</i> Module	65
6.8.6. Parameter Options	65
6.8.7. Examples	65
6.8.8. Error messages	65
6.9. Correcting for Time Domain Phase Shifts	66
6.9.1. Module Description	66
6.9.2. Input Observational Data Products	66
6.9.3. Output Data Products	66

6.9.4. Input Calibration Data Products	66
6.9.5. How to use the <i>Time Domain Phase Correction</i> Module	66
6.9.6. Control parameters	66
6.9.7. Examples	67
6.9.8. Error messages	68
6.10. Removing the Telescope and Calibration Source Background from the Data	68
6.10.1. Module Description	68
6.10.2. Input Data Products	69
6.10.3. Output Data Products	69
6.10.4. Input Calibration Products	69
6.10.5. How to use the SCAL and Telescope Correction Module	69
6.10.6. Parameter Options	69
6.10.7. Examples	69
6.10.8. Error messages	69
6.11. Creating the Interferograms from the Timeline Data	70
6.11.1. Module Description	70
6.11.2. Input Data Products	70
6.11.3. Output Data Products	71
6.11.4. Input Calibration Products	71
6.11.5. How to use the <i>Interferogram Creation</i> Module	71
6.11.6. Control parameters	71
6.11.7. Examples	71
6.11.8. Error messages	72
6.12. Applying an Apodization Function to an Interferogram	73
6.12.1. Module Description	73
6.12.2. Input Data Products	73
6 12 3 Output Data Products	73
6 12 4 Input Calibration Data Products	73
6.12.5 How to use the <i>Apodization</i> Module	73
6.12.6 Parameter Ontions	73
6 12 7 Examples	75
6.12.8 Error messages	77
6.13 Producing Spectra from the Interferograms (Fourier Transform)	78
6.13.1 Module Description	78
6.13.2 Input Data Products	78
6.13.2. Input Data Froducts	78
6.13.1 Input Calibration Products	78
6.13.5 How to use the <i>Fourier Transform</i> Module	78
6.13.6. Parameter Ontions	78
6.13.7 Examples	70
6.13.9. Examples	70
6.14 Removing the Reseline from the interferograms	70
6.14.1 Modula Description	70
6.14.2 Input Data Products	70
6.14.2. Input Data Floducts	7 <i>7</i> 80
6.14.4. Calibration Data Dreducts	80
6.14.5. How to use the <i>Pageline Connection</i> Module	80 80
6.14.6. Decompton Ontions	80 80
6.14.7. Examples	80
6.14.9. Examples	0U 01
0.14.0. EHOI IIICSSages	01
6.15.1 Module Description	02 02
6.15.2 Input Data Draduate	02 02
6.15.2. Input Data Products	82 82
0.13.5. Output Data Products	82 82
6.15.5 How to use the Interference Deslitation Made 1	02 02
6.15.6. Deremeter Options	02 02
6.15.7 Examples	02 04
0.13.7. Examples	ð4

6.15.8. Error messages	84	
6.16. Phase Correction	85	
6.16.1. Module Description	85	
6.16.2. Input Data Products	85	
6.16.3. Output Data Products	85	
6.16.4. Input Calibration Products	85	
6.16.5. How to use the <i>Phase Correction</i> Module	85	
6.16.6. Control parameters	85	
6.16.7. Examples	86	
6.16.8. Error messages	87	
6.17. Spectrum Flux Calibration	88	
6.17.1. Module Description	88	
6.17.2. Input Data Products	88	
6.17.3. Output Data Products	88	
6.17.4. Input Calibration Products	88	
6.17.5. How to use the Flux Conversion Module	88	
6.17.6. Parameter Options	88	
6.17.7. Examples	88	
6.17.8. Error messages	89	
6.18. Removing any Optical Crosstalk from the Spectra		
6.18.1. Module Description	89	
6.18.2. Input Data Products	89	
6.18.3. Output Data Products	89	
6.18.4. Input Calibration Products	89	
6.18.5. How to use the Remove Optical Crosstalk Module	89	
6.18.6. Parameter Options	89	
6.18.7. Examples	89	
6.18.8. Error messages	90	
6.19. Averaging Spectra to Produce One Final Spectral Product	90	
6.19.1. Module Description	90	
6.19.2. Input Data Products	90	
6.19.3. Output Data Products	90	
6.19.4. Input Calibration Data Products	90	
6.19.5. How to use the Spectral Averaging Module	90	
6.19.6. Parameter Options	90	
6.19.7. Examples	91	
6.19.8. Error messages	91	

Preface

1. Versioning

On the front page of this manual is a version number made of three digits. The first two digits follow a traditional versioning system (0.1, 0.2, ...), and the changes introduced with each version are detailed below. The third digit is the SPIRE build number to which each edition of the manual is associated. Also shown on the front page is the date of publication of the manual.

1.1. Changelog

The following was changed for v0.8

• Spectrometer Pipeline Section Updated.

The following was changed for v0.7

• Spectrometer Pipeline Section Updated - adjusted wordings, changed import statements, parameter names and sample code to reflect the status at the end of the 1.2 branch

Merged Spire Pointing Product chapters into photometery and spectroscopy chapters, as now a module..

The following was changed for v0.6

• Photometer Pipeline Section Updated - adjusted wordings, changed import statements, parameter names and sample code to reflect the status at the end of the 1.2 branch

Auxillary products Section Added - added chapter on Spire Pointing Product.

The following was changed for v0.5

• Spectrometer Pipeline Section Updated - adjusted wordings, changed import statements, parameter names and sample code to reflect the status at the end of the 1.2 branch

The following was changed for v0.4

- SPIRE pipline section updated
- Flowcharts updated
- Photometer Pipeline Section Updated following Science Validation Review
- Spectrometer Pipeline Section Updated following Science Validation Review

The following was changed for v0.3

• Original UM was replaced with sections from the HOWTOs, plus the SPIRE Pipeline User's Guide, which will form the basis of the UM.

The following was changed for v0.2

- Added this preface.
- *Chapter 1*: Added workaround to reintroduce SPIRE specific help into QLA, including context-sensitive help.
- Chapter 2: Added the preexisting QLA manual as a new chapter.

The following was changed for v0.1

• First version of the manual, incudes the SPIRE DP Quick Setup guide as its only chapter.

Chapter 1. Introduction

1.1. Scope of this User's Manual

This document explains the SPIRE pipeline and its use for reduction of photometer and spectrometer data using the standard Observatory Functions (POF, SOF Astronomical Observing Templates, AOTs). This document is aimed at the astronomical user and calibration scientists who may wish to use the pipeline from a scientific viewpoint. This document is not meant for developers and those interested in the details of the pipeline module algorithms and processes.

This document provides the procedures to install and set up the data reduction environment (Herschel Common Science System, HCSS). A broad overview of the pipeline is given followed by detailed information of the individual pipeline steps including parameters and settings. The pipeline corresponding to each AOT is discussed. Worked examples are also provided.

1.2. The SPIRE Pipeline

The SPIRE pipeline is a part of the general Development Pipeline of the Herschel Common Science System (HCSS) being developed by the Herschel Science Center (HSC) and Herschel Instrument Control Centres (ICCs) to provide the complete software system for the Herschel Observatory mission. The entire Development Pipeline is written in Java and scripted in Jython and is a fully supported stand alone system. The pipeline can be run via scripts either end-to-end or stepwise. In addition to the standard product pipeline processing the Herschel Data Processing system will also provide the tools to interactively reduce the data through Graphical User Interfaces provided by the Herschel Interactive Processing Environment (HIPE) The pipeline supports processing for 6 different AOTs. In addition each AOT may have independent parameters to further refine the type of observation to be carried out.

An overview of the SPIRE pipline is shown in the figure below. The raw telemetry data has already been processed into the basic Level 0 Raw data format by a pre-processing step during the Operational Day Processing. The SPIRE pipeline as delivered to a user takes these Level 0 products as input. The Level 0 to Level 0.5 processing is referred to as the engineering conversion or "common pipeline" and takes the raw ADU in the timeline data and converts them to meaningful units (e.g. Volts, etc). The next step is the AOT specific processing (large map, small map, point source or spectrometer pipelines) which will produce calibrated timelines as Level 1 products. The advanced processing steps will take the Level 1 products and produce maps, spectral cubes and point source flux estimations. Quality control will be handelled by ESA rather than the ICC.

Figure 1.1. An overview of the SPIRE pipeline from the raw telemetry to the fully processed products.

1.3. Installation and Startup of HIPE

Data reduction for SPIRE datasets is performed using the Herschel Interactive Processing Environment (HIPE). HIPE is part of the Herschel Data Processing system and can be installed with the software installer (see Herschel Science Centre website). Software can be run on a server or individual workstation running Windows XP, Linux or Solaris. The minimum recommended system is Windows/ Linux 32-bit w/1GB RAM or 64-bit W/Lin/Mac w/1GB RAM; Browsers for use with the systemm (including download) IE 6+, Netscape 7+, Mozilla (Firefox) 1.5+, Safari (Mac). The system is Java based and requires Java 1.6. General Java scripts can be run on the system. Installation instructions are provided at the bottom of the FTP page.

Once the software is installed, HIPE can be started by several means. Using Windows, Herschel software can be started under the "Start" menu after a standard installation. Alternatively, HIPE can be started from a command line.

hipe

For more details on HIPE, please review the HIPE Introduction section in the Herschel DP HowTos docuument.

Chapter 2. Accessing the Raw Data

2.1. Accessing the Data

The Raw Data Extraction step is the first step in the SPIRE data processing pipeline. The purpose of this step is to extract the telemetry data (specified by a user selected range) from a database and to compile them into a set of Level-0 SPIRE data products for the use of further data processing steps.

In addition to producing the Level 0 products. It also produces the DPU reset history calibration product.

The Herschel Science Archive (HSA) is the main repository for the observational data products from Herschel. It is available via a web interface to the Herschel Science Centre. But it is also available directly from within a DP session using HIPE. For more information on accessing data sets via the HSA or through HIPE, please review the Herschel DP HowTo on accessing and retrieving data. This document is accessible through the Documentation button in HIPE.

Chapter 3. Processing the Raw Data: The Engineering Conversion

3.1. Introduction

This part of the SPIRE processing pipeline is common to both the photometer and spectrometer and converts the Level 0 raw data products into the processed Level 0.5 data products. The Pipeline to convert the raw data, i.e. the Level 0 Product, into the processed Level 0.5 Product is shown in Figure

Figure 3.1. The Engineering Conversion Pipeline takes the raw Level 0 Products and converts the ADU counts into meaningful units (volts, etc).

This module is composed by several tasks. Each task can be executed as an independent step. The module provides also a main task, named EngConversionTask, that calls all the tasks of this module in the correct sequence.

The usage of the EngConversionTask instead of single internal tasks is recomanded because the processing flowchart of this step is quite complex. Moreover, the internal tasks work only on single products while the EngConversionTask can process a complete set of products in one single execution.

Note that an instance of all the tasks of this module is created at the start-up of HIPE, so you can use these tasks as fuctions, whitout the need of importing and initializing them.

3.2. Running the *Engineering Conversion* **Pipeline**

3.2.1. Module Description

The *Engineering Conversion* Pipeline is responsible for the processing of Level 0 products to Level 0.5 products.

3.2.2. Input Data Products

level0	Input Level-0 SPIRE Data Products wrapped in a Level0 Context. If you want convert in one single step all the level 0 products contained in an ObservationContex, use this parameter to give as input the Level0Context contained in the ObservationContext. This is the primary input of the task.	
level0block	Input Level-0 SPIRE Data Products wrapped in a Level0BlockContext. Use this parameter if you want to give as input level 0 products belonging to a single Building Block.	
rawData	Input Level-0 SPIRE Data Products as a map. Use this parameter if you want to give as input level 0 products which are not ordered in building blocks.	

3.2.3. Output Data Products

Level 0.5 products	Level 0.5 products The output products of this module are the Level
	0.5 products.

3.2.4. Input Calibration Products

cal

Spire Calibration Context. You can use this parameter to give to the task all calibration products warped in a calibration context. If a calibration product is provided using the specific parameter (see below), the corresponding product contained in the calibration context is ignored.

resetHist	DPU reset history calibration product.
offsetHist	Detector offset history calibration product.
chanGain	Channel Gain calibration product.
bolPar	Bolometer parameters calibration product.
chanMask	Channel Mask calibration product.
chanNum	Channel Number Mapping calibration product.
chanNomRes	Channel Nominal Resistances calibration product.

3.2.5. How to use the *Engineering Conversion* Pipeline

3.2.6. Parameter Options

Users can set the following parameters of the module:

```
tempStorage Flag that determines whether to use (or not to use) a temporary
storage (using the "ProductSink") during the processing. If this
flag is set to true, the task will save the processed products into
the ProductSink. This allows the processing of large observations
without the need for excessive memory usage. Note that the
ProductSink must be initialised before executing the task, if this flag
is set to true.
```

3.2.7. Examples

In the following example, the EngConversionTask is used to convert all level 0 products of an ObservationContext.

```
IA>> obs=.... #obs is the ObservationContext
IA>>
IA>> level0_5=engConversion(level0=obs.level["level0"], cal=obs.calibration)
IA>>
IA>> obs.level["level0_5"]=level0_5 #here we put the result into the
ObservationContext
```

Since level0 is the first parameter of the EngConversionTask, we can simplify the sintax in:

IA>> level0_5=engConversion(obs.level["level0"], cal=obs.calibration)

The following example is similar to the previous but here we use a ProductSink.

tmppool=TemporalPool.createTmpPool("tmppool",TemporalPool.CloseMode.DELETE_ON_CLOSE)
 ProductSink.getInstance().productStorage=ProductStorage(tmppool)

In the following example, we convert the level 0 products of a single building block and we request the task to use a specific Channel Mask calibration product.

```
IA>> obs=.... #obs is the ObservationContext
IA>> obsid=obs.obsid
IA>> bbid=OxA0300001L
IA>> block=obs.level["level0"].get(obsid,bbid)
IA>> chanMask=....
IA>> level0_5=engConversion(level0block=block, cal=obs.calibration,
chanMask=chanMask)
IA>>
IA>> obs.level["level0_5"]=level0_5 #here we put the result into the
ObservationContext
```

3.2.8. Error messages

TBW. TBW.

3.3. The *Engineering Conversion* Pipeline Step-by-Step: Converting Level 0 Products to Level 0.5 format

3.3.1. Module Description

The *Format Conversion* Module implements the reformat of Level 0 products into Level 0.5 products format.

3.3.2. Input Data Products

rawData Input Level-0 SPIRE Data Product to be reformatted.

3.3.3. Output Data Products

Level 0.5 style products

Level 0.5 style products The data is reformatted into the style of Level 0.5 products.

3.3.4. Input Calibration Products

3.3.5. How to use the Format Conversion Module

The FormatConversionTask

3.3.6. Parameter Options

Users can set the following parameters of the module:

3.3.7. Examples

In the following example, we reformat a level 0 product into level 0.5 format.

```
IA>> obs=.... #obs is the ObservationContext
IA>> obsid=obs.obsid
IA>> bbid=0xA0300001L
IA>> rpdt=obs.level["level0"].get(obsid,bbid).rpdt # extract the RPDT of
building block 0xA0300001
IA>>
IA>> pdt=formatConversion(rawData=rpdt) # or you can do also
pdt=formatConversion(rpdt)
```

3.3.8. Error messages

TBW. TBW.

3.4. The *Engineering Conversion* Pipeline Step-by-Step: Flagging out of range detectors

3.4.1. Module Description

The Flag Detectors Module iimplements the checking of ADC flags and truncation..

3.4.2. Input Data Products

rawData Input detector timeline to be processed.

3.4.3. Output Data Products

Level 0.5 style products Level 0.5 style products .

3.4.4. Input Calibration Products

3.4.5. How to use the Flag Detectors Module

The DetFlaggerTask task

3.4.6. Parameter Options

Users can set the following parameters of the module:

3.4.7. Examples

In the following example, we process a PDT.

```
IA>> obs=.... #obs is the ObservationContext
IA>> obsid=obs.obsid
IA>> bbid=0xA0300001L
IA>> rpdt=obs.level["level0"].get(obsid,bbid).rpdt # extract the RPDT of
building block 0xA0300001
IA>>
IA>> pdt=formatConversion(rpdt) # reformatting
IA>> pdt=detFlagger(pdt)
```

3.4.8. Error messages

TBW. TBW.

3.5. The *Engineering Conversion* Pipeline Step-by-Step: Masking Bad Detector Channels

3.5.1. Module Description

The Mask Bad Channels Module implements the masking of bad channels.

3.5.2. Input Data Products

data

Input detector timeline to be processed.

3.5.3. Output Data Products

Level 0.5 style products Level 0.5 style products .

3.5.4. Input Calibration Products

chanMask	Channel Mask calibration product.
chanNum	Channel Number Mapping calibration product.

3.5.5. How to use the *Mask Bad Channels* Module

The MaskBadChanTask implements the masking of bad channels.

