SPIRE Data Users Manual

version 1.0.dev, Document Number: SPIRE-RAL-DOC 00XXXX
09 December 2009

e -
d Sl;'\

SPIRE Data Users Manual

Table of Contents

= =01 PSPPSRI iv
Y= £ T o P iv
00 O =g T oo S iv
IO | oo [0 (o o I ORI 1
1.1. Scope of this Data USer's Manualcoevuiiiiiiiiiiiiiccis e e e e e e 1
1.2. SPIRE 0bSEVING MOUESunciii it e e e e e e eaa s 1
1.3. Structure of thiS OCUMENLcouuiieiii e 1
2. LOOKING @ YOUF TaIA ... cceunieiiieiii e e e e e e e e e e e e e e et e e e e e e 3
2.1. SPIRE Observation Context Data SIIUCIUIEeveevenieiiii e 3
2.1.1. Anatomy of a SPIRE Observation: Products, Pools, Storage, and Building
2] o0 PSPPSR 3
2.1.2. Linking it altogether: Introducing the Contextccovvvviveiiiieiiiiecieeeeenn, 4
2.1.3. Looking at your Observation Context iN HIPEcccoooviiiiiiiiiieee, 6
2.2. SPIRE Small Map and Point Source Mode Data Structurecccoeevvevvnieeennnennnnn. 9
2.2.1. The Point Source Observation MOdeuiieiiiiiiiiiiiii e 9
2.2.2. Reading the JPP into memory and saving it asaFITSfileand reading it in
o = P 11
2.2.3. Looking at the Level 1 Datafor Point Source Observations......................... 12
2.3. SPIRE Large Map and Parallel Mode Data Structurecccoeveevveeiieviineeeieeenn, 14
2.3.1. A first ook at YOUr iIMage MaPScvveneieieeeieeei e e e e e e e eanes 14
2.3.2. Savingamap asaFITSfileand reading itinagain............cccoocoevivinnennn.. 17
2.3.3. Looking at the Level 1 Timeline Data.........cccvevvvieviiiiiiiiecciiceee e ee e 18
2.3.4. Looking at the Level 0.5 Timeline Data..........cccuvevvnieiiiniiiii e eeiees 21
2.3.5. Looking at the Raw Level O Data........ccceuniviiieiiieciiieci e ee e 25
2.4. SPIRE Spectroscopy Data SIrUCIUIEcveeieiiieei e e e e e 26
2.4.1. SPIRE spectrometer introdUuCtioNc.uvveiuieiiieiiiie e ere e e 26
3. REPIOCESSING YOUE TBEA ...vuueieiieeii et e e e e e et e e e e e e e e e s e e e e s e e et e e eaneeeenas 32
3.1. SPIRE Point Source Mode Data ProCESSINGcvuvvvnieriieeeiieeeiiieeeeeeaeeraineeeeeenens 32
3.1.1. Reprocessing SPIRE Point Source Mode Data..........coccvvvvevviiviiiieiineniiees 32
3.2. Reprocessing SPIRE Large Map and Parallel Mode Data............ccocevvveviiiviinnneennnnn, 37
3.3. SPIRE Spectroscopy Data ProCESSINGccvvvvivnieiiieeci i e e e 45
3.3.1. Reprocessing SPIRE spectrometer dataooovvveviiiiiiiieiiiieciieeineeaies 45
3.3.2. Additional readingccevnieiiiiiiii i 48

Preface

1. Versioning

On the front page of this manual isaversion number made of three digits. Thefirst two digitsfollow a
traditional versioning system (0.1, 0.2, ...), and the changes introduced with each version are detailed
below. The third digit is the SPIRE build number to which each edition of the manual is associated.
Also shown on the front page is the date of publication of the manual.

1.1. Changelog

Thefollowing was changed for v0.1

» First version of the SDUM manual.

Chapter 1. Introduction

1.1. Scope of this Data User's Manual

The purpose of this document isto provide a comprehensice reference for all SPIRE usersin terms of
the data structure users will encounter for on inspection of the different types of SPIRE observations,
but also as a guide on how to reprocess the data and inspect the products through the full SPIRE
pipeline. This document superceeds the SPIRE pipeline reduction formerly included in the HOWTOs
document, but has been expaned to include all modes and insights on the data struture and types.

The data structure and reprocessing guide examples contained within the SPIRE Data Users Manual
are based upon the HIPE 2.0 release - views may differ and examples may not work on previous and
subsequent releases of HIPE. If you are using arelease of HIPE other than the 2.0 build, please consult
the relevant version of the SPIRE Data Users Manual.

For more information on obtaining HIPE and on how to install it, getting started with it, please go to
the HIPE Quick Start Guide and the HIPE Owners Guide for amore more indepth overview of getting
started with the HI PE environment.

1.2. SPIRE observing Modes

SPIRE observing modes for both the Photometer and the Spectrometer are provided as Astronomical
Observation Templates (AOTSs), and the way these AOTs are referred to may differ from resource to
resource (Hspot, HIPE, etc). There are currently 6 available observaing modes in various levels of
use and release, these are,

» Large Map Mode(Scan M apping, POF5): Used for observations of large fields (>4x4 arcmins).
The telescope is scanned building up a map, scan line by scan line. Scan lines can be orthonally
cross-linked to produce high quality maps.

» Small Map Mode (64-point Jiggle, POF3): Used for observations of large fields (>4x4 arcmins).
The telescope stares at a target and the detector arrays are jiggled, using a Beam Steering Mirror
(BSM), over the target areato build up a fully sampled map using a 64-point pattern. The back-
ground is removed by chopping with the BSM and Nodding with the telescope.

» Point Source Mode (7-point Jiggle, POF2): Used for observations of point sources. The telescope
stares at a target and the detector arrays are jiggled, using BSM, over the target using a 7-point
pattern. The background is removed by chopping with the BSM and Nodding with the tel escope.

» Parallel Mode (Parallel): Used for maps created with both SPIRE and PACS in parallel. These
are essentially equivalent to Large Map observations.

» Point Sour ce Spectroscopy (SOF1): Used for point source spectrocopy. The Spectrometer Mech-
anism (SMEC) mirror is scanned to produce a spectrum over the full wavelength range

» Small Map Spectroscopy (SOF2): Used for creating small spectrocopic maps. The Spectrometer
Mechanism (SMEC) mirror is scanned to produce a spectrum over the full wavelength range while
the BSM jiggles over 16 positions to produce an image map.

1.3. Structure of this document

Astronomer users will receive data that has already been processed through the standard pipelines to
several Levels. The processing levels of the SPIRE pipeline and user deliverables are outlined below
inFigure 1.1.

Introduction

U SPIRE Data Processing Levels

SPIRE — — — — Level O B
Pipelin e‘-'f !— Data Product Raw Data Products
Delivered | |
fo Users & Level 0.5 « Raw ADU counts converted
Data Product to meaningful units

1
Level 1 + Calibrated Timelines
j Peta Product,/ 4 ¢

| Level 2
e e - - Data Product * Image and Spectral maps
Level 2
Data Product * Quality Control

+QC

Figure 1.1. The processing levels of the SPIRE pipeline and user deliverables.

Thisdocument is divided into two broad topics. An introduction to the data structure as received from
the Herschel Science Archive (HSA) isdescribed in Chapter 2 which includes all relevant observation
modes and processing L evels. The pipelines themselves and detail s on reprocessing your observations
are covered in Chapter 3.

Chapter 2. Looking at your data

2.1. SPIRE Observation Context Data Struc-
ture

2.1.1. Anatomy of a SPIRE Observation: Products,
Pools, Storage, and Building Blocks

For the purposes of both this chapter and the next (on reprocessing your data), we assumethat you have
already downloaded a data set from the Herschel Science Archive and are familiar with how to put
your data into a store and how to access your data from this store within HIPE. If you haven't, please
look at the HIPE Quick Start Guide and the HIPE Owners Guide for instruction on how to do this.

Now you are the proud owner of a set of SPIRE observations. Before carrying out any processing
its most likely that you will want to have afirst look at your data. SPIRE observations are supplied
in a highly organized structure that may be unfamiliar to previous astronomical datasets you have
encountered.

All data within the HCSS processing system are passed around in containers referred to as Products.
There are Products for every kind of data, e.g.;

» Raw and processed Detector Data Timelines

e Cdlibration Data

Auxiliary (e.g. Pointing) Data
* Images

* Image Cubes

Data Contexts

Products can contain the following (pictorially visualized in Figure 2.1);
* MetaData

* One or more Datasets

 Processing History

Datasets can be;

* Array Tables

* |mage arrays

» Composite (nested) Tables

Looking at your data

2.1.2.

E—
Meta Data

History

Figure2.1. General structure of a SPIRE data Product

SPIRE (Herschel) Observations are accessed/downloaded and stored as a Pool of these products. A
Pool is basically a directory that contains the original raw data, the results of the automatic pipeline
processing and everything you need to process your observations again yourself (e.g. spacecraft point-
ing, the parameters you entered in HSPOT when you submitted the proposal, and the pipeline cali-
bration tables). Data that you reprocess yourself can also be stored into the same Pool or you may
alternatively wish to save theresultsin anew Pool. If you wish to send someone aset of processed data
for example, the entire Pool directory should be "tar"ed or archived and sent. Finally, once a Pool has
been created, the pool's directory namemust NOT be changed or HIPE will not be ableto find the data.

In general, HIPE expects al your observation pool directories to be contained in a "Local Store"
directory which can be thought of as a Super Repository for all Observation Pools on your hard disk.
By default this directory resides in ~/.hcss/Istore but can be changed and renamed by by editing the
HCSS user.propsfile. The structure of the Local Storeisvisualized in Figure 2.2

/Local Store

\i

Figure 2.2. General structure of the Local Store

PRODUCT
—_——

PRODUCT
PRODUCT /

Linking it altogether: Introducing the Context

The smallest “piece” of SPIRE observational datais called aBuilding Block. These Building Blocks
correspond to basic operations within an observation and as the name suggests every SPIRE AOT
is built up from a combination of these building blocks. Building Blocks are usually in the form of
Timeline Data Products.

Example building blocks may be;

e Ascanlineinamap

» A single 7 point Jiggle

* A set of Spectrometer scans

Looking at your data

¢ A segment of housekeeping scans
* A motion of the Beam Steering Mirror (BSM)

Building Blocks and other Products are grouped into a context. A context is a special kind of product
linking other products in a coherent description and can be thought of as an inventory or catalogue of
products. The SPIRE processed observation consists of many such contexts within one giant Obser -
vation context. Therefore, Each set of building blocks have a context. Each Processing Level in the
SPIRE pipeline has a context and the entire Observation has a context. Thus a complete observation
may be thought of as a big SPIRE onion as depicted in Figure 2.3. Moreover, contexts are not just for
building block products and higher processed data products, there are contextsfor Calibration Products
and contexts for Auxiliary Products (e.g. pointing) and even a context for Quality Control. The entire
SPIRE Obseravtional Context isshownin Figure 2.4 for all products from the raw building block data
to the final high level processed end products from the pipeline. Thisis the structure and content that
you should receive for your SPIRE observation from the Herschal Science Archive (HSA).

Level 1 - Level 2

Post Processing q
Level 0.5 - Level 1
AOT Processing q
Level O - level 0.5
Raw Data q

Engineering Conversion

Figure 2.3. The Context structure within HCSS. The smallest “piece” of SPIRE observational data are
Building Blocks. Building Blocks and other Products are grouped into a context. All the data within an
entire SPIRE observation arelinked by an Observation Context.

Looking at your data

/ OBSERVATIONAL

Raw Data, + Conversion to Level 0.5 + Processed Level 1 + Final Level 2 & QC)
Auxiliary Context

® Pointing Product
® SIAM Product
® Ephemeris Product

Level 0.5 Context

Building Block Context .
Processed Data Products D D

€.g.
Photometer Map Product
Point Source Preduct

eg.
Photometer Scan Timeline Product
Pointed Photometer Jiggle Product

Quality Context

* Quality Product

Figure 2.4. The complete Observation Context of a SPIRE observation

2.1.3. Looking at your Observation Context in HIPE

The Observation Context can be viewed directly within HIPE. It is assumed in this example that the
data has aready been downloaded from the archive and has aready been stored in a pool named
Gal axyScanMap intheLoca Store. Wetherefore have to load this pool into the HIPE environment
and extract the Observation Context for this observation. This is possible via a slightly convoluted
route using the GUI but can also be accomplished painlessly with athe few lines of code shown below;

Pool = '@l axyScanMap' # Sel ect the pool nane
st or age=Pr oduct St or age(Pool) # Regi ster the pool
queryResults = storage. sel ect (Query("type=="0OBS ")) # Query the pool
MyQbsCont ext = queryResul t s[0] . product # Extract the Context

Thefirst line of code selects the desired Pool from our Local Store on disk. This Pool isread into a
storageareain memory (referred to as Registering the Pool ") which we have decidedto call st or age.
Once the Pool has been registered, it can then be queried for the observation context by searching the
storage for the Product Type OBS. Finally, the Observation Context Product is stored in avariable we
choose to call MyObsCont ext . After running the above lines we see five new entriesVar i abl es
pane of HIPE shown in Figure 2.5. These variables have already been described above (Note: the
p is simply a place holder). Double clicking on the obsCont ext in the variable list brings up the
Observation Context observation in a new window as also shown in Figure 2.5. The Observation
Context has Summar y, Met a- Dat a and Dat a panes. The Sumar y pane contains information on
the instrument, target position, observation 1D, Operational Day and Observation Mode. The Met a-

Dat a pane contains all relevant information on the Product necessary to describe and process the
observation (including the information in the Sunmar y pane). The Meta-Data for the observation
context issummarized in Table 2.1. The Observation Context Dat a pane contains pointersto all other
contexts and data products contained in the Observation Pool. The Dat a pane contains many entries,
listed below and in Figure 2.6 (See also Figure 2.4);

Looking at your data

* l evel 0: The Level 0 context containing links to the Level 0 raw dData before any pipeline
processing.

