
SPIRE Data Users Manual

version 1.0.dev, Document Number: SPIRE-RAL-DOC 00XXXX
09 December 2009

SPIRE Data Users Manual

iii

Table of Contents
Preface ... iv

1. Versioning .. iv
1.1. Changelog .. iv

1. Introduction .. 1
1.1. Scope of this Data User's Manual .. 1
1.2. SPIRE observing Modes .. 1
1.3. Structure of this document .. 1

2. Looking at your data ... 3
2.1. SPIRE Observation Context Data Structure .. 3

2.1.1. Anatomy of a SPIRE Observation: Products, Pools, Storage, and Building
Blocks ... 3
2.1.2. Linking it altogether: Introducing the Context .. 4
2.1.3. Looking at your Observation Context in HIPE ... 6

2.2. SPIRE Small Map and Point Source Mode Data Structure 9
2.2.1. The Point Source Observation Mode .. 9
2.2.2. Reading the JPP into memory and saving it as a FITS file and reading it in
again ... 11
2.2.3. Looking at the Level 1 Data for Point Source Observations 12

2.3. SPIRE Large Map and Parallel Mode Data Structure .. 14
2.3.1. A first look at your image maps .. 14
2.3.2. Saving a map as a FITS file and reading it in again 17
2.3.3. Looking at the Level 1 Timeline Data ... 18
2.3.4. Looking at the Level 0.5 Timeline Data .. 21
2.3.5. Looking at the Raw Level 0 Data .. 25

2.4. SPIRE Spectroscopy Data Structure .. 26
2.4.1. SPIRE spectrometer introduction ... 26

3. Reprocessing your data ... 32
3.1. SPIRE Point Source Mode Data Processing ... 32

3.1.1. Reprocessing SPIRE Point Source Mode Data .. 32
3.2. Reprocessing SPIRE Large Map and Parallel Mode Data 37
3.3. SPIRE Spectroscopy Data Processing .. 45

3.3.1. Reprocessing SPIRE spectrometer data ... 45
3.3.2. Additional reading .. 48

iv

Preface
1. Versioning

On the front page of this manual is a version number made of three digits. The first two digits follow a
traditional versioning system (0.1, 0.2, ...), and the changes introduced with each version are detailed
below. The third digit is the SPIRE build number to which each edition of the manual is associated.
Also shown on the front page is the date of publication of the manual.

1.1. Changelog
The following was changed for v0.1

• First version of the SDUM manual.

1

Chapter 1. Introduction

1.1. Scope of this Data User's Manual
The purpose of this document is to provide a comprehensice reference for all SPIRE users in terms of
the data structure users will encounter for on inspection of the different types of SPIRE observations,
but also as a guide on how to reprocess the data and inspect the products through the full SPIRE
pipeline. This document superceeds the SPIRE pipeline reduction formerly included in the HOWTOs
document, but has been expaned to include all modes and insights on the data struture and types.

The data structure and reprocessing guide examples contained within the SPIRE Data Users Manual
are based upon the HIPE 2.0 release - views may differ and examples may not work on previous and
subsequent releases of HIPE. If you are using a release of HIPE other than the 2.0 build, please consult
the relevant version of the SPIRE Data Users Manual.

For more information on obtaining HIPE and on how to install it, getting started with it, please go to
the HIPE Quick Start Guide and the HIPE Owners Guide for a more more indepth overview of getting
started with the HIPE environment.

1.2. SPIRE observing Modes
SPIRE observing modes for both the Photometer and the Spectrometer are provided as Astronomical
Observation Templates (AOTs), and the way these AOTs are referred to may differ from resource to
resource (Hspot, HIPE, etc). There are currently 6 available observaing modes in various levels of
use and release, these are,

• Large Map Mode(Scan Mapping, POF5): Used for observations of large fields (>4x4 arcmins).
The telescope is scanned building up a map, scan line by scan line. Scan lines can be orthonally
cross-linked to produce high quality maps.

• Small Map Mode (64-point Jiggle, POF3): Used for observations of large fields (>4x4 arcmins).
The telescope stares at a target and the detector arrays are jiggled, using a Beam Steering Mirror
(BSM), over the target area to build up a fully sampled map using a 64-point pattern. The back-
ground is removed by chopping with the BSM and Nodding with the telescope.

• Point Source Mode (7-point Jiggle, POF2): Used for observations of point sources. The telescope
stares at a target and the detector arrays are jiggled, using BSM, over the target using a 7-point
pattern. The background is removed by chopping with the BSM and Nodding with the telescope.

• Parallel Mode (Parallel): Used for maps created with both SPIRE and PACS in parallel. These
are essentially equivalent to Large Map observations.

• Point Source Spectroscopy (SOF1): Used for point source spectrocopy. The Spectrometer Mech-
anism (SMEC) mirror is scanned to produce a spectrum over the full wavelength range

• Small Map Spectroscopy (SOF2): Used for creating small spectrocopic maps. The Spectrometer
Mechanism (SMEC) mirror is scanned to produce a spectrum over the full wavelength range while
the BSM jiggles over 16 positions to produce an image map.

1.3. Structure of this document
Astronomer users will receive data that has already been processed through the standard pipelines to
several Levels. The processing levels of the SPIRE pipeline and user deliverables are outlined below
in Figure 1.1.

Introduction

2

Figure 1.1. The processing levels of the SPIRE pipeline and user deliverables.

This document is divided into two broad topics. An introduction to the data structure as received from
the Herschel Science Archive (HSA) is described in Chapter 2 which includes all relevant observation
modes and processing Levels. The pipelines themselves and details on reprocessing your observations
are covered in Chapter 3.

3

Chapter 2. Looking at your data

__

2.1. SPIRE Observation Context Data Struc-
ture

2.1.1. Anatomy of a SPIRE Observation: Products,
Pools, Storage, and Building Blocks

For the purposes of both this chapter and the next (on reprocessing your data), we assume that you have
already downloaded a data set from the Herschel Science Archive and are familiar with how to put
your data into a store and how to access your data from this store within HIPE. If you haven't, please
look at the HIPE Quick Start Guide and the HIPE Owners Guide for instruction on how to do this.

Now you are the proud owner of a set of SPIRE observations. Before carrying out any processing
its most likely that you will want to have a first look at your data. SPIRE observations are supplied
in a highly organized structure that may be unfamiliar to previous astronomical datasets you have
encountered.

All data within the HCSS processing system are passed around in containers referred to as Products.
There are Products for every kind of data, e.g.;

• Raw and processed Detector Data Timelines

• Calibration Data

• Auxiliary (e.g. Pointing) Data

• Images

• Image Cubes

• Data Contexts

•

Products can contain the following (pictorially visualized in Figure 2.1);

• Meta Data

• One or more Datasets

• Processing History

Datasets can be;

• Array Tables

• Image arrays

• Composite (nested) Tables

•

Looking at your data

4

Figure 2.1. General structure of a SPIRE data Product

SPIRE (Herschel) Observations are accessed/downloaded and stored as a Pool of these products. A
Pool is basically a directory that contains the original raw data, the results of the automatic pipeline
processing and everything you need to process your observations again yourself (e.g. spacecraft point-
ing, the parameters you entered in HSPOT when you submitted the proposal, and the pipeline cali-
bration tables). Data that you reprocess yourself can also be stored into the same Pool or you may
alternatively wish to save the results in a new Pool. If you wish to send someone a set of processed data
for example, the entire Pool directory should be "tar"ed or archived and sent. Finally, once a Pool has
been created, the pool's directory name must NOT be changed or HIPE will not be able to find the data.

In general, HIPE expects all your observation pool directories to be contained in a "Local Store"
directory which can be thought of as a Super Repository for all Observation Pools on your hard disk.
By default this directory resides in ~/.hcss/lstore but can be changed and renamed by by editing the
HCSS user.props file. The structure of the Local Store is visualized in Figure 2.2

Figure 2.2. General structure of the Local Store

2.1.2. Linking it altogether: Introducing the Context
The smallest “piece” of SPIRE observational data is called a Building Block. These Building Blocks
correspond to basic operations within an observation and as the name suggests every SPIRE AOT
is built up from a combination of these building blocks. Building Blocks are usually in the form of
Timeline Data Products.