3.5.6. Parameter Options

Users can set the following parameters of the module:

3.5.7. Examples

In the following example, we process a PDT using only the channel mask. The PDT doesn't contain disconnected channels.

```
IA>> obs=.... #obs is the ObservationContext
IA>> obsid=obs.obsid
IA>> bbid=0xA0300001L
IA>> rpdt=obs.level["level0"].get(obsid,bbid).rpdt # extract the RPDT of
building block 0xA0300001
IA>>
IA>> pdt=formatConversion(rpdt) # reformatting
IA>> pdt=detFlagger(pdt)
IA>> pdt=maskBadChan(pdt,chanMask=obs.calibration.phot.chanMask)
```

In the following example, we process a SDT using both the channel mask and the channel number mapping. The latter will be used to remove disconnected channels.

```
IA>> sdt=maskBadChan(sdt,chanMask=obs.calibration.spec.chanMask,chanNum=obs.calibration.spec.chanNum)
```

Note that if you use a spectrometer calibration product on a photometer detector timeline (or viceversa) the task will throw a SignatureException

3.5.8. Error messages

TBW. TBW. **TBW.** TBW.

3.6. The *Engineering Conversion* Pipeline Step-by-Step: Time Conversion

3.6.1. Module Description

The Time Conversion Module implements the time conversion and reordering.

3.6.2. Input Data Products

rawData

Input timeline to be processed.

3.6.3. Output Data Products

Level 0.5 style products Level 0.5 style products .

3.6.4. Input Calibration Products

resetHist

DPU reset history calibration product.

3.6.5. How to use the TimeConvReordTask

 $The \verb"TimeConvReordTask" implements the time conversion and reordering.$

3.6.6. Parameter Options

Users can set the following parameters of the module:

3.6.7. Examples

In the following example, we process a PDT.

```
IA>> obs=.... #obs is the ObservationContext
IA>> obsid=obs.obsid
IA>> bbid=0xA0300001L
IA>> rpdt=obs.level["level0"].get(obsid,bbid).rpdt # extract the RPDT of
building block 0xA0300001
IA>>
IA>> pdt=formatConversion(rpdt) # reformatting
IA>> pdt=detFlagger(pdt)
IA>> pdt=maskBadChan(pdt,chanMask=obs.calibration.phot.chanMask)
```

IA>> pdt=timeConvReord(pdt,resetHist=obs.calibration.resetHist)

In the following example, we process a Raw Nominal Housekeeping Timeline. Note that in this case we don't need a Reset History calibration product.

```
IA>> obs=.... #obs is the ObservationContext
IA>> obsid=obs.obsid
IA>> bbid=0xA0300001L
IA>> rpdt=obs.level["level0"].get(obsid,bbid).rnhkt # extract the RNHKT of
building block 0xA0300001
IA>>
IA>> nhkt=formatConversion(rnhkt) # reformatting
IA>> nhkt=timeConvReord(nhkt)
```

3.6.8. Error messages

TBW. TBW.

TBW. TBW.

3.7. The *Engineering Conversion* Pipeline Step-by-Step: Calculating the JFET Voltages

3.7.1. Module Description

The *Calculate JFET Voltages* Module implements the conversion of detector signals from ADUs to JFET voltages.

3.7.2. Input Data Products

rawData	Input detector timeline to be processed.
nhkt	Nominal Housekeeping Timeline. If the NHKT is provided, the bias frequency is taken from this product and not from the metadata of the detector timeline (if it was set).

3.7.3. Output Data Products

Level 0.5 style products Level 0.5 style products .

3.7.4. Input Calibration Products

offsetDetector offset history calibration product.chanGainChannel gains calibration product. This parameter is mandatory.

3.7.5. How to use the Calculate JFET Voltages Module

The CalcJfetVoltTask implements the conversion of detector signals from ADUs to JFET voltages.

3.7.6. Parameter Options

biasFreq

The bias frequency in Hz. If this value is set, the nhkt parameter is ignored as well as the bias frequency value in the input detector timeline metadata.

3.7.7. Examples

In the following example, we process a Photometer Detector Timeline, providing the offset history, the channel gain and the housekeeping. In this case, the voltage will be computed using equation (2) of the SPIRE Pipeline Description document. The bias frequency will be obtained from the Nominal Housekeeping Timeline.

```
IA>> pdt=... #pdt is a Photometer Detector Timeline
IA>> offset=... #the offset history
IA>> chanGain=... #the channel gain table
IA>> nhkt=... # Nominal Housekeeping Timeline
IA>>
IA>> pdt=calcJfetVolt(pdt, offset=offset, chanGain=chanGain, nhkt=nhkt)
```

In the following example, we process a Photometer Detector Timeline, providing the offset history, the channel gain and a bias frequency. As before, the voltage will be computed using equation (2) of the SPIRE Pipeline Description document.

```
IA>> pdt=... #pdt is a Photometer Detector Timeline
IA>> offset=... #the offset history
IA>> chanGain=... #the channel gain table
IA>>
IA>> pdt=calcJfetVolt(pdt, offset=offset, chanGain=chanGain, biasFreq=131.7)
```

As the previous example, but setting the bias frequency in the input PDT.

```
IA>> pdt=... #pdt is a Photometer Detector Timeline
IA>> offset=... #the offset history
IA>> chanGain=... #the channel gain table
IA>> pdt.biasFreq=131.7
IA>> pdt=calcJfetVolt(pdt, offset=offset, chanGain=chanGain)
```

As the previous example, but without providing the offset history. In this case the voltage will be computed assuming an offset of 0 for all channels.

```
IA>> pdt=... #pdt is a Photometer Detector Timeline
IA>> chanGain=... #the channel gain table
IA>> pdt.biasFreq=131.7
IA>> pdt=calcJfetVolt(pdt, chanGain=chanGain)
```

3.7.8. Error messages

TBW. TBW.

3.8. The *Engineering Conversion* Pipeline Step-by-Step: Calculating the bolometer RMS voltage and resistance

3.8.1. Module Description

The *Calculate Bolometer RMS Voltage* Module implements the calculation of bolometer RMS voltage and resistance from the JFET voltages.

3.8.2. Input Data Products

data	Input detector timeline to be processed.
nhkt	Nominal Housekeeping Timeline. The NHKT is needed to get the
	bias amplitudes. It is a mandatory input.

3.8.3. Output Data Products

Level 0.5 style products Level 0.5 style products .

3.8.4. Input Calibration Products

chanNum	Channel number mapping calibration product.
chanGain	Channel gains calibration product. This parameter is mandatory.
balPar	Bolometer parameters calibration product.
chanNomRes	Channel nominal resistances calibration product.

3.8.5. How to use the Calculate JFET Voltages Module

The CalcRmsVoltResTask implements the calculation of RMS bolometers voltage and resistance from JFET voltages.

3.8.6. Parameter Options

Users can set the following parameters of the module:

3.8.7. Examples

In the following example, we process a Photometer Detector Timeline, providing only the channel gain and the housekeeping. In this case only the voltages can be computed; this will be done with the equation $V_{d-RMS}=V_{JFET-RMS}/H_{JFET}$.

```
IA>> pdt=... #pdt is a Photometer Detector Timeline
IA>> chanGain=... #the channel gain table
IA>> nhkt=... # Nominal Housekeeping Timeline
IA>>
```

IA>> pdt=calcRmsVoltRes(pdt, chanGain=chanGain, nhkt=nhkt)

In the following example, we also provide the bolometer parameters table. Voltages and resistances will be computed using equations in section 3.8 of the SPIRE Pipeline Description document; but

assuming a phase shift $\Delta \phi$ =0. Since the channel number mapping is not provided, the tasks assumes that thermal control channels are those with a name starting as "PTC" or "PMWP". For thermal control channels, the resistance is set to NaN, and the voltage is simply V_{d-RMS}=V_{JFET-RMS}/H_{JFET}.

```
IA>> pdt=... #pdt is a Photometer Detector Timeline
IA>> nhkt=... # Nominal Housekeeping Timeline
IA>> chanGain=... #the channel gain table
IA>> bolPar=... #the bolometer parameters table
IA>>
IA>> pdt=calcRmsVoltRes(pdt, chanGain=chanGain, nhkt=nhkt, bolPar=bolPar)
```

In the following example, we also provide the channel nominal resistances and the channel number mapping product. Voltages and resistances and phase shifts will be computed using equations in section 3.8 of the SPIRE Pipeline Description document. Thermal control channels names will be taken form the channel number mapping product.

```
IA>> pdt=... #pdt is a Photometer Detector Timeline
IA>> nhkt=... # Nominal Housekeeping Timeline
IA>> chanGain=... #the channel gain table
IA>> bolPar=... #the bolometer parameters table
IA>> chanNomRes=... #the channel nominal resistances table
IA>> chanNum=... #the channel number mapping table
IA>> lA>> pdt=calcRmsVoltRes(pdt, chanGain=chanGain, nhkt=nhkt, bolPar=bolPar, chanNum=chanNum, chanNomRes=chanNomRes)
```

3.8.8. Error messages

TBW. TBW.

TBW. TBW.

3.9. The *Engineering Conversion* Pipeline Step-by-Step: Adding Pointing Meta-Data Information to the Data

3.9.1. Module Description

The Add Pointing Meta-Data Module implements the computation of pointing metadata parameters.

3.9.2. Input Data Products

data	Input detector timeline to be processed.
nhkt	Nominal Housekeeping Timeline.

3.9.3. Output Data Products

Level 0.5 style products Level 0.5 style products .

3.9.4. Input Calibration Products

No calibration data are needed.

3.9.5. How to use the Add Pointing Meta-Data Module

The *Add Pointing Meta-Data* Module implements the computation of pointing metadata parameters by the AddPointingParamTask task.

3.9.6. Input Control Parameters

step

The STEP value. If this value is set, the nhkt is ignored.

3.9.7. Examples

In the following example, we process a Photometer Detector Timeline, providing the housekeeping.

```
IA>> pdt=... #pdt is a Photometer Detector Timeline
IA>> nhkt=... # Nominal Housekeeping Timeline
IA>>
IA>> pdt=addPointingParam(pdt, nhkt=nhkt)
```

In the following example, we provide directly the STEP value.

```
IA>> pdt=... #pdt is a Photometer Detector Timeline
IA>>
IA>> pdt=addPointingParam(pdt, step=12345)
```

3.9.8. Error messages

TBW. TBW.

Chapter 4. Processing Data with the Photometer Large Scan Map Pipeline

4.1. Introduction

A detailed description of the photometer pipeline design can be found in

Griffin M., Dowell D., Lim T., Bendo G., Bock J., Cara C., Castro-Rodriguez N., Chanial P., Clements D., Gastaud R., Guest S., Glenn J., Hristov V., King K., Laurent G., Lu N., Mainetti G., Morris H., Nguyen H., Panuzzo P., Pearson C., Pinsard F., Pohlen M., Polehampton E., Rizzo D., Schulz B., Schwartz A., Sibthorpe B., Swinyard B., Xu K., Zhang L., The Herschel-SPIRE Photometer Data Processing Pipeline, Proc. SPIE, Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter 7010, (2008)

Figure 4.1. Flowchart for the Photometer Scan Map Pipeline.

4.2. Conversion of the BSM telemetry into Angles on the Sky

4.2.1. Module Description

The *Compute BSM Angles* Module converts the angles of the Beam Steering Mirror (BSM) to physical units (decimal degrees on the sky). The method is simple; interpolation from a calibration table containing the two converted angles (spacecraft Y and Z axes) versus the two raw signal values (in the BSM chop and jiggle axes). Note that for scan map observations there is no chopping, and therefore there is no need to create a "chop-jiggle timeline" as in the case of Jiggle observations. However, it is still necessary to create a BSM angle timeline because it is important to know where the BSM is pointing even if it supposed be at a fixed position. For scan map observations, the instrument does not produce BSM telemetry packets at all, but rather the input comes from the Nominal Housekeeping Timeline (NHK) which contains the BSM sensor signal values at a lower sampling rate.

4.2.2. Input Data Products

NHKT

Nominal House Keeping Timeline This contains the timeline of the BSM sensor signal values (with the chop axis aligned with the spacecraft Y-direction and the jiggle axis aligned with the Zdirection), in raw format in the chopsenssig and jiggsenssig columns.

4.2.3. Output Data Products

BAT

BSM Angles Timeline It contains timelines of angular distance on the sky from the BSM rest position in spacecraft Y and Z coordinates. For the definition see: <u>http://www.spire.rl.ac.uk/icc/</u> product_definitions/

4.2.4. Input Calibration Products

SCalPhotBsmPos**BSM Position Table** This Table contains BSM sensor signal in raw units (in the chop and jiggle directions) and the angular distance on the sky from its rest position (in spacecraft Y and Z coordinates). There is one table for the Photometer and another for the Spectrometer, because the reference BSM position can be different. For the product definition see: http://www.spire.rl.ac.uk/icc/product_definitions/

4.2.5. How to use the *Compute BSM Angles* Module

The module takes as input the NHKT, and returns as output the BAT timeline, as descibed above.

4.2.6. Parameter Options

There are no parameter options.

4.2.7. Examples

bat = calcBsmAngles(nhkt, bsmPos=obs.calibration.phot.bsmPos)

The process is shown pictorially in the figure below. Note that the interpolation method is not a parameter for the moment.

Figure 4.2. Creation of BSM Angles Timeline by the Compute BSM Angles module in the Scan Map Pipeline.

4.2.8. Error messages

Error in calcBsmAngles Task: the input product is not a beam switch mirror timeline nor a housekeeping. The input product type was checked and found not to be a BSM; timeline or a NHKT;. The module can only operate on these two product types.

4.3. SPIRE Pointing Product

4.3.1. Module Description

This class implements the Spire Pointing Product.

4.3.2. Input Observational Data Products

The Spire Pointing Product is a context containing the Herschel Pointing Product, the SIAM product, the DetAngOff product and the Bsm Angle Timeline. This class allows the user to obtain the position of one or more SPIRE detectors on the sky at a given time.

No product definition document available yet.

4.3.3. Output Data Products

The module outputs a Spire Pointing Product.

See the Herschel Products Definition Document or alternatively <u>http://www.spire.rl.ac.uk/icc/</u>product_definitions/.

4.3.4. Input Calibration Products Required

No calibration products required.

4.3.5. Parameter options

Users can set the following parameters of the Pointing Product module:

4.3.6. Examples

Creation:

```
spp =
createSpirePointingProduct(hpp=obs.photsiliary.pointing,siam=obs.photsiliary.siam,
detAngOff=obs.calibration.phot.detAngOff, bat=bat)
```

Obtain the Gyro propagated sky position of the PSWE8 and PSWE4 at a given time

```
pdt=obs.level0_5.getProduct(5).pdt
ra,dec=spp.getSkyPosition(["PSWE8","PSWE4"],pdt.sampleTime[0],"gyro")
```

4.3.7. Error messages

4.4. Deglitching the Timeline Data

4.4.1. Module Description

The *First Level Deglitcing* Module removes glitches due to cosmic ray hits or other impulse-like events. The basic assumption is that the glitch signature is similar to a Dirac delta function. This process is composed of two steps: the first step implements a wavelet-based local regularity analysis to detect glitch signatures in the measured signal; the second step locally reconstructs a signal free of such glitch signatures.

The wavelet method for deglitching is described in detail in;

- 1. Ordenovic C., Surace C., Torresani B., Llebaria A., Detection of glitches and signal reconstruction using Hoelder and wavelet analysis, Statistical Methodology, 2008, Volume 5, Issue 4, 373-386
- 2. Ordenovic C., Surace C., Torresani B., Llebaria A., Baluteau J.P., Use of a local regularity analysis by a wavelet analysis for glitch detection, SPIE, 2005, 5909, 556-567

4.4.2. Input Data Products

PDT;

Photometer Detector Timeline The input PDT product contains timelines for each photometer detector for each observation building block.

4.4.3. Output Data Products

PDT;

Spectrometer Detector Timeline The output PDT product contains deglitched timelines for each spectrometer detector for each observation building block.

4.4.4. Input Calibration Products

No calibration data are needed.

4.4.5. How to use the First Level Deglitching Module

4.4.6. Parameter Options

The first level deglitching task employs a complex algorithm, based on a continuous wavelet transform with a Mexican Hat wavelet and subsequent complex processing for a local regularity analysis. A thorough understanding of this algorithm is required in order to make good choices when setting the involved parameters. Users are strongly discouraged from changing the default value of these parameters unless they have closely studied the extended documentation for this task.

scaleMin, scaleMax, and voices	scaleMin/scaleMax are the minimum/maximum values of the range of wavelet scales used for the linear fit to the Wavelet Transform Modulus Maxima Lines. scaleMin and scaleMax should both be positive integers and scaleMin should be less than scaleMaxe. The current best estimation for the Scanmap Pipeline are values of scaleMin = 1, scaleMax= 8 and voices = 5 voices defines how many wavelet scales are calculated for a range of one within the scale range. The size of the range defined by scaleMin and scaleMax times the value of scaleInterval is directly proportional to execution time. Both should therefore be kept at the minimum required to accurately determine the Holder index.
holderMax and holderMin	holderMax/hmin are the minimum/maximum values of a real data type of the range of slopes which are interpreted as glitch indicators. The range should include -1 and holderMax should be larger than hmin. The current best estimation for the Scanmap Pipeline are values of holderMax = -0.3 and holderMin = -1.9. The range defined by holderMax and hmin allows to select between a more sensitive glitch detection to detect even weak glitches, or a more conservative glitch detection to avoid false positives, i.e. samples that are flagged as glitches which are arguably due to other causes.
correlationThreshold	This parameter relates to the square of the correlation coefficient of the linear fit to the Wavelet Transform Modulus Maxima Line. It sets a lower threshold of the correlation to enforce a minimum goodness of the fit to the data. This real number should be between 0 and 1, and is usually selected closer to 1. A value of 0 removes any selection criterion within the algorithm for goodness of fit. A value of 1 will make the criterion so stringent that only a perfect fit will be accepted. The current best estimation for the Scanmap Pipeline are values of correlationThreshold = 0.7. The value selected

for correlationThreshold allows to select between a more sensitive glitch detection to detect even weak glitches, or a more conservative glitch detection to avoid false positives, i.e. samples that are flagged as glitches which are arguably due to other causes.