* l evel 0.5:ThelLevel 0.5 context containing linksto the Level 0.5 data products after the com-
mon engineering conversion has been made.

* l evel 1:Thelevel 1 context containing links to the Level 1 data products after AOT specific
pipeline processing.

* | evel 2:TheLevel 2context containinglinksto thefinal Level 2 dataproductsfrom the pipeline.

» cal i brati on: The Cdibration context pointing to al calibration products required for the pro-
cessing of SPIRE data.

» auxi | i ary: The context pointing to all .

* | ogObsCont ext : The context pointing to the reduction log that records the processing history
of the data

» qual i ty: The Quality context pointing to the quality control products for this observation.
» browsel magePr oduct : The context pointing to thumbnail products.
* br owsePr oduct : The context containing information from the HSA archive.

Note that the structure of the Observation Context can also be directly seen from the command line
by typing, pri nt MyGbsCont ext ;

Hl PE> print MyObsCont ext

{descri pti on="Unknown", meta=[type, creator, creationDate, description, instrunent,
nodel Nane, start Date, endDate, obsState, obsid, odNumber, cushMbde, instMde],

dat aset s=[], history=None,
ref s=[auxiliary, br owsel magePr oduct, br owsePr oduct, cal i brati on, | evel 0,

| evel 0_5, | evel 1, | evel 2, | ogGbsCont ext, qual i ty]}

Here the Observation Context can be clearly seen to contain no data as such but rather a set of pointers
or references to other different kinds of contexts. In the next section, the Observation Contexts for
specific individual AOTs will be investigated in more detail allowing us to have afirst look at our
processed datal

Looking at your data

Table 2.1. Description of Meta Data in the SPIRE Observation Context

Meta Data Description

odNumber The Observational Day when the observation was made

obsid The unique Observation ID (in decimal)

startDate The start date of the observation in TAI, Zulu Time

endDate The end date of the observation

creationDate The creation date of this Product

creator How the product was created (e.g. Standard Product Generation (SPG) ver-
sion)

modelName Whether the datais from Flight or Flight Spare, etc

obsState

How far has the observation been processed by the pipeline (Level 0, 0.5, 1
or 2)

type

The Product Type (OBS = Observation Context)

instMode The instrument mode (The AOTSs defined internally as POF5 for Large Map
Mode)

instrument The instrument name, in this case SPIRE

cusMode How the AOT isreferred to in the observaion logs and scheduling
(SpirePhotoL argeScan)

description The Product name

File Edit Run Window Help

mil=2

29 variables x

Lter@sEBQ@

-0
-
G
@ Pool
@ queryResults
@ storage
] Editor % —o
New-2 | “: obsContext x
ObservationContext for SPIRE data of observation 1342183485
- Summal
Instrument: SPIRE RA: 233.7447529923502
DEC: 23.493336360600836 Operational Day: 117
Observation 1D: 1342183485 ‘Observation Mode: Large Map
- Meta Data
name value unit description
type OBS Product Type ldentification
creator SPG v1.1.1

Generator of this product

creationDate
description

2009-09-09T09:16:28Z

Creation date of this product
ObservationContext for SPIRE data of observation 1342183485

Name of this product

SPIRE

instrument
modelName
startDate

Instrument attached to this product
FLIGHT Model name attached to this product

2009-09-07T22:56:027 \S(an date of this product

|endDate

2009-09-07T23:15:52Z End date of this product >

= obsContext
T@ auxiliary

i (® browseProduct
T@ calibration

T~@ logObsContext
®- (# quality

‘T'B browselmageProduct

obsContext

i

N e

*

Figure 2.5. The Observation Context within HIPE

Looking at your data

Auxiliary Product (pointing stuff)

Browse Image Product (thumbnail)

= obsContext
Browse Product (info for archive) ®auxiliary
& browselmageProduct
Calibration Product (calibration info) ®browseProduct
@ calibration
Level O Product (raw data) ®level0
o @ level0_5
Level 0.5 Product (Processed Timelines) i
®|evell
Level 1 Product (processed products) = level2
®|ogObsContext
Level 2 Product (final pipeline) ®quality

Reduction Log (data reduction history)
Quality Product (check of data)

Figure 2.6. Inside the Observation Context within HI PE.

2.2. SPIRE Small Map and Point Source Mode
Data Structure

2.2.1. The Point Source Observation Mode

All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the datafor a SPIRE Point Source
observation. A point source observation carries out a staring observation of a point source. In order to
recover the source successfully a 7-point hexagonal jiggle pattern is made around the source position.
Sky backgrounds are removed by chopping using the Beam Steering Mirror (BSM) over a distance
of plusminus 63 arc sec and any emission due to the telescope structure is removed by nodding the
entire telescope and repeating the chop=jiggle cycle.

The observation we shall be looking at is a Point Source observation of the Planetary Nebu-
lae NGC5315 taking during the Herschel-SPIRE PV phase. NGC5315 is at RA=13h53m57.00s,
dec=-66d30'50.70" and was covered by making 2 repetitions of the Point Source Mode whichinvolves
makes apair of chopped and nod cycles at each of the 7 jiggle positions in the pattern.

It is assumed that the observation has aready been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = '0OD117-7pt NGC5315-0x50001832' # Sel ect the pool nane
st or age=Pr oduct St or age(Pool) # Regi ster the pool
queryResul ts = storage.sel ect (Query("type=="OBS' ")) # Query the pool
MyCbsCont ext = quer yResul t s[0] . pr oduct # Extract the Context

Looking at your data

For this particular observation, we chose to call our Pool OD117-7ptNGC5315-0x50001832 where
0OD117 means the observation was made on Operational Day 117, 7pt wasthe AOT mode, NGC5315
wasthe target name and 0x50001832 isthe unique Observation I D in hexadecimal . Running the above
script, reads the Observation Context into memory into the variable MyObsContext which appears
in the Variables pane of HIPE (See Figure 2.7). Right Clicking (or CTRL-click for Apple Users)
on the MyObsContext variable brings up another menu. Selecting Open Wt h -- Cbser vati on
Vi ewer will open the Observational Context for this observation. The structure of the Observation
Context was explained in Section 2.1 and he we shall look at the datainside the Observational Context.
We start with the final Product of the SPIRE Point Source pipeline - The Jiggled Photometer Product
(JPP). The JPP isaLevel 2 Product and can therefore be found within the Level 2 Context. The JPP
can be simply acccesed by clicking onthelevel 2 folder as shown in Figure 2.8, which revealsa SPIRE
Jiggled Photometer Product. Right-clicking onthe JPPand selectingOpen Wt h-Array Dat aset
Vi ewer from the drop down menu shows the data in table form as shown in Figure 2.8. The JPP
contains a Table Dataset with arow for each array with the following information;

» Array Name: A column listing each array PSW, PMW, PLW.

* RA: A column ligting the final fitted Right Ascension for each array to the detected source within
the 7-point Jiggle pattern for the target detector in decimal degrees

* RA Error: A column listing the errors on the Right Ascension for each array

» Dec: A column listing the final fitted Declination for each array to the detected source within the
7-point Jiggle pattern for the target detector in decimal degrees

* DecError: A column listing the errors on the Declination for each array

» Signal: A column listing the Gaussian fitted signal for the target detector for each array to the
detected source within the 7-point Jiggle pattern in Jy (in beam flux)

» Error: A column listing the error on the fitted signalfor each array

[.YeNe) HIPE 2.0 - New-1
File Edit Run Window Help
E Ny R P@mom B @
#] Editor x [=m) 9 variables x (=il
P New-1 x - -
i b [MyObsConte xt,
e(Pool) . L o Open
queryg e.select (Query("types='08S ")) 4 p
MyObsContext = gueryResults[0].product # @ Pool & Open With M Product Viewer
g a(uer’vResu\ts o Send to Context Viewer
storage
T r Observation Viewer
Rename
B Console x [(=B] ¥ Delete =
[HOPE> Fool = 'ODL1/-7pLNGC5315-0%50001832 # select the pool name =
lstorage=Pri tStorage(Pool) # Register the pool (2) Help inURM F1
lqueryResults = storage.select(Query(’types=='0BS'")) # Query the pool s
pyobscontext = gueryResults[0].product # Extract the Context (2} Help in DRM
[HOPE>

R —

| CEemmm .,

Figure 2.7. Loading and viewing the Observation Context for the Photometer Point Sour ce Observation.

10

Looking at your data

8006 HIPE2.0 - MyObsContext
File Edit Run Window Help
O
Editor x 5
G- MyObsContext X
Contents
Instrument: SPIRE Operational Day: 117
Observation ID: 1342183474
BMvasContext MyobsContext.refs[”level2").product.refs["JPP"].product[outputDataset”) B A
+ = auxiliary =
+ [calibration Contents
B level0
@ leveld_5 None
@ levell - Table Data
B\evelz TableDamset
E:’JPF ableDatase!
" o Index | arrayName ra errRa dec errDec signal error |
History 0 |psw 208.4906...14.733157...[-66.5136...[0.001772...[1.565983...[0.0
(- (22 logObsCantext 1 PMw 208.4929..6.515659..|-66.5142...|0.002084...[0.343536.. 0.0
* (2 quality 2 |Pw 208.4942.../7.107329...]-66.5147...[0.001722...[0.217698...[0.0

Figure 2.8. Accessing thefinal Level 2 Product Jiggled Photometer Product

2.2.2. Reading the JPP into memory and saving it as a
FITS file and reading it in again

It is possible that me may also want to export our data and HIPE provides the tools for exporting
data products as conventional fitsfiles. The Level 2 JPP can be read into memory with the following
admittadly long-winded command from the command line;

read entire Product

myJPP=MyQbsCont ext . ref s["l evel 2"]. product . refs["JPP"]. product
#

read the RA data array

myRa=nyJPP["out put Dat aset"]["ra"] . data

print nyRa

read the RA for PSWarray

myRaPSWenmy JPP[" out put Dat aset "] ["ra"] . dat a[0]

print nmyRaPSW

This creates anew entry my JPP in the Variables Pane of HIPE which can correspondingly be right-
clicked on to show the various viewing options available for this product. The next 4 linesin the above
script allow usto read in and print out the data for the Right Ascension for all arrays and for just the
PSW array (creating entries for myRa and my RaPSWin the variable pane). The JPP Level 2 Product
can be saved as a FITSfile by the following command line entry;

Fi t sArchi ve().save(' nypath/ nyJPP.fits', nyJPP)

where nypat h is the desired path. Alternatively the product can be sent to a FITS file by right-
clicking on it in the variable list and selecting Send To - FI TS fi | e from the drop down menu.
Thiswill openthe FITSwriter pand as shown in Figure 2.9 where we can typein our desired filename
and path. Click on Accept at the bottom of the panel to save the FITSfile.

Looking at your data

800 HIPE 2.0 - simpleFitsWriter
File Edit Run Window Help
SO & S P@mE E Q@
| Editor x [—o][%2 variables x [=1cil
New-1 5 MyObsContext | 2 simpleFitswriter x S -
rinput)
) © MyObsContext Open
product® : myJPP @ myRa | Open with
file= - [myee.fits |[Browse... | g ?"‘Ra"s‘” = Send to “ FITS file
. . @ Pool Show methods &’ Local store
R S |_] Ask before overwriting © queryResults Rename
)
|—0u1m... | storage ¥ Delete 53
(Z) HelpinURM F1
rInfo =
(2) Help in DRM
success -
status:]
progress:
Clear || Accept

|| [seommm i,
Figure 2.9. Exporting the JPP asa FITSfile

Reading aFITSfileinto the HIPE session can be accomplished by either selecting Open Fi | e from
the Fi | e menu in the top right hand corner of the HIPE window. Alternatively, from the command
line;

myJPP=si npl eFi t sReader (' nypat h/ nyJPP.fits')

These FITSfilesareimported asan JPP Pr oduct dat aset and can be manipulated in the same
manner as described earlier throughout this section.

Note

The JPP actually exist as a fits file within the Pool for this observa-
tion in the Loca Store. These can be found in the Pool for this example
inthefolder/ | ocal st ore/ OD117- 7pt NGC5315- 0x50001832/
herschel . spire.ia. dataset. Ji ggPhot Product (where
the poolnameis"OD117-7ptNGC5315-0x50001832"). The JPPwill have
thehspi rephotonmeter........ jpp.fits

2.2.3. Looking at the Level 1 Data for Point Source Ob-
servations

Thefinal Level 2 Jiggle Photometer Product has been created from a Gaussian fit to the 7-point jiggle
pattern of atarget bolometer. The information on the individual jiggle positions for all bolometersis
contained within the Level 1 Product and are also available from the Observation Context. The Level
1 Point Source mode product is referred to as the Averaged Pointed Photometer Product (APPP).
In Figure 2.10 we show how the Level 1 product can be accessed from the observational context. The
APPP holdsinformation for each of the 7 jiggle positions for all bolometers after the signal has been
demodulated (chopped) and de-nodded.

Each Averaged Pointed Photometer Product contains 7 individual Table Datasets (and a Product con-
taining the processing history) as shown in Figure 2.10 and defined below;

» Signal Table: A table containing a column for the Jiggle ID (1-7 position) and a column for the
signal from every detector channel (in Jy/beam)

e Error Table: A table containing a column for the signal error from every detector channel (in Jy/
beam)

12

Looking at your data

» Dec Table: A table containing a column for the declination on the sky in degrees for every detector
channel

» Dec Error Table: A table containing a column for the errorsin declination on the sky in degrees
for every detector channel

* RA Table: A table containing a column for the right ascension on the sky in degrees for every
detector channel

* RA Error Table: A table containing acolumn for the errorsin right ascension on the sky in degrees
for every detector channel

* Mask Table: A table containing the mask value for every detector channel corresponding to which
processing flags have been raised. The masks are defined in the SPIRE Pipeline User Guide doc-
ument

The APPP be viewed either - by right-clicking - array tables (by selecting Open Wt h - Dat a Set
Vi ewer) or plotted (by selecting Open Wt h - Tabl e Pl ott er). Although the use of Tabl e
Pl ot t er isbeyond the scope of this document, an example is shown in Figure 2.11 where we have
selected to plot the Jiggle ID against the Signal from the PSW E10 bolometer for the APPP.