Example building blocks may be;

• A scan line in a map

• A single 7 point Jiggle

• A set of Spectrometer scans

Looking at your data

5

• A segment of housekeeping scans

• A motion of the Beam Steering Mirror (BSM)

Building Blocks and other Products are grouped into a context. A context is a special kind of product
linking other products in a coherent description and can be thought of as an inventory or catalogue of
products. The SPIRE processed observation consists of many such contexts within one giant Obser-
vation context. Therefore, Each set of building blocks have a context. Each Processing Level in the
SPIRE pipeline has a context and the entire Observation has a context. Thus a complete observation
may be thought of as a big SPIRE onion as depicted in Figure 2.3. Moreover, contexts are not just for
building block products and higher processed data products, there are contexts for Calibration Products
and contexts for Auxiliary Products (e.g. pointing) and even a context for Quality Control. The entire
SPIRE Obseravtional Context is shown in Figure 2.4 for all products from the raw building block data
to the final high level processed end products from the pipeline. This is the structure and content that
you should receive for your SPIRE observation from the Herschal Science Archive (HSA).

Figure 2.3. The Context structure within HCSS. The smallest “piece” of SPIRE observational data are
Building Blocks. Building Blocks and other Products are grouped into a context. All the data within an
entire SPIRE observation are linked by an Observation Context.

Looking at your data

6

Figure 2.4. The complete Observation Context of a SPIRE observation

2.1.3. Looking at your Observation Context in HIPE
The Observation Context can be viewed directly within HIPE. It is assumed in this example that the
data has already been downloaded from the archive and has already been stored in a pool named
GalaxyScanMap in the Local Store. We therefore have to load this pool into the HIPE environment
and extract the Observation Context for this observation. This is possible via a slightly convoluted
route using the GUI but can also be accomplished painlessly with a the few lines of code shown below;

 Pool = 'GalaxyScanMap' # Select the pool name
 storage=ProductStorage(Pool) # Register the pool
 queryResults = storage.select(Query("type=='OBS'")) # Query the pool
 MyObsContext = queryResults[0].product # Extract the Context

The first line of code selects the desired Pool from our Local Store on disk. This Pool is read in to a
storage area in memory (referred to as Registering the Pool") which we have decided to call storage.
Once the Pool has been registered, it can then be queried for the observation context by searching the
storage for the Product Type OBS. Finally, the Observation Context Product is stored in a variable we
choose to call MyObsContext. After running the above lines we see five new entries Variables
pane of HIPE shown in Figure 2.5. These variables have already been described above (Note: the
p is simply a place holder). Double clicking on the obsContext in the variable list brings up the
Observation Context observation in a new window as also shown in Figure 2.5. The Observation
Context has Summary, Meta-Data and Data panes. The Summary pane contains information on
the instrument, target position, observation ID, Operational Day and Observation Mode. The Meta-
Data pane contains all relevant information on the Product necessary to describe and process the
observation (including the information in the Summary pane). The Meta-Data for the observation
context is summarized in Table 2.1. The Observation Context Data pane contains pointers to all other
contexts and data products contained in the Observation Pool. The Data pane contains many entries,
listed below and in Figure 2.6 (See also Figure 2.4);

Looking at your data

7

• level 0: The Level 0 context containing links to the Level 0 raw dData before any pipeline
processing.

• level 0.5: The Level 0.5 context containing links to the Level 0.5 data products after the com-
mon engineering conversion has been made.

• level 1: The Level 1 context containing links to the Level 1 data products after AOT specific
pipeline processing.

• level 2: The Level 2 context containing links to the final Level 2 data products from the pipeline.

• calibration: The Calibration context pointing to all calibration products required for the pro-
cessing of SPIRE data.

• auxiliary: The context pointing to all .

• logObsContext: The context pointing to the reduction log that records the processing history
of the data.

• quality: The Quality context pointing to the quality control products for this observation.

• browseImageProduct: The context pointing to thumbnail products.

• browseProduct: The context containing information from the HSA archive.

Note that the structure of the Observation Context can also be directly seen from the command line
by typing, print MyObsContext;

HIPE> print MyObsContext
{description="Unknown", meta=[type, creator, creationDate, description, instrument,
 modelName,startDate, endDate, obsState, obsid, odNumber, cusMode, instMode],
datasets=[], history=None,
 refs=[auxiliary,browseImageProduct,browseProduct,calibration,level0,
level0_5,level1,level2,logObsContext,quality]}

Here the Observation Context can be clearly seen to contain no data as such but rather a set of pointers
or references to other different kinds of contexts. In the next section, the Observation Contexts for
specific individual AOTs will be investigated in more detail allowing us to have a first look at our
processed data!

Looking at your data

8

Table 2.1. Description of Meta Data in the SPIRE Observation Context

Meta Data Description

odNumber The Observational Day when the observation was made

obsid The unique Observation ID (in decimal)

startDate The start date of the observation in TAI, Zulu Time

endDate The end date of the observation

creationDate The creation date of this Product

creator How the product was created (e.g. Standard Product Generation (SPG) ver-
sion)

modelName Whether the data is from Flight or Flight Spare, etc

obsState How far has the observation been processed by the pipeline (Level 0, 0.5, 1
or 2)

type The Product Type (OBS = Observation Context)

instMode The instrument mode (The AOTs defined internally as POF5 for Large Map
Mode)

instrument The instrument name, in this case SPIRE

cusMode How the AOT is referred to in the observaion logs and scheduling
(SpirePhotoLargeScan)

description The Product name

Figure 2.5. The Observation Context within HIPE

Looking at your data

9

Figure 2.6. Inside the Observation Context within HIPE.

__

2.2. SPIRE Small Map and Point Source Mode
Data Structure

2.2.1. The Point Source Observation Mode
All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the data for a SPIRE Point Source
observation. A point source observation carries out a staring observation of a point source. In order to
recover the source successfully a 7-point hexagonal jiggle pattern is made around the source position.
Sky backgrounds are removed by chopping using the Beam Steering Mirror (BSM) over a distance
of plus/minus 63 arc sec and any emission due to the telescope structure is removed by nodding the
entire telescope and repeating the chop=jiggle cycle.

The observation we shall be looking at is a Point Source observation of the Planetary Nebu-
lae NGC5315 taking during the Herschel-SPIRE PV phase. NGC5315 is at RA=13h53m57.00s,
dec=-66d30'50.70'' and was covered by making 2 repetitions of the Point Source Mode which involves
makes a pair of chopped and nod cycles at each of the 7 jiggle positions in the pattern.

It is assumed that the observation has already been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = 'OD117-7ptNGC5315-0x50001832' # Select the pool name
storage=ProductStorage(Pool) # Register the pool
queryResults = storage.select(Query("type=='OBS'")) # Query the pool
MyObsContext = queryResults[0].product # Extract the Context

Looking at your data

10

For this particular observation, we chose to call our Pool OD117-7ptNGC5315-0x50001832 where
OD117 means the observation was made on Operational Day 117, 7pt was the AOT mode, NGC5315
was the target name and 0x50001832 is the unique Observation ID in hexadecimal. Running the above
script, reads the Observation Context into memory into the variable MyObsContext which appears
in the Variables pane of HIPE (See Figure 2.7). Right Clicking (or CTRL-click for Apple Users)
on the MyObsContext variable brings up another menu. Selecting Open With -- Observation
Viewer will open the Observational Context for this observation. The structure of the Observation
Context was explained in Section 2.1 and he we shall look at the data inside the Observational Context.
We start with the final Product of the SPIRE Point Source pipeline - The Jiggled Photometer Product
(JPP). The JPP is a Level 2 Product and can therefore be found within the Level 2 Context. The JPP
can be simply acccesed by clicking on the level2 folder as shown in Figure 2.8, which reveals a SPIRE
Jiggled Photometer Product. Right-clicking on the JPP and selecting Open With - Array Dataset
Viewer from the drop down menu shows the data in table form as shown in Figure 2.8. The JPP
contains a Table Dataset with a row for each array with the following information;

• Array Name: A column listing each array PSW, PMW, PLW.