4.4.7. Examples

4.4.8. Error messages

severe :unable to store output product. The task failed to write the output product.

warning :Unable to perform reconstruction. The task failed to reconstruct signal samples.

severe :unable to perform wavelet decomposition.. The task failed to identify glitches because the signal could not be decomposed into its wavelet components.

4.5. Removing Electrical Crosstalk from the Timeline Data

4.5.1. Module Description

The *Electrical Cross Talk Correction* module removes electrical crosstalk from the Detector Timelines. The module multiplies a crosstalk removal matrix with the signal vector for each time sample and returns Detector Timelines which are corrected for electrical crosstalk.

4.5.2. Input Data Products

PDT

Photometer Detector Timeline The input PDT product contains timelines for each detector for each observation building block.

4.5.3. Output Data Products

PDT

Photometer Detector Timeline The output PDT product contains timelines for each detector for each observation building block with the signal corrected for electrical crosstalk.

4.5.4. Input Calibration Products

SCalElecCross **Electrical Crosstalk Matrix** There are three electrical crosstalk matrices one for each of the SPIRE photometer arays. They contain entries for the electrical crosstalk

between the detectors of each one of the two detector arrays. In the absence of any crosstalk, the matrices contain unity elements in the diagonals and zero elements anywhere else.

4.5.5. How to use the *Remove Electrical Crosstalk* Module

It should be noted that, prior to launch, no electrical crosstalk was observed. During the fabrication of the warm read-out electronics, spot-checking showed extremely low levels of electrical crosstalk. An additional analysis was performed for the detector arrays of the SPIRE imaging photometer using data from the ground-based test campaigns. This analysis checked whether the random instances of detectors absorbing ionizing radiation lead to reproducible signals in other detectors. Again, this analysis has shown no measurable evidence for electrical crosstalk. Close examination of the post-launch performance will be required to decide whether the detector arrays suffer significant electrical crosstalk. Until then, this module simply multiplies the detector timelines by the identity matrix.

4.5.6. Parameter Options

N/A. There are no options for this module.

4.5.7. Examples

Assuming that pdt is an PDT; product and obs an observation context:

```
pdt = elecCrossCorrection(pdt, elecCross=obs.calibration.phot.elecCross)
```

4.5.8. Error messages

TBW. TBW.

TBW. TBW.

4.6. Correcting for Electrical Filter Response

4.6.1. Module Description

The *Correction for Electrical Filter Response* module is responsible for removing the effects of the electrical filter (Low pass filter) transient response. This is achieved by:

- 1. Transforming the signal timelines of individual detectors in to the Fourier domain
- 2. Dividing by the electrical filter transfer function (described in AD05, section 3.5.3)
- 3. Transforming the result back to the time domain

4.6.2. Input Data Products

```
PDT
```

Photometer Detector Timeline The input PDT product contains timelines for each detector for each observation building block.

4.6.3. Output Data Products

PDT

Photometer Detector Timeline The output PDT product contains timelines for each detector for each observation building block with the signal corrected for electrical filter response.

4.6.4. Input Calibration Products

SCalPhotElecFilt**Electrical Filter Correction** The calibration product provides information on the parameters describing the bolometer transfer function (AD01, section 4.1.5).

4.6.5. How to use the *Correction for Electrical Filter Response* Module

4.6.6. Parameter Options

N/A. There are no options for this module.

4.6.7. Examples

```
IA>> from
herschel.spire.ia.pipeline.phot.elecfiltcorr import CorrElecFiltResponseTask
IA>>
IA>>
Mytask=CorrElecFiltResponseTask.CorrElecFiltResponseTask()
IA>> PDT_IN=Mytask(PDT_IN) # where PDT_IN is the
input Phot. Det. Timeline product
IA>> #The above command will correct the timelines
included in the input product
IA>> #for the effects of the electrical filter.
```

4.6.8. Error messages

TBW. TBW.

TBW. TBW.

4.7. Converting the Detector Timelines into Flux Units

4.7.1. Module Description

The *Flux Conversion* Module applies a correction for the nonlinear bolometer responsivity to a photometer detector voltage time line V (i.e., PDT) by integrating the function, f(V) = K1 + K2/(V-K3), from Vo to V, where the parameters Vo, K1, K2, and K3 are given for each and every detector
channel in a calibration product (SCalPhotFluxConv(). The result is an in-beam flux density timeline.

4.7.2. Input Data Products

PDT **Photometer Detector Timeline** Photometer Detector Timeline (PDT) with bolometer signal in electrical units (i.e. Volts)

4.7.3. Output Data Products

PDT

Photometer Detector Timeline Photometer Detector Timeline (PDT) product with bolometer signal in units of Jy

4.7.4. Input Calibration Products

ScalPhotFLuxCo**iPhotometer Flux Conversion and Non-linearity Correction Coefficients** contains, for each bolometer channel, V0, K1, K2, K3 and their uncertainties, as well as Vmin and Vmax, the calibrated limiting bolometer voltages.

4.7.5. How to use the Flux Conversion Module

4.7.6. Parameter Options

There are no parameter options for this module.

4.7.7. Examples

Jython Usage Example: Assuming a detector timeline of SPIRE photometer data processed to Level 0.5, with bolometer signal data in units of volts PDT and a calibration product, fluxConv.

outputfluxproduct = photFluxConversion(pdt,fluxConv=obs.calibration.phot.fluxConv)

4.7.8. Error messages

Error messages generated:

If the calculations result in taking the log of a negative number, the exception will be noted and the point generating the exception will be flagged in the output product mask.

4.8. Removing Correlated Noise from the Detector Timelines

4.8.1. Module Description

The *Remove Correlated Noise* Module subtracts low frequency (< 1Hz) noise, caused by variations of the detector array bath temperature, from scan mapping data time lines. The module is based on

the empirical correlations between detectors and thermistors (or, in case of high bias voltages when thermistors are saturated, the correlations between detectors and dark pixels). The module shall be run after the correction for any nonlinearity (the flux conversion module).

4.8.2. Input Data Products

PDT

Photometer Detector Timeline Photometer Detector Timeline (PDT) with bolometer signal converted to flux units (e.g. Jy.) by Photometer Flux Conversion Module.

4.8.3. Output Data Products

PDT

Photometer Detector Timeline Data timelines in the units of Jy, corrected for temperature drift.

4.8.4. Input Calibration Products

ScalPhotTempDri**Hemperature Drift Correction Parameter Table** A product containing for each detector array, a thermistor selection flag, the base voltage values for each thermistor, the errors for those values, and a validity calibration flag for those values. It contains for each bolometer channel, correction coefficients A1, A1 error, B1, B1 error, AB1 flag (all for thermistor 1) and similar values for thermistor 2.

4.8.5. How to use the *Remove Correlated Noise* Module

4.8.6. Parameter Options

Users can set the following parameters of the module:

timeSpan

the timeSpan (in sec) used for averaging the thermistor timeline prior to performing spline function smoothing. Its default value is 5 (set within the task itself).

4.8.7. Examples

Jython Usage Example: Assuming a detector timeline of SPIRE photometer data, PDT processed by the Photometer Flux Conversion Module with bolometer signal data in units of Janskys. A tempdrift calibration product, tempDrift.

```
pdt=temperatureDriftCorrection(pdt,
tempDriftCorr=obs.calibration.phot.tempDriftCorr)
```

4.8.8. Error messages

TBW. None

TBW. None

4.9. Correcting for the Bolometer Time Response

4.9.1. Module Description

The *Bolometer Time Response Correction* Module is responsible for removing the effects of the bolometer transient response. This is achieved by:

- 1. Transforming the signal timelines of individual detectors in to the Fourier domain
- 2. Dividing by the bolometer transient response transfer function (described in AD05, section 4)
- 3. Transforming the result back to the time domain

4.9.2. Input Data Products

PDT

Photometer Detector Timeline The input PDT product contains timelines for each detector for each observation building block.

4.9.3. Output Data Products

PDT

Photometer Detector Timeline The output PDT product contains timelines for each detector for each observation building block with the signal corrected for bolometer time response.

4.9.4. Input Calibration Products

ScalPhotDetTime**Photometer Detector Time Constants** Information on the parameters describing the bolometer transfer function will be provided by the(ScalPhotDetTimeConst) calibration product (AD01, section 4.1.8).

4.9.5. How to use the *Bolometer Time Response Correction* Module

4.9.6. Parameter Options

Users can set the following parameters of the module:

4.9.7. Examples

```
IA>> from
herschel.spire.ia.pipeline.phot.bolorespcorr import CorrBolTimeResponseTask
IA>>
IA>>
Mytask=CorrBolTimeResponseTask.CorrBolTimeResponseTask()
IA>>
IA>> PDT_IN=Mytask(PDT_IN) # where PDT_IN is the
input Phot. Det. Timeline product
IA>> #The above command will correct the timelines
included in the input product
IA>> #for the effects of the bolometer transient
response.
```

4.9.8. Error messages

TBW. TBW.

TBW. TBW.

4.10. Removing the Effects of Optical Crosstalk from the Data

4.10.1. Module Description

The Optical Crosstalk Removal Module

4.10.2. Input Data Products

Input Product name here Input Product name here and description to follow here

4.10.3. Output Data Products

Output Product Here Output Product Name Here and description to follow here

4.10.4. Input Calibration Products

Calibration Calibration Product Name Here and description to follow here Product Name Here

4.10.5. How to use the *Optical Crosstalk Removal* Module

4.10.6. Parameter Options

Users can set the following parameters of the module:

4.10.7. Examples

pdt = photOptCrossCorrection(pdt, optCross=obs.calibration.phot.optCross)

4.10.8. Error messages

4.11. Adding Positional Information (WCS) to the Data

4.11.1. Module Description

The Associate Sky Position Module

4.11.2. Input Data Products

Input Product name here Input Product name here and description to follow here

4.11.3. Output Data Products

Output Product Here Output Product Name Here and description to follow here

4.11.4. Input Calibration Products

Calibration Calibration Product Name Here and description to follow here Product Name Here

4.11.5. How to use the Associate Sky Position Module

4.11.6. Parameter Options

Users can set the following parameters of the module:

4.11.7. Examples

4.11.8. Error messages

TBW. TBW.

TBW. TBW.

4.12. Converting the On-Board Time to International Time Standards

4.12.1. Module Description

The Time Correction Module

4.12.2. Input Data Products

Input Product name here Input Product name here and description to follow here

4.12.3. Output Data Products

Output Product Here

Output Product Name Here and description to follow here

4.12.4. Input Calibration Products

Calibration Calibration Product Name Here and description to follow here Product Name Here

4.12.5. How to use the *Time Correction* Module

4.12.6. Parameter Options

Users can set the following parameters of the module:

4.12.7. Examples

4.12.8. Error messages

TBW. TBW.

TBW. TBW.

4.13. Creating Image Scan-Maps

4.13.1. Module Description

The *Map Making* provides the map-making routines used by the SPIRE photometer pipeline. Scan mode timelines are combined to create a map using a choice of two algorithms: direct coaddition (NaiveScanMapperTask) and maximum-likelihood estimate (MadScanMapperTask). All output maps are North-oriented.

4.13.2. Input Observational Data Products

PSP

Photometer Scan Product The NaiveScanMapperTask and MadScanMapperTask take one Photometer Scan Product (PSP) or a context of PSP as input. For a definition, see:

http://www.spire.rl.ac.uk/icc/product_definitions/

4.13.3. Output Data Products

All map-making tasks returns the map associated to the bolometer array specified by the user. The map is stored as a SimpleImage. For a definition, see:

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/ia/dataset/image/ SimpleImage.html

4.13.4. Input Calibration Products Required

The MadScanMapperTask requires a Dtector Noise Spectrum for thephotometer channel noise. For a definition, see:

http://www.spire.rl.ac.uk/icc/product_definitions/

For the NaiveApppMapperTask there are no calibration files required for the Jiggle Map NaiveApppMapperTask

4.13.5. How to use the Map Making Module

The module contains 3 mappers: 2 for the scan mode (NaiveScanMapperTask and MadScanMapperTask) and 1 for the jiggle mode (NaiveApppMapperTask).

The input parameters are a context of Photometer Detector Timelines (PointedProduct) for the scan mode and an Averaged PointedPhotometer Product for the jiggle mode.

The user should set the array keyword to "PSW", "PMW" or "PLW" to select the bolometer array to be processed. The optional keyword maxmemory can be used to increase the memory to be allocated for map-making and avoid slowing down by limiting I/O. The termination criteria for the task MadScanMapperTask can also be modified: the keywords maxiterationpcg and maxrelerrorpcg specify the maximum number of iterations and the maximum allowable residual in the Preconditionned Conjugate Gradient method.

The mappers only compute one map at a time, for the bolometer array specifed by the user. The output map is stored as a SimpleImage product, for which convenient visualisation tools are available (see examples below) within HCSS.

The mappers use temporary files to store the image coordinates (X,Y). IOException will be thrown is these temporary files can not be written or read. Out of memory exception can occur if the size of the map is too large (because of limited resource or incorrect astrometry)

4.13.6. Parameter options

Users can set the following parameters of the Map Making module:

array	Name of the bolometer array to be processed The value of this parameter can be "PSW", "PMW" or "PLW". If not set, the default bolometer array is assumed to be "PSW".
resolution	Pixel size of the output map The value of this parameter is in arcseconds. If not set, the default values are 6", 10" and 14 for the PSW, PMW and PLW bolometer array.
maxmemory	Maximum memory in bytes to be used to hold the pointing matrix and the timeline in memory. If the allocated memory isn't large enough, processing time may be I/O limited. By default, 1GB is assumed.
maxiterationpcg	The maximum number of Preconditionned Conjugate Gradient (PCG) iterations before termination (MadScanMapperTask only). By default, the maximum number of iterations is 50.
maxrelerrorpcg	The largest allowable relative residual inPCG(MadScanMapperTask only). By default, its value is 1e-6.

4.13.7. Examples

For scan mode observations, the user has to provide a set of building blocks, organised as a Context of level-1 PointedProduct.

Here is an example in which the PointedProduct Context is obtained from the Observation Context

```
IA>> from herschel.spire.ia.pipeline.phot.scanmap import NaiveScanMapperTask
IA>> mapper = NaiveScanMapperTask()
IA>> scanCon=obs.levell.getScan()
IA>> pswl=mapper(scanCon, array='PSW')
IA>> Display(pswl)
```

To use the maximum-likelihood mapper (MADMap), the synthax is similar.

```
IA>> from herschel.spire.ia.pipeline.phot.scanmap import MadScanMapperTask
IA>> mapper = MadScanMapperTask()
IA>> psw2 = mapper(scanCon, array='PSW')
IA>> Display(psw2)
```

4.13.8. Error messages

4.14. Point Source Extraction

4.14.1. Module Description

The Point Source Extraction Module

4.14.2. Input Observational Data Products

4.14.3. Output Data Products

4.14.4. Input Calibration Products Required

4.14.5. How to use the Point Source Extraction Module

4.14.6. Parameter options

Users can set the following parameters of the Demodulation module:

4.14.7. Examples

4.14.8. Error messages

Chapter 5. Processing Data with the Photometer Jiggle Map Pipeline

5.1. Introduction

A detailed description of the photometer pipeline design can be found in

Griffin M., Dowell D., Lim T., Bendo G., Bock J., Cara C., Castro-Rodriguez N., Chanial P., Clements D., Gastaud R., Guest S., Glenn J., Hristov V., King K., Laurent G., Lu N., Mainetti G., Morris H., Nguyen H., Panuzzo P., Pearson C., Pinsard F., Pohlen M., Polehampton E., Rizzo D., Schulz B., Schwartz A., Sibthorpe B., Swinyard B., Xu K., Zhang L., The Herschel-SPIRE Photometer Data Processing Pipeline, Proc. SPIE, Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter 7010, (2008)

Processing Data with the Photometer Jiggle Map Pipeline

Figure 5.1. Flowchart for the Photometer Jiggle Map Pipeline.

5.2. Conversion of the BSM telemetry into Angles on the Sky

5.2.1. Module Description

The *Compute BSM Angles* Module converts the angles of the Beam Steering Mirror (BSM) to physical units (decimal degrees on the sky). The method is simple; interpolation from a calibration table containing the two converted angles (spacecraft Y and Z axes) versus the two raw signal values (in the BSM chop and jiggle axes).

5.2.2. Input Data Products

NHKT

Nominal House Keeping Timeline This contains the timeline of the BSM sensor signal values (with the chop axis aligned with the spacecraft Y-direction and the jiggle axis aligned with the Zdirection), in raw format in the chopsenssig and jiggsenssig columns.