800 HIPE 2.0 - MyObsContext
File Edit Run Window Help
& LPmmE
] Editor % =
@ New-1 | G MyObsContext x
signal
Instrument: SPIRE Operational Day: 117
Observation ID: 1342183474
= MyObsContext £5["levell”].product.refs[0].product| signal”] Ba
|4 (8 auxiliary _ i
[+ (2 calibration signal
(- levelo
[+ (% levelo_s None
& levell
i Table Data
5 TableD,
Rl signal
@ error index | jiggld | PLWAL Dy] | PLWA2 [yl | PLWA3 Uyl | PLWA4 [Ivl | PLWAS D] | PLWAG [ly) | PLWA7 [iy] | PLWAS [iv] | PLWA9 [iy] [PLWBL [iy] | P!
Jigg! vl | Pl
© dec 0.081303..]-0.01378...]-0.00331... -0.01020...[0.004960... 0. 7.096423..|-0.03125..|-0.01617...|-0.00933... -
© errbec -0.09281...[-0.00105...]-0.00697... -0.01397...[0.009836... 0. .008423...-0.01444...|-0.00811.../-0.00975... -
8 0.031982..]-0.00552...[0.005438... 0. ..[0.004755...[0. .009637...-0.01971...|-0.00903... 0.
© errka 0.025530..]-0.02747...|-1.30856... 0. X -0 .002235...-0. ~|-0.01101...|-0.
@ mask 0.0 ..|-0.00759../0.003 0.1 -.|0.1 X 001554 0. --|-0. 7...-0.
* (22 History -0. -0.00714...[-0.00523...|-0. |0 X -0.00273...-0.1 -|-0.00719..-0.
[levelz -0.02260...[0.003288...1-0.00223... 0. ..[0.011902...0. 0.002069...-0. ...|-0.00145...[-0.
|- (% logObsContext
[(8 quality

Figure 2.10. Viewing the Level 1 Averaged Pointed Photometer Product

13

Looking at your data

800 HIPE 2.0 - MyObsContext
File Edit Run Window Help

SPIRE Operational Day: 117
1342183474

“Fa-0.0n

+
t
| Fast| m—p | 7

Selections-
Hide X | Unhice O |

E Excl Solect | Unhide All
008~ Al Cols []]|_Show Al
Ev v b e e Lo e e b | ——
1 3 4 5 6 7 | [2met[Layer Props]
jiggld Overlay plots
[Overlay
[Legend
axis: [0 -offset figgd =1 1= y-axis: [D-offser PLWAL [0 | 2/=5 e

2.0.837

Figure 2.11. Plotting Level 1 APPP Data Product

2.3. SPIRE Large Map and Parallel Mode Data
Structure

2.3.1. A first look at your image maps

All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the datafor a SPIRE Large Map
observation, however this description applies equally to SPIRE Parallel M ode observations.

The observation we shall belooking at isaL arge Map observation of the Planetary Nebulae NGC5315
taking during the Herschel-SPIRE PV phase. NGC5315 is at RA=13h53m57.00s, dec=-66d30'50.70"
and was covered by scanning the photometer arrays 3 times each in orthoganal direction. The entire
process was then repested (i.e. this observation has 2 repetitions) giving in total 6 scans in each or-
thoganal direction making 12 scan linesin total.

It is assumed that the observation has already been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = '0OD117-ScanNGC5315-0x50001833' # Sel ect the pool nane
st or age=Pr oduct St or age(Pool) # Regi ster the pool
queryResul ts = storage.sel ect (Query("type=="O0BS' ")) # Query the pool
MyQbsCont ext = queryResul t s[0] . pr oduct # Extract the Context

For this particular observation, we choseto call our Pool OD117-ScanNGC5315-0x50001833 where
OD117 means the observation was made on Operational Day 117, Scan was the AOT mode,
NGC5315 was the target name and 0x50001833 is the unique Observation ID in hexadecimal. Run-
ning the above script, reads the Observation Context into memory into the variable M yObsContext
which appears in the Variables pane of HIPE (See Figure 2.12). Right Clicking (or CTRL-click for

14

Looking at your data

Apple Users) on the MyObsContext variable brings up another menu. Selecting Open W't h -- Cb-
servation Vi ewer will openthe Observational Context for this observation. The structure of the
Observation Context was explained in Section 2.1 and he we shall ook at the data inside the Obser-
vational Context. We start with the final Product of the SPIRE Large Map pipeline - the image maps.
The maps are Level 2 Products and can therefore be found within the Level 2 Context. The maps can
be simply acccesed by clicking on the level2 folder as shown in Figure 2.13, which reveals a SPIRE
Photometer Map Product (or moretechnically Si npl el mage Products) for each of the three SPIRE
arrays (PSW, PMW, PLW). Each Photometer Map Product contains 3 Table Datasets corresponding
to the image, error and coverage maps for each array and these are revelaed by clicking on the + sign
next to the array folder.

The image map can be viewed by clicking on the appropriate array folder (PSW, PMW, PLW) or
alternatively the image map can be displayed in a new window by right clicking on the appropriate
array folder and selecting Open W't h - St andard | nage Vi ewer from the drop down menu
as shown in Figure 2.14. This action opens theimage in the | mage Vi ewer where the image can
be panned, magnified etc. Colours, cut-levels, annotation options can be accessed by right-clicking
anywhere on the image. The image, error and coverage maps can also be displayed individually by
clicking on them or by right-clicking on the appropriate dataset and selecting Open Wt h - | mage
Vi ewer for ArrayDatasets from the drop down menu. Finaly, right-clicking on a given
image dataset and selecting Open Wth - Array Dataset Vi ewer from the drop down menu
shows the image (or error or coverage) in table form (Jy/beam for every pixel in the image) as shown
in Figure 2.15.

If you want to extract the Si npl el mage for the PSW, PMW or PLW array as a data cube containing
the image, error and coverage maps to work with, rather than view it with the | mrage Vi ewer, on
the command line type the rather exhaustive:

MyMapPr oduct =MyObsCont ext . ref s["l evel 2"]. product . ref s["PSW] . pr oduct
Then to view each of the map datasets

Di spl ay(MyMapPr oduct . i mage)

Di spl ay(MyMapPr oduct . error)

Di spl ay(MyMapPr oduct . cover age)

where MyMapPr oduct can be any name we choose and the following syntax means from My Cb-
sCont ext we want the Level 2 product PSW array Photometer Map Product. Y ou will also notice
that My MapPr oduct now appearsin the Variables Panel which can correspondingly beright-clicked
on to show the various viewing options available for this product. The next 3 linesin the above script
allow usto display the signal, error and coverage maps respectively.

800 HIPE 2.0 - New-1
File Edit Run Window Help
e Thr@E® P d
] Editor % [—o]| i variables x (=gl
New-1 x -
1) Pool = '0D117-5canNGC5315-0x50001833°
2 storage=ProductsStorage(Fool) - e Dpen—l
% gueryResults = storage.select(Query(’type=='085 ")) @p
E print gueryResults @ Pool m Product Viewer
g obsContext = gueryResults[0].product © quenResUIts| . send to N P
@ storage
Show methods Context Viewer
Rename ® QObservation Viewer
¥ Delete ®
El Console x (—a] @ Help in URM F1
HOPE> Pool = 'ODI17-5CanNGC5315-0x50001833 (2) Help in DRM

storage=FroductStorage(Fool)

queryResults = storage.select(Query("type==0BS'"))

print queryResults

obsContext = queryResults[0].product
[urn:0D117-5canNGC5315-0x50001853:herschel.ia.obs.ObservationContext:1]

HOFE>

|| Cemmm .,

Figure 2.12. L oading and viewing the Observation Context for the Large Map Observation.

15

Looking at your data

- MyObsContext x

Image
- Summary
name value description
crpixl 250.0 'WCS: Reference pixel position axis 1, unit=5Scalar -
crpix2 16.0 'WCS: Reference pixel position axis 2, unit=5calar
crvall 208.11765598421647 'WCS: First coordinate of reference pixel
crval2 -66.74621303624633 'WCS: Second coordinate of reference pixel
cdeltl -0.001666666666667 'WCS: Pixel scale axis 1, unit=Angle
cdelr2 0.001666666666667 'WCS: Pixel scale axis 2, unit=Angle
ctypel RA---TAN 'WCS: Projection type axis 1, default="LINEAR"
ctype2 DEC--TAN 'WCS: Projection type axis 2, default="LINEAR" -
~ Data
(= MyObsContext MyObsContext.refs["level2"].product.refs| "PSW"].product["image”] ElNZ)
(2 auxiliary -Image Viewer
(% hrowselmageProduct
* (% hrowseProduct
® ® calibration
& (59 |evel0
& (5 |avel0_S
& (% Jevell
= level2
@ (% pLw
(5 pMw
= = Psw
°
@ error
@ coverage
- (5 History
& (%8 |0gObsConte xt
® (® quality

160, 162 0.035267 N.A. [N.A.
AJAIEIR] 1o [T]
Figure 2.13. Accessing thefinal Level 2 Product maps
£ Editor x [
:m:wmumaun x
& oo™

|4 browselmageProduct
[4-(% browse Product
(@ calibration
(+ 3 levelo
[@ levelo_S
(-9 levell
- & level2
& @ pw
(3 Puw

o imag
o errofNCTENTEMN Product Viewer
& é;‘l’;’f) HelpinURM F1| Product Tree Editor
& logObsContext Wes explorerforiimages

4@ quality ©Standard mag

@ fi=l[@ 200 [$] 12553505 13:50:46.174, -66:33:35.30

Figure 2.14. Viewing the Level 2 Image Maps

16

Looking at your data

2.3.2.
again

.- MyObsContext X
Image

= MyObsContext MyObsContext.refs["level2"].product.refs["PSW"].product|"image"] Ba

- (% auxiliary
& (% browselmageProduct | Image
- (% browseProduct Meta Data

- (% calibration
L levelo
@ (% level0_S ArrayData: Double2d
- (2 |evell
= level2 Double2d:data[0:307][0:313]
&S pw
¢ (5 PMW Open < t184 | 185 | 186 | 187 188 189 190
= & Psw e

|0

& Open With | @ Dataset Viewer [{89...]-0.01062...0.006240...-0.01870...

.o @ Help in URA 40.../-0.00519...[0.004849..[-0.01121...

o colommiEipiin HRNITEL FSeeE R i RS St WSS /5 . [0.006400...-1.49140...[-0.01623..

& History ~.-0.00358..|-0.00296.._0.001061..|-0.00691...|-0.00909... -0.00863...[-0.01472..

4 (% logObsContext ../0.001983..[-0.00570...-0.01786...|-0.02044...|-0.00576...0.003916...[-0.01975 ..
& = quality ..[-0.00900...[-0.00713...[-0.00550...[0.001237..|-0.00102...|-0.01949...|-0.01554..

7
2
2
5.../-0.00656...[-0.00841...|-0.01095...|-2.99812...|0.002567...|-0.00927...|-0.02378...
9.../-0.01581...(-3.94172.../0.002835...|-0.00682...|-0.01752...|-0.01940...(-0.01223 .
5
8
4

...-0.01414.../12.332835...-0.00292...|-0.00766...|-0.00924...|-0.01690...|-0.00976...
...|-0.00352...|10.009071.../0.005223._|-0.00988...|-0.02719...|-0.00437_..|-0.01801__
=0.00208 1-0.00273 10.003896 |-0.01200 [-0.00733 |-0.018R03 -0.00859 hd

Figure 2.15. Viewing the Level 2 Image Array Datasets

Saving a map as a FITS file and reading it in

It is possible that me may also want to look at our image maps in external applications such as DS9
for example and HIPE provides the tools for exporting our maps as conventional fitsfiles. Following
on from the previous example above we can send our MyMapPr oduct (Si npl el nage) product to
aFITSfileby right-clicking onitinthe variable list and selecting Send To -FI TS fi | e fromthe
drop down menu. This will open the FITS writer panel as shown in Figure 2.16 where we can type
in our desired filename and path. Click on Accept at the bottom of the panel to save the FITS file.
Thisfitsfile will then be saved as a multi-extension fits file containing the image, error and coverage
maps that can then be read into DS9 as a data cube and viewed. The same effect can be acheived on
the command line by;

Fi t sArchi ve().save(' nypath/nyMap.fits', M/MapProduct)

which again saves the products as a multi-extension fits file containing the image, error and coverage
maps.

17

Looking at your data

2.3.3.

800 HIPE - Herschel Interactive Processing Environment

File Edit Run Window Help

e S rrrer
' Editor X G 22 variables x G
[P New-1 % MyObsContext {3 MyMapProduct | & simpleFitswriter x -

rInput

product® : MyMapProduct

file* = |vaaps.f\ts || Browse... @ storag

Open
¥ Open With 3
L Bl FITS file

&= Local store

Show methods

warn : [¥i Ask before overwriting Rename
Delete =

(@) Help in URM F1
‘ (2) Help in DRM

"Oulpm

rInfor

sUCCess

status:

A«]

progress:

|| Eemmm .

Figure 2.16. Exporting Image Maps as FITSfiles

Reading aFITSfileinto the HIPE session can be accomplished by either selecting Open Fi | e from
the Fi | e menu in the top right hand corner of the HIPE window. Alternatively, from the command
line;

myMap=si npl eFi t sReader (' nypat h/ nyMap. fits')

These FITS files are imported as asi npl el mage and can be manipulated in the same manner as
thesi npl el nage products described earlier in this section.