• RA: A column listing the final fitted Right Ascension for each array to the detected source within
the 7-point Jiggle pattern for the target detector in decimal degrees

• RA Error: A column listing the errors on the Right Ascension for each array

• Dec: A column listing the final fitted Declination for each array to the detected source within the
7-point Jiggle pattern for the target detector in decimal degrees

• Dec Error: A column listing the errors on the Declination for each array

• Signal: A column listing the Gaussian fitted signal for the target detector for each array to the
detected source within the 7-point Jiggle pattern in Jy (in beam flux)

• Error: A column listing the error on the fitted signalfor each array

Figure 2.7. Loading and viewing the Observation Context for the Photometer Point Source Observation.

Looking at your data

11

Figure 2.8. Accessing the final Level 2 Product Jiggled Photometer Product

2.2.2. Reading the JPP into memory and saving it as a
FITS file and reading it in again

It is possible that me may also want to export our data and HIPE provides the tools for exporting
data products as conventional fits files. The Level 2 JPP can be read into memory with the following
admittadly long-winded command from the command line;

read entire Product
myJPP=MyObsContext.refs["level2"].product.refs["JPP"].product
#
read the RA data array
myRa=myJPP["outputDataset"]["ra"].data
print myRa
read the RA for PSW array
myRaPSW=myJPP["outputDataset"]["ra"].data[0]
print myRaPSW

This creates a new entry myJPP in the Variables Pane of HIPE which can correspondingly be right-
clicked on to show the various viewing options available for this product. The next 4 lines in the above
script allow us to read in and print out the data for the Right Ascension for all arrays and for just the
PSW array (creating entries for myRa and myRaPSW in the variable pane). The JPP Level 2 Product
can be saved as a FITS file by the following command line entry;

FitsArchive().save('mypath/myJPP.fits', myJPP)

where mypath is the desired path. Alternatively the product can be sent to a FITS file by right-
clicking on it in the variable list and selecting Send To - FITS file from the drop down menu.
This will open the FITS writer panel as shown in Figure 2.9 where we can type in our desired filename
and path. Click on Accept at the bottom of the panel to save the FITS file.

Looking at your data

12

Figure 2.9. Exporting the JPP as a FITS file

Reading a FITS file into the HIPE session can be accomplished by either selecting Open File from
the File menu in the top right hand corner of the HIPE window. Alternatively, from the command
line;

myJPP=simpleFitsReader('mypath/myJPP.fits')

These FITS files are imported as an JPP Product dataset and can be manipulated in the same
manner as described earlier throughout this section.

Note

The JPP actually exist as a fits file within the Pool for this observa-
tion in the Local Store. These can be found in the Pool for this example
in the folder /localstore/OD117-7ptNGC5315-0x50001832/
herschel.spire.ia.dataset.JiggPhotProduct (where
the poolname is "OD117-7ptNGC5315-0x50001832"). The JPP will have
the hspirephotometer........jpp.fits

2.2.3. Looking at the Level 1 Data for Point Source Ob-
servations

The final Level 2 Jiggle Photometer Product has been created from a Gaussian fit to the 7-point jiggle
pattern of a target bolometer. The information on the individual jiggle positions for all bolometers is
contained within the Level 1 Product and are also available from the Observation Context. The Level
1 Point Source mode product is referred to as the Averaged Pointed Photometer Product (APPP).
In Figure 2.10 we show how the Level 1 product can be accessed from the observational context. The
APPP holds information for each of the 7 jiggle positions for all bolometers after the signal has been
demodulated (chopped) and de-nodded.

Each Averaged Pointed Photometer Product contains 7 individual Table Datasets (and a Product con-
taining the processing history) as shown in Figure 2.10 and defined below;

• Signal Table: A table containing a column for the Jiggle ID (1-7 position) and a column for the
signal from every detector channel (in Jy/beam)

• Error Table: A table containing a column for the signal error from every detector channel (in Jy/
beam)

Looking at your data

13

• Dec Table: A table containing a column for the declination on the sky in degrees for every detector
channel

• Dec Error Table: A table containing a column for the errors in declination on the sky in degrees
for every detector channel

• RA Table: A table containing a column for the right ascension on the sky in degrees for every
detector channel

• RA Error Table: A table containing a column for the errors in right ascension on the sky in degrees
for every detector channel

• Mask Table: A table containing the mask value for every detector channel corresponding to which
processing flags have been raised. The masks are defined in the SPIRE Pipeline User Guide doc-
ument

The APPP be viewed either - by right-clicking - array tables (by selecting Open With - Data Set
Viewer) or plotted (by selecting Open With - Table Plotter). Although the use of Table
Plotter is beyond the scope of this document, an example is shown in Figure 2.11 where we have
selected to plot the Jiggle ID against the Signal from the PSW E10 bolometer for the APPP.

Figure 2.10. Viewing the Level 1 Averaged Pointed Photometer Product

Looking at your data

14

Figure 2.11. Plotting Level 1 APPP Data Product

__

2.3. SPIRE Large Map and Parallel Mode Data
Structure

2.3.1. A first look at your image maps

All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the data for a SPIRE Large Map
observation, however this description applies equally to SPIRE Parallel Mode observations.

The observation we shall be looking at is a Large Map observation of the Planetary Nebulae NGC5315
taking during the Herschel-SPIRE PV phase. NGC5315 is at RA=13h53m57.00s, dec=-66d30'50.70''
and was covered by scanning the photometer arrays 3 times each in orthoganal direction. The entire
process was then repeated (i.e. this observation has 2 repetitions) giving in total 6 scans in each or-
thoganal direction making 12 scan lines in total.

It is assumed that the observation has already been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = 'OD117-ScanNGC5315-0x50001833' # Select the pool name
storage=ProductStorage(Pool) # Register the pool
queryResults = storage.select(Query("type=='OBS'")) # Query the pool
MyObsContext = queryResults[0].product # Extract the Context

For this particular observation, we chose to call our Pool OD117-ScanNGC5315-0x50001833 where
OD117 means the observation was made on Operational Day 117, Scan was the AOT mode,
NGC5315 was the target name and 0x50001833 is the unique Observation ID in hexadecimal. Run-
ning the above script, reads the Observation Context into memory into the variable MyObsContext
which appears in the Variables pane of HIPE (See Figure 2.12). Right Clicking (or CTRL-click for

Looking at your data

15

Apple Users) on the MyObsContext variable brings up another menu. Selecting Open With -- Ob-
servation Viewer will open the Observational Context for this observation. The structure of the
Observation Context was explained in Section 2.1 and he we shall look at the data inside the Obser-
vational Context. We start with the final Product of the SPIRE Large Map pipeline - the image maps.
The maps are Level 2 Products and can therefore be found within the Level 2 Context. The maps can
be simply acccesed by clicking on the level2 folder as shown in Figure 2.13, which reveals a SPIRE
Photometer Map Product (or more technically SimpleImage Products) for each of the three SPIRE
arrays (PSW, PMW, PLW). Each Photometer Map Product contains 3 Table Datasets corresponding
to the image, error and coverage maps for each array and these are revelaed by clicking on the + sign
next to the array folder.

The image map can be viewed by clicking on the appropriate array folder (PSW, PMW, PLW) or
alternatively the image map can be displayed in a new window by right clicking on the appropriate
array folder and selecting Open With - Standard Image Viewer from the drop down menu
as shown in Figure 2.14. This action opens the image in the Image Viewer where the image can
be panned, magnified etc. Colours, cut-levels, annotation options can be accessed by right-clicking
anywhere on the image. The image, error and coverage maps can also be displayed individually by
clicking on them or by right-clicking on the appropriate dataset and selecting Open With - Image
Viewer for ArrayDatasets from the drop down menu. Finally, right-clicking on a given
image dataset and selecting Open With - Array Dataset Viewer from the drop down menu
shows the image (or error or coverage) in table form (Jy/beam for every pixel in the image) as shown
in Figure 2.15.