5.2.3. Output Data Products

BAT

BSM Angles Timeline It contains timelines of angular distance on the sky from the BSM rest position in spacecraft Y and Z coordinates. For the definition see: <u>http://www.spire.rl.ac.uk/icc/product_definitions/</u>

5.2.4. Input Calibration Products

SCalPhotBsmPos**BSM Position Table** This Table contains BSM sensor signal in raw units (in the chop and jiggle directions) and the angular distance on the sky from its rest position (in spacecraft Y and Z coordinates). There is one table for the Photometer and another for the Spectrometer, because the reference BSM position can be different. For the product definition see: http://www.spire.rl.ac.uk/icc/product_definitions/

5.2.5. How to use the *Compute BSM Angles* Module

The module takes as input the NHKT, and returns as output the BAT timeline, as descibed above.

5.2.6. Parameter Options

There are no parameter options.

5.2.7. Examples

bat = calcBsmAngles(nhkt, bsmPos=obs.calibration.phot.bsmPos)

The process is shown pictorially in the figure below. Note that the interpolation method is not a parameter for the moment.

Processing Data with the Photometer Jiggle Map Pipeline

Figure 5.2. Creation of BSM Angles Timeline by the Compute BSM Angles module in the Scan Map Pipeline.

5.2.8. Error messages

Error in calcBsmAngles Task: the input product is not a beam switch mirror timeline nor a housekeeping. The input product type was checked and found not to be a BSM; timeline or a NHKT;. The module can only operate on these two product types.

5.3. SPIRE Pointing Product

5.3.1. Module Description

This class implements the Spire Pointing Product.

5.3.2. Input Observational Data Products

The Spire Pointing Product is a context containing the Herschel Pointing Product, the SIAM product, the DetAngOff product and the Bsm Angle Timeline. This class allows the user to obtain the position of one or more SPIRE detectors on the sky at a given time.

No product definition document available yet.

5.3.3. Output Data Products

The module outputs a Spire Pointing Product.

See the Herschel Products Definition Document or alternatively <u>http://www.spire.rl.ac.uk/icc/</u> product_definitions/.

5.3.4. Input Calibration Products Required

No calibration products required.

5.3.5. Parameter options

Users can set the following parameters of the Pointing Product module:

5.3.6. Examples

Creation:

```
spp =
createSpirePointingProduct(hpp=obs.photjiliary.pointing,siam=obs.photjiliary.siam,
detAngOff=obs.calibration.phot.detAngOff, bat=bat)
```

Obtain the Gyro propagated sky position of the PSWE8 and PSWE4 at a given time

```
pdt=obs.level0_5.getProduct(5).pdt
ra,dec=spp.getSkyPosition(["PSWE8","PSWE4"],pdt.sampleTime[0],"gyro")
```

5.3.7. Error messages

5.4. Extracting the Chop and Jiggle Positions from the BSM Timeline

5.4.1. Module Description

The *Extract Chop and Jiggle Positions* Module extracts from the raw values of the angles of the Beam Steering Mirror the position of the jiggle map and the chopper information. The BSM has a definite position, then move to another one. We have a start time and an end time for each position. The method is simple: each couple (chopper angle, jiggle angle) is compared to each position of the Operation calibration table with a tolerance. If it falls inside the rectangle defined by the tolerance, it is in this position, see figure below

Figure 5.3. BSM Operation Table

5.4.2. Input Data Products

BSMT

Beam Steering Mirror Timeline This contains the timeline of the positions of the two mirrors, the chopper and the jiggle mirror, in raw format. For the product definition see: <u>http://www.spire.rl.ac.uk/icc/</u>product_definitions/

5.4.3. Output Data Products

CJT

Chop Jiggle Timeline The final output of this module is Chopper Jiggle Timeline (CJT). It contains the start time and end time and the id of each consecutive jiggle map position. In addition, for debugging purpose, the converted values Y,Z of each jiggle map position is also stored. For the definition see: <u>http://www.spire.rl.ac.uk/icc/product_definitions/</u>

5.4.4. Input Calibration Products

SCalPhotBsmOp**BSM Operations Table** This Table contains BSM sensor signal in raw units (in chop and jiggle directions) for each point of each jiggle map (remark: a 7 points jiggle map has 14 points because of the two chopper positions, On/Off). There is one table for the photometer and another for the spectrometer, because the reference bsm position can be different. For the product definition see: ><u>http://www.spire.rl.ac.uk/</u> icc/product_definitions/

5.4.5. How to use the *Extract Chop and Jiggle Positions* Module

The module takes a EdpProduct object as input. This contains the timeline of the two angles of the mirror (chop and jiggle) in raw data (BSMT).

The module needs two calibration products BsmPos and BsmOps. The first contains information for converting the raw angles, and the second the positions of the jiggle map.

The task output is a Chop Jiggle Timeline which contains the start time, end time, and id of each position in the jiggle map (CJT).

5.4.6. Parameter Options

Users can set the following parameters of the module:

5.4.7. Examples

Assuming that bsmt is a BSMT product, bsmOps is BsmOps product, and bsmPos is a BsmPos product. products:

```
calcBsmFlags = calcBsmFlags()
cjt = calcBsmFlags(bsmt=bsmt, bsmOps=bsmOps, bsmPos=bsmPos)
```

Note that CJT contains converted angles for debugging. This should vanish, and so the BsmPos calibration product should not be needed anymore.

5.4.8. Error messages

TBW. TBW.

TBW. TBW.

5.5. Deglitching the Timeline Data

5.5.1. Module Description

The *First Level Deglitcing* Module removes glitches due to cosmic ray hits or other impulse-like events. The basic assumption is that the glitch signature is similar to a Dirac delta function. This process is composed of two steps: the first step implements a wavelet-based local regularity analysis to detect glitch signatures in the measured signal; the second step locally reconstructs a signal free of such glitch signatures.

The wavelet method for deglitching is described in detail in;

- 1. Ordenovic C., Surace C., Torresani B., Llebaria A., Detection of glitches and signal reconstruction using Hoelder and wavelet analysis, Statistical Methodology, 2008, Volume 5, Issue 4, 373-386
- 2. Ordenovic C., Surace C., Torresani B., Llebaria A., Baluteau J.P., Use of a local regularity analysis by a wavelet analysis for glitch detection, SPIE, 2005, 5909, 556-567

5.5.2. Input Data Products

PDT;

Photometer Detector Timeline The input PDT product contains timelines for each photometer detector for each observation building block.

5.5.3. Output Data Products

PDT;

Spectrometer Detector Timeline The output PDT product contains deglitched timelines for each spectrometer detector for each observation building block.

5.5.4. Input Calibration Products

No calibration data are needed.

5.5.5. How to use the First Level Deglitching Module

5.5.6. Parameter Options

The first level deglitching task employs a complex algorithm, based on a continuous wavelet transform with a Mexican Hat wavelet and subsequent complex processing for a local regularity analysis. A thorough understanding of this algorithm is required in order to make good choices when setting the involved parameters. Users are strongly discouraged from changing the default value of these parameters unless they have closely studied the extended documentation for this task.

scaleMin, scaleMax, and scaleInterval	scaleMin/scaleMax are the minimum/maximum values of the range of wavelet scales used for the linear fit to the Wavelet Transform Modulus Maxima Lines. scaleMin and scaleMax should both be positive integers and scaleMin should be less than scaleMaxe. The current best estimation for the Jiggle Pipeline are values of scaleMin = 1, scaleMax= 8 and scaleInterval = 5. scaleInterval defines how many wavelet scales are calculated for a range of one within the scale range. The size of the range defined by scaleMin and scaleMax times the value of scaleInterval is directly proportional to execution time. Both should therefore be kept at the minimum required to accurately determine the Holder index.
holderMax and holderMin	holderMax/hmin are the minimum/maximum values of a real data type of the range of slopes which are interpreted as glitch indicators. The range should include -1 and holderMax should be larger than hmin. The current best estimation for the Jiggle Pipeline are values of holderMax = -0.1 and holderMin = -1.6. The range defined by holderMax and hmin allows to select between a more sensitive glitch detection to detect even weak glitches, or a more conservative glitch detection to avoid false positives, i.e. samples that are flagged as glitches which are arguably due to other causes.
correlationThreshold	This parameter relates to the square of the correlation coefficient of the linear fit to the Wavelet Transform Modulus Maxima Line. It sets a lower threshold of the correlation to enforce a minimum goodness of the fit to the data. This real number should be between 0 and 1, and is usually selected closer to 1. A value of 0 removes any selection criterion within the algorithm for goodness of fit. A value of 1 will make the criterion so stringent that only a perfect fit will be accepted. The current best estimation for the Jiggle Pipeline are values of correlationThreshold = 0.6. The value selected for

correlationThreshold allows to select between a more sensitive glitch detection to detect even weak glitches, or a more conservative glitch detection to avoid false positives, i.e. samples that are flagged as glitches which are arguably due to other causes.

5.5.7. Examples

5.5.8. Error messages

severe :unable to store output product. The task failed to write the output product.

warning :Unable to perform reconstruction. The task failed to reconstruct signal samples.

severe :unable to perform wavelet decomposition.. The task failed to identify glitches because the signal could not be decomposed into its wavelet components.

5.6. Removing Electrical Crosstalk from the Timeline Data

5.6.1. Module Description

The *Electrical Cross Talk Correction* module removes electrical crosstalk from the Detector Timelines. The module multiplies a crosstalk removal matrix with the signal vector for each time sample and returns Detector Timelines which are corrected for electrical crosstalk.

5.6.2. Input Data Products

PDT

Photometer Detector Timeline The input PDT product contains timelines for each detector for each observation building block.

5.6.3. Output Data Products

PDT

Photometer Detector Timeline The output PDT product contains timelines for each detector for each observation building block with the signal corrected for electrical crosstalk.

5.6.4. Input Calibration Products

SCalElecCross **Electrical Crosstalk Matrix** There are three electrical crosstalk matrices one for each of the SPIRE photometer arays. They contain entries for the electrical crosstalk

between the detectors of each one of the two detector arrays. In the absence of any crosstalk, the matrices contain unity elements in the diagonals and zero elements anywhere else.

5.6.5. How to use the *Remove Electrical Crosstalk* Module

It should be noted that, prior to launch, no electrical crosstalk was observed. During the fabrication of the warm read-out electronics, spot-checking showed extremely low levels of electrical crosstalk. An additional analysis was performed for the detector arrays of the SPIRE imaging photometer using data from the ground-based test campaigns. This analysis checked whether the random instances of detectors absorbing ionizing radiation lead to reproducible signals in other detectors. Again, this analysis has shown no measurable evidence for electrical crosstalk. Close examination of the post-launch performance will be required to decide whether the detector arrays suffer significant electrical crosstalk. Until then, this module simply multiplies the detector timelines by the identity matrix.

5.6.6. Parameter Options

N/A. There are no options for this module.

5.6.7. Examples

Assuming that pdt is an PDT; product and obs an observation context:

```
pdt = elecCrossCorrection(pdt, elecCross=obs.calibration.phot.elecCross)
```

5.6.8. Error messages

TBW. TBW.

TBW. TBW.

5.7. Converting the Detector Timelines into Flux Units

5.7.1. Module Description

The *Flux Conversion* Module applies a correction for the nonlinear bolometer responsivity to a photometer detector voltage time line V (i.e., PDT) by integrating the function, f(V) = K1 + K2/(V-K3), from Vo to V, where the parameters Vo, K1, K2, and K3 are given for each and every detector channel in a calibration product (SCalPhotFluxConv()). The result is an in-beam flux density timeline.

5.7.2. Input Data Products

```
PDT
```

Photometer Detector Timeline Photometer Detector Timeline (PDT) with bolometer signal in electrical units (i.e. Volts)

5.7.3. Output Data Products

PDT

Photometer Detector Timeline Photometer Detector Timeline (PDT) product with bolometer signal in units of Jy

5.7.4. Input Calibration Products

ScalPhotFLuxConPhotometer Flux Conversion and Non-linearity Correction Coefficients contains, for each bolometer channel, V0, K1, K2, K3 and their uncertainties, as well as Vmin and Vmax, the calibrated limiting bolometer voltages.

5.7.5. How to use the Flux Conversion Module

5.7.6. Parameter Options

There are no parameter options for this module.

5.7.7. Examples

Jython Usage Example: Assuming a detector timeline of SPIRE photometer data processed to Level 0.5, with bolometer signal data in units of volts PDT and a calibration product, fluxConv.

```
outputfluxproduct = photFluxConversion(pdt,fluxConv=obs.calibration.phot.fluxConv)
```

5.7.8. Error messages

Error messages generated:

If the calculations result in taking the log of a negative number, the exception will be noted and the point generating the exception will be flagged in the output product mask.

5.8. De-Modulating the Timeline Data

5.8.1. Module Description

The *DeModulation* Module computes the amplitude of the modulation of the photometer dued to the motion of the chopper. There is one point per chopper cycle per bolometer.

5.8.2. Input Observational Data Products

РРР	PointedPhotometerProductAPointedPhotometerProduct timeline as described in http://www.spire.rl.ac.uk/icc/ product definitions/
CJT	Chop Jiggle Timeline It contains the start time and end time and the id of each consecutive jiggle map position. In addition, for debugging purpose, the converted values Y,Z of each jiggle map position is also stored. For the definition see: <u>http://www.spire.rl.ac.uk/icc/product_definitions/</u>

5.8.3. Output Data Products

DPPP

Demodulated Photometer Product The module outputs a Demodulated Photometer Product desscribed by <u>http://</u>www.spire.rl.ac.uk/icc/product_definitions/.

5.8.4. Input Calibration Products Required

TBW

not yet defined The calibration product is not yet defined. It must contain two time contants, a delay time and a transition time. We don't know yet if these contants depend will vary for each bolometer or for each array of bolometers.

5.8.5. How to use the *Demodulation* Module

The Demodulation takes a PointedPhotTimeline object as input. This Pointed Photometer Product (PPP) contains the signal and astrometry timeline of each bolometer.

The Demodulation also takes a CJT object as input. This Chop Jiggle Product (CJT) contains the mirror angles timeline.

The Demodulation task output is DemodPhotProduct Photometer Demodulated Detector Product with one point per bolometer and per chopper cycle.

5.8.6. Parameter options

Users can set the following parameters of the Demodulation module:

5.8.7. Examples

Assuming that ppt is a Pointed Photometer Product and cjt is a CJT products:

```
demodulate=DemodulateTask()
dpp = demodulate(ppt=ppt, cjt=cjt)
```

Note that, since the calibration product for the time constants does not exist, default values are used.

5.8.8. Error messages

5.9. Averaging the Data of All Jiggle Positions (and Second Level Deglitching)

5.9.1. Module Description

The Second Level Deglitching and Averaging Module

5.9.2. Input Data Products

Input Product name here Input Product name here and description to follow here

5.9.3. Output Data Products

Output Product Here

Output Product Name Here and description to follow here

5.9.4. Input Calibration Products

Calibration Calibration Product Name Here and description to follow here Product Name Here

5.9.5. How to use the Second Level Deglitching and Averaging Module

5.9.6. Parameter Options

Users can set the following parameters of the module:

5.9.7. Examples

5.9.8. Error messages

TBW. TBW.

TBW. TBW.

5.10. De-Nodding Observations

5.10.1. Module Description

The *De-Nod* module de-nods data and averages multiple nodding cycles to return the signal per detector.

5.10.2. Input Observational Data Products

The module will take as input one, two or four Demodulated Photometer Products (DPP).

No product definition document available yet.

5.10.3. Output Data Products

The module outputs a Pointed Photometer Product (PPP).

See the Herschel Products Definition Document or alternatively <u>http://www.spire.rl.ac.uk/icc/</u>product_definitions/.

5.10.4. Input Calibration Products Required

No calibration products required.

5.10.5. How to use the *Denodding* Module

The module takes a DenodInput object as input. This is just a container for one, two or four Demodulated Photometer Products (DPP).

The module is made of two tasks, Denodding and NodAveraging. There is no wrapper task available for this as it currently stands, so they will have to be called explicitly.

The Denodding task only takes one DenodInput as input and gives a Pointed Photometer Product (PPP) as output. The task must be executed for every set of nod positions (either A-B or A-B-B-A cycles).

The NodAveraging task takes an array of PPPs as input and gives a single PPP as output. Two optional parameters are available:

- **operator:** string parameter, can be one of mean, median or weighted mean. Used to choose the averaging operator. Default is mean.
- **deglitch:** integer operator, used to toggle removal of outliers by setting it to either 0 or 1. Note that deglitching is not implemented at the moment. Default is 1.

5.10.6. Parameter options

Users can set the following parameters of the Denodding module:

5.10.7. Examples

Assuming that dpp1 and dpp2 are two DPP products:

```
denodInput = DenodInput()
denodInput.addProduct(dpp1)
denodInput.addProduct(dpp2)
denoddedPpp = DeNodding()(input=denodInput)
averagedPpp = nodAverage()(input=[denoddedPpp])
```

Note that, since only one PPP is given as input to Averaging, the output product will contain the same values.

5.10.8. Error messages

"Error in DeNodding task: no ADTs have been loaded as input products by DeNodInput"

"The two ADTs are not an A and a B position and can't be denodded"

"ADT4 does not appear to contain any nod A or B positions."