Note

The Photometer Map Products (data cubes for each array con-
taining the image, error and coverage arrays) actualy exist as
fits files within the Pool for this observation in the Loca
Store. These can be found in the Pool for this example in
the folder / | ocal st or e/ OD117- ScanNGC5315- 0x50001833/
herschel . i a. dat aset . i mage. Si npl el mage (wherethe pool-
name is "OD117-ScanNGC5315-0x50001833"). The Photometer Map
Products having theformhspireplw. prp.fits

Looking at the Level 1 Timeline Data

The image maps have been created from the individual timelines of detectors as they were scanned
accross the target. These timelines are the Level 1 products from the Photometer Large Map Pipeline
and are also available from the Observation Context. The Level 1 Large Map products are referred to
as Photometer Scan Products. In Figure 2.17 we show how the Level 1 products can be accessed
from the observational context. Note that within the Level 1 Context there are atotal of 12 Products
labelled from 0 to 12. These are all Photometer Scan Products. As noted earlier the map of NGC5315
was constructed by scanning the photometer arrays 3 timesin each orthoganal direction twice making
atotal of 12 scan linesin total. Although the numbering system seems anonymous, the actual name of
the Building Block can still be revealed by checking the MetaDatabbTypeNamne inthe Photometer
Scan Product (i.e. click on one of the folders numbered 1-12)

Each Photometer Scan Product contains 5 individual Table Datasets (and a Product containing the
processing history) as shown in Figure 2.17 and defined below;

18

Looking at your data

» Signal Table: A table containing the Sample Time (in seconds) and a column for the signal from
every bolometer including both detector (in Jy/beam) and non-detector (e.g. thermistor, resistor in
Volts) channels

* Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

* RA Table: A table containing the Sample Time (in seconds) and a column for the RA on the sky
in degrees for each detector (not including non-detector channels)

» Dec Table: A table containing the Sample Time (in seconds) and a column for the Dec on the sky
in degrees for each detector (not including non-detector channels)

» Temperature Table: A table containing the Sample Time (in seconds) and a column for each
Thermistor channel temperature (measured in Kelvin)

These individual Table Datasets correspond to data from a single scan line and can be viewed either

as - by right-clicking - array tables (by selecting Open Wth -Data Set Vi ewer) or plotted
(by selecting Open Wt h-Tabl e Pl otter). Although theuse of Tabl e Pl ott er isbeyond
the scope of this document, an example is shown in Figure 2.18 where we have selected to plot the
Sample Time against the Signal from the PSW D16 bolometer for this particular scan line.

File_Edit Run Window_Help
=3 LPREmEQ
[Editor x (=o)

L MyObsContext x

Voltages table
- Summar
Instrument: SPIRE Operational Day: 117
‘Observation ID: 1342183475
eta Data

name value unit description

(& MyObsContext levell'].prod roduct|"signal’] Ba
- (% aulary 5
- (% browselmageproduct | Voltages table
- (3 browseProduct
- (3 calibration None
- levell

index sampleTime [TA] PSWRL [V] PSWD16 (y] PSWT1 (V] PSWB16 [yl PSWCLS y]
o mask 6310330373046134E9 [0.0036739871233701706 _|3.1707296315580606 _[0.008600875735282898 |3.095746673643589 _|2.541075486689806 |2
© temperature $6310330373583734E9[0.0038735512644052505 |3.3783 18315371871 |0.00859997421503067 _|3.3514888621866703 |2.666641777381301 _[3.
o BTl [2 16310330374121335€9 [0.003873370587825775 [3.170234214514494 [0.008600190281867981 3.257490688934922 |2.6023678220808506 3.
en 16310330374658935E9 288765862584114 .008601078763604164 13.3221271876245737 |2.628731269389391 X
© dec 16310330375196536E9 0915281139314175 _0.008601 104840636253 _|3.2808787804096937
@ (3 History .6310330375734134E9 2850020322862625 _|0.008601460605859756 |3.334642758592963 5
&1 .6310330376271734E9 2195344120264053 [0.00860036164522171 2007008100301027
&2 .6310330376809335E9 2003567684441805 [0.008600421249866486 [3.2799942456185818 X
-3 .6310330377346935E9 2254335787147284 [0.008599866181612015 [3.2866016644984484
-4 .6310330377884533E9 249263681471348 .00859985500574112 324903767555952 X
&5 .6310330378422134E9 152145754545927 008601674810051918 [3.255575753748417
4 .6310330378959734E9 2265113908797503 8603427559137344 3.366866547614336 X
&7 .6310330379497302E9 [0.0038770735263824463 191035522148013 8603816714618683 3.205204866114855
4 .6310330380034902E9 [0.0038761943578720093 3342644833028316 8602799847722054 |3.2866198867559433
4 16310330380572503E9 [0.003674586895108223 2202154994010025 8601317182183266 13.3175192289054394 X
& 10 16310330381110103E9 (0.003874378278851509 2027763530612 860089436173439 250957615673542
& 11 6310330381647704E9 [0.0038745123893022537 |3.2666346952319145 86012352257967 3507891558110714 X

P level2 16310330382185302E9 [0.003874531015753746 2374502774327993 8600931614637375 13.2524324748665094
> & logObsContext .6310330382722902E9 [0.00387442 11196899414 234139855951071 8601220324635506 3.2631816305220127 12.5123568680137396 2.
> quality .6310330383260503E9 5881

|| MEmmw .

Figure 2.17. Viewing the Level 1 Photometer Scan Products

19

Looking at your data

File Edit Run Window Help

Oe TP @ s ® B @
] Editor x (=)
@ New-1 | %: MyObsContext x
Voltages table
= MyObsContext “levell"].prod £5(0] .product [signal”] B

- (3 auxiliary
- (%8 browselmageProduct
- (%8 browseProduct Display Style
- (% calibration
9 level0 in_ | Marked__ vE
- (5 level0_S 1 in |VeROSS + E
7 > levell
=]
© mask T~y
© temperature ‘ s ' t | A
¥ sional| =
on g “‘U ‘ | ‘H H “" |’ \| M l =] Fast] = | 3¢
© dec == || | ‘ ‘ ”
& (5 History d '>.| ‘ ”" ‘| | i I ‘H 41+
s | i R
- (% 2 | ‘ ‘ H“‘ i | ‘ ‘ H Selections
g: Hide X | Unhide O |
- Excl, Select | Unhide Al
20 Al cols [T show Al
(7 e
S5 s Exract | [Preferences|
-9 | I | I
‘g 10 o n = ; el £ QOverlay plots
sampleTime(TAD
(511 " 7 overlay
- (59 level2 = - o Legend
:g?ﬁﬁ‘x“m“ x-axis: [-offset [sampleTime [=] [1== y-axis: [] -offset [PSWD16 = 3= [Remove a layer ~
time[0]=1631033037:2009-09-07 16:43:23(UTC)
1.2.234.0

I .
Figure 2.18. Plotting L evel 1 Photometer Scan Product Timeline Data

Individual Table Data Sets can also be extracted from the Observational Context using the alternative
command line script. Using Figure 2.18 as a guide we can see the following;

Extract the Photoneter Scan Product for the first Scan Line
ScanLi nel=MyCbsCont ext . refs["| evel 1"]. product . ref s[0] . product
or extract the Photonmeter Scan Product for the second Scan Line
ScanLi ne2=MyCbsCont ext . refs["| evel 1"]. product . ref s[1] . pr oduct
#

CGet the Signal Table fromthe first Scan Line

Si gnal ScanLi nel=ScanLi nel["' si gnal ']

Get the array of values for the Sanple Tine

Ti meScanLi nel=Si gnal ScanLi nel[' sanpl eTine']. data

CGet the array of values for the PSW D16 Detector
PSWD16ScanLi nel=Si gnal ScanLi nel[' PSWD16'] . dat a

print PSWD16ScanLi nel

where ScanLi nel, etc can be any hame we choose and the following syntax means from My Cb-

sCont ext wewant the Level 1 product Photometer Scan Product for the first scan line (i.e. element
[0]). Youwill also noticethat ScanLi nel now appearsin the Variables Panel which can correspond-
ingly be right-clicked on to show the various viewing options available for this product. The follow-
ing lines show the procedure for extracting the second scan line (i.e. array element [1]) and go on to
extract, for the first scan line the Signal Table Dataset. Finally the sanpl eTi ne and detector signal
for the PSWD16 detector are extarcted as normal arrays of numbers. The final list of variablesin the
HIPE Variable Pane is shown in Figure 2.19.

20

Looking at your data

2.3.4.

M ™ O Variables

B2 variables x (o

-

MyObsContext

P
Pool

gqueryResults
ScanLinel
SignalscanLine 1
storage
TimeScanLine 1

PP OO O OED

Figure 2.19. Plotting Level 1 Photometer Scan Product Timeline Data variable list

Looking at the Level 0.5 Timeline Data

These timeline data has been created by processing the raw Level 0 data through the Common Engi-
neering Conversion (Level 0- Level 0.5) Pipeline. The Level 0.5 dataare the uncalibrated, uncorrected
timelines measured in VVolts. Thelevel 0.5 products are a so available from the Observation Context.
The Level 0.5 context folder can be seen in the Observation Context and can be opened by clicking
on the + next tothel evel 0_5 folder. The Level 0.5 context contains alot more data than the Level
1 context and includes all the data necessary to process the observation and produce science quality
data. In Figure 2.20 we show al the Level 0.5 data within the observation context. We see that there
areatota of 31 entriesin thelist informatively labelled from 0 to 30. This can be compared to atotal
of 12 entries that we saw for the Level 1 products. The Level 0.5 context contains al the building
blocks used in the observation and in Figure 2.20 we show how this Large-Map observation was built
up from the individual building blocks. In the figure, the building blocks can be divided into roughly
4 genera types, configuration blocks, calibration blocks, science blocks and movement blocks. The
type of building block can be revealed by clicking on a given number from 1-30 and scrolling down
theMet a dat a window paneto the BBt ypeNane entry. Theindividual blocks are described below
in Table 2.2;

21

Looking at your data

Table 2.2. Description of the Building Blocksin aLarge Map Level 0.5 Context

BB number |BB Type BB Hex Description
prefix
0 SpireBbObsConfig OxAFO1 Initial configuration
1 SpireBbPhotSerendipity |0xA104 Slew to target
2 SpireBbPOF5Config O0xA050 AQT configuration
3 SpireBbPOF5I nit OxA051 Initialize the AOT
4 SpireBbPcalFlash O0xA801 Photometer Calibration Lamp Flash
5 SpireBbScanLine OxA103 A large map scan line
6 SpireBbMove OxAFO00 Scan Line turnaround movement
7 SpireBbScanLine 0xA103 A large map scan line
8 SpireBbMove OxAF00 Scan Line turnaround movement
SpireBbScanLine 0xA103 A large map scan line
SpireBbMove OxAFO00 Scan Line turnaround movement
27 SpireBbScanLine 0xA103 A large map scan line
28 SpireBbMove OxAFO00 Scan Line turnaround movement
29 SpireBbPcalFlash OxA801 Photometer Calibration Lamp Flash
29 SpireBbPOF5ENd OxA052 End of AOT

22

Looking at your data

Large Map ©®00 MyobsContext
BUIIdIng 0 — - MyObsContext X
Block
S 1
equence
| pata |
3 Bg’vobs(:omexr MyobsContext =z
"
4 A A—
#- (%@ browseProduct
5 @- (% calibration
& (%8 |evel0
6 - = level0_5
o (= History
7 2o
Lg 1
» 2
8 =4
‘ 4
9 [~€ 5
-2 6
10 t; 7
» 8
1 ‘ t: 5
12 ‘@
-
13 &3
14
14 || [@ (%15
* g 16
®- 17
15 g "
® 19
16) é 20
17 2
- (%8 23
18 - (% 24
19 4
@ (%827
20 @ (%28
‘ g 29
- (=2 30
21 ’ﬂ? levell
22 @ (2 level2
%- (% |ogObsContext
23 & (%@ quality
4 »
24
= 7 scece scnt
26 Science (scan line)
27 @ Movement (scan turnaround)
. e
29 Set-up (configuration, slewing, etc)
o -5

Calibration (PCAL flash)

Figure 2.20. Anatomy of Level 0.5 Building Block structurefor a Large Map observation

Looking at some of the individual entriesin the Level 0.5 context, it can be seen that the individual
Building Blocks are built up from a variety of different types of Products. clicking on the + sign for
a given Building Block number reveals what Products a particular Building Block is made from. In
Figure 2.21 the first handful of building blocks for our observation are opened to view the contents.
The contents are a variety of Products referred to by ancronyms such as CHKT, NHKT, PDT, POT,
SCUT, etc, described in order of importance below;

Example building blocks may be;

PDT: The Photometer Detector Timeline contains the Level 0.5 detector data.

NHKT: The Nominal House Keeping Timeline contains the housekeeping datawith all the settings
for this observation.

CHKT: The Critical House Keeping Timeline contains all the critical parameters of the instrument
such as the electronics.

SCUT: The Sub Control Unit Timeline contains monitoring data for the instrument operation for
this observation.

POT: The Photometer Offset Timeline contains all the raw DC offsets in ADU that have aready
been used in the raw data processing to set the dynamic range of the detectors.

Note that Building blocks such as the Slewing (serendipity Building Block), Calibration flash and the
scan line turnarounds all contain PDT data. Indeed, the scan line turnaround Building Block datalS

23

Looking at your data

used for scientific processing. The CHKT, NHKT, POT, SCUT Products all contain asi gnal table,
containg dataarraysand aMask table containing flag information. The Level 0.5 Photometer Detector
Timeline Products contain 4 Table dataset arrays;

Voltage Table: A table containing the Sample Time (in seconds) and a column for the signal mea-
sured in Volts for every bolometer including both detector and non-detector (e.g. thermistor, resis-
tor) channels.

Resistance Table: A table containing the Sample Time (in seconds) and acolumn for the Resistance
measured in Ohms for every bolometer including both detector and non-detector (e.g. thermistor,
resistor) channels.

Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

Quality Table: A table containing any Quality Flags raised for each detector.