If you want to extract the SimpleImage for the PSW, PMW or PLW array as a data cube containing
the image, error and coverage maps to work with, rather than view it with the Image Viewer, on
the command line type the rather exhaustive:

MyMapProduct=MyObsContext.refs["level2"].product.refs["PSW"].product
Then to view each of the map datasets
Display(MyMapProduct.image)
Display(MyMapProduct.error)
Display(MyMapProduct.coverage)

where MyMapProduct can be any name we choose and the following syntax means from MyOb-
sContext we want the Level 2 product PSW array Photometer Map Product. You will also notice
that MyMapProduct now appears in the Variables Panel which can correspondingly be right-clicked
on to show the various viewing options available for this product. The next 3 lines in the above script
allow us to display the signal, error and coverage maps respectively.

Figure 2.12. Loading and viewing the Observation Context for the Large Map Observation.

Looking at your data

16

Figure 2.13. Accessing the final Level 2 Product maps

Figure 2.14. Viewing the Level 2 Image Maps

Looking at your data

17

Figure 2.15. Viewing the Level 2 Image Array Datasets

2.3.2. Saving a map as a FITS file and reading it in
again

It is possible that me may also want to look at our image maps in external applications such as DS9
for example and HIPE provides the tools for exporting our maps as conventional fits files. Following
on from the previous example above we can send our MyMapProduct(SimpleImage) product to
a FITS file by right-clicking on it in the variable list and selecting Send To - FITS file from the
drop down menu. This will open the FITS writer panel as shown in Figure 2.16 where we can type
in our desired filename and path. Click on Accept at the bottom of the panel to save the FITS file.
This fits file will then be saved as a multi-extension fits file containing the image, error and coverage
maps that can then be read into DS9 as a data cube and viewed. The same effect can be acheived on
the command line by;

FitsArchive().save('mypath/myMap.fits', MyMapProduct)

which again saves the products as a multi-extension fits file containing the image, error and coverage
maps.

Looking at your data

18

Figure 2.16. Exporting Image Maps as FITS files

Reading a FITS file into the HIPE session can be accomplished by either selecting Open File from
the File menu in the top right hand corner of the HIPE window. Alternatively, from the command
line;

myMap=simpleFitsReader('mypath/myMap.fits')

These FITS files are imported as a simpleImage and can be manipulated in the same manner as
the simpleImage products described earlier in this section.

Note

The Photometer Map Products (data cubes for each array con-
taining the image, error and coverage arrays) actually exist as
fits files within the Pool for this observation in the Local
Store. These can be found in the Pool for this example in
the folder /localstore/OD117-ScanNGC5315-0x50001833/
herschel.ia.dataset.image.SimpleImage (where the pool-
name is "OD117-ScanNGC5315-0x50001833"). The Photometer Map
Products having the form hspireplw..........pmp.fits

2.3.3. Looking at the Level 1 Timeline Data

The image maps have been created from the individual timelines of detectors as they were scanned
accross the target. These timelines are the Level 1 products from the Photometer Large Map Pipeline
and are also available from the Observation Context. The Level 1 Large Map products are referred to
as Photometer Scan Products. In Figure 2.17 we show how the Level 1 products can be accessed
from the observational context. Note that within the Level 1 Context there are a total of 12 Products
labelled from 0 to 12. These are all Photometer Scan Products. As noted earlier the map of NGC5315
was constructed by scanning the photometer arrays 3 times in each orthoganal direction twice making
a total of 12 scan lines in total. Although the numbering system seems anonymous, the actual name of
the Building Block can still be revealed by checking the Meta Data bbTypeName in the Photometer
Scan Product (i.e. click on one of the folders numbered 1-12)

Each Photometer Scan Product contains 5 individual Table Datasets (and a Product containing the
processing history) as shown in Figure 2.17 and defined below;

Looking at your data

19

• Signal Table: A table containing the Sample Time (in seconds) and a column for the signal from
every bolometer including both detector (in Jy/beam) and non-detector (e.g. thermistor, resistor in
Volts) channels

• Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

• RA Table: A table containing the Sample Time (in seconds) and a column for the RA on the sky
in degrees for each detector (not including non-detector channels)

• Dec Table: A table containing the Sample Time (in seconds) and a column for the Dec on the sky
in degrees for each detector (not including non-detector channels)

• Temperature Table: A table containing the Sample Time (in seconds) and a column for each
Thermistor channel temperature (measured in Kelvin)

These individual Table Datasets correspond to data from a single scan line and can be viewed either
as - by right-clicking - array tables (by selecting Open With - Data Set Viewer) or plotted
(by selecting Open With - Table Plotter). Although the use of Table Plotter is beyond
the scope of this document, an example is shown in Figure 2.18 where we have selected to plot the
Sample Time against the Signal from the PSW D16 bolometer for this particular scan line.

Figure 2.17. Viewing the Level 1 Photometer Scan Products

Looking at your data

20

Figure 2.18. Plotting Level 1 Photometer Scan Product Timeline Data

Individual Table Data Sets can also be extracted from the Observational Context using the alternative
command line script. Using Figure 2.18 as a guide we can see the following;

Extract the Photometer Scan Product for the first Scan Line
ScanLine1=MyObsContext.refs["level1"].product.refs[0].product
or extract the Photometer Scan Product for the second Scan Line
ScanLine2=MyObsContext.refs["level1"].product.refs[1].product
#
Get the Signal Table from the first Scan Line
SignalScanLine1=ScanLine1['signal']
Get the array of values for the Sample Time
TimeScanLine1=SignalScanLine1['sampleTime'].data
Get the array of values for the PSW D16 Detector
PSWD16ScanLine1=SignalScanLine1['PSWD16'].data
print PSWD16ScanLine1

where ScanLine1, etc can be any name we choose and the following syntax means from MyOb-
sContext we want the Level 1 product Photometer Scan Product for the first scan line (i.e. element
[0]). You will also notice that ScanLine1 now appears in the Variables Panel which can correspond-
ingly be right-clicked on to show the various viewing options available for this product. The follow-
ing lines show the procedure for extracting the second scan line (i.e. array element [1]) and go on to
extract, for the first scan line the Signal Table Dataset. Finally the sampleTime and detector signal
for the PSWD16 detector are extarcted as normal arrays of numbers. The final list of variables in the
HIPE Variable Pane is shown in Figure 2.19.

Looking at your data

21

Figure 2.19. Plotting Level 1 Photometer Scan Product Timeline Data variable list

2.3.4. Looking at the Level 0.5 Timeline Data

These timeline data has been created by processing the raw Level 0 data through the Common Engi-
neering Conversion (Level 0 - Level 0.5) Pipeline. The Level 0.5 data are the uncalibrated, uncorrected
timelines measured in Volts. The level 0.5 products are also available from the Observation Context.
The Level 0.5 context folder can be seen in the Observation Context and can be opened by clicking
on the + next to the level0_5 folder. The Level 0.5 context contains a lot more data than the Level
1 context and includes all the data necessary to process the observation and produce science quality
data. In Figure 2.20 we show all the Level 0.5 data within the observation context. We see that there
are a total of 31 entries in the list informatively labelled from 0 to 30. This can be compared to a total
of 12 entries that we saw for the Level 1 products. The Level 0.5 context contains all the building
blocks used in the observation and in Figure 2.20 we show how this Large-Map observation was built
up from the individual building blocks. In the figure, the building blocks can be divided into roughly
4 general types, configuration blocks, calibration blocks, science blocks and movement blocks. The
type of building block can be revealed by clicking on a given number from 1-30 and scrolling down
the Meta data window pane to the BBtypeName entry. The individual blocks are described below
in Table 2.2;

Looking at your data

22

Table 2.2. Description of the Building Blocks in a Large Map Level 0.5 Context

BB number BB Type BB Hex
prefix

Description

0 SpireBbObsConfig 0xAF01 Initial configuration

1 SpireBbPhotSerendipity 0xA104 Slew to target

2 SpireBbPOF5Config 0xA050 AOT configuration

3 SpireBbPOF5Init 0xA051 Initialize the AOT

4 SpireBbPcalFlash 0xA801 Photometer Calibration Lamp Flash

5 SpireBbScanLine 0xA103 A large map scan line

6 SpireBbMove 0xAF00 Scan Line turnaround movement

7 SpireBbScanLine 0xA103 A large map scan line

8 SpireBbMove 0xAF00 Scan Line turnaround movement

.. SpireBbScanLine 0xA103 A large map scan line

.. SpireBbMove 0xAF00 Scan Line turnaround movement

..