5.11. Averaging the Data Taken from Different Nod Cycles

5.11.1. Module Description

The Average Nod Cycles Module

5.11.2. Input Data Products

Input Product name here Input Product name here and description to follow here

5.11.3. Output Data Products

Output Product Here Output Product Name Here and description to follow here

5.11.4. Input Calibration Products

Calibration Calibration Product Name Here and description to follow here Product Name Here

5.11.5. How to use the Average Nod Cycles Module

5.11.6. Parameter Options

Users can set the following parameters of the module:

5.11.7. Examples

5.11.8. Error messages

TBW. TBW.

TBW. TBW.

5.12. Removing the Effects of Optical Crosstalk from the Data

5.12.1. Module Description

The Optical Crosstalk Removal Module

5.12.2. Input Data Products

Input Product name here Input Product name here and description to follow here

5.12.3. Output Data Products

Output Product Here Output Product Name Here and description to follow here

5.12.4. Input Calibration Products

Calibration Calibration Product Name Here and description to follow here Product Name Here

5.12.5. How to use the Optical Crosstalk Removal Module

5.12.6. Parameter Options

Users can set the following parameters of the module:

5.12.7. Examples

pdt = photOptCrossCorrection(pdt, optCross=obs.calibration.phot.optCross)

5.12.8. Error messages

TBW. TBW.

TBW. TBW.

5.13. Converting the On-Board Time to International Time Standards

5.13.1. Module Description

The Time Correction Module

5.13.2. Input Data Products

Input Product name here

Input Product name here and description to follow here

5.13.3. Output Data Products

Output Product Here

Output Product Name Here and description to follow here

5.13.4. Input Calibration Products

Calibration Calibration Product Name Here and description to follow here Product Name Here

5.13.5. How to use the *Time Correction* Module

5.13.6. Parameter Options

Users can set the following parameters of the module:

5.13.7. Examples

5.13.8. Error messages

TBW. TBW.

TBW. TBW.

5.14. Creating Image Maps from the Jiggle Observations

5.14.1. Module Description

This module provides the map-making routines used by the SPIRE photometer pipeline. Jiggle mode observations are processed after denodding and averaging and the resulting map is obtained using the task NaiveApppMapperTask. All output maps are North-oriented.

5.14.2. Input Observational Data Products

APPP

AveragedPointedPhotometerProductTheNaiveApppMapperTask takes one Averaged Pointed PhotometerProduct (APPP) as input. For a definition, see:

http://www.spire.rl.ac.uk/icc/product_definitions/

5.14.3. Output Data Products

All map-making tasks returns the map associated to the bolometer array specified by the user. The map is stored as a SimpleImage. For a definition, see:

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/ia/dataset/image/ SimpleImage.html

5.14.4. Input Calibration Products Required

there are no calibration files required for the Jiggle Map NaiveApppMapperTask

5.14.5. How to use the Map Making Module

The module contains 3 mappers: 2 for the scan mode (NaiveScanMapperTask and MadScanMapperTask) and 1 for the jiggle mode (NaiveApppMapperTask).

The input parameters are a context of Photometer Detector Timelines (PointedProduct) for the scan mode and an Averaged PointedPhotometer Product for the jiggle mode.

The user should set the array keyword to "PSW", "PMW" or "PLW" to select the bolometer array to be processed. The optional keyword maxmemory can be used to increase the memory to be allocated for map-making and avoid slowing down by limiting I/O.

The mappers only compute one map at a time, for the bolometer array specifed by the user. The output map is stored as a SimpleImage product, for which convenient visualisation tools are available (see examples below) within HCSS.

The mappers use temporary files to store the image coordinates (X,Y). IOException will be thrown is these temporary files can not be written or read. Out of memory exception can occur if the size of the map is too large (because of limited resource or incorrect astrometry)

5.14.6. Parameter options

Users can set the following parameters of the Map Making module:

array	Name of the bolometer array to be processed The value of this parameter can be "PSW", "PMW" or "PLW". If not set, the default bolometer array is assumed to be "PSW".
resolution	Pixel size of the output map The value of this parameter is in arcseconds. If not set, the default values are 6", 10" and 14 for the PSW, PMW and PLW bolometer array.
maxmemory	Maximum memory in bytes to be used to hold the pointing matrix and the timeline in memory. If the allocated memory isn't large enough, processing time may be I/O limited. By default, 1GB is assumed.

5.14.7. Examples

Given an Averaged Photometer Pointing Product, the jiggle map is simply obtained in the following way.

```
IA>> from herschel.spire.ia.pipeline.phot.scanmap import NaiveApppMapperTask
IA>> mapper = NaiveApppMapperTask()
IA>> psw = mapper(appp, array='PSW')
IA>> Display(psw)
```

5.14.8. Error messages

5.15. Calculating the Flux and Position of a Source

5.15.1. Module Description

The *Point Source Extraction* module gives the position and flux of a point source observed with a 7-point jiggle pattern. As an intermediate result, it gives the outcome of trying to fit a PSF to the signal of every detector.

5.15.2. Input Data Products

The module takes one Pointed Photometer Product (PPP) as input. For the product definition see:

http://www.spire.rl.ac.uk/icc/product_definitions/

5.15.3. Output Data Products

The final output of this module is a Jiggled Photometer Product. For the definition see:

http://www.spire.rl.ac.uk/icc/product_definitions/

An intermediate output, called Jiggle Point Source Fit Product (JPSFP), will be produced by the first task of the module. For the definition see:

http://www.spire.rl.ac.uk/icc/product_definitions/

5.15.4. Input Calibration Products Required

No calibration products required.

5.15.5. How to use the *Point Source Flux Density and Position* Module

There are two tasks making up this module, PointSourceFit and SourceFlux. The former takes a Pointed Photometer Product as input and tries to fit a PSF (currently just a two-dimensional symmetric Gaussian) to the signal of every detector. It outputs a Jiggle Point Source Fit Product. The input product is the only parameter.

The latter task takes the Jiggle Point Source Fit Product as input and produces a Jiggled Photometer Product with the position and flux of the point source, as measured in each of the three detector arrays. There are three optional input parameters, called positivePixels, negativePixels1 and negativePixels2. They are String arrays taking the name of the pixels where the positive and the two negative images of the source are expected, for each array.

5.15.6. Parameter options

Users can set the following parameters of the Point Source module:

5.15.7. Examples

If myPpp is a Pointed Photometer Product with the data you want to analyse, the following example show the steps needed to obtain a Jiggled Photometer Product named myJpp:

```
myJpsfp = PointSourceFit()(input = myPpp)
myJpp = SourceFlux()(input = myJpsfp)
```

5.15.8. Error messages

Chapter 6. Processing Data with the Spectrometer Pipeline

6.1. Introduction

A detailed description of the Spectrometer pipeline design can be found in

Fulton T.R., Naylor, D.A., Baluteau, J., Griffin, M., Davis-Imhof, P., Swinyard, B.M., Lim, T., Surace, C., Clements, D., Panuzzo, P., Gastaud, R., Polehampton, E.T., Guest, S., Lu, N., Schwartz, A., Xu, K., The data processing pipeline for the Herschel SPIRE; Imaging Fourier Transform Spectrometer. Proc. SPIE, Space Telescopes and Instrumentation: Optical, Infrared, and Millimeter 7010, (2008)

Figure 6.1. Flowchart for the Spectrometer Pipeline.

6.2. Conversion of the BSM telemetry into Angles on the Sky

6.2.1. Module Description

The *Calculate BSM Angles* Module converts the angles contained in the Beam Steering Mirror Timeline (BSMT) to physical units (decimal degrees on the sky). The method is simple, interpolating the values in a calibration table, which relates the two raw signal values from the BSMT (in the BSM chop and jiggle axes) to the two converted angles (Y and Z axes which are relative to the spacecraft). Alternatively, the Nominal Housekeeping Timeline (NHKT) can be provided to the task instead of the BSMT. The NHKT also contains the BSM sensor values, however sampled at 1Hz rather than 16Hz.

6.2.2. Input Data Products

One data product is required as input. It can either be a Beam Steering Mirror Timeline or a Nominal Housekeeping Timeline.

BSMT	Beam Steering Mirror Timeline The input product contains the time samples and corresponding BSM sensor signal values in raw format in the chopSens and jiggSens parameters for each observation building block, sampled at a frequency of 16Hz.
NHKT	Nominal Housekeeping Timeline The input product contains the time samples and corresponding BSM sensor signal values in the NHKT in raw format in the chopsenssig and jiggsenssig parameters for each observation building block, sampled at a frequency of 1Hz.

6.2.3. Output Data Products

BAT

BSM Angles Timeline The output BAT product contains timelines for the angular offset (in spacecraft Y,Z angles) of the BSM with respect to its rest position (defined by the minimum power dissipation of the BSM mechanism) on the sky in units of arc seconds for each observation building block.

6.2.4. Input Calibration Products

BSM Position Table BSM Position Table This Table contains the BSM sensor signals in raw units (in chop and jiggle directions) and angular distance on the sky from its zero position in arcsecs (in spacecraft Y, Z coordinates). There is one table for the photometer and one for the spectrometer, because the reference BSM position can be different.

6.2.5. How to use the Calculate BSM Angles Module

The module takes one product of type EdpProduct as input. This product must contain the timeline of the two angles of the mirror (chop and jiggle) in raw data, either a BSMT or a NHKT.

The module also needs a calibration product BsmPos. It contains information for converting the raw angles.

The task output is a BSM Angles Timeline which contains the timeline of the angles Y and Z (BAT).

6.2.6. Parameter Options

The Calculate BSM Angles module does not use any parameters that can be controlled by the user during run-time. The interpolation method is not a parameter.

6.2.7. Examples

bat = calcBsmAngles(nhkt,bsmPos=obs.calibration.spec.bsmPos)

The process is represented pictorially in the figure below.

Figure 6.2. Creation of BSM Angles Timeline by the Calculate BSM Angles module in the Spectrometer Pipeline.

6.2.8. Error messages

Error in calcBsmAngles Task: the input product is not a beam switch mirror timeline nor a housekeeping. The input product type was checked and found not to be a BSMT or a NHKT. The module can only operate on these two product types.

6.3. Create the SPIRE Pointing Product

6.3.1. Module Description

This class creates a SPIRE Pointing Product.

6.3.2. Input Observational Data Products

- HPP Herschel Pointing Product The HPP contains the sky position along the line of sight of the Herschel telescope for the full Operational Day.
 SIAM Spacecraft Instrument Alignment Matrix The SIAM product contains the relative angles between the Herschel telescope line of sight and the invidiual apertures of the detector arrays of the SPIRE spectrometer.
- BAT **Beam Steering Mirror Angles Timeline** The Beam Steering Mirror (BSM) Angles timeline specifies the angular offset along the two spacecraft axes Y and Z for a given time due to the position of the BSM.

6.3.3. Output Data Products

SPP SPIRE Pointing Product The SPIRE Pointing Product is a context containing the Herschel Pointing Product, the Spacecraft Instrument Alignment Matrix, the Detector Angular Offset calibration product and the BSM Angles Timeline. This class allows the user to obtain the position of one or more SPIRE detectors on the sky at a given time.

6.3.4. Input Calibration Products

detAngOff

Detector Angles Offset This calibration product contains the relative angles between the center detectors and the off-center detectors of the two detector arrays of the SPIRE spectrometer.

6.3.5. How to use the *Create SPIRE Pointing Product* Module

6.3.6. Parameter options

The create SPP module does not use any parameters that can be controlled by the user at run-time.

6.3.7. Examples

Assuming bat is a valid BSM Angles Timeline product and obs an observation context, the SPP can be created as follows:

```
spp = createSpirePointing(hpp=obs.auxiliary.pointing, \
siam=obs.auxiliary.siam, \
detAngOff=obs.calibration.spec.detAngOff, \
bat=bat)
```

Assuming sdt is a valid Spectrometer Detector Timeline Product, one can obtain the sky position of the SSWA1 and SSWD4 apertures from the SPP at the beginning of this timeline, using information from the spacecraft gyroscopes:

```
time=sdt.startDate
A1,D4=spp.getSkyPosition(["SSWA1","SSWD4"],time,"gyro")
```

6.3.8. Error messages

6.4. Correcting the Detector Timelines for Electrical Crosstalk

6.4.1. Module Description

The *Electrical Cross Talk Correction* module removes electrical crosstalk from the Spectrometer Detector Timelines (SDT). The task multiplies a crosstalk removal matrix with the signal vector for each instant in time and returns an SDT which is corrected for electrical crosstalk.

6.4.2. Input Data Products

SDT

Spectrometer Detector Timeline The input SDT product contains timelines for each spectrometer detector for each observational building block.

6.4.3. Output Data Products

SDT

Spectrometer Detector Timeline The output SDT product contains timelines for each spectrometer detector for each observation building block with the signal corrected for electrical crosstalk.

6.4.4. Input Calibration Products

SCalElecCross **Electrical Crosstalk Matrix** The two electrical crosstalk matrices for the SPIRE spectrometer contain entries for the electrical crosstalk between detectors from the two arrays SLW and SSW. The calibration table does not allow for crosstalk between detectors in different arrays. In the absence of any crosstalk, the matrices contain unity elements in the diagonals and zero elements anywhere else.

6.4.5. How to use the *Electrical Cross Talk Correction* Module

Prior to launch, no electrical crosstalk was observed for the two spectrometer arrays. Close examination of the in-flight performance will be required to decide whether the detector arrays suffer significant electrical crosstalk. Until then, this processing task is a placeholder.

6.4.6. Parameter Options

The Electrical Crosstalk Removal module does not use any parameters that can be controlled by the user during run-time.

6.4.7. Examples

Assuming that sdt is an SDT product and obs an observation context:

sdt = elecCrossCorrection(sdt, elecCross=obs.calibration.spec.elecCross)

6.4.8. Error messages

Error in ElectricalCrosstalk Correction Task: the input product is not a Photometer or Spectrometer Detector timeline The electrical crosstalk removal task requires a detector timeline product as input (either for the photometer or the spectrometer). The module cannot operate on a product of any other type.

Error in ElectricalCrosstalk Correction Task: the input product is already corrected. The electrical crosstalk removal task should only be applied once during data processing. An error is thrown if the module is applied more than once and the module is not executed.

6.5. Deglitching the Detector Timelines

6.5.1. Module Description

The *Timeline Deglitching* Module removes glitches due to cosmic ray hits or other impulse-like events. The fundamental assumption is that the glitch signature is similar to a Dirac delta function. This process is composed of two steps: the first step implements a wavelet-based local regularity analysis to detect glitch signatures in the measured signal; the second step locally reconstructs the signal.

The wavelet method for deglitching is described in detail in;

- 1. Ordenovic C., Surace C., Torresani B., Llebaria A., Detection of glitches and signal reconstruction using Hoelder and wavelet analysis, Statistical Methodology, 2008, Volume 5, Issue 4, 373-386
- 2. Ordenovic C., Surace C., Torresani B., Llebaria A., Baluteau J.P., Use of a local regularity analysis by a wavelet analysis for glitch detection, SPIE, 2005, 5909, 556-567

6.5.2. Input Data Products

SDT

Spectrometer Detector Timeline The input SDT product contains timelines for each spectrometer detector for each observation building block.

6.5.3. Output Data Products

SDT

Spectrometer Detector Timeline The output SDT product contains deglitched timelines for each spectrometer detector for each observation building block.

6.5.4. Input Calibration Data Products

No calibration data are needed.

6.5.5. How to use the *Timeline Deglitching* Module

6.5.6. Parameter Options

The first level deglitching task employs analgorithm, based on a continuous wavelet transform with a Mexican Hat wavelet and subsequent processing for a local regularity analysis. A thorough understanding of this algorithm is required in order to make good choices when setting the involved

parameters. Users are strongly discouraged from changing the default value of these parameters unless they have closely studied the detailed technical documentation for this task.

scaleMin, scaleMax, and scaleInterval	scaleMin/scaleMax are the minimum/maximum values of the range of wavelet scales used for the linear fit to the Wavelet Transform Modulus Maxima Lines. scaleMin and scaleMax should both be positive integers and scaleMin should be less than scaleMax. For example, a feasible range for the practical purposes of the SPIRE FTS is defined by the values 1 and 8 for scaleMin and scaleMax. scaleInterval defines how many wavelet scales are calculated for a range of one within the scale range. The size of the range defined by scaleMin and scaleMax times the value of scaleInterval is directly proportional to execution time. The range and number of elements in an interval should therefore be kept at the minimum required to accurately determine the Holder index.
holderMin and holderMax	holderMin/holderMax are the minimum/maximum values of the range of slopes which are interpreted as glitch indicators. The range should include -1 and holderMin should be smaller than holderMax. For example, a feasible range for the practical purposes of the SPIRE FTS is defined by the values -1.4 and -0.6 for holderMin and holderMax. The range defined by holderMin and holderMax allows to select between a more sensitive glitch detection to detect even weak glitches, or a more conservative glitch detection to avoid false positives, i.e. samples that are flagged as glitches which are arguably due to the nominal operation of the instrument.
correlationThreshold	This parameter relates to the square of the correlation coefficient of the linear fit to the Wavelet Transform Modulus Maxima Line. It sets a lower threshold of the correlation to enforce a minimum goodness of the fit to the data. This number should be between 0 and 1, and is usually selected closer to 1. A value of 0 removes any selection criterion within the algorithm for goodness of fit. A value of 1 will make the criterion so stringent that only a perfect fit will be accepted. A feasible value for the practical purposes of the SPIRE FTS is 0.85. The value selected for correlationThreshold allows to select between a more sensitive glitch detection to detect even weak glitches, or a more conservative glitch detection to avoid false positives, i.e. samples flagged as glitches, which are arguably due to the nominal operation of the instrument.
correctGlitches	The user can select to correct the identified glitches or not. If the value of this parameter is False then the task will still flag glitches by setting the GLITCH_FIRST_LEVEL mask bit, but it will not change the detector signal. By default, this parameter is set to True.
optionReconstruction	Three options are available to change detector samples flagged as glitches. They are "polynomialFitting", "linearInterpolation", "wavelette". It is strongly recommended to select the option of polynomial fitting. It has been shown to give the best results. The option to perform an inverse wavelet transform is still under development.
degreePoly	If the option of polynomial fitting has been selected, then it is also possible to set the degree of the polynomial. Tests have shown that it is feasible to use a polynomial of degree 6.
fitPoints	Reconstruction is based on a number of points before and after the glitch which are used by the fitting routines to replace the detector
	samples. This number can be adjusted. Tests have shown that it is feasible to set this option to 8.
----------------------------	---
reconstructionPointsBefore	One sample will be identified as the peak of the glitch. This option allows to control how many samples (up to 30) will be changed before the peak of the glitch. By default, 2 samples before the peak of the glitch will be changed.
reconstructionPointsAfter	One sample will be identified as the peak of the glitch. This option allows to control how many samples (up to 30) will be changed after the peak of the glitch. By default, 3 samples after the peak of the glitch will be changed.