In Figure 2.21 the PDT for the first Scan Line Building Block has been selected. Right-clicking and

selecting Open-wi t h - Dat aset Vi ewer, opensthevol t age table in a new window. Any of
the Table Data Sets can also be viewed graphically by selecting Qpen-wi t h - Dat aset Vi ewer

as shown in Figure 2.22. In the plot window the bolometer signal to plot can be selected from the

Y- axi s menu and many bolometers can be overlayed by ticking the over | ay box (both circled in
the plot window).

MyObsCon...product

[I+ MyObsCon..product X

Voltages table

MyobsContext .refs["level0_5"].product....roduct.refs["PDI"].produet| voltage'] =)

Voltages table

|—— Observation Configuration

None
E@aKT [Tglgscope Slew
(3 NHKT [Tablel
||| & pOT i . Index | sampleTi...| PSWR1 [V] | PSWD16... | PSWT1 [V] | PSWB16_.. | PSWCLS . | PSWAL' |
il 0 |1.631033..|0.003873.../0.003649.[0.008599.../0.003548../0.004 107..[0.0036(
Smonr | AOT Configuration

1 [1.631033../0.003873../0.003649../0.008599...[0.003548...[0.004107...[0.0036!

||| & (% NHKT

2 [1.631033..[0.003873..0.003649...0.008599.../0.003548...[0.004107...0.0036
3 1.631033.../0.003873.../0.003649.../0.008599.../0.003548.../0.004107.../0.0036
4 1.631033.../0.003873.../0.003649.../0.008599...[0.003548.../0.004107.../0.0036
5 |1.631033..[0.003873../0.003649...[0.008599.../0.003548...[0.004107...[0.0036
6

kY & CHKT / AOT IniTiulize

(B NHKT

1.631033../0.003873..[0.003649...[0.008599...[0.003548...[0.004 107...[0.0036

1.631033../0.003873..[0.003649.[0.008599.[0.003548_[0.004107...[0.0036|

-) . 7 98599..
4- (% CHKT / Calibration flash 8 1.631033..[0.003873...[0.003649.../0.008599...[0.003548.../0.004107...0.0036(
9

: ggs'lfT 1.631033.../0.003873.../0.003649.../0.008599...[0.003548.../0.004107.../0.0036

) |1.631033../0.003873..[0.003649...[0.008599...[0.003548.../0.004107.../0.0036
] [1.631033..[0.003873..[0.003649../0.008599...[0.003548.../0.004107...[0.0036
/ Scan Line 1.631033..[0.003873..0.003649...0.008599.../0.003548...[0.004 107...(0.0036
1.631033.../0.003873.../0.003649.../0.008599...10.003548.../0.004107.../0.003 6
1.631033..0.003872..[0.003649...]0.008599...0.003548.../0.004107...[0.0036
[15 [1.631033../0.003873...[0.003649...[0.008599...[0.003548...[0.004107...0.003 6|
e 16 |1.631033..[0.003873..]0.003649../0.008599...[0.003548..[0.004107...(0.0036
[@ resistance — —_————————— 17 |1.631033.[0.003873.]0.003649.0.008599..(0.003548..[0.004107..[0.0036!
© mask K Open With LASEDAtE ELVIEe 18 [1.631033..]0.003873..0.003649..]0.008599..[0.003548..[0.004107...[0.0036
© quality RM F1 Power Spectrum Generator 19 [1.631033..[0.003873..0.003649...10.008599...[0.003548..[0.004107...[0.0036
;9 Mistory TablePlotter 20 |1.631033..[0.003872...[0.003649...0.008599...[0.003548...[0.004107...[0.0036
& temperature e 21 |1.631033.[0.003873..(0.003649./0.008599._0.003547..0.004107._./0.0036

22 1.631033.../0.003872.../0.003649.../0.008599.../0.003548.../0.004107.../0.00:
23 1.631033...0.003873.../0.003649.../0.008599.../0.003548.../0.004107.../0.00:
24 [1.631033..[0.003873..[0.003649.../0.008599...[0.003548.../0.004107...|0.0036

K1 I—
Fewlage | Scan Turnaround -
- @ resistance
@ mask
@ quality
- (% History
— @ temperature

Figure 2.21. Inside the Level 0.5 Building Block structurefor aLarge Map observation

24

Looking at your data

2.3.5.

600 MyObsCon...product
[% MyObsCon_-product X
Voltages table
| MyObsContext.refs["level0_5]. product |~ *levelo_5"] .prod 51.prod "¢DT"] .product ["voltage"] B &
% (@ History
TEL -
¢ & cHiT 0.0036875 -
- (9 NHKT F
&1 E
% (5 CHKT L
% (% NHKT E
1 =
4 (% pDT 0.0036874 -
&7
& (8 CHKT r Display Style
- (5 NHKT
*-9? 0.0036873 in,_Jome v]
L L
T [t Joor -]+
% (59 CHKT
- (588 NHKT r g
% (% PDT L M-
? 0.0036872 - -
& (3 scuT s . I IS
S L
- o s
4 (@ CHKT ; n ¢ | Fast| mmp |
& (58 NHKT r
L& por & 00036871 - ANAEE
° £
© resistance i . Selections
© mask 0 Dataset Viewer Hice X | Unhide O |
© qualiy Power Spectrum Generat - Lt
%-(% History — CLER S L I, L Excl Select | Unhide All
Lo temperature < e R - e . Al Cols [II]_Show Al |
“=6 OverPlotter . M ————
Tg CHIT 0.0036869 [+ i [_Exract] [Layer Progs|
- ::;(T [+ f}*u Overiay plots
- (&7 L [Overlay
- (%8 L
-3 10 Lo v vy Lo b e - e
(11 0 10 20 30 40
Q12 sampleTime(TAIl
& (13 p
- (3 14
- (% 15
'*glﬁ x-axis: [V -offset [sampleTime [=] | 1= y-axis: [] -offset PSWES =1 [1i==
> 17
- 18 time[0}=1631033037:2009-09-07 16:43:23(UTC)
o1 =l | 2.0.837
. 20 = | 2.0.

Figure 2.22. Plotting the Level 0.5 data for a Large Map observation

Looking at the Raw Level 0 Data

The Raw data formatted from the satellite telemetry is also available within the Observation Context.
These are the Level 0 products and will in most circumstances be of no general interest. The Level 0
context, shown in Figure 2.23, contains 30 entries, each corresponding to an individual block in the
observation. the building block types are identical to the Level 0.5 data (see Table 2.2). Clicking on
agiven number within the Level 0 context reveal s the products contained within each building block.
These products are the raw data versions of the Level 0.5 CHKT, NHKT, PDT, POT, SCUT products
and are simply prefixed by an"R". The Raw Photometer Detector Timeline (RPDT) product containsa
single Table Dataset referred to as PHOTF. When we view this dataset (by right-clicking and selecting
Open-wi t h - Dat aset Vi ewer , see Figure 2.23), we find quite adifferent structure to the Level
0.5 PDT datasets. There are 288 columns, one for every SPIRE channel, numbered not in the familiar
PSWES, PSWE9 notation but rather asas PHOTFARRAYO001 -- PHOTFARRAY288 which corresponds
to their Channel Number (from an electrical designation). The signal is till in raw ADU and there
are many different time columns which correspond to various measures of the data frames, telemetry
packets and packet sequence counts, etc. The only flags are contained in the PHOTFADCFLAGS col-
umn which is set in the case of a problem with ADC process in telemetry. A full description of the
data structure can be found in the Products Definition Document (HERSCHEL -HSC-DOC-0959) or
the SPIRE Pipeline Description Document (SPIRE-RAL-DOC-002437).

25

Looking at your data

- YoXe) MyObsContext
[‘%: MyObsContext x
P Full Array inal Science Report)
sy |
Bgyobscomex(MyObsContext.refs["level0"].product.refs[5].product .refs[RPDT"] .product ["PHOTF" | Ba
& (%8 auxiliary
& (% browselmageProduct Photometer Full Array (Nominal Science Report)
(89 browseProduct
|- (% calibration None
= & leveld
St - Table Data
- (% 0
i TableD:
2 index | PHOTFARRAY0O1 [| PHOTFARRAY002 [] PHOTFARRAY003 [] | PHOTFARRAY004 [] | PHOTFA... | PHC
[Lg 3
6367 7 727 7410 62 -
T4 6367 727 7413 62
TEs 63 7 7410 63
& (59 RCHKT 63 7 7403 62
'7‘% EESF 4 |163 7 7405 63
- 63 7 7403 63
L o i 63 7 7 7403 63
) g & Open 3 7 7402 63
7 - . = = 7 7 7406 62
o8 E OpenWith b = Dataset Viewer < 3 T40° 5
e®9 @ fielp nURM 1| Power Spectrum Generator 6 7 7403 63
. L@ 10 TablePlotter 7 7 740 63
€ .g u OverPlotter z z u 53
=12 69 7 7 62
P13 6362 62 7 7 63
P14 6365 62 7 7402 63
F@1s 6368 70 7 7407 62
T@16 6367 65 7 7402 62
@ 6368 65 7 7405 62
F@ 18 19 [16365 53366 45730 47408 30634 496
FE@1 20 [16361 53365 45730 47405 30638 496
F@20 6367 67 7 7397 63
T2l 6362 73 7 7404 63
Fd22 6367 73 7 7407 63
‘ §§3 6368 65 732 7402 63 =
& 25 [«
@ (% 25
@ (% 27
@ (% 28
@ (% 29
@ (% 30
|- (29 level0_S
#- (% levell
|- (29 level2
(% logObsContext
|- (28 quality

Figure 2.23. The Level 0 Raw Data within the Observation Context

2.4. SPIRE Spectroscopy Data Structure

2.4.1.

SPIRE spectrometer introduction

This section is dedicated to familiarizing the reader with the appearance of the data from the SPIRE
spectrometer within HIPE and how to visualize the data.

The introductory script SPIRE_spectrometer_intro.py guides the user through the steps described in
the subsequent sections: A fully processed observation context is loaded into HIPE and inspected.
Level-1 data products are extracted from the observation context and then visualized. Finally, portions
of adata product are extracted and plotted, giving the user direct access to the data. The data, shown
here, derive from an observation of the galaxy 1C342. The observation was made on September 21,
2009, Herschel's Operational Day 130.

2.4.1.1. Load an observation context into HIPE

In HIPE, one can access the observation contexts from data pools as follows:

1. Declare a ProductStorage: i.e. the name of the pool:
storage = Product St or age(" name- of - pool ")

2. Query for an observation context which isidentified by its type being equal to OBS:
results = storage. sel ect (Query("type=="0BS'"))

3. Load the observation into the HIPE session:

26

Looking at your data

observation = resul ts[0]. product

The introductory script loads three observation contexts from three separate data pools. Please refer
to the script for the exact syntax. An observation context is a HIPE object which can contain several
data products.

2.4.1.2. Inspect an observation context in HIPE

HIPE provides convenient GUI tools to inspect an observation context. Begin with the observation
context for thelow resolution observation (OBSID=0x50001AB8). Inthe HIPE Variables View, select
IrObservation with aright mouse click and then Open With > Observation Viewer. HIPE will present
the Summary view of the observation, including the image of four spectra, one unapodized and one
apodized, derived from each of the center detectors of the two SPIRE spectrometer detector arrays:
SLWC3 and SSWDA4. Clicking the small arrow to the left of Summary in the observation viewer will
hide the observation summary and present the detailed view of the observation context:

—181x]
File Edit Run Window Help
ffecH& 5> » T RP@ B EQ
] Editor x [~ 2% variables x (==
[# sPIRE_sp..ntro pyj%lrobservmon x x -
© nhrobservation
© hrstorage
© Irstorage
name value unit description © mrObservation
tvne [eEE] Product Type) . |||[|© mrstorage
creator AUTO Generator of this product enp
creationDate 2006-11-27T19.03472 reation date of this product © resuits
escription Uniknown /ame of this product
instrument SPIRE instrument attachied to this product
[FLIGHT jodlel nare attached to this product |
tarDate 2009-09-21 T02.27172 Start date of this procuct |
endDate 2009-09-21T02:42:372 End date of this product I=f}
£ outline x (=g
[= IrDhservation 1rObservation B a oF Qutline s

& (% auxiliary name [Ironservation

% (% prowselmageProduct class |observatoncantext

& prowseProduct package |herschelia.obs

"gca”ma“”" & iropservation

(@ evell o

@ leveln_5 auxiary

G i © browselmageProduct
© browseProduct

@ calbration

o leveln

© IevelD_5

| Histary Log | & Console x (=a @ levell
© IngobsContext

© quaity

@ (% logOhsContext
(= guality

p>lrstorage = ProductStorage ("demo-gpire-spec—0xSOD01ABS")
results = lrStorage.select (Query ("type=='OBE""})
lrobservation = results[0].product

#
<

[
Figure 2.24. Viewing the SPIRE observation context

The viewing pane shows the many sub-contexts contained in the observation context in a folder-like
layout.