27 SpireBbScanLine 0xA103 A large map scan line

28 SpireBbMove 0xAF00 Scan Line turnaround movement

29 SpireBbPcalFlash 0xA801 Photometer Calibration Lamp Flash

29 SpireBbPOF5End 0xA052 End of AOT

Looking at your data

23

Figure 2.20. Anatomy of Level 0.5 Building Block structure for a Large Map observation

Looking at some of the individual entries in the Level 0.5 context, it can be seen that the individual
Building Blocks are built up from a variety of different types of Products. clicking on the + sign for
a given Building Block number reveals what Products a particular Building Block is made from. In
Figure 2.21 the first handful of building blocks for our observation are opened to view the contents.
The contents are a variety of Products referred to by ancronyms such as CHKT, NHKT, PDT, POT,
SCUT, etc, described in order of importance below;

Example building blocks may be;

• PDT: The Photometer Detector Timeline contains the Level 0.5 detector data.

• NHKT: The Nominal House Keeping Timeline contains the housekeeping data with all the settings
for this observation.

• CHKT: The Critical House Keeping Timeline contains all the critical parameters of the instrument
such as the electronics.

• SCUT: The Sub Control Unit Timeline contains monitoring data for the instrument operation for
this observation.

• POT: The Photometer Offset Timeline contains all the raw DC offsets in ADU that have already
been used in the raw data processing to set the dynamic range of the detectors.

Note that Building blocks such as the Slewing (serendipity Building Block), Calibration flash and the
scan line turnarounds all contain PDT data. Indeed, the scan line turnaround Building Block data IS

Looking at your data

24

used for scientific processing. The CHKT, NHKT, POT, SCUT Products all contain a signal table,
containg data arrays and a Mask table containing flag information. The Level 0.5 Photometer Detector
Timeline Products contain 4 Table dataset arrays;

• Voltage Table: A table containing the Sample Time (in seconds) and a column for the signal mea-
sured in Volts for every bolometer including both detector and non-detector (e.g. thermistor, resis-
tor) channels.

• Resistance Table: A table containing the Sample Time (in seconds) and a column for the Resistance
measured in Ohms for every bolometer including both detector and non-detector (e.g. thermistor,
resistor) channels.

• Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

• Quality Table: A table containing any Quality Flags raised for each detector.

In Figure 2.21 the PDT for the first Scan Line Building Block has been selected. Right-clicking and
selecting Open-with - Dataset Viewer, opens the voltage table in a new window. Any of
the Table Data Sets can also be viewed graphically by selecting Open-with - Dataset Viewer
as shown in Figure 2.22. In the plot window the bolometer signal to plot can be selected from the
Y-axis menu and many bolometers can be overlayed by ticking the overlay box (both circled in
the plot window).

Figure 2.21. Inside the Level 0.5 Building Block structure for a Large Map observation

Looking at your data

25

Figure 2.22. Plotting the Level 0.5 data for a Large Map observation

2.3.5. Looking at the Raw Level 0 Data

The Raw data formatted from the satellite telemetry is also available within the Observation Context.
These are the Level 0 products and will in most circumstances be of no general interest. The Level 0
context, shown in Figure 2.23, contains 30 entries, each corresponding to an individual block in the
observation. the building block types are identical to the Level 0.5 data (see Table 2.2). Clicking on
a given number within the Level 0 context reveals the products contained within each building block.
These products are the raw data versions of the Level 0.5 CHKT, NHKT, PDT, POT, SCUT products
and are simply prefixed by an "R". The Raw Photometer Detector Timeline (RPDT) product contains a
single Table Dataset referred to as PHOTF. When we view this dataset (by right-clicking and selecting
Open-with - Dataset Viewer, see Figure 2.23), we find quite a different structure to the Level
0.5 PDT datasets. There are 288 columns, one for every SPIRE channel, numbered not in the familiar
PSWE8, PSWE9 notation but rather as as PHOTFARRAY001 -- PHOTFARRAY288 which corresponds
to their Channel Number (from an electrical designation). The signal is still in raw ADU and there
are many different time columns which correspond to various measures of the data frames, telemetry
packets and packet sequence counts, etc. The only flags are contained in the PHOTFADCFLAGS col-
umn which is set in the case of a problem with ADC process in telemetry. A full description of the
data structure can be found in the Products Definition Document (HERSCHEL-HSC-DOC-0959) or
the SPIRE Pipeline Description Document (SPIRE-RAL-DOC-002437).

Looking at your data

26

Figure 2.23. The Level 0 Raw Data within the Observation Context

__

2.4. SPIRE Spectroscopy Data Structure

2.4.1. SPIRE spectrometer introduction
This section is dedicated to familiarizing the reader with the appearance of the data from the SPIRE
spectrometer within HIPE and how to visualize the data.

The introductory script SPIRE_spectrometer_intro.py guides the user through the steps described in
the subsequent sections: A fully processed observation context is loaded into HIPE and inspected.
Level-1 data products are extracted from the observation context and then visualized. Finally, portions
of a data product are extracted and plotted, giving the user direct access to the data. The data, shown
here, derive from an observation of the galaxy IC342. The observation was made on September 21,
2009, Herschel's Operational Day 130.

2.4.1.1. Load an observation context into HIPE

In HIPE, one can access the observation contexts from data pools as follows:

1. Declare a ProductStorage: i.e. the name of the pool:

storage = ProductStorage("name-of-pool")

2. Query for an observation context which is identified by its type being equal to OBS:

results = storage.select(Query("type=='OBS'"))

3. Load the observation into the HIPE session:

Looking at your data

27

observation = results[0].product

The introductory script loads three observation contexts from three separate data pools. Please refer
to the script for the exact syntax. An observation context is a HIPE object which can contain several
data products.

2.4.1.2. Inspect an observation context in HIPE

HIPE provides convenient GUI tools to inspect an observation context. Begin with the observation
context for the low resolution observation (OBSID=0x50001AB8). In the HIPE Variables View, select
lrObservation with a right mouse click and then Open With > Observation Viewer. HIPE will present
the Summary view of the observation, including the image of four spectra, one unapodized and one
apodized, derived from each of the center detectors of the two SPIRE spectrometer detector arrays:
SLWC3 and SSWD4. Clicking the small arrow to the left of Summary in the observation viewer will
hide the observation summary and present the detailed view of the observation context:

Figure 2.24. Viewing the SPIRE observation context

The viewing pane shows the many sub-contexts contained in the observation context in a folder-like
layout.

Next, inspect the level-1 context. In the Data area of the Editor for lrObservation, select level1 with a
right mouse click and select Open With > Context Viewer. Inside the Level 1 context there is one main
entry named “Point_0_Jiggle_0_LR” which stands for the first and only raster point (index 0), the first
and only jiggle position (index 0) at Low Resolution. This is the only building block contained in this
observation. Double-click this building block to see the three entries it contains. Each one represents
a different SPIRE spectrometer level-1 data product:

1. apodized_spectrum: Level 1 Apodized Spectrum Product

2. interferogram: Level 1 Interferogram Product

3. unapodized_spectrum: Level 1 Unapodized Spectrum Product

Looking at your data

28

Figure 2.25. Viewing the SPIRE Level 1 context

2.4.1.3. Extract the Level 1 data products

Before inspecting the contents of the level-1 data products, we first extract a selection of these products
as separate variables in HIPE. The syntax required to access a level-1 product within an observation
context is as follows:

Level1Product = observation.refs["level1"].product.
refs[BuildingBlock].product.refs[ProductName].product

For example, the following command will extract the level-1 interferogram product from the high
resolution observation context:

hrInterferogram = hrObservation.refs["level1"].product.
refs["Point_0_Jiggle_0_HR"].product.refs["interferogram"].product

Note that the right hand side of this command is spelled out at the top of the Data area of the Context
Viewer in HIPE. Clicking the copy icon at the top right corner will copy the command string into the
clipboard and can then be pasted into the command console.