6.5.7. Examples

Figure 6.3. An example for glitch removal in a the detector timeline from the SPIRE spectrometer array. An original detector timeline (green) from SLWC1 is shown after removal of the glitch (blue).

6.5.8. Error messages

severe :unable to store output product. The task failed to write the output product.

severe :unable to perform wavelet decomposition. The task failed to identify glitches because the signal could not be decomposed into its wavelet components.

warning : There no signal in the input product. The product contains no valid signal data.

warning :Unable to perform reconstruction. The task failed to reconstruct signal samples.

6.6. Applying the Non-Linearity Correction to the Data

6.6.1. Module Description

The *Non-Linearity Correction* module applies a correction for the nonlinear bolometer responsivity to a spectrometer detector voltage timeline V (SDT) by integrating the function, f(V) = K1 + K2/(V - V - V)

K3), from Vo to V, where the parameters Vo, K1, K2, and K3 are given for each and every detector channel in a calibration product (SCalSpecNonLinCorr). The result is a voltage timeline SDT where the voltage is directly proportional to the power incident on a detector.

6.6.2. Input Data Products

SDT Spectrometer Detector Timeline The input SDT with its bolometer signal converted to electrical units (e.g. V).

6.6.3. Output Data Products

SDT

Spectrometer Detector Timeline The output SDT product with bolometer signal in units of Volts corrected for any non-linearity, ideally being linearly proportional to incident radiation.

6.6.4. Input Calibration Products

ScalSpecNonLin**Spectrometer Non-Linearity Correction** contains, for each bolometer channel, V0, K1, K2, K3 and their uncertainties, as well as Vmin and Vmax, the limit bolometer voltages for which the calibration is valid.

6.6.5. How to use the Non-Linearity Correction Module

6.6.6. Parameter Options

The Nonlinearity Correction module does not use any parameters that can be controlled by the user at run-time.

6.6.7. Examples

Assuming a detector timeline of SPIRE spectrometer data processed to Level 0.5, with bolometer signal data in units of volts sdt and obs is an observation context:

```
# get the bias mode (biasMode) from the SDT
biasMode = sdt.meta["biasMode"].value
# get the observation start date from the SDT
date = sdt.startDate
# get the correct edition of the calibration product
nonLinCorr = obs.calibration.spec.nonLinCorrList.getProduct(biasMode, date)
linearizedSdt = specNonLinearityCorrection(sdt,
nonLinCorr=obs.calibration.spec.nonLinCorr)
```

6.6.8. Error messages

Error in NonLinearCorrection Task: the input product is not a Photometer or Spectrometer Detector timeline. This module can only process a detector timeline product, either from the photometer or the spectrometer.

Error in Flux Conversion Task: the input product is already corrected. This module should only be applied once during data processing. An error is thrown if the module is applied more than once.

severe: SignatureException in setting the result!! The module issues a severe warning if it was not possible to set the calculated values.

Error messages generated: If the calculations result in taking the log of a negative number, the exception will be noted and the point generating the exception will be flagged in the output product mask.

6.7. Removing Correlated Noise due to bath temperature fluctuations from the Data

6.7.1. Module Description

The *Bath Temperature Fluctuation Correction* module subtracts low frequency (< 1Hz) noise, caused by variations of the bath temperature of the detector arrays. The module is based on the empirical correlations between detectors and thermistors (or, in case of high bias voltages when thermistors are saturated, the correlations between detectors and dark pixels). It is important to note that this module works in conjunction with and always **after** the nonlinearity correction module.

6.7.2. Input Data Products

SDT

Spectrometer Detector Timeline The SDT with the bolometer signal converted to electrical units (e.g. V) directly proportional to the incident power.

6.7.3. Output Data Products

SDT

Spectrometer Detector Timeline SDT in the units of V, corrected for temperature drift.

6.7.4. Input Calibration Products

tempDriftCorrLis**Temperature Drift Correction Parameter Table** A product containing for each detector array, a thermistor selection flag, the base voltage values for each thermistor, the errors for those values, and a validity calibration flag for those values. It contains for each bolometer channel, correction coefficients A1, A1 error, B1, B1 error, AB1 flag (all for thermistor 1) and similar values for thermistor 2. Different editions for this calibration product exist depending on the bias mode (nominal or bright) and the time when the observation was performed.

6.7.5. How to use the *Bath Temperature Fluctuation Correction* Module

6.7.6. Parameter Options

timeSpan

This is the smoothing timespan in seconds when averaging the signal from the thermistors. The default value is 5 (set within the task itself).

6.7.7. Examples

Assuming a detector timeline of SPIRE spectrometer data, sdt with bolometer signal data in units of V and processed by the spectrometer Non-Linearity Correction Module and an observation context obs:

6.7.8. Error messages

Error in TemperatureDriftCorrection Task: the input product is not a Photometer or Spectrometer Detector timeline. This module can only process a detector timeline product, either from the photometer or the spectrometer.

Error in TemperatureDriftCorrection Task: the input product is already corrected. This module should only be applied once during data processing. An error is thrown if the module is applied more than once.

Error in TemperatureDriftCorrection Task: biasMode parameter is incorrectly specified in calibration product.

Error in TemperatureDriftCorrection Task: biasMode parameter is not specified in calibration product.

Error in TemperatureDriftCorrection Task: "xx" parameter is not specified or is incorrectly specified in for array "SSW/SLW" of the calibration product.

Error in TemperatureDriftCorrection Task: timeSpan parameter is not specified in calibration product.

Error in TemperatureDriftCorrection Task: VT02 parameter is not specified in calibration product. .

Error in TemperatureDriftCorrection Task: VT02 parameter is not specified in calibration product.

Error in TemperatureDriftCorrection Task: VT01Flag parameter is not specified in calibration product.

Error in TemperatureDriftCorrection Task: VT02Flag parameter is not specified in calibration product.

Error in TemperatureDriftCorrection Task: timeSpan parameter is not specified in calibration product.

Error in TemperatureDriftCorrection Task: biasSwitch failure - program logic error.

6.8. Correcting for Clipped Data

6.8.1. Module Description

The 16-bit Analogue-to-Digital Converter (ADC) to read the detector voltages into SPIRE's on-board digital processing unit imposes a minimum (0) and maximum (65535) value to the detector readings. The two extreme samples are flagged as truncated by the Check ADC Flags and Truncation module at an earlier stage of the pipeline. The clipping correction module reconstructs those samples of the spectrometer detector timeline (SDT) which are flagged as truncated. Samples are reconstructed by using a polynomial fitting routine for each data range affected by truncation.

6.8.2. Input Data Products

SDT

Spectrometer Detector Timeline The input SDT product contains timelines for each spectrometer detector for each observation building block.

6.8.3. Output Data Products

SDT

Spectrometer Detector Timeline The output SDT product contains timelines for each spectrometer detector for each observation building block.

6.8.4. Input Calibration Products

No calibration data are needed.

6.8.5. How to use the *Clipping Correction* Module

6.8.6. Parameter Options

The Clipping Correction task employs a simple algorithm, based on fitting a number of data samples before and after the range of clipped samples with a high order polynomial function (currently fixed at 8). Users can change the default value of 5 for the number of data samples used for the fit. However, they are strongly discouraged from changing the default value to ensure an effective execution of the module.

fitPoints

The parameter "fitPoints" defines the number of points used for the polynomial fitting to either side of a truncated data range. Overall, 2 x "fitPoints" will be used for the polynomial fitting. "fitPoints" must be an integer greater than 3 and less than 10.

6.8.7. Examples

sdt=clippingCorrection(sdt,fitPoints=5)

6.8.8. Error messages

severe : unable to store output product The task failed to write the output product.

warning : the optimized parameter number of fitting points is not used : "xx" that may affect the quality of the reconstruction. The risk that the algorithm introduces spectral artifacts is higher if the user selects the number of points used for the polynomial fitting to be different from its default value.

warning : clipping not be done for the (xx) point of the sample (first point of the clipped area) clipped area excess 9 consecutive point or clipped area at the begining or the end of the signal. Clipped samples cannot be corrected if they are at the very beginning or end of the timeline since a minimum number of data points are required for the high order polynomial fitting. It is equally impossible to correct more than 9 consecutively clipped samples.

warning : reconstruction not be done for the "xx" point of the sample (first point of the clipped area of "yy" consecutive points) polynomial fitting fails. Data samples were not reconstructed because the polynomial fitting routine failed for the specificed truncated range.

warning : some clipped samples are glitched "xx" and they are not be corrected. Data samples which have been identified as glitches are not reconstructed even if they are clipped. The polynomial fitting would not be suitable in this case and lead to invalid results.

6.9. Correcting for Time Domain Phase Shifts

6.9.1. Module Description

The *Time Domain Phase Correction* task corrects for the filtering effects due to the read-out electronics and the thermal behaviour of the bolometer detectors.

The SPIRE spectrometer detector chain contains a 6-pole Bessel low pass filter (LPF) and an additional RC LPF. In addition to the electronic LPF, the thermal behaviour of the SPIRE bolometers is modeled

as an RC LPF with a detector-specific time constant, τ . The LPFs will affect the magnitude of the signal recorded by the SPIRE detectors and induce a phase shift to the recorded signal. The phase shift is characterized by comparing forward and reverse interferograms and a thermal detector-specific

time constant τ is derived. The thermal time constants are retrieved from a calibration product and time domain phase correction functions are computed accordingly. The measured detector timelines are corrected by a convolution with the derived time domain phase correction function. The edges of the timelines, invalidated by the convolution operation are truncated.

6.9.2. Input Observational Data Products

SDT Spectrometer Detector Timeline The input SDT product contains timelines for each spectrometer detector for each observation building block.

6.9.3. Output Data Products

SDT **Spectrometer Detector Timeline** The output SDT product contains timelines for each spectrometer detector for each observation building block, corrected for the low pass filtering.

6.9.4. Input Calibration Data Products

- LpfPar Spectrometer Low Pass Filter Parameters This calibration product contains the parameters of the components of the read-out electronics of the SPIRE spectrometer.
- $\label{eq:charge} ChanTimeConst \mbox{ Spectrometer Detector Time Constants This calibration product contains the thermal relaxation time constant τ per detector. The time constants range between 2.75 and 12.5 ms.$

6.9.5. How to use the *Time Domain Phase Correction* Module

6.9.6. Control parameters

The Time Domain Phase Correction module does not use any parameters that can be controlled by the user during run-time.

6.9.7. Examples

Assuming sdt is a valid Spectrometer Detector Timeline product and obs an observation context, time domain phase correction can be applied as follows:

Figure 6.4. Forward and reverse interferograms do not line up well without applying time domain phase correction. A forward (green) and a reverse (blue) scan are slightly shifted with respect to one another.

Figure 6.5. Forward and reverse interferograms line up much better after applying time domain phase correction to the Spectrometer Detector Timelines. Forward (green) and reverse (blue) scan.

6.9.8. Error messages

There are no specific error messages defined for this task.

6.10. Removing the Telescope and Calibration Source Background from the Data

6.10.1. Module Description

The SPIRE FTS measures a signal from the astronomical source but also from the warm Herschel telescope and the Spectrometer Calibration Source (SCal). The *SCAL and Telescope Correction* Module aims to eliminate the contribution from the telescope and SCal by subtracting a deep reference measurement of a dark region of the sky.

6.10.2. Input Data Products

SDI	Spectrometer Detector Interferogram This product contains
	interferograms for each spectrometer detector for each scan of the observation building block.
NHKT;	Nominal HouseKeeping Product This product contains temperature timelines for SCal.

6.10.3. Output Data Products

SDI

Spectrometer Detector Interferogram The output SDI product contains the corrected interferograms for each spectrometer detector for each scan of the observation building block.

6.10.4. Input Calibration Products

SpecInterRef

The SpecInterRef Calibration product contains the interferogram from a deep observation of a dark region in the sky for each spectrometer detector and the two directions (forward and reverse) of the linear translation stage (SMEC) of the SPIRE FTS. There are different editions depending on the bias mode of the detectors (nominal or bright).

6.10.5. How to use the SCAL and Telescope Correction Module

6.10.6. Parameter Options

The Telescope and SCal Correction module does not use any parameters that can be controlled by the user at run-time.

6.10.7. Examples

Assuming an sdi spectrometer detector interferogram product and obs is an observation context:

```
# get the commanded resolution from the SDI (format is a string -"HR", -"MR"
or -"LR")
commandedResolution = sdi.meta['commandedResolution'].value
# get the bias mode (biasMode) from the SDI ("nominal" or -"bright")
biasMode = sdi.meta["biasMode"].value
# get the observation start date from the SDI
date = sdi.startDate
# get the correct edition of the calibration product
interRef = obs.calibration.spec.interRefList.getProduct(commandedResolution,
biasMode, date)
# execute the task providing it the correct interRef calibration product
sdi = telescopeScalSubtraction(sdi, nhkt=nhkt, interRef=interRef)
```

6.10.8. Error messages

severe :unable to store output product. The module failed to write the output product.

warning : scals temperature fluctuations too large. The module issues a warning if the temperature of SCal varies too strongly during the observation to ensure an accurate removal of its spectral signature.

warning : calibration product sdical is not correct return = sdi enter. warning : Calibration product sdical is not compatible with Enter product return = sdi enter. The module issues a warning if the input SDI was not corrected but returned as output without changes due to an non-suitable calibration product.

6.11. Creating the Interferograms from the Timeline Data

6.11.1. Module Description

A single building block of a SPIRE spectrometer observation in scanning mode consists of a series of scans of the spectrometer mechanism (SMEC) while the instrument is pointed at a given target. The sampling of the SPIRE spectrometer detectors and the spectrometer mechanism is not synchronized; the two subsystems are sampled at different rates and at different times. In order to derive the source spectrum from the measured data, the spectrometer detector samples must be linked with the position of the SMEC in the form of interferograms, i.e. signal as a function of optical path difference (OPD). Additionally, the spectrometer detector signal timelines are interpolated onto timelines where the SMEC positions are equidistantly spaced to ensure accurate transformation of the interferogram with the Discrete Fourier Transform. First, the SMEC timeline is interpolated from one that is non-equidistant in position to one that is equidistant in position. Then, the detector signal timelines are interpolated onto the times which correspond to the equidistant SMEC position grid. The mean value of the sky position during a given scan is assigned to the interferograms in the output SDI product.

6.11.2. Input Data Products

- SDT **Spectrometer Detector Timeline** The SDT contains the measured signal sample timelines for each spectrometer detector in units of Volts. The units are expected to be identical for all channels.
- SMECT **Spectrometer Mechanism Timeline** This product contains the timelines for the telemetry parameters related to the spectrometer mechanism (SMEC). The unit of the coarse and fine optical encoder readings is expected to be centimetre.
- SPP SPIRE Pointing Product The SPIRE Pointing Product is a context containing the Herschel Pointing Product, the Spacecraft Instrument Alignment Matrix, the Detector Angular Offset calibration product and the BSM Angle Timeline. This class allows the user to obtain the position of one or more SPIRE detectors on the sky at a given time.
- NHKT **Nominal Housekeeping Timeline** This product contains the timelines for the nominal housekeeping telemetry parameters. The housekeeping parameters used by this module are:
 - **SCANSTART** This quantity contains the commanded start position for the SMEC for the observation in centimetres. All entries in this timeline should be identical.
 - **SCANEND** This quantity contains the commanded end position for the SMEC for the observation in centimetres. All entries in this timeline should be identical.
 - SCANS This quantity contains the value of the scan number. This quantity is expected to be unitless and its values should only decrement over the course of the observation.