Next, inspect the level-1 context. In the Data area of the Editor for IrObservation, select level1 with a
right mouse click and select Open With > Context Viewer. Insidethe Level 1 context thereisonemain
entry named “Point_0 _Jiggle 0_LR” which standsfor thefirst and only raster point (index 0), thefirst
and only jiggle position (index 0) at Low Resolution. Thisisthe only building block contained in this
observation. Double-click this building block to see the three entries it contains. Each one represents
adifferent SPIRE spectrometer level-1 data product:

1. apodized spectrum: Level 1 Apodized Spectrum Product
2. interferogram: Level 1 Interferogram Product

3. unapodized _spectrum: Level 1 Unapodized Spectrum Product

27

Looking at your data

(EJHIPE 2.0 - IrObsery...product -8 x|
File Edit Run Window Help
o H&| = > » T hPr@ o E@
[Editor x (=] %2 variables x (=g
[# 5PIRE_sp._niro.py. G Irobservation | & Irobserv..product x ® -
MapContext for SPIRE products @ hrObservation
© hrstorage
© IrObservation
name valug urit description o IrStorage
ftype pireMapContext Product Type Identification |\[[|le mronservation
creator Unknown Generator of this proguict © mrstorage
creationDate 2005-11-27T23.17:362 reation date of this procct .
(escriptior MapContext for SPIRE products lame of this product p
instrurment SPIRE Instrument attached to this product @ results
Unknown ioclel name attached to this product
tarDate |2009-11-27T23:17:36Z Start date of this product |
endDate 12009-11-27T23:17:362 End date of this product =1/
= Point_0_Jiggle_0_LR 1rObservation.refs['levell'] .product 2R
4-(% apodized_spectrum 5 outline x (=g
@ interterogram hame [irobservation refs["levelt "] product
P!
@ (% unapodized_spectrum
= class [SpireMapContext
package |nerschel spire fa dataset context

m Console x ()| ronservation refs['levelt*] product
=1[| - @ Peint_o_iggle_0_LR
rStorage = ProductStorage ("demc-spire-spec-0x50001489")
= mritorage.select (Query ("type==TOBET")}
robservation = results[0].product
#
OBSID = Ox50001ABA contains HIGH resolution FT8 Scans
#
hrstorage = ProductStorage ("demc-spire-spec-02S0001ABA")
results = hrsterage.select (Query ("type=="0BS""}))
hrobservation = results[0].product

B>

B e

Figure 2.25. Viewing the SPIRE Level 1 context

2.4.1.3. Extract the Level 1 data products

Beforeinspecting the contents of thelevel-1 dataproducts, wefirst extract a selection of these products
as separate variables in HIPE. The syntax required to access alevel-1 product within an observation
context is as follows:

Level 1Product = observation.refs["level 1"]. product.
ref s[Bui | di ngBl ock] . product. refs[Product Nanme] . pr oduct

For example, the following command will extract the level-1 interferogram product from the high
resolution observation context:

hrinterferogram = hr Cbservation.refs["l evel 1"]. product.
refs["Point_0 Jiggle O HR'].product.refs["interferograni]. product

Note that the right hand side of this command is spelled out at the top of the Data area of the Context
Viewer in HIPE. Clicking the copy icon at the top right corner will copy the command string into the
clipboard and can then be pasted into the command console.

2.4.1.4. Inspect the Level 1 data products
HIPE offers dedicated visualization tools to inspect the level-1 interferogram and spectrum products.

The following steps demonstrate how one can inspect the contents of the datasets within alevel-1 data
product astables. In this example, adataset in the level-1 interferogram product of the high resolution
observation is examined.

1. Select the hrinterferogram variable with right mouse click, select Open With > Product Viewer.

2. Scroll downto the bottom of the newly opened view. Within thefolder-like structure, unfold Dataset
0001 by clicking the plus symbol to its left and select SLWC3 with a right mouse click. Select
Open With > Dataset Viewer to view the numeric values of the dataset.

3. These values can be easily written into atext file with comma-separated val ues with the command
quoted below. The equivalent command will work to save a particular spectrum into atext file:
ascii TableWiter(file="C /SLWC3Interferogramtxt",
tabl e=hr I nterferograni"0001"]["SLWC3"])

ascii TableWiter(file="C /SLW3Spectrumtxt",
t abl e=hr Spect runi "0000"] [" SLWC3"])

28

Looking at your data

(EJHIPE 2.0 - hrinterf..SLWC3"]

File Edit Run Window Help

=181x|

[=o]| ¢ variables x —

PR E@

Hell=s & =
[Editor x
@ SPIRE_sp...ntro.py. SE: hrinterferagram | &= hrinterf..SLWC3"] x
name ~ value unit description

ra 56.70277766963558

Ra pointing for this channel

68.09604536302676 Dec pointing for this channel

dec
channelName

Channel name

- Tahle Data

TableD:

Index | opd [cm] | erroropd [cm] signal [v] errorsig [v] mask
0 - 0 -0.0013116411495190646 3.101211371906833E-7 4
1 06173 0 -0.0013112416788101046 2.720229115722643E-7 Z}

L0615 i -0.0013102585961496237 2.4389323100026996E- 7 4

25 0 -0.0013087657275909993 2.5531915366245485€- 7 Zl

0 -0.0013071454016707752 2.7926329403566333E- 7 4

0.6075 i -0.001305856653027137 2.6338799743264867E-7 4
-0.605 0 -0.001305396 12588068 14 1.8222284054440957E-7 4
-0.6025 0 -0.00130570142407993 2.225054452452289E- 7 4

8 0.6 0 0013060415515576247 2.679520514921951E-7 Z}
9 05975 i -0.0013086453926708242 2.848093666422951E-7 4
0 [0.595 0 0.0013107391427572286 2.431404399693771E-7 Zl
1 -0.5925 0 -0.0013125043426715389 2.233491121566251E-7 4
0.59 i -0.0013134974809183239 2.4366269409928476E-7 4
0.5875 0 -0.0013135472754619425 2.5580858 16306 0506E- 7 4

4 |-0.585 0 -0.0013123765046301728 2 650661542931 623E-7 Z
-0.5825 0 -0.0013103432714736 104 2.6930720193010383E-7 Z}
058 i -0.0013078262942012395 2.705001470829664E- 7 4

® -
© hrinterferagram
© hrobservation
© hrspestrum

© hrstorage

© Irinterferogram
© Irobservatian
@ Irspectrum

© Irstorage

© mrinterferogram
© mrOhservation
© mrspectrum

© mrstarage

°p

© resutts

£% outline x (=g
name [hrinterferogram{*0001*|['SLWC3"]
class [Spirelnterferagram1d

package |herschel spire fa dataset
© nrinterferogram["0001J'SLWCE"]

| Histary Log | & conscle x

MTINCEITerogram =

hrepectrum =

B>

hrobservation.refs["levell”].product. refs["Point_0_Tiggle_0_HR"].product.refs["interferogran”

hrobservation.refs["lewell”].product. refs["Point_0_Tiggle 0_HR"].product.refs["unapodized spe

Figure 2.26. I nspecting data from a level-1 product astables

The following steps demonstrate how one can conveniently plot the contents of the level-1 data prod-
uct. In this example, the interferograms for a given detector in the level-1 interferogram product of

the high resolution observation are examined.

1. IntheVariables pane, select the hrinterferogram variable with right mouse click, select Open With

> Spec SDI Explorer. Do the same for mrinterferogram, and Irinterferogram.

2. In the hrinterferogram view, select detector SLWC3 with a left mouse click. In the other views,
select the same detector but do so with a double-click of the left mouse button to over-plot the

interferograms.

L=JHIPE 2.0 - hrinterferogram
File Edit Run Window Help

=lEix|

Asl- W
™ Editor x

> »

(=g

SPIRE_sp...ntro. pyfhnnterferogmm x

B P@mE® EQ@

£¢ variables x

[Display Panel | Meta Data

R

»

@O

© detector =]
© fluxunit
© hrFiux

© hriayer
© hrobservation
© hropd

© hrsignal

© hrSpectrum

@ hrstorage

© hrwn

© IrFlux

© Irinterferagram
© IrLayer

© Irohservatian

£ outline x

(-o]

[name |nrnterterogram E

| SpecirometerDetectorinterferogram

Control Panel
Scan Selection
[Forward
[0 Reverse
[

Panel
] Naminal detectors anly
[0 Unvignetted anly

Initial coala: [1LL ST

<

package |nerschel spire ia dataset

& hrinterferogram
& (% 0001
(% 0002
(#0003
& (= 0004
(#0005
(%0006
(= 0007
& (% 0008

+ (%0009 -

L History, Log, Console & x

2.4.1.5. Extract and plot Level 1 data

The remainder of the SPIRE_spectrometer_intro.py demonstration script shows how to extract and

plot interferograms and spectra:

1. Extract the individual data vectors from the product datasets

Figure 2.27. The SDI Explorer allowsto select and plot data from alevel-1 interferogram product

29

Looking at your data

General syntax:

wave = spectruniscanNunber]|[detector]. get\Wave()

flux spect runf scanNunber][detector]. get Fl ux()

Specific syntax:
hrwh = hr Spectruni O] [" SLWC3"] . get Wave()

hr Fl ux = hr Spectruni O] [" SLWC3"] . get Fl ux()

2. Plot theresults.

General syntax:
p = Pl ot XY()

p. addLayer (Layer XY(x, y))

Specific sample syntax:
detector = "SLWC3"
plotTitle = "lInspect Level 1 Spectra "+detector
p = PlotXY(titleText = plotTitle)
hr Layer = Layer XY(hrWwh, hrFlux, nane="HR")

p. addLayer (hr Layer)

After execution of the remainder of SPIRE_spectrometer_intro.py, the following plots should be dis-
played:

30

Looking at your data

Inspect Level 1 Interferograms SLWC3

-0.00100 | | ‘ | ‘
-0.00105 —
-0.00110 —
-0.00115 —
-0.00120 —
-0.00125 —

-0.00130 —

-0.00135 —

Signal[V]

-0.00140 —

-0.00145 —
-0.00150 —

-0.00155 —

-0.00160
-4 -2 0 2 4 6

OPD[cm]

12

| HR ME LR ‘

Figure 2.28. Comparing three interferograms from the SLWC3 detector

Inspect Level 1 Spectra SLWC3

14

(=]
=

Flux Density [Jy]

Wavenumber [cm™]

|C—.H:RI—IMRA—ALR |

Figure 2.29. Comparing three spectra from the SLWC3 detector

31

Chapter 3. Reprocessing your data

3.1. SPIRE Point Source Mode Data Process-
Ing
3.1.1. Reprocessing SPIRE Point Source Mode Data

Now that you have inspected your data products, you may feel that you would like to reprocess your
data from the Level 0.5 products onwards, and in time to diverge away from the standard pipeline
processing provided by the HSC. This chapter provides an overview of the steps required to process
your datasets from Level 0.5 onwards, and on how to inspect your final Level 1 and Level 2 products.

For this data reprocessing example, we will be using the Point Source observation (obslD:
1342183474) of NGC 5315. We will in this example assume that you have received the engineer-
ing pipeline processed Level 0.5 data products from the HSC, and have stored them in a storage
pool*1342183474 POF2 _NGC5315". The figure below outlines the steps requierd to process the Jig-
gle pipeline.

32

Reprocessing your data

Level 0.5 Product Auxiliary Products Cevel 0.5 Product

Photometer Sp aft Sp aft
Detector Pointing Apertures
Timeline Product Product

Electrical
Remove Electrical Crosstalk
First Level Deglitching

o Convert to Flux Density
Associate Sky Position

Extract Chop & il
Jiggle Positions

Demodulation

Demodulated
Photometer
Product

econd Level Deglitching
and Averaging

De-Nodding

Pointed
Photometer

Product
Optical
Remove Optical Crosstalk

Average Nod Cycles

Averaged Pointed
Photometer
Product

Leve 1 rouc

I and Position I

Mapmaking

Figure 3.1. The SPIRE Jiggle mode pip€line.

First, we need to make sure that you have imported all needed classes and task definitions required
to run the Large Map/Parallel Mode pipeline:

Import all needed cl asses

from herschel .spire.all inport *
from herschel .spire.util inport *
from herschel .ia.all inport *

from herschel .ia.task. node inport *
fromjava.lang i nport Long
fromjava.util inmport *

I nmport the script tasks.py that contains the task definitions
from herschel . spire.ia.pipeline.scripts. POF2. POF2_t asks inmport *

Inport the script input.py that contains the input definitions

33

Reprocessing your data

from herschel . spire.ia.pipeline.scripts. POF2. POF2_i nput inport *

If you do not have Level 0.5 products to hand, you will need to make the engineering conversion first
from the raw Level 0 products. First, we must search our local pool "1342183474 POF2_NGC5315"
for our observation context:

store = Product St orage()
nmyPool = Local StoreFactory. get Store("1342183474_POF2_NGC5315")
store. register(nmyPool)

obs = QUERY_RESULT[0] . pr oduct

We also need to set a workaround for the nodld, and extract the calibration products required for
processing:

wor karound for wong nodld in PFM data
nodl d=[OL, 1L, 1L, OL]

Extract fromthe observation context the calibration products that
will be used in the script

bsnPos=obs. cal i brati on. phot . bsnPos
bsnOps=obs. cal i brati on. phot . bsnOps

det AngOX f =obs. cal i brati on. phot . det AngCf f

el ecCross=obs. cal i brati on. phot. el ecCross

opt Cr oss=obs. cal i brati on. phot . opt Cr oss

Extract fromthe observation context the auxiliary products that
will be used in the script

hpp=obs. auxi | i ary. poi nti ng

si amFobs. auxi l i ary. si am

Run the engineering pipeline from the Level O products obtained from the HSA to Level 0.5:

| evel 0_5= engConver si on(obs. | evel 0, cal =obs. cal i brati on)

Add the result to the observation in level 0.5
obs. | evel 0_5=l evel 0_5

Set dpparr as an array to host input from the demodulated data, and obtain the number of building
blocks from the Level 0.5 products:

dppar r =[Denodl! nput ()]
nrep=1
nbl ocks=l en(| evel 0_5. get Bbi ds(0xa321))

Now, we can process our data from Level 0.5 to Level 1. Looping over each BBID, we first convert
the BSM telemetry into a'Y Y angle and Z angle timeline and then into a chopper id and jiggle id
timeline. We use these to create the SPIRE pointing product.