2.4.1.4. Inspect the Level 1 data products

HIPE offers dedicated visualization tools to inspect the level-1 interferogram and spectrum products.

The following steps demonstrate how one can inspect the contents of the datasets within a level-1 data
product as tables. In this example, a dataset in the level-1 interferogram product of the high resolution
observation is examined.

1. Select the hrInterferogram variable with right mouse click, select Open With > Product Viewer.

2. Scroll down to the bottom of the newly opened view. Within the folder-like structure, unfold Dataset
0001 by clicking the plus symbol to its left and select SLWC3 with a right mouse click. Select
Open With > Dataset Viewer to view the numeric values of the dataset.

3. These values can be easily written into a text file with comma-separated values with the command
quoted below. The equivalent command will work to save a particular spectrum into a text file:
asciiTableWriter(file="C:/SLWC3Interferogram.txt",
table=hrInterferogram["0001"]["SLWC3"])

asciiTableWriter(file="C:/SLWC3Spectrum.txt",
table=hrSpectrum["0000"]["SLWC3"])

Looking at your data

29

Figure 2.26. Inspecting data from a level-1 product as tables

The following steps demonstrate how one can conveniently plot the contents of the level-1 data prod-
uct. In this example, the interferograms for a given detector in the level-1 interferogram product of
the high resolution observation are examined.

1. In the Variables pane, select the hrInterferogram variable with right mouse click, select Open With
> Spec SDI Explorer. Do the same for mrInterferogram, and lrInterferogram.

2. In the hrInterferogram view, select detector SLWC3 with a left mouse click. In the other views,
select the same detector but do so with a double-click of the left mouse button to over-plot the
interferograms.

Figure 2.27. The SDI Explorer allows to select and plot data from a level-1 interferogram product

2.4.1.5. Extract and plot Level 1 data

The remainder of the SPIRE_spectrometer_intro.py demonstration script shows how to extract and
plot interferograms and spectra:

1. Extract the individual data vectors from the product datasets

Looking at your data

30

General syntax:

wave = spectrum[scanNumber][detector].getWave()

flux = spectrum[scanNumber][detector].getFlux()

Specific syntax:

hrWn = hrSpectrum[0]["SLWC3"].getWave()

hrFlux = hrSpectrum[0]["SLWC3"].getFlux()

2. Plot the results.

General syntax:

p = PlotXY()

p.addLayer(LayerXY(x,y))

Specific sample syntax:

detector = "SLWC3"

plotTitle = "Inspect Level 1 Spectra "+detector

p = PlotXY(titleText = plotTitle)

hrLayer = LayerXY(hrWn, hrFlux, name="HR")

p.addLayer(hrLayer)

After execution of the remainder of SPIRE_spectrometer_intro.py, the following plots should be dis-
played:

Looking at your data

31

Figure 2.28. Comparing three interferograms from the SLWC3 detector

Figure 2.29. Comparing three spectra from the SLWC3 detector

__

32

Chapter 3. Reprocessing your data

__

3.1. SPIRE Point Source Mode Data Process-
ing

3.1.1. Reprocessing SPIRE Point Source Mode Data

Now that you have inspected your data products, you may feel that you would like to reprocess your
data from the Level 0.5 products onwards, and in time to diverge away from the standard pipeline
processing provided by the HSC. This chapter provides an overview of the steps required to process
your datasets from Level 0.5 onwards, and on how to inspect your final Level 1 and Level 2 products.

For this data reprocessing example, we will be using the Point Source observation (obsID:
1342183474) of NGC 5315. We will in this example assume that you have received the engineer-
ing pipeline processed Level 0.5 data products from the HSC, and have stored them in a storage
pool"1342183474_POF2_NGC5315". The figure below outlines the steps requierd to process the Jig-
gle pipeline.

Reprocessing your data

33

Figure 3.1. The SPIRE Jiggle mode pipeline.

First, we need to make sure that you have imported all needed classes and task definitions required
to run the Large Map/Parallel Mode pipeline:

Import all needed classes
from herschel.spire.all import *
from herschel.spire.util import *
from herschel.ia.all import *
from herschel.ia.task.mode import *
from java.lang import Long
from java.util import *

Import the script tasks.py that contains the task definitions
from herschel.spire.ia.pipeline.scripts.POF2.POF2_tasks import *

Import the script input.py that contains the input definitions

Reprocessing your data

34

from herschel.spire.ia.pipeline.scripts.POF2.POF2_input import *

If you do not have Level 0.5 products to hand, you will need to make the engineering conversion first
from the raw Level 0 products. First, we must search our local pool "1342183474_POF2_NGC5315"
for our observation context:

store = ProductStorage()
myPool = LocalStoreFactory.getStore("1342183474_POF2_NGC5315")
store.register(myPool)

obs = QUERY_RESULT[0].product

We also need to set a workaround for the nodId, and extract the calibration products required for
processing:

workaround for wrong nodId in PFM data
nodId=[0L,1L,1L,0L]

Extract from the observation context the calibration products that
will be used in the script
bsmPos=obs.calibration.phot.bsmPos
bsmOps=obs.calibration.phot.bsmOps
detAngOff=obs.calibration.phot.detAngOff
elecCross=obs.calibration.phot.elecCross
optCross=obs.calibration.phot.optCross

Extract from the observation context the auxiliary products that
will be used in the script
hpp=obs.auxiliary.pointing
siam=obs.auxiliary.siam

Run the engineering pipeline from the Level 0 products obtained from the HSA to Level 0.5:

level0_5= engConversion(obs.level0,cal=obs.calibration)

Add the result to the observation in level 0.5
obs.level0_5=level0_5

Set dpparr as an array to host input from the demodulated data, and obtain the number of building
blocks from the Level 0.5 products:

dpparr=[DenodInput()]
nrep=1
nblocks=len(level0_5.getBbids(0xa321))

Now, we can process our data from Level 0.5 to Level 1. Looping over each BBID, we first convert
the BSM telemetry into a Y Y angle and Z angle timeline and then into a chopper id and jiggle id
timeline. We use these to create the SPIRE pointing product.

The next step then is perform a number of corrections to the data - the electrical crosstalk coreec-
tion, deglitching, flux conversion, sky position association, demodulation of the data, second level
deglitching and averaging of the demodulation data. Lastly, we extract the number of cycles and add
the demodulated data to the "dpparr" variable as input to the denodding module.

for bbid in level0_5.getBbids(0xa321):
 print "Starting BBID=",hex(bbid)
 block=level0_5.get(obsid,bbid)
 # Get basic engineering data products
 pdt = block.pdt
 bsmt = block.bsmt

Reprocessing your data

35

 #
 #
 # run the task to convert BSM telemetry in a Y angle and Z angle timeline
 bat=calcBsmAngles(bsmt,bsmPos=bsmPos)

 # run the task to convert BSM telemetry in a chopper id and jiggle id timeline
 cjt = calcBsmFlags(bsmt, bsmOps=bsmOps)
 #
 #create the SpirePointingProduct
 spp=createSpirePointing(detAngOff=detAngOff,bat=bat,hpp=hpp, siam=siam)
 #
 # run the electrical crosstalk correction
 pdt=elecCrossCorrection(pdt,elecCross=elecCross)
 #
 # run the deglitch
 pdt=deglitchTimeline(pdt, scaleMin=1.0, scaleMax=8.0, scaleInterval=5,
 holderMin=-1.6,\
 holderMax=-0.1, correlationThreshold=0.6, correctGlitches=inputs.correctGlitches)
 #
 # run the flux conversion

 fluxConv=obs.calibration.phot.fluxConvList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=photFluxConversion(pdt,fluxConv)
 #
 # associate the sky position
 ppt=associateSkyPosition(pdt,spp=spp)
 #
 # run the Demodulation task
 dpp = demodulate(ppt, cjt=cjt)
 #
 # second level deglitching
 dpp = secondDeglitching(dpp)
 #
 # average on jiggle position
 dpp = jiggleAverage(dpp)

 ncyc=((dpp.bbCount-1)/4)+1
 if ncyc >= nrep+1:
 for k in range(ncyc-nrep):
 dpparr.append(DenodInput())
 dpparr[ncyc-1].addProduct(dpp)
 nrep=ncyc
 else:
 dpparr[ncyc-1].addProduct(dpp)
 print "Completed BBID=",hex(bbid)