6.11.3. Output Data Products

SDI

Spectrometer Detector Interferogram The SDI is an output product that contains the interferograms for each spectrometer detector for each scan of the observation. The signal quantities of this output product will be in units of Volts - identical to the signals of the input SDT product. The quantities of the OPD columns of this product will be in units of centimetres.

6.11.4. Input Calibration Products

smecZpd	Zero Path Difference This calibration product contains the values of the position of zero path difference (ZPD) for each SPIRE spectrometer detector. There are two entries for each detector; one entry gives the SMEC optical encoder value for ZPD in units of centimetres, the other entry gives the LVDT value for ZPD.
chanTimeOff	Spectrometer Channel Time Offset This calibration product contains the time offsets between the frametime and the readout time for the spectrometer detectors in the SDT product. The quantities in this calibration product are expected to be in units of seconds.
smecStepFactor	Optical Encoder to Optical Path Difference This calibration product contains the conversion factors that relate a step reported by the SMEC encoder to a step in OPD. Nominally, this conversion factor is equal to 4 for a Mach-Zehnder FTS. For the SPIRE FTS this conversion factor will be slightly different for each detector and depend on the off-axis angle. Each entry is expected to be unitless.

6.11.5. How to use the Interferogram Creation Module

6.11.6. Control parameters

Users can set the following parameters of the Interferogram Creation module:

interpolType	This parameter specifies the type of interpolation to be performed.
	Currently, this parameter can be set to one value only: the default
	value is "spline", indicating that cubic spline interpolation will be
	used. This simple interpolation method has the advantage of being
	robust and has been found not to degrade the quality of the data from
	the SPIRE FTS.

6.11.7. Examples

Assuming sdt to be a detector timeline of SPIRE spectrometer data processed to Level 0.5, with bolometer signal data in units of Volts, smect to be a SMEC timeline, spp to be a SPIRE pointing product and obs to be an observation context:

6.11.8. Error messages

error: SCANSTART/SCANEND not repeating. This module will throw an exception if the value of the housekeeping parameters SCANSTART/SCANEND change. These parameters should specify the commanded scan start and end positions and should therefore not change during a building block.

severe: Input contained no good scans, SDI is empty. This module will issue a severe message if the resulting SDI product contains no valid scans.

severe: x "min" - x "min - 1" is negative. Note this difference occurs outside the first "xx" points (oversampling factor)".

severe: x "max" - x "max - 1" is negative. Note this difference occurs outside the last "xx" points (oversampling factor).

severe: SDT signals not of type Double or Float. Cannot continue. This modules will issue a severe message if the input SDT product does not contain real numbers in the signal columns, either of data type Double or Float.

severe: No good minimum/maximum encoder positons for observation.

severe: endPos (lesseq) startPos, which should be impossible. This module will issue a severe message if the start position of the interferograms was determined to be larger than their end position.

severe: NHKT.SCANRES not UNIQUE. Cannot continue. This module will issue a severe message if the NHKT indicates a varying resolution of the observation. In this case, the module will not attempt to use the NHKT to derive the resolution of the observation.

warning: Could not derive a commanded res (res == null). This module will issue a warning if it was not possible to determine the commanded resolution.

warning: Poorly formed data. This module will issue a warning if the signal column for any of the detector channels in the input SDT is null or contains NaN; values. In this situation, execution continues as normal and data from the offending channel are not processed further.

warning: Problem creating I(x) for channel: "xx". Skipping ... This module will issue a warning if it was not possible to calculate a valid interferogram for a specific detector.

warning: Units missing: assuming microns for encoderCoarse, nanometers for encoderFine This module will issue a warning if the SMEC timeline does not specify the units of the optical encoder readings. Default units are assumed as stated in the warning message.

warning: Scan ''xx'' has bad length and has been flagged for removal. This module will issue a warning if a particular scan was found to be of abnormal length, i.e. more than 5% deviation from the nominal start and end positions.

warning: No SpecSmecStepFactor calibration product provided. Using default step factor: 4. This module will issue a warning if the SpecSmecStepFactor calibration product is missing and the default step factor is used instead.

warning: Step Factor not found for ''xx''. Using default step factor: 4. This module will issue a warning if the SpecSmecStepFactor calibration product does not contain a step factor for the specified detector. The default value of 4 is used instead.

warning: No SpecSmecZpd calibration product provided. Using default ZPD : "xx" cm. This module will issue a warning if the SpecSmecZpd calibration product is missing and the default position for ZPD is used instead.

warning: ZPD not found for "xx". Using default ZPD : "yy" cm. This module will issue a warning if the SpecSmecZpd calibration product does not contain a ZPD value for the specified detector. The indiciated default value is used instead.

warning: start position: ''xx'' > minimum MPD: ''yy''. Removing extra points. This module will issue a warning if the start position of the created interferograms is higher than the expected. Interferograms will contain fewer points.

warning: end position: "xx" (lessthaeq) maximum MPD: "yy". Removing extra points. This module will issue a warning if the end position of the created interferograms is lower than the expected. Interferograms will contain fewer points.

warning: Poorly formed SCANFSPEED/SCANRSPEED. warning: SCANFSPEED != SCANRSPEED. This module will issue a warning if the arrays containing the scan speeds from the housekeeping data either indicate varying commanded SMEC speeds throughout the observation or different commanded SMEC speeds for forward and reverse scans.

6.12. Applying an Apodization Function to an Interferogram

6.12.1. Module Description

The *Apodization* module multiplies the interferograms for each detector and scan of an observation building block with an analytically defined tapering function. The purpose of this processing step is to reduce the sidelobes of the instrumental line shape of the SPIRE spectrometer.

6.12.2. Input Data Products

SDI Spectrometer Detector Interferogram This product contains interferograms for each spectrometer detector for each scan of the observational building block.

6.12.3. Output Data Products

SDI

Spectrometer Detector Interferogram This product contains apodized interferograms for each spectrometer detector for each scan of the observational building block. If pre-apodization is selected then the output SDI product will contain double-sided interferograms. If post-apodization is selected then the output SDI product will contain samples for only those OPDs where OPD >= ZPD.

6.12.4. Input Calibration Data Products

No calibration data are needed.

6.12.5. How to use the Apodization Module

6.12.6. Parameter Options

apodType

Apodization Type

This mandatory parameter defines the type of apodization that is to be performed - either double-sided or single-sided. The distinction is determined by whether the task is run before or after the phase correction step. Therefore, the possible values of "apodType" are "prePhaseCorr" and "postPhaseCorr".

In the "prePhaseCorr" mode, a double-sided apodization is used. The chosen apodization function is applied only to the symmetric portion of the incoming interferograms (OPD = $\{-N/2 ..., 0, ..., N/2\}$). Those samples of the incoming interferograms that fall outside the aforementioned range are removed, and a new SDI product containing these symmetric, apodized interferograms is returned to the user (i.e. the original SDI is not changed).

In the "postPhaseCorr" mode, the apodization function is applied only to the singlesided portion of the interferograms, i.e. the selected apodization function is applied only to those samples whoe OPD is greater than or equal to zero (OPD = $\{0, ..., N/2\}$). Those samples whose OPD are less than zero are removed from the interferograms, and a new SDI product containing these symmetric, apodized interferograms is returned to the user (i.e. the original SDI is not changed).

apodName **Apodization Function Name** This optional parameter defines the apodizing function that is to be applied to interferograms in the input SDI product. By default, the apodization task uses the apodizing function aGauss_19.

In addition to the long-standing apodizing functions Hamming, Hanning, and Gaussian, the SPIRE data processing environment offers ten functions that optimize the tradeoff between minimizing the secondary sidelobes of the instrumental line shape and reducing spectral resolution. The name of each apodizing function indicates the loss of spectral resolution. The factors run from 1.1 to 2.0 in steps of 0.1, indicating that the full width at half maximum of an unresolved line feature will increase by this factor. The names of the apodizing functions available for this task are as follows: aNB_11 ... aNB_20, where aNB stands for Norton-Beer. These apodizing functions are optimal in the sense of minimizing the secondary sidelobes of the instrumental line shape for the specified reduction in spectral resolution. Further details can be found in Naylor, D.A., and Tahic, M.K., "Apodizing functions for Fourier transform spectroscopy". J. Opt. Soc. Am. A 24, 3644-3648 (2007).

The following apodizing functions are available:

- "aGauss_19", Gaussian (default)
- "aHM_15", Hamming
- "aHN_17", Hanning
- "aNB_11" "aNB_20", ten adjusted Norton Beer functions

Figure 6.6. A selection of the available apodizing functions. The x-axis is OPD in arbitrary units. The apodizing functions will always be stretched to the maximum OPD. Some of the adjusted Norton-Beer functions are omitted for clarity.

6.12.7. Examples

The following is an example of pre-apodization, i.e. apodizing double-sided interferograms in the SDI prior to phase correction.

Figure 6.7. An example for double-sided apodization: The original interferogram (blue) and the apodized interferogram (red), offset by 0.0005 for clarity. The apodizing function aNB_15 was used.

The following is an example of post-apodization, i.e. apodizing single-sided interferograms in the SDI after phase correction.

Figure 6.8. An example for single-sided apodization: The plot shows the original interferogram (blue) and the apodized interferogram (red), offset by 0.0005 for clarity. Note how the channel fringe feature at high OPD is deprecated in the apodized interferogram. The apodizing function aNB_15 was applied.

6.12.8. Error messages

error: Cannot get double sided portion: Range of OPD grid does not contain 0. error: Cannot get double sided portion: ZPD cannot be determined. This module will throw an exception if the interferogram does not contain ZPD.

error: Invalid argument Type. This module will throw an exception if the user sets the parameter apodType to a value other than "prePhaseCorr" or "postPhaseCorr".

error: Invalid argument name. This module will throw an exception if the user sets the parameter apodName to a value that refers to an apodizing function which is not available. A list of valid apodizing functions is printed to the console.

6.13. Producing Spectra from the Interferograms (Fourier Transform)

6.13.1. Module Description

The purpose of the *Fourier Transform* task is to transform the set of interferograms from a SPIRE spectrometer observational building block into a set of spectra. This processing task can transform both double-sided and single-sided interferograms. **Double-sided Transform.** For the double-sided transform, each interferogram in the SDI is examined and only the double-sided portion of the interferogram, where data are available between $-OPD_{max}$ and $+OPD_{max}$, is used to compute the resultant spectrum. The resultant spectra will contain both real and imaginary components. **Single-sided Transform.** For the single-sided transform, only those interferogram samples to one side of the position of zero path difference (ZPD) are considered. The spectra that result from the single-sided transform contain only real components as perfect even symmetry with respect to ZPD is assumed.

6.13.2. Input Data Products

SDI

Spectrometer Detector Interferogram This product contains interferograms for each spectrometer detector for each scan of the observational building block.

6.13.3. Output Data Products

SDS

Spectrometer Detector Spectrum The output SDS data product contains the calculated spectrum for each of the interferograms in the input SDI.

6.13.4. Input Calibration Products

No calibration data are needed.

6.13.5. How to use the Fourier Transform Module

6.13.6. Parameter Options

Users can set the following parameters of the Fourier Transform module:

ftType This parameter defines the type of Fourier Transform that is to be performed - either double-sided or single-sided. The distinction is determined by whether the task is run before the phase correction step, or after it. Therefore, the possible values of "ftType" are "prePhaseCorr" and "postPhaseCorr". If apodization is applied directly before the Fourier Transform, the value of ftType must equal the value of apodType in the apodizeIfgm task.

In the "prePhaseCorr" mode, the portion of the input interferograms that is symmetric about the position of zero path difference (OPD = $\{-N/2 ..., 0, ..., N/2\}$) will be used to compute the output spectra.

In the "postPhaseCorr" mode, only the portion of the input interferograms that is greater than or equal to the position of zero path difference (OPD = $\{0, ..., N/2\}$) will be used to compute the output spectra.

The data type of the flux columns in the output product depends on the value chosen for this parameter. The flux column will be of type Complex1d if "ftType" is set to "prePhaseCorr". If "ftType" is set to "postPhaseCorr", then the flux column will be of type Double1d.

zeroPad This parameter defines how the interferograms are zero-padded before transformation. The possible values are "None", "standard" and "2**n". If the parameter is set to "None", no zeros are appended to the interferogram. If the parameter is set to "standard", the standard zero-padding is applied, to give four samples per resolution element in the final spectra. This will ensure that the interval of the wavenumber grid is 0.01/0.05/0.25 cm⁻¹ for data collected in high/medium/ low resolution mode. If the parameter is set to "2**n", then zeros are appended to the interferograms to provide exactly 2ⁿ data points to the Fast Fourier Transform routine to minimize execution time.

6.13.7. Examples

The following are examples of the SPIRE spectrometer Fourier transform task.

```
from herschel.spire.ia.pipeline.spec.ft import FourierTransformTask
fourierTransform=FourierTransformTask()
dsds=fourierTransform(sdi, ftType="prePhaseCorr", zeroPad="None")
ssds=fourierTransform(sdi, ftType="postPhaseCorr", zeroPad="standard")
```

6.13.8. Error messages

error: Parameter ftType must be set. The parameter ftType is mandatory and must be set by the user.

error: Delta not a constant. The module throws an exception if the OPD grid is not equidistant. The result from this module would be incorrect if the calculation went ahead regardless.

error: Zero not found in array. Array does not have positve and negative values. The module throws an exception if there is no zero in the calculated OPD array.

6.14. Removing the Baseline from the interferograms

6.14.1. Module Description

The intensity incident on the SPIRE spectrometer detectors can be separated into two components: a component that is constant as a function of OPD and a component that is modulated as a function of OPD. As the first baseline term does not contain relevant spectral information, it may be removed without affecting the source spectrum. Frequency components outside of the optical passband can also be removed from the second term. On a detector-by-detector and scan-by-scan basis, the baseline correction algorithm evaluates and removes the baseline of the interferogram. The task offers two options to characterize the baseline: Either a polynomial fit or the inverse Fourier transform of the spectrum including only low frequencies.

6.14.2. Input Data Products

SDI

Spectrometer Detector Interferogram The input SDI product contains interferograms for each spectrometer detector for each scan of the observational building block.

6.14.3. Output Data Products

SDI **Spectrometer Detector Interferogram** The output SDI product contains the corrected interferograms for each spectrometer detector for each scan of the observational building block.

6.14.4. Calibration Data Products

No calibration data are needed.

6.14.5. How to use the Baseline Correction Module

6.14.6. Parameter Options

Users can set the following parameters of the Baseline Correction module:

type This parameter determines the type of baseline fitting to perform. The user has two options: "polynomial" or "fourier". Set this parameter to "polynomial" to perform a least-square minimized polynomial fit (default option) or to "fourier" to fit the baseline with the low frequency Fourier components of the spectrum that corresponds to the interferogram. Both options are of comparable quality in the sense of removing any baseline variation in the interferograms and not significantly affecting the spectral content in the optical passbands, i. e. spectral artifacts are small compared to instrumental noise. Polynomial fitting is a good option if the shape of the interferogram baseline is dominated by optical vignetting. Fourier fitting is the preferred option when 1/f-like noise dominates the shape of the interferogram baseline. 1/f-like noise has been observed during the Performance Verification of the SPIRE spectrometer when observing bright, point-like sources.

Note that both algorithms will poorly fit to the baselines of interferograms which are truncated and have not been repaired by the clipping correction module.

- degree If the fitting type is "polynomial" then "degree" specifies the order of the polynomial function to fit to the baseline of the input interferograms. The default value is 4. The degree of the polynomial function should be even because of the even symmetry inherent to the FTS. An order of 2 approximates the baseline slightly worse and introduces stronger spectral artefacts in the optical passbands. Polynomial functions with orders larger than 4 are possible but do not usually improve the results significantly.
- threshold If the fitting type is "fourier" then "threshold" specifies the maximum frequency in inverse centimeters to include when using the Fourier components to fit to the baseline. 4 cm⁻¹ has been found to be a good value for the specific purposes of the SPIRE FTS in terms of achieving a good fit to the baseline and introducing spectral artefacts below the noise. The threshold should always be lower than the lower edges of the optical passbands, i.e. 15 cm⁻¹ for SLW and 30 cm⁻¹ for SSW.

If interferograms display unusual artefacts such as temporary deviations from the baseline (sudden steps, pepper and salt noise) then a Fourier type fitting with a high threshold (e.g. 10 cm^{-1}) may be effective at removing such unwanted features.

6.14.7. Examples

from herschel.spire.ia.pipeline.spec.baseline import BaselineCorrectionTask

Figure 6.9. An example for removing the baseline with a 4th order polynomial fit to the interferogram. The interferogram before (blue) and after (green) baseline removal.

6.14.8. Error messages

error: Invalid baseline correction type specified: "xx" The type control parameter must be either omitted and set to one of the following two strings: "polynomial" (default) or "fourier".

error: OPD units are "xx". Expected units of cm. The x-axis of the interferograms is OPD. The task assumes that values are given in centimeters if no units are specified for the OPD. If units are indeed specified for the OPD, then it must be in units of centimeters. Otherwise the module will throw an exception.