The next step then is perform a number of corrections to the data - the electrical crosstalk coreec-
tion, deglitching, flux conversion, sky position association, demodulation of the data, second level
deglitching and averaging of the demodulation data. Lastly, we extract the number of cycles and add
the demodulated data to the "dpparr" variable as input to the denodding module.

for bbid in |evel 0_5. getBbi ds(0xa321)
print "Starting BBl D=", hex(bbi d)
bl ock=l evel 0_5. get (obsi d, bbi d)
Get basic engi neering data products
pdt bl ock. pdt
bsnt bl ock. bsnt

Reprocessing your data

#

#

run the task to convert BSMtelenetry in a Y angle and Z angle tineline
bat =cal cBsmAngl es(bsnt , bsnPPos=bsnPos)

run the task to convert BSMtelenetry in a chopper id and jiggle id tineline
cjt = cal cBsnFl ags(bsnt, bsmOps=bsnOps)
#
#create the SpirePointingProduct
spp=cr eat eSpi r ePoi nti ng(det AngOr f =det Angx f, bat =bat , hpp=hpp, si amssi an)
#
run the electrical crosstalk correction
pdt =el ecCrossCorrecti on(pdt, el ecCross=el ecCross)
#
run the deglitch
pdt =degl i t chTi nel i ne(pdt, scal eM n=1.0, scal eMax=8.0, scal el nterval =5
hol der M n=-1. 6, \
hol der Max=-0. 1, correl ationThreshol d=0.6, correctditches=inputs.correctditches)
#
run the flux conversion

fl uxConv=obs. cal i brati on. phot . f| uxConvLi st . get Product (pdt. net a[" bi asMbde"] . val ue, pdt. st art Dat e)
pdt =phot Fl uxConver si on(pdt, f| uxConv)
#

associ ate the sky position

ppt =associ at eSkyPosi ti on(pdt, spp=spp)
#

run the Denodul ation task

dpp = denodul ate(ppt, cjt=cjt)

#

second | evel deglitching
dpp = secondDegl i t chi ng(dpp)
#

average on jiggle position
dpp = jiggl eAver age(dpp)

ncyc=((dpp. bbCount-1)/4) +1
if ncyc >= nrep+1l
for k in range(ncyc-nrep):
dppar r. append(Denodl nput ())
dppar r[ncyc- 1] . addPr oduct (dpp)
nr ep=ncyc
el se
dppar r[ncyc- 1] . addPr oduct (dpp)
print "Conpl et ed BBl D=", hex(bbi d)

We can now inspect the output from the demodul ation modul e - below isthe demodul ated dpp product
datafor the PLWB6 detector:

[Display Panel | Meta Data

Info

T T — oy [iy)

z
g

- Quick

Plot for PLWB6
Date Mon Sep 07 17:40:06 BST 2009
060 T T T T T T

N
NE 065 4
g 0.70
S onf- i
g 075 -
sl
S 080 —
i\ -0.85 .
Sesscccoocescece 3
S -0.90 [—
[-T=Tel=l=] =l 1@l ~T=I@l =T =] =] =] 23
000000000 CCCCCO Z 005 1 [1 | I I I I
°°° °° 0@ 00@ -1 0 1 2 3 4 5 6 7 8
B0 OE 000 EEEoes. fndex
Qe00000000CCCCCe
OBOE00-EEE=BCE
BEEOO ® Plot O Over Plot G Table Plotter

"Cnmro\

Figure 3.2. DPP product - PLWB6 detector

35

Reprocessing your data

Now we can apply the denodding module to the demodulated data in order to remove the nodding,
and append the denodded data to the PhotPointedProduct (PPP):

ppps=[]

for i in range(nrep):
deni n=dpparr[i]
ppp=deNoddi ng(deni n)
ppps. append(ppp)

I nspecting the denodded PPP:

Display Panel | Meta Data
Info
[l Avrays =] [sgml] [<< | G [| [Piav [7AtsE | [5T0P | fos 50
{-Quick
Plot for PLWB6
Date Mon Sep 07 17:35:27 BST 2009
=0 1 1 1 1 T T
= oozl
% 0011 —
; 0.010 |- -
g 0009 B
2y 0.008 —
= 0007 _
> 0.006 [—
OOOOOEOEEEOGHOOE = L
CUOEOEREEEEOAUNE D
[CICICIClCICICl “Ilel - ICICICIC] § 0004 - n
@@@@@ 0O @@@@ ‘B 0003 I I I | | | |
GOOEEEOEEEEEEEE 0 1 2 3 4 5 6 7 8
9000 sCo0 i
GABOEEEHEEEEEEHEHHB
COOEEEEEEEEEEEERE
eco0d ® Plot O Over Plot O Table Plotter
"Ccmlml ‘

Figure 3.3. PPP product - PLWB6 detector

Finally, we can average the denodded data, per nodID:

appp = nodAver age(ppps)

Wenow have our Level 1 product - the Averaged Phot Pointing Product (APPP). Inspecting the APPP
viathe Detector Timeline Explorer:

& appp appp| "signal’]

Ba
© . =
© ermor signal
© dec
© erDec None
o orka
o mask TableDataset

- (9 History Index | jiggid PLWAL [ly] | PLWA2 [Jy] | PLWA3 [Jy] | PLWA4 [)y] | PLWAS [ly] | PLWAG [Jy] | PLWA7 [Jy] | PLWAS [ly] | PLWA [ly] | PLWB1 [)y] | PLWB2 [ly] | PLWE3 [Jy] | PLWB4 [Jy] | PLWBS|
0.081303... .01020...]0.004960...0.. 7.096423../-0.03125... -0, 0933...|- - ...|-0.00406... 0.
-0.09281...).01397...0.009836...[0. .008423...-0.0144 0975 ¢ 0.002577...0.
0.031982 916...10.004755...0. .009637...-0.01971... 0.003863...0.
0.025530. B, 62..0.0043 X .002235...-0.0234 -0.00174...[0.
0.001885../-0 .01041...[0.010118...0. .001554...-0.02455... ...|-0.00724...[0.
~0.00187. .01410...0.007582...0. 0.00273 ¢ E: 73.]-0.01628...[0.
-0.02260...[0.003288.../-0.00223...|-0.01410...[0.011902...[0. 0.002069../-0.01641... -0.01771...[-0.00822...[0.

Figure 3.4. APPP product - PLWB6 detector

Finally, we can obtain the final Level 2 products for Point Source Observations, by passing the APP
to the "pointSourceFlux" module, and by inspecting the output JPP product:

user products
jpsfp poi nt Sour ceFit (appp)
j pp sour ceFl ux (j psfp)

36

Reprocessing your data

=i IpPI "outputpataset”]

®a
L outputDataset] =
+(® History Contents

- Meta Data
None

Table Data

arrayNar dec errDec signal error
(T TN e T T T 7 T
om—

znugzg aslsasg ﬁasuz 0.002084
LW 5147...0.

001722../0.217698...0.0

Figure 3.5. JPPP product

Congratulations! Y ou have now successfully reprocessed your point source data from Level 0 to the
final Level 2 user products!

3.2. Reprocessing SPIRE Large Map and Par-
allel Mode Data

As mentioned earlier, the Large Map mode is essentially the same as the SPIRE component of
the Parallel Mode - for both modes, this processing guide will alow you to reprocess your data.
For this data reprocessing example, we assume that you wish to reprocess your data starting from
Level 0.5 products. For this data reprocessing example, we will be using the Large Map observa-
tion (obslD: 1342183475) of NGC 5315. We will in this example assume that you have received
the engineering pipeline Level 0.5 data products from the HSC, and have stored them in a storage
pool 1342183475 _POF5 NGC5315". The pipelinefor Level 0.5to Level 1 processing involvesthe
following sequence of processing modules. The pipeline works on a Photometer Detector Timeline
(PDT) and requires the Nominal Housekeeping Timeline (NHKT). Additional auxilliary products are
required for the telescope pointing information (see the flowchart below)

Spacecraft / Spacecraft
Pointing Apertures
Product Product

Photometer © Nominal

Detector Housekeeping
Timeline Timeline
\Electrical Crosstalk Matrix Irst Level Deglitching BSM positions |
_LPF Parameters ectrical Filter Correction
Unlf Conversion onver 0 Flux Densi
Correlation qumefers No
G v oo |
BSM / SPIRE
_ Filter Function ome T Time R esponse / . Instrument

Pointing
Product

Angles
{ Timeline ,
kQE‘I'I::mI Crosstalk Matrix Remove Opfical Crossta
Associate SKy Position €
photometer Tover T Product

Scan
Product

" Detector Beam Profiles >
“.Channel Noise Table \ apmaking

A —.
L th?efer Level 2 Product J

Product

Figure 3.6. The SPIRE Large Map/Parallel mode pipeline.

37

Reprocessing your data

First, we need to make sure that you have imported all needed classes and task definitions required
to run the Large Map/Parallel Mode pipeline:

from herschel .spire.all inport *
from herschel .spire.util inport *
from herschel .ia.all inport *

from herschel . i a. task. node inport *

from herschel .ia.pg inport ProductSink

fromjava.lang inport *

fromjava.util inmport *

from herschel .ia.obs.util inport CbsParaneter

from herschel . spire.ia.pipeline.scripts. POF5. POF5_t asks i nport *
from herschel . spire.ia.pipeline.scripts. POF5. POF5_i nput i nport *

store = Product St orage()
myPool = Local StoreFactory. get Store("1342183475_POF5_NGC5315")
store. register(nmyPool)

obs = QUERY_RESULT[0] . pr oduct

If you do not have Level 0.5 products to hand, you will need to make the engineering conversion
first from the raw Level O products, determine the number of scan lines to be processed and set up a
variable to keep track of saved prtoducts:

Extract fromthe observation context the calibration products that
will be used in the script

bsmPos=obs. cal i brati on. phot . bsnPos

| pf Par =obs. cal i brati on. phot . | pf Par

det AngOxf f =obs. cal i brati on. phot . det AngOf f

el ecCross=obs. cal i brati on. phot . el ecCross

opt Cross=obs. cal i brati on. phot . opt Cr oss

chanTi meConst =obs. cal i brati on. phot . chanTi neConst

chanNumrobs. cal i brati on. phot . chanNum

Extract fromthe observation context the auxiliary products that
will be used in the script

hpp=obs. auxi |l i ary. poi nting

si anFobs. auxi | i ary. si am

Set this to FALSE if you don't want to use the ProductSi nk
and do all the processing in nenory
t enpSt or age=Bool ean. TRUE

Run the engi neering conversion pipeline
| evel 0_5= engConver si on(obs. | evel 0, cal =obs. cal i brati on, tenpStorage=tenpStorage)

Attach the result to the observation in level 0.5
obs.level ["] evel 0_5"] =l evel 0_5

Get the list of BBIDs of scan |ines (BBID means Buil di ng Bl ock | Ds)
0xal03 is the BBTYPE of scientific data for scan nap.
bbi ds=I evel 0_5. get Bbi ds(0xal103)

nunber of scans lines to be processed
nscans=| en(bbi ds)
print "nunber of scan lines:", nscans

this variable will be used to keep references
to saved products
pdt Li st =[]

38

Reprocessing your data

Start the pipeline running the first correction - the Electrical Crosstalk Correction. We can execute
thisin aloop for al scan lines:

start the pipeline running the first correction:
Electrical Crosstalk Correction
This is executed in a loop for all scan |lines
for bbid in bbids:
bl ock=l evel 0_5. get (obsi d, bbi d)
pdt =bl ock. pdt
pdt =el ecCrossCorrecti on(pdt, el ecCross=el ecCross)
pdt Li st. append(si nk. save(pdt))

Now,for this observation, we know that detector timeline #5 contains a glitch in detector "PLWB5".

pdt =pdt Li st [5] . pr oduct

We can start to take steps to correct this glitch. First we get the voltage of detector "PLWB5S". The
getVoltage() method is defined for DetectorTimeline objects:

vol t age=pdt . get Vol t age(" PLVWE8")

Next we get the sample times. We are using a jython syntax to call the method getSampleTime()
defined for DetectorTimeline objects:

ti me=pdt . sanpl eTi mre

Here we shift the time origin to center on the glitch:

time=tine-tinme[135]

Get the name of the unit of the voltage:

uni =pdt . get Vol t ageUni t (" PLWE8").toString()

39

Reprocessing your data

00 Herschel PlotXyY

0.0044309 I I I

0.0044308 —

0.0044307 |

0.0044306 —

' 0.0044305 —

[V

@ 0.0044304 —

0.0044303 -

Voltag

0.0044302 —

0.0044301 —

0.0044300 —

0.0044299 —

0.0044298 ' ' ' ' ' '
00 50 5 0 15 20

Time [s]

Figure 3.7. Plotting voltage against time.

Now we can plot the voltage versus time to view the glitch:

Plot the voltage versus tine

pl ot 1=PI ot XY(ti e, vol t age, col or =Col or . bl ue, \
xtitle="Tine [s]",ytitle="Voltage ["+uni +"]")
pl ot 1[0] . styl e. stroke=1

plot1[0].style.line=2

pl ot 1[0] . styl e. synbol =14

To correct, we run deglitching on all scan lines:

for i in range(nscans)
pdt =pdt Li st[i]. product
pdt =degl i t chTi el i ne(pdt)
pdt Li st[i]=sink. save(pdt)

Now we get the same timeline after deglitching:

now | get the sane tineline after deglitching
pdt _deg=pdt Li st[5] . product

Again we get the voltage of detector PMWA13:

vol t _deg=pdt _deg. get Vol t age(" PLWE8")

25 30 35

40

40

Reprocessing your data

00 Herschel PlotXY

0.0044309 I T T T T
0.0044308 —
0.0044307 —
0.0044306 —
0.0044305 —
0.0044304 —

0.0044303 —

Voltage [V]

0.0044302 — —

0.0044301 — —

0.0044300 — —

0.0044299 — —

00044208 | | I | | I
-10 -3 0 5 10 15 20 25 30 35 40

Figure 3.8. And we can overplot on the old timeline.