We can now inspect the output from the demodulation module - below is the demodulated dpp product
data for the PLWB6 detector:

Figure 3.2. DPP product - PLWB6 detector

Reprocessing your data

36

Now we can apply the denodding module to the demodulated data in order to remove the nodding,
and append the denodded data to the PhotPointedProduct (PPP):

ppps=[]
for i in range(nrep):
 denin=dpparr[i]
 ppp=deNodding(denin)
 ppps.append(ppp)

Inspecting the denodded PPP:

Figure 3.3. PPP product - PLWB6 detector

Finally, we can average the denodded data, per nodID:

appp = nodAverage(ppps)

We now have our Level 1 product - the Averaged Phot Pointing Product (APPP). Inspecting the APPP
via the Detector Timeline Explorer:

Figure 3.4. APPP product - PLWB6 detector

Finally, we can obtain the final Level 2 products for Point Source Observations, by passing the APP
to the "pointSourceFlux" module, and by inspecting the output JPP product:

user products
jpsfp = pointSourceFit (appp)
jpp = sourceFlux (jpsfp)

Reprocessing your data

37

Figure 3.5. JPPP product

Congratulations! You have now successfully reprocessed your point source data from Level 0 to the
final Level 2 user products!

__

3.2. Reprocessing SPIRE Large Map and Par-
allel Mode Data

As mentioned earlier, the Large Map mode is essentially the same as the SPIRE component of
the Parallel Mode - for both modes, this processing guide will allow you to reprocess your data.
For this data reprocessing example, we assume that you wish to reprocess your data starting from
Level 0.5 products. For this data reprocessing example, we will be using the Large Map observa-
tion (obsID: 1342183475) of NGC 5315. We will in this example assume that you have received
the engineering pipeline Level 0.5 data products from the HSC, and have stored them in a storage
pool"1342183475_POF5_NGC5315". The pipeline for Level 0.5 to Level 1 processing involves the
following sequence of processing modules. The pipeline works on a Photometer Detector Timeline
(PDT) and requires the Nominal Housekeeping Timeline (NHKT). Additional auxilliary products are
required for the telescope pointing information (see the flowchart below)

Figure 3.6. The SPIRE Large Map/Parallel mode pipeline.

Reprocessing your data

38

First, we need to make sure that you have imported all needed classes and task definitions required
to run the Large Map/Parallel Mode pipeline:

from herschel.spire.all import *
from herschel.spire.util import *
from herschel.ia.all import *
from herschel.ia.task.mode import *
from herschel.ia.pg import ProductSink
from java.lang import *
from java.util import *
from herschel.ia.obs.util import ObsParameter
from herschel.spire.ia.pipeline.scripts.POF5.POF5_tasks import *
from herschel.spire.ia.pipeline.scripts.POF5.POF5_input import *

store = ProductStorage()
myPool = LocalStoreFactory.getStore("1342183475_POF5_NGC5315")
store.register(myPool)

obs = QUERY_RESULT[0].product

If you do not have Level 0.5 products to hand, you will need to make the engineering conversion
first from the raw Level 0 products, determine the number of scan lines to be processed and set up a
variable to keep track of saved prtoducts:

Extract from the observation context the calibration products that
will be used in the script
bsmPos=obs.calibration.phot.bsmPos
lpfPar=obs.calibration.phot.lpfPar
detAngOff=obs.calibration.phot.detAngOff
elecCross=obs.calibration.phot.elecCross
optCross=obs.calibration.phot.optCross
chanTimeConst=obs.calibration.phot.chanTimeConst
chanNum=obs.calibration.phot.chanNum

Extract from the observation context the auxiliary products that
will be used in the script
hpp=obs.auxiliary.pointing
siam=obs.auxiliary.siam

Set this to FALSE if you don't want to use the ProductSink
and do all the processing in memory
tempStorage=Boolean.TRUE

Run the engineering conversion pipeline
level0_5= engConversion(obs.level0,cal=obs.calibration, tempStorage=tempStorage)

Attach the result to the observation in level 0.5
obs.level["level0_5"]=level0_5

Get the list of BBIDs of scan lines (BBID means Building Block IDs)
0xa103 is the BBTYPE of scientific data for scan map.
bbids=level0_5.getBbids(0xa103)

number of scans lines to be processed
nscans=len(bbids)
print "number of scan lines:",nscans

this variable will be used to keep references
to saved products
pdtList=[]

Reprocessing your data

39

Start the pipeline running the first correction - the Electrical Crosstalk Correction. We can execute
this in a loop for all scan lines:

start the pipeline running the first correction:
Electrical Crosstalk Correction
This is executed in a loop for all scan lines
for bbid in bbids:
 block=level0_5.get(obsid,bbid)
 pdt=block.pdt
 pdt=elecCrossCorrection(pdt,elecCross=elecCross)
 pdtList.append(sink.save(pdt))

Now,for this observation, we know that detector timeline #5 contains a glitch in detector "PLWB5".

pdt=pdtList[5].product

We can start to take steps to correct this glitch. First we get the voltage of detector "PLWB5". The
getVoltage() method is defined for DetectorTimeline objects:

voltage=pdt.getVoltage("PLWE8")

Next we get the sample times. We are using a jython syntax to call the method getSampleTime()
defined for DetectorTimeline objects:

time=pdt.sampleTime

Here we shift the time origin to center on the glitch:

time=time-time[135]

Get the name of the unit of the voltage:

uni=pdt.getVoltageUnit("PLWE8").toString()

Reprocessing your data

40

Figure 3.7. Plotting voltage against time.

Now we can plot the voltage versus time to view the glitch:

Plot the voltage versus time
plot1=PlotXY(time,voltage,color=Color.blue,\
 xtitle="Time [s]",ytitle="Voltage ["+uni+"]")
plot1[0].style.stroke=1
plot1[0].style.line=2
plot1[0].style.symbol=14

To correct, we run deglitching on all scan lines:

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=deglitchTimeline(pdt)
 pdtList[i]=sink.save(pdt)

Now we get the same timeline after deglitching:

now I get the same timeline after deglitching
pdt_deg=pdtList[5].product

Again we get the voltage of detector PMWA13:

volt_deg=pdt_deg.getVoltage("PLWE8")

Reprocessing your data

41

Figure 3.8. And we can overplot on the old timeline.

Overplot on the old timeline:

plot1[1]=LayerXY(time,volt_deg,color=Color.red)
plot1[1].style.stroke=1

Now we apply the Electrical Filter Response Correction

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=corrElecFiltResponse(pdt)
 pdtList[i]=sink.save(pdt)

Now we can set up and run the Flux Conversion task:

fluxConv=obs.calibration.phot.fluxConvList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=photFluxConversion(pdt,table=obs.calibration.phot.fluxConv)
 pdtList[i]=sink.save(pdt)

Apply correction for temperature drift

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=temperatureDriftCorrection(pdt,table=obs.calibration.phot.tempDriftCorr)
 pdtList[i]=sink.save(pdt)

Get the corrected PDT:

pdt_corr=pdtList[0].product

Reprocessing your data

42

Get the signal of the same detector:

signal_corr=pdt_corr.getSignal("PSWE10")

Let's look at the voltage of the PSWT1 thermistor:

signal_pswt1=pdt_corr.getSignal("PSWT1")
plot3=PlotXY(time,signal_pswt1,color=Color.blue,\
xtitle="Time [s]",ytitle="PSWT1 Voltage [V]",name="Thermistor voltage")

Apply the bolometer response correction:

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=corrBolTimeResponse(pdt)
 pdtList[i]=sink.save(pdt)

Apply the Optical Crosstalk Correction:

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=photOptCrossCorrection(pdt,optCross=optCross)
 pdtList[i]=sink.save(pdt)

Create a Spire Pointing Product:

spp=SpirePointingProduct(detAngOff=obs.calibration.phot.detAngOff,\
 hpp=obs.auxiliary.pointingProduct,siam=obs.auxiliary.siamProduct)