6.15. Removing Glitches from the Interferograms

6.15.1. Module Description

The *Interferogram Deglitching* Module identifies and removes glitches in the interferograms for each spectrometer detector. On an OPD-position-by-OPD-position basis, the samples from one scan are compared to those from all other scans in the same observation. Two different methods are available to compare the data and flag outliers. The baseline approach is to use the median of the spectral data across scans and a threshold factor times the standard deviation or the median absolute deviation to define a range for outliers. The alternative approach uses a window of a user-defined length within which the standard deviation is computed and outliers are flagged based on a standard deviation or median absolute deviation. The scan with the largest absolute deviation will then be discarded and the procedure repeated until no further outliers are flagged. The flagged samples are then replaced by the average of the non-glitch samples from the other observed interferograms at that position.

6.15.2. Input Data Products

SDI

Spectrometer Detector Interferogram The input SDI product contains interferograms for each spectrometer detector for each scan of the observational building block.

6.15.3. Output Data Products

SDI

Spectrometer Detector Interferogram The output SDI product contains interferograms for each spectrometer detector for each scan of the observational building block which have been corrected for glitches.

6.15.4. Input Calibration Products

No calibration data are needed.

6.15.5. How to use the *Interferogram Deglitching* Module

6.15.6. Parameter Options

deglitchType

This optional parameter specifies the method used to identify glitches. Values may be either "STD", "MAD", "STD_WINDOW", or "MAD_WINDOW". If "STD" or "MAD" are selected then glitches are identified by a 1st order outlier criterion based on the difference of a given sample from the median value across all scans at a given Optical Path Difference (OPD) in units of either standard deviation or median absolute deviation. If the deviation is greater than a user-defined threshold (see keyword below) then the sample is flagged as a glitch. This commonly used approach to outlier detection is suitable for large iteration numbers. If "STD_WINDOW" or "MAD_WINDOW" are selected then glitches are identified by a 2nd order outlier criterion based on the standard deviation interferogram across all scans. If, within the user-defined window (see keyword below), the standard deviation interferogram contains outliers above a threshold factor (see keyword below) times either standard deviation or median absolute deviation then the OPD location is identified as containing a glitch. The scan with the largest deviation from the median is then flagged as a glitch and the procedure is iterated until no more glitches are found or only two scans are left. All of the deglitching algorithms require a total of at least three valid scans. The algorithms ignore samples flagged as unusable. By default, the module will use the "MAD_WINDOW" glitch detection algorithm with its default parameters.

- thresholdFactor This parameter specifies the factor by which the standard deviation or the median absolute deviation is multiplied to define the range of the envelope outside of which samples are flagged as outliers. This parameter applies to all four types of deglitching algorithms, if in slightly different ways for 1st and 2nd order outlier detection. A larger threshold will result in less sensitive glitch detection and fewer data points which are incorrectly flagged as glitches (false positives or ghosts). A typical threshold factor for large sample sizes is a value of 3 when using standard deviation. Note that the threshold factor must be multiplied by 1.4826 for algorithms using the median absolute deviationin order to make the results comparable with algorithms using the standard deviation. The module sets default threshold values based on the number of scans in the observation if the user does not specify the threshold value. The default value is 3.2905 and 4.8785 for "STD" and "MAD", setting the expectation for false positives in white noise to 0.1%. The default values for the other two deglitching schemes depend on the number of scans in a given direction. The default values for "STD_WINDOW" are 4.0, 3.5, 3.0, and 2.5 for 2, 3, 4 - 8, and >9 scans in one direction. The default values for "MAD WINDOW" are 4.5, 4.0, 3.5, and 3.0 for 2, 3 - 4, 5 - 8, and >9 scans in one direction. If, in either direction, the number of scans is one or two, the scans from the other direction will be used in addition to enable the statistical analysis. The module cannot identify and correct for glitches if the total number of scans is less than three.
- windowSize This parameter of type integer specifies the window size for the deglitching types "STD_WINDOW" and "MAD_WINDOW". It must be an odd number in order to define a symmetrical data range around the sample to be analyzed. Its value must be equal to three or larger. The default values for the deglitching types "STD_WINDOW" and "MAD_WINDOW" are 41 and 33 respectively. It is recommended to keep this parameter smaller than the width of the center burst of the measured interferograms. This parameter has no bearing on the other two types "STD" and "MAD".
- getExpectedFalse**DegilitedsiRg**tiin(targititagrExppe, allows for a large number of different parameter nScans, nElements, rovides a method to assess the performance of a specific parameter set for the data at threshold, windowSize) nethod returns the number of false positives. The getExpectedFalsePositivesRatio method returns the number of samples which were wrongly flagged as glitches in one set of normally distributed data divided by the total number of samples. In the order indicated above, the method requires five parameters:

<orderedList>

stitem>deglitchType, i.e. "STD_WINDOW", "MAD_WINDOW", "STD", or "MAD".</listitem>

stitem>nScans, the number of scans along one direction.</listitem>

listitem>nElements, the number of elements in one interferogram (to account for edge effects).</listitem>

tistitem>threshold, the threshold factor.</listitem>

</orderedList>

An example of how to use this function is given below.

identifyGlitches This boolean parameter with default value True specifies whether the task attempts to identify glitches. This option was made available to allow for purely manual glitch detection.

correctGlitches This boolean parameter with default value True specifies whether the task attempts to replace flagged samples.

6.15.7. Examples

Figure 6.10. An example for glitch removal in an interferogram. An interferogram before (blue) and after glitch removal (green).

6.15.8. Error messages

Invalid threshold parameter specified. A non-positive threshold is mathematically non-sensical. An exception is thrown if this input parameter is set to a non-positive value.

Not enough scans. If not enough forward or reverse scans are available to perform the selected glitch identification algorithm then there will be a warning to the user on the Windows console.

6.16. Phase Correction

6.16.1. Module Description

The *Phase Correction* module corrects for any asymmetries in the interferogram about the position of Zero Path Difference (ZPD). The symmetry of the optical layout of a Fourier transform spectrometer (FTS) theoretically implies that the recorded interferograms also exhibit even symmetry. The Fourier transform of an evenly symmetric interferogram contains only real components. The presence of dispersive elements and the possibility that the position of ZPD is not being sampled can result in an interferogram with signal samples that are not symmetric about ZPD. The resulting spectrum will contain both real and imaginary components and therefore a non-zero phase. Phase correction proceeds in two steps: the first characterizes the phase of the measured interferogram; the second removes the phase.

6.16.2. Input Data Products

- SDI **Spectrometer Detector Interferogram** The SDI product contains interferograms for each spectrometer detector for each scan of the observational building block.
- SDS **Spectrometer Detector Spectrum** The SDS product contains the double-sided (low resolution) spectra for each spectrometer detector for each scan of the observation.

6.16.3. Output Data Products

- SDI **Spectrometer Detector Interferogram** The output SDI product contains phasecorrected interferograms for each spectrometer detector for each scan of the observational building block.
- SDS **Spectrometer Detector Spectrum** The set of double-sided spectra SDS that was provided as an input to this processing module will be modified such that its double-sided spectra will be phase-corrected.

6.16.4. Input Calibration Products

- nlp Non-Linear Phase This calibration product describes that portion of the phase which is stable over time because it is based on instrumental characteristics. The non-linear phase will be characterized from in-flight data for each detector in SLW and SSW and made available as calibration data which can then be taken out of each interferogram measured.
- phaseCorrLim **Phase Correction Limits** This optional calibration product indicates where the pipeline expects the spectral SNR to be at its maximum in order to be suitable for a fit to the phase. The spectral ranges are given in units of cm⁻¹ and correlate roughly to the measured spectral bands for each spectrometer detector.

6.16.5. How to use the *Phase Correction* Module

6.16.6. Control parameters

Users can set the following parameters of the Phase Correction module:

- polyDegree The optional parameter "polyDegree" sets the degree of the polynomial function that is used to fit the measured in-band phase. The parameter can be set to any positive integer. If "polyDegree" is set to unity for a linear fit, then phase correction can only shift ZPD, the point of symmetry of the interferogram, and, in the process, change where the interferogram is sampled. However, phase correction with a linear phase fit cannot change the shape of the interferogram. If "polyDegree" is set to values of two or higher then the underlying shape of the interferogram can change as well. The parameter has to be selected with care in the presence of significant noise. In this case, polynomials with a order greater than 4 can easily fit to random noise rather than a stable and repeatable instrumental phase. The default value is 2.
- convolApodNam&n the case of phase-correcting a high resolution interferogram, the derived Phase Correction Function (PCF) is convolved with the data. In order to avoid artifacts from the convolution with an array that has non-zero values at its edges, the PCF can be apodized. A range of apodizing functions is available. The optional parameter "convolApodName" can be set to one of the values specified below. Care should be taken to select an apodizing function with values close to zero at its edges. It is a non-trivial decision to select the best apodizing function for phase correction. At the same time, the impact of the apodization function on the quality of the phase correction is limited. By default, no apodizing function is applied.

The following apodizing functions are available:

- "aGauss_19", Gaussian
- "aHM_15", Hamming
- "aHN_17", Hanning
- "aNB_11" "aNB_20", ten adjusted Norton Beer functions
- pcfSize

This optional parameter specifies the number of elements in the phase correction function (PCF) which is used to correct single-sided interferograms, e.g. for high resolution data. A benefit of a larger PCF is that it may be able to correct for stronger asymmetries (further away in terms of OPD). However, a larger PCF will also lead to a stronger reduction in spectral resolution because the convolution operation invalidates points at the interferogram edges. The convolution will invalidate a number of points on either side of the interferogram which is equal to half the value specified by "pcfSize". The default value is 127.

6.16.7. Examples

Assuming a spectrometer detector interferogram product sdi and an observation context obs:

```
dsds = fourierTransform(sdi, ftType="prePhaseCorr", zeroPad="None")
sdi = phaseCorrection(sdi, \
        sds=dsds, \
        polyDegree=2, \
        convolApodName="aNB_20", \
        pcfSize=127, \
        phaseCorrLim=obs.calibration.spec.phaseCorrLim, \
        nlp=obs.calibration.spec.nlp)
```


Figure 6.11. An example for phase-correction: The original interferogram (blue) shows a slight displacement from ZPD and asymmetries with respect to the center burst. Note how the first sidelobes at plus and minus 0.02 cm have different amplitudes. The phase-corrected interferogram (red) is well centered about ZPD and its first sidelobes have very similar amplitudes.

6.16.8. Error messages

error: No match for "xx" found in SDS. Cannot continue. This module will throw an exception if the low resolution SDS product does not contain a scan contained in the input SDI product.

error: No match for "xx" found in SDS. Cannot continue. This module will throw an exception if the low resolution SDS product does not contain a detector contained in the input SDI product.

error: Sdi has no "type" parameter in MetaData. This module will throw an exception if the SDI product does not contain a valid "type" entry in its metadata.

error: Sdi has no "numScans" parameter in MetaData. This module will throw an exception if the SDI product does not contain a valid "numScans" entry in its metadata.

error: Sdi has no "aot" parameter in MetaData. This module will throw an exception if the SDI product does not contain a valid "aot" entry in its metadata.

error: Sdi has no "commandedResolution" parameter in MetaData. This module will throw an exception if the SDI product does not contain a valid "commandedResolution" entry in its metadata.

error: Unknown Apodization Function. This module will throw an exception if the user-specified apodizing function is not available.

6.17. Spectrum Flux Calibration

6.17.1. Module Description

The *Flux Conversion* module performs the absolute flux calibration for the SPIRE spectrometer pipeline. Based on a deep measurement and a detailed model of a bright asteroid, the values in the Spectrometer Detector Spectrum (SDS) product are converted from Volts per cm⁻¹ to units relating to the flux density of the source.

6.17.2. Input Data Products

SDS

Spectrometer Detector Spectrum The input SDS product contains a spectrum for each detector for each scan of the observational building block.

6.17.3. Output Data Products

SDS

Spectrometer Detector Spectrum The input SDS product contains a spectrum for each detector for each scan of the observational building block. The signal values are now in units that relate directly to the observed astronomical source.

6.17.4. Input Calibration Products

SpecFluxConv The **Spectrometer Flux Conversion** calibration product contains for each detector a wavenumber-dependent calibration table to relate V per wavenumber to units of flux density per wavenumber. Flux calibration depends on whether the nominal and bright detector settings were used. The calibration may change over time. It is therefore necessary to retrieve the right calibration product from the calibration context by indicating when the observation was made and whether nominal or bright detector settings were used.

6.17.5. How to use the *Flux Conversion* Module

6.17.6. Parameter Options

The flux conversion module does not use any parameters that can be controlled by the user at run-time.

6.17.7. Examples

Assuming sds is a spectrometer detector spectrum product with the signal in units of volts per cm^{-1} and obs an observation context:

```
# get the bias mode (biasMode) from the SDSw
biasMode = sds.meta["biasMode"].value
# get the observation start date from the SDS
date = sds.startDate
# get the correct edition of the calibration product
fluxConv = obs.calibration.spec.fluxConvList.getProduct(biasMode, date)
sds = specFluxConversion(sds, fluxConv=fluxConv)
```

6.17.8. Error messages

warning: "xx" not in cal product. No conversion performed. warning: Flux Conversion Calibration product does not contain an array that matches : "xx" No Conversion performed The module issues a warning if a detector that is present in the input SDS product has no entry in the calibration product. The flux conversion cannot be performed for that detector.

warning: Wavenumber grids not integer multiples. The module issues a warning if the wavenumber grid is not equidistant.

warning: Unable to interpolate [...] Will attempt extrapolation. The module issues a warning if flux conversion is attempted for a spectral range for which no calibration data are available.

6.18. Removing any Optical Crosstalk from the Spectra

6.18.1. Module Description

The *Remove Optical Crosstalk* module accounts for effects of the optical chain of the SPIRE instrument which lead to a detector receiving radiation that should have been received by another detector.

6.18.2. Input Data Products

SDS

Spectrometer Detector Spectrum The input SDS product contains spectra for each detector.

6.18.3. Output Data Products

SDS

Spectrometer Detector Spectrum The output SDS product contains spectra for each detector.

6.18.4. Input Calibration Products

SpecOptCross The **Spectrometer Optical Crosstalk** calibration product contains two matrices which describe the optical crosstalk for the detectors of the SLW and SSW detector array respectively. Currently, no systematic, linear cross-talk has been identified and this processing task is used as a placeholder.

6.18.5. How to use the *Remove Optical Crosstalk* Module

6.18.6. Parameter Options

The optical crosstalk correction module does not use any parameters that can be controlled by the user at run-time.

6.18.7. Examples

Assuming ssds is an SDS product and obs an observation context:

ssds = specOptCrossCorrection(ssds, optCross=obs.calibration.spec.optCross)

6.18.8. Error messages

This module does not issue specific error or warning messages.

6.19. Averaging Spectra to Produce One Final Spectral Product

6.19.1. Module Description

The *Average Spectra* module computes, on a wavenumber-by-wavenumber basis for each spectrometer detector, the average and the uncertainty of the spectral intensities across all scans. The average is calculated as the arithmetic mean of the spectral components. The uncertainty is calculated as the standard deviation of the spectral components.

6.19.2. Input Data Products

SDS

Spectrometer Detector Spectrum The input SDS product contains spectra for each spectrometer detector for each scan of the observational building block.

6.19.3. Output Data Products

SDS

Spectrometer Detector Spectrum The output SDS data product contains the average flux density and uncertainty for each spectrometer detector. There will be one scan in the output SDS.

6.19.4. Input Calibration Data Products

No calibration data are needed.

6.19.5. How to use the Spectral Averaging Module

6.19.6. Parameter Options

Users can set the following parameters of the Spectral Averaging module:

separateScanDire**athenso**ptional "separateScanDirections" parameter allows users to average spectra which were recorded while the mirror stage mechanism SMEC was traveling in a specific direction. If "separateScanDirections" is set to its default value "False", then the output product will contain only one composite dataset with data from scans in both directions. If "separateScanDirections" is set to "True", then the output product will contain two composite datasets with data averaged separately for forward and reverse scans.

outlierType The averaging task will ignore outliers while computing the spectral average and standard deviation if this optional parameter is set to one of its allowed values "3Sigma", "STD", or "MAD". Statistical outliers are defined as values outside of an acceptable range. Acceptable ranges are defined as follows: the arithmetic mean plus or minus three times the standard deviation for "3Sigma"; the arithmetic mean plus or minus a threshold factor (see next keyword) times the standard deviation for "STD"; the median plus or minus a threshold factor (see next keyword) times the median absolute deviation for "MAD".

thresholdFactor The user can define the threshold factor if the outlierType is "STD" or "MAD". The real value of the optional parameter "thresholdFactor" must be positive. The default value is 3.2905 if the outlierType is "STD" and 4.8785 if the outlierType is "MAD", ensuring that about 0.1% of all samples are rejected in randomly distributed data.

6.19.7. Examples

Assuming ssds is an SDS product:

asds=averageSpectra(ssds, separateScanDirections=False, outlierType="STD", thresholdFactor=3.2905)

Figure 6.12. The spectra from four scans (magenta, green, red, blue) are averaged to yield one final spectrum (black).

6.19.8. Error messages

error: "xx" WN column length mismatch. error: "xx" Wavenumber column mismatch. For each detector, the task verifies that the wavenumber grids are identical for all scans. An exception will

be thrown if they differ in length or by more than a small number which is below the precision of a variable of type Float.

error: Unsupported Flux type. The module throws an exception if the data type of the flux column is neither Float nor Double.