Overplot on the old timeline:

pl ot 1[1] =Layer XY(ti me, vol t _deg, col or =Col or . r ed)
plot1[1] . styl e. stroke=1

Now we apply the Electrical Filter Response Correction

for i in range(nscans)
pdt =pdt Li st[i]. product
pdt =cor r El ecFi | t Response(pdt)
pdt Li st[i]=sink. save(pdt)

Now we can set up and run the Flux Conversion task:

f I uxConv=obs. cal i brati on. phot . f| uxConvLi st . get Product (pdt. net a[" bi asMode"] . val ue, pdt. st art Dat e)

for i in range(nscans):
pdt =pdt Li st[i]. product
pdt =phot Fl uxConver si on(pdt, t abl e=obs. cal i brati on. phot . f| uxConv)
pdt Li st[i]=sink.save(pdt)

Apply correction for temperature drift

for i in range(nscans)
pdt =pdt Li st[i]. product
pdt =t enperat ureDri ft Correcti on(pdt, tabl e=obs. calibration.phot.tenpDriftCorr)
pdt Li st[i]=sink. save(pdt)

Get the corrected PDT:

pdt _corr=pdtList[0].product

41

Reprocessing your data

Get the signal of the same detector:

si gnal _corr=pdt_corr. getSi gnal ("PSWE10")

Let'slook at the voltage of the PSWT1 thermistor:

si gnal _pswt 1=pdt _corr. get Si gnal (" PSW'1")
pl ot 3=Pl ot XY(ti e, si gnal _pswt 1, col or =Col or. bl ue, \
xtitle="Tinme [s]",ytitle="PSW1 Voltage [V]", nane="Therm stor voltage")

Apply the bolometer response correction:

for i in range(nscans):
pdt =pdt Li st[i]. product
pdt =cor r Bol Ti mreResponse(pdt)
pdt Li st[i]=si nk. save(pdt)

Apply the Optical Crosstalk Correction:

for i in range(nscans):
pdt =pdt Li st[i]. product
pdt =phot Opt Cr ossCorr ecti on(pdt, opt Cr oss=opt Cr 0ss)
pdt Li st[i]=si nk. save(pdt)

Create a Spire Pointing Product:

spp=Spi r ePoi nti ngProduct (det AngXf f =obs. cal i brati on. phot . det AngOf f, \
hpp=obs. auxi | i ary. poi nti ngProduct, si amrobs. auxi | i ary. si anProduct)

Create a ScanContext wherewewill attach all thetimelines. Thiswill be used asinput for map making:

scanCon=ScanCont ext (obsi d)
scanCon. nodel Nane=obs. | evel ["] evel 0"] . nodel Nanme

In this loop we compute the pointing:

for i in range(nscans):
bl ock=I evel 0_5. get (obsi d, bbids[i])
nhkt = bl ock. nhkt
cal cul ate BSM angl es
bat =cal cBsmAngl es(nhkt, bsnmPos=0bs. cal i brati on. phot . bsnPos)
#
add the Bsm Angles Tineline to the SpirePointingProduct
spp. bat =bat
associ ate sky positions to flux sanples
pdt =pdt Li st[i]. product
ppt =associ at eSkyPosi ti on(pdt, spp=spp)
scanCon. r ef s. add(si nk. save(ppt))

We now need to set up and remove the baseline before we can generate our Level 1 mapping products:

Flag to switch on and of f the baseline renoval
useRenpveBasel i ne=Tr ue

create a SpireListContext to be used as input of nap naking
scans=Spi reLi st Cont ext ()

42

Reprocessing your data

Run baseline renoval and popul ate the nap meki ng i nput
for i in range(level1l.count):
i f useRenpveBasel i ne:
pdt =l evel 1. get Product (i)
pdt =r enobveBasel i ne(pdt, chanNumrchanNum)
if tenpStorage:
ref =Pr oduct Si nk. get | nst ance() . save(pdt)
scans. addRef (ref)
el se:
scans. addPr oduct (pdt)
el se:
scans. addRef (l evel 1. refs[i])
pass

Level 1to Level 2 processing (using Naive Mapping or MadScanMapper) for the mapping pipeline
processing produces the final PLW/PMW/PSW products.

Run naive map making for the three bands:

mapPl w=nai veScanMapper (scans, array="PLW)
mapPmw=nai veScanMapper (scans, array="PMN)
mapPsw=nai veScanMapper (scans, array="PSW)

Save maps in the sink and attach them in the ObservationContext

| evel 2=MapCont ext ()

I evel 2. refs. put ("PLW, si nk. save(mapPl w))
I evel 2. refs. put ("PMN, si nk. save(mapPmn))
I evel 2. refs. put ("PSW, si nk. save(mapPsw))

obs.level ["] evel 2"] =I evel 2
obs. obsState = Observati onCont ext. OBS_STATE_LEVEL2_PROCESSED

Saving the data mapsfor each photometer array

When the pipeline is finished running, a new dialog will appear on screen, asking you whether you
wish to save the processed ObservationConext. Click yes to proceed. This enables you to save the
final observation context in a new location.

Do waou weant 1o sawe the processed ObservationContexty

% :

Yes Mo

Figure 3.9. Observation context dialog.

Now enter the name of the pool where the user wants to save al the processed data in the dialog that
pops up.

Saving the data mapsfor each photometer array

In order to browse the processed data, within the 'Variables window, select ‘obs from the list of the
available variables - thisis the variable containing the final observation context.

We can now access the level 1 and level 2 product maps from the Large scan map pipelines, namely
the PSW, PLW and PMW map products:

43

Reprocessing your data

Flle_Edit_Run Window Help.

== cressOQ
[~ Editor x — 0| 2° variables x -, Data Access X)

p-.6Nov.py | & mappsw X (@ mapPmw (& mapPhw \

(Query: [store -

“

| Observation | Aurbutes | Meta Data | Data Mining |
bbCount i
bbid

bbids Proposal D
block Proposal Tite
blockFollow

nstrument

blockTrail

cooccoo00|

Gemios Obsenvation ID 1342183475

anNum
chanTimeConst
d

count
detAngoff
elecCross.
fluxCony

pdt
pdtfoliow
pderail
plot

psp
QUERY_RESULT
ref

TSS7.AL8, -oeeae 3 m ~

©00000000000000000000000000000000066

scans

I
3145,-355
[EYEX

S Console x a)
browseProduct .endbate-obs . enddate

brouseProduct . instrunent=obs. instrunent
brouseProduct . bs. node1Niane
brouseProduct .descript sons "Brouse Product”
rouseProduct . type="BROSE"

«
tempDrificorr
tempstorage
useRemoveBaseline

0000600

fobs . brouseProduct=browseProduct.

d=Display(True)
{d. set Inage (browseProduct)
b Tmage=d.

TPE> obs:
TPE>

5 A versors [san]

|| M.

Figure 3.10. Level 2 PSW product for NGC 5315 from Large Map pipeline.

File Edit Run Window Help
e LPr@r®EQ
(=0T Variables x_ ()" Data Access x =a

@ Editor x

= mapPmw x . « |[aser: e =
@ bat | Gbservaton | Auributes | Veta Data | Data Mining |
o bbount &
© bbid arget
o bbids Proposal D
b Proposal Title
© blockfollow
@ blockTrail Instrument
°

Samios Obsenvation D (1342183475

chanNum
chanTimeConst
count
detangoff
elecCross.

fluxCony

inputs

pdt
pdifollow
pdtrail

H

psp
QUERY_RESULT
ref

1505, -140.5

14:0033.276, -66:2034.22 [m ~

©00000000000000000000000000000000600

1=3EY)

@ 1g]

o sam
o
S Console (=alllo S
fbrowseProduct .endDate=obs .endDate Tall|[® sy
s
@ temprcorr
brovscproduct descr prions: o tempsorige
brovacpeoduct. types BRowS o epemonsaseine

fobs . browseProduct=browseProduct

d=Display(True)
Q. set Inage (browseProduct)

TPE> ob:

2 - -
it [Yersi (PR
[.

Figure 3.11. Level 2 PMW product for NGC 5315 from Large Map pipeline.

Reprocessing your data

][Data Access x

~ |||Query: [store

 Acwibutes | Meta Data | Data Mining |

Figure 3.12. Level 2 PLW product for NGC 5315 from Large Map pipeline.

3.3. SPIRE Spectroscopy Data Processing
3.3.1. Reprocessing SPIRE spectrometer data

Two pipelines process data from the observations with the SPIRE imaging spectrometer, one for point
or one for 4 and 16 point jiggle observations. In either case the observation may consist of a set of
observations at a raster of points in the sky. Data will undergo a sequence of processing steps which

areillustrated schematically in Figure 3.13.

45

Reprocessing your data

0.5 Prod Auxiliary Products
Spectromete House Spacecraft Spacecraft
Detecor e Keeping o Pointing / Apertures

meline meline

Product Product

BSM y
Angles
Timeline

PF params - -
Doma Phase
— SPIRE ot
erferogra Pointing

Product

| —
Spectrometer
Detector

Interferogram /

Telescope SCAL
subtraction

Baseline
Correction

g Apodization (Intermediate or
Deglitching i Full Sampling only)
" Fourier Spectral
Transform Data Cube

Phase Spectrometer
Correction Detector Spectrum

(compled Regridding

Fourier
Transform

Spectrometer
Spectrometer Detector

Detoctor. o/ Cux Conversion (epﬂml ‘ Spectrum
Spectrum (real]

Remove Optical
Crosstalk

Spectral Band Flux Conversion

Figure 3.13. The SPIRE Spectrometer pipeline.

The script SPIRE_spectrometer _apodization.py demonstrates how to process SPIRE FTS data inter-
actively. Rather than processing the datathrough the whol e pipeline, this demonstration focuseson one
particular processing module: Apodization. The Instrumental Line Shape of the SPIRE spectrometer
isavery similar to a sinc function which has an infinite number of side-lobes with decreasing ampli-
tude. The side-lobes can pose challengeswhen trying to identify lines against anoisy spectral baseline.
Apodization is a technique by which the side-lobes are reduced by multiplying interferograms with
atapering function, i.e. convolving the spectrum with a smoothening kernel. The following sections
demonstrate the effects of applying different apodizing functions on theinstrumental line shape. There
can be many other reasonsto process data, such asmaking use of aternativetask parametersor updated
calibration products. For this demonstration, the high resolution observation (OBSID=0x50001ABA)
isused. The script is divided into four main sections

1. Load the observation context and reprocess the level-1 interferograms.

2. Apply different apodizing functions to the interferograms.

46

Reprocessing your data

3. Process the apodized interferograms to level-1 spectra.

4. Compare the resulting spectra.

3.3.1.1. Load the observation context and reprocess interfero-
grams

With the SPIRE_spectrometer_apodization.py script, load the high resolution observation and repro-
cess the Level-1 interferogram up to, but not including the Apodization step. This entails applying
the following steps:

1. SCAL and Telescope Correction, to account for the emission from the instrument and the warm
telescope (loading the reference interferogram manually if required)

2. Interferogram Baseline Correction, to account for vignetting that changes as a function of Optical
Path Difference or 1/f-like noise.

3. 2nd Level Deglitching, which compares a particular interferogram to the average interferogram to
identify outliers and correct these samples.

4. Phase Correction

a. Determine the phase of the interferogram by first apodizing the double-sided interferogram and
then applying the Fourier transform to the double-sided portion of the interferogram.

b. Correct the measured interferograms based on afit to the measured phase.

The SPIRE_spectrometer_apodization.py script performs all these processing steps by executing all
commands up to the following line:
Fini shed reprocessing up to the apodi zation step.

3.3.1.2. Apply different apodizing functions to the interferograms

The next processing step — apodization — can be performed while setting the task control parameter
to different values. This particular demonstration applies several apodizing functions which are given
below. The number refers to the line shape broadening introduced by the apodization:

1. No Apodization (i.e. skip the apodization step)
2. Norton-Beer 1.2

3. Norton-Beer 1.5

4. Gaussian 1.9

The SPIRE_spectrometer_apodization.py script will apply these different apodizing functions by ex-
ecuting all commands up to the following line;
Fini shed applying the sel ected apodi zing functions.

The SPIRE_spectrometer _apodization.py script deletes all but the detector of interest from the repro-
cessed interferogram in order to lower the memory requirements and reduce the execution time. The
script makes multiple copies of the reprocessed interferogram product, one for each of the selected
apodizing functions. This is required in this particular instance because, by default, the processing
tasks overwrite their input. The following command creates a deep copy of the level-1 interferogram
product:

new i fgm = SpectroneterDetectorlnterferogran(interferogran)

3.3.1.3. Process the apodized interferograms to level-1 spectra

The consequences of applying the different apodizing functions are best evaluated by comparing the
instrumental lines shapes n the level-1 spectra. To that end, the different interferogram products are
processed to level-1 spectra by applying:

47

Reprocessing your data

1. Fourier Transform, to transform interferograms into spectra.
2. Flux Conversion, to apply absolute flux calibration.
3. Spectral Averaging, to average spectra across al performed scans.

The SPIRE_spectrometer_apodization.py script will apply these processing steps by executing all
commands up to the following line:
End of reprocessing

3.3.1.4. Compare the resulting spectra

3.3.2.

Theremainder of the script extracts and plots the wave and flux columns from the reprocessed spectra,
leading to the following plot:

Apodization: Comparing spectra for SSWD4

Flux [Jy]

484 485 486 487 488 489 490 491
Wavenumber [cm™!]

Unapodized = Notton Beer 1.2 Notton Beer 1.5

Gausstan 1.9

Figure 3.14. Comparing four spectra from the SSWD4 detector

The plot shows that apodizing functions reduce the amplitude of the side-lobes relative to the center
burst asdesired. However, they also deprecate the center peak amplitude and more aggressively widen
the instrumental line shape the stronger they are. This example also illustrates that apodization can
lead to a shift in the line center if there is significant slope in the spectral shape or, asin this case,
in the calibration data.

Additional reading

Additional and more detailed information regarding the data processing modules and the data at the
various levels of processing can be found in the Spectrometer Pipeline Description.

48

http://www.herschel.be/twiki/pub/Spire/ScienceVerificationActivities/SPIRE-BSS-DOC-002966_SPIRE_Spectrometer_pipeline_description_Issue_1_2.pdf