Create a ScanContext where we will attach all the timelines. This will be used as input for map making:

scanCon=ScanContext(obsid)
scanCon.modelName=obs.level["level0"].modelName

In this loop we compute the pointing:

for i in range(nscans):
 block=level0_5.get(obsid,bbids[i])
 nhkt = block.nhkt
calculate BSM angles
bat=calcBsmAngles(nhkt,bsmPos=obs.calibration.phot.bsmPos)
#
add the Bsm Angles Timeline to the SpirePointingProduct
spp.bat=bat
associate sky positions to flux samples
pdt=pdtList[i].product
ppt=associateSkyPosition(pdt,spp=spp)
scanCon.refs.add(sink.save(ppt))

We now need to set up and remove the baseline before we can generate our Level 1 mapping products:

 Flag to switch on and off the baseline removal
useRemoveBaseline=True

create a SpireListContext to be used as input of map making
scans=SpireListContext()

Reprocessing your data

43

Run baseline removal and populate the map making input
for i in range(level1.count):
 if useRemoveBaseline:
 pdt=level1.getProduct(i)
 pdt=removeBaseline(pdt,chanNum=chanNum)
 if tempStorage:
 ref=ProductSink.getInstance().save(pdt)
 scans.addRef(ref)
 else:
 scans.addProduct(pdt)
 else:
 scans.addRef(level1.refs[i])
pass

Level 1 to Level 2 processing (using Naive Mapping or MadScanMapper) for the mapping pipeline
processing produces the final PLW/PMW/PSW products.

Run naive map making for the three bands:

mapPlw=naiveScanMapper(scans, array="PLW")
mapPmw=naiveScanMapper(scans, array="PMW")
mapPsw=naiveScanMapper(scans, array="PSW")

Save maps in the sink and attach them in the ObservationContext

level2=MapContext()
level2.refs.put("PLW",sink.save(mapPlw))
level2.refs.put("PMW",sink.save(mapPmw))
level2.refs.put("PSW",sink.save(mapPsw))

obs.level["level2"]=level2
obs.obsState = ObservationContext.OBS_STATE_LEVEL2_PROCESSED

Saving the data maps for each photometer array

When the pipeline is finished running, a new dialog will appear on screen, asking you whether you
wish to save the processed ObservationConext. Click yes to proceed. This enables you to save the
final observation context in a new location.

Figure 3.9. Observation context dialog.

Now enter the name of the pool where the user wants to save all the processed data in the dialog that
pops up.

Saving the data maps for each photometer array

In order to browse the processed data, within the 'Variables' window, select 'obs' from the list of the
available variables - this is the variable containing the final observation context.

We can now access the level 1 and level 2 product maps from the Large scan map pipelines, namely
the PSW, PLW and PMW map products:

Reprocessing your data

44

Figure 3.10. Level 2 PSW product for NGC 5315 from Large Map pipeline.

Figure 3.11. Level 2 PMW product for NGC 5315 from Large Map pipeline.

Reprocessing your data

45

Figure 3.12. Level 2 PLW product for NGC 5315 from Large Map pipeline.

__

3.3. SPIRE Spectroscopy Data Processing

3.3.1. Reprocessing SPIRE spectrometer data

Two pipelines process data from the observations with the SPIRE imaging spectrometer, one for point
or one for 4 and 16 point jiggle observations. In either case the observation may consist of a set of
observations at a raster of points in the sky. Data will undergo a sequence of processing steps which
are illustrated schematically in Figure 3.13.

Reprocessing your data

46

Figure 3.13. The SPIRE Spectrometer pipeline.

The script SPIRE_spectrometer_apodization.py demonstrates how to process SPIRE FTS data inter-
actively. Rather than processing the data through the whole pipeline, this demonstration focuses on one
particular processing module: Apodization. The Instrumental Line Shape of the SPIRE spectrometer
is a very similar to a sinc function which has an infinite number of side-lobes with decreasing ampli-
tude. The side-lobes can pose challenges when trying to identify lines against a noisy spectral baseline.
Apodization is a technique by which the side-lobes are reduced by multiplying interferograms with
a tapering function, i.e. convolving the spectrum with a smoothening kernel. The following sections
demonstrate the effects of applying different apodizing functions on the instrumental line shape. There
can be many other reasons to process data, such as making use of alternative task parameters or updated
calibration products. For this demonstration, the high resolution observation (OBSID=0x50001ABA)
is used. The script is divided into four main sections

1. Load the observation context and reprocess the level-1 interferograms.

2. Apply different apodizing functions to the interferograms.

Reprocessing your data

47

3. Process the apodized interferograms to level-1 spectra.

4. Compare the resulting spectra.

3.3.1.1. Load the observation context and reprocess interfero-
grams

With the SPIRE_spectrometer_apodization.py script, load the high resolution observation and repro-
cess the Level-1 interferogram up to, but not including the Apodization step. This entails applying
the following steps:

1. SCAL and Telescope Correction, to account for the emission from the instrument and the warm
telescope (loading the reference interferogram manually if required)

2. Interferogram Baseline Correction, to account for vignetting that changes as a function of Optical
Path Difference or 1/f-like noise.

3. 2nd Level Deglitching, which compares a particular interferogram to the average interferogram to
identify outliers and correct these samples.

4. Phase Correction

a. Determine the phase of the interferogram by first apodizing the double-sided interferogram and
then applying the Fourier transform to the double-sided portion of the interferogram.

b. Correct the measured interferograms based on a fit to the measured phase.

The SPIRE_spectrometer_apodization.py script performs all these processing steps by executing all
commands up to the following line:
Finished reprocessing up to the apodization step.

3.3.1.2. Apply different apodizing functions to the interferograms

The next processing step – apodization – can be performed while setting the task control parameter
to different values. This particular demonstration applies several apodizing functions which are given
below. The number refers to the line shape broadening introduced by the apodization:

1. No Apodization (i.e. skip the apodization step)

2. Norton-Beer 1.2

3. Norton-Beer 1.5

4. Gaussian 1.9

The SPIRE_spectrometer_apodization.py script will apply these different apodizing functions by ex-
ecuting all commands up to the following line:
Finished applying the selected apodizing functions.

The SPIRE_spectrometer_apodization.py script deletes all but the detector of interest from the repro-
cessed interferogram in order to lower the memory requirements and reduce the execution time. The
script makes multiple copies of the reprocessed interferogram product, one for each of the selected
apodizing functions. This is required in this particular instance because, by default, the processing
tasks overwrite their input. The following command creates a deep copy of the level-1 interferogram
product:
new_ifgm = SpectrometerDetectorInterferogram(interferogram)

3.3.1.3. Process the apodized interferograms to level-1 spectra

The consequences of applying the different apodizing functions are best evaluated by comparing the
instrumental lines shapes n the level-1 spectra. To that end, the different interferogram products are
processed to level-1 spectra by applying:

Reprocessing your data

48

1. Fourier Transform, to transform interferograms into spectra.

2. Flux Conversion, to apply absolute flux calibration.

3. Spectral Averaging, to average spectra across all performed scans.

The SPIRE_spectrometer_apodization.py script will apply these processing steps by executing all
commands up to the following line:
End of reprocessing

3.3.1.4. Compare the resulting spectra

The remainder of the script extracts and plots the wave and flux columns from the reprocessed spectra,
leading to the following plot:

Figure 3.14. Comparing four spectra from the SSWD4 detector

The plot shows that apodizing functions reduce the amplitude of the side-lobes relative to the center
burst as desired. However, they also deprecate the center peak amplitude and more aggressively widen
the instrumental line shape the stronger they are. This example also illustrates that apodization can
lead to a shift in the line center if there is significant slope in the spectral shape or, as in this case,
in the calibration data.

3.3.2. Additional reading
Additional and more detailed information regarding the data processing modules and the data at the
various levels of processing can be found in the Spectrometer Pipeline Description.

__

http://www.herschel.be/twiki/pub/Spire/ScienceVerificationActivities/SPIRE-BSS-DOC-002966_SPIRE_Spectrometer_pipeline_description_Issue_1_2.pdf

