
Scripting and Data Mining

Formerly known as User's Manual

Version 2.0, Document Number: HERSCHEL-HSC-DOC-0517
01 March 2010

Scripting and Data Mining: Formerly known as User's Manual

iii

Table of Contents
Preface ... viii

1. Related documentation .. viii
1. Scripting and Jython basics ... 1

1.1. Basics ... 1
1.2. Numbers and basic arithmetic ... 1
1.3. Variables and variable types ... 2

1.3.1. Java variable types ... 2
1.4. Strings .. 3

1.4.1. Java string types .. 4
1.5. Type conversions .. 4

1.5.1. Converting between Java and Jython types .. 4
1.6. Lists and Dictionaries .. 6

1.6.1. Setting up and Accessing Lists .. 6
1.6.2. Slicing Lists .. 7
1.6.3. Setting Up and Using Dictionaries ... 7
1.6.4. Nested Dictionaries ... 8

1.7. Augmenting Values and Lists ... 8
1.8. Lists and Jython Tuples ... 9
1.9. Basic programming statements .. 9

1.9.1. if/elif/else .. 9
1.9.2. for .. 10
1.9.3. while .. 11
1.9.4. Loop control: break and continue .. 11

1.10. Printing to the screen and files ... 11
1.11. Defining and Using Functions .. 12
1.12. Importing modules ... 14
1.13. Object Oriented Programming .. 15

1.13.1. Classes and Objects ... 15
1.13.2. Interface, Implementation and Encapsulation .. 16
1.13.3. Inheritance ... 17
1.13.4. Packages and Namespaces .. 17
1.13.5. Advantages of OOP ... 17
1.13.6. Concluding Remarks .. 18

1.14. Defining a Class in DP ... 18
1.15. Writing Scripts - Programming in DP .. 19
1.16. Some Useful Extra Items on Scripts .. 20
1.17. Interactivity in Jython Scripts .. 21

1.17.1. Basic Interactivity ... 21
1.17.2. A Little Bit of Swing ... 22

1.18. Useful Java bits ... 25
1.19. Jython and DP Quirks .. 26

1.19.1. Two functions for one goal ... 26
1.19.2. Long Names versus Short Names ... 26
1.19.3. Naming conventions .. 27
1.19.4. Miscellaneous quirks ... 27

2. Arrays, datasets and products ... 28
2.1. Introduction .. 28
2.2. Getting started .. 28
2.3. Types of Array Data Objects ... 28

2.3.1. DP Numeric Array Access and Slicing .. 29
2.4. Creating a Simple 1D DP Numeric Array .. 29
2.5. Creating and Handling Complex Array Data Objects .. 30
2.6. Creating and Accessing Multi-Dimensional Array Data Objects 30

2.6.1. A note on array ordering .. 31
2.7. Adding Attributes to Create an Array Dataset ... 31

Scripting and Data Mining

iv

2.7.1. Dataset Attributes and Metadata .. 32
2.8. Creating and Viewing a TableDataset ... 32

2.8.1. Row-wise appending of TableDatasets .. 34
2.8.2. Assigning Units .. 34

2.9. Creating and Accessing a Composite Dataset .. 37
2.10. Spectrum Datasets ... 38

2.10.1. Spectrum1d and SpectralSegments ... 38
2.10.2. Spectrum2d .. 38
2.10.3. Expanding Spectrum1d and Spectrum2d Datasets 40

2.11. Image and cube datasets ... 41
2.11.1. Spectral cubes .. 43

2.12. Importing spectral cubes from external applications ... 43
2.13. Assigning a World Coordinate System to images and cubes 45
2.14. Products ... 49

2.14.1. Mandatory Parameters in Products .. 49
2.14.2. Setting Date Information .. 49
2.14.3. Additional Metadata .. 50
2.14.4. Inserting and Getting Datasets from a Product .. 50

3. The Numeric library ... 51
3.1. Introduction .. 51
3.2. Getting started .. 51
3.3. Basic numeric array arithmetic .. 51
3.4. Numeric functions and lambda expressions .. 52
3.5. Selection, data filtering and masking methods ... 52
3.6. Array access and slicing ... 55
3.7. Making sense of logical operators .. 55
3.8. Advanced tips for improved performance ... 56
3.9. Type conversions .. 57

3.9.1. Explicit conversion ... 57
3.9.2. Implicit conversion ... 57

3.10. Function library ... 57
3.10.1. Basic functions ... 58
3.10.2. Integral transforms .. 59
3.10.3. Power spectrum .. 60
3.10.4. Convolution ... 61
3.10.5. Boxcar and gaussian filters ... 62
3.10.6. Interpolation ... 62
3.10.7. Data fitting .. 63
3.10.8. Spectral fitting .. 70
3.10.9. Masks ... 77
3.10.10. Matrices ... 77
3.10.11. Random numbers ... 80
3.10.12. Numeric integration ... 81
3.10.13. Interpolating discrete data ... 82

3.11. Example programs ... 83
3.12. Mathematical operations on spectra ... 83

3.12.1. Introduction ... 83
3.12.2. Toolbox primer: selection ... 83
3.12.3. Toolbox primer: average spectra .. 85
3.12.4. Toolbox primer: subtract spectra .. 85
3.12.5. Toolbox primer: divide spectra .. 86
3.12.6. Toolbox primer: add and muliply spectra ... 86
3.12.7. Toolbox primer: resample and smooth spectra .. 86
3.12.8. Toolbox primer: statistics on spectra ... 86
3.12.9. Summary of toolbox operations ... 87

4. Introduction to Tasks .. 89
4.1. The Task framework .. 89
4.2. My first Task ... 89

Scripting and Data Mining

v

4.2.1. Before the Task .. 89
4.2.2. What makes a Task? ... 90
4.2.3. An Example of a Task: Average .. 91

4.3. Guideline on How to Work With GUIs Within Tasks ... 97
4.3.1. The use of task parameters handled via a dialog .. 97
4.3.2. The use of more enhanced GUIs .. 97
4.3.3. Example Task Handled by a Dialog ... 97
4.3.4. Example Task Controlled by a GUI ... 98

5. Overview of DP packages ... 99
5.1. Introduction .. 99
5.2. Overview of Javadoc Documentation for DP Packages ... 99
5.3. Package view .. 100
5.4. Class view .. 102
5.5. Other views .. 104

5.5.1. Tree view .. 104
5.5.2. Deprecated view ... 104
5.5.3. Index view ... 104

5.6. DP Packages And Documentation ... 104
5.6.1. herschel.ia.dataflow ... 104
5.6.2. herschel.ia.dataset .. 104
5.6.3. herschel.ia.demo ... 105
5.6.4. herschel.ia.doc .. 105
5.6.5. herschel.ia.document .. 105
5.6.6. herschel.ia.gui ... 105
5.6.7. herschel.ia.inspector ... 105
5.6.8. herschel.ia.io .. 106
5.6.9. herschel.ia.jconsole .. 106
5.6.10. herschel.ia.numeric .. 106
5.6.11. herschel.ia.obs ... 107
5.6.12. herschel.ia.pal ... 107
5.6.13. herschel.ia.pg .. 107
5.6.14. herschel.ia.qcp .. 107
5.6.15. herschel.ia.spg ... 108
5.6.16. herschel.ia.task .. 108
5.6.17. herschel.ia.toolbox ... 108
5.6.18. herschel.ia.vo .. 109

6. Time measurement ... 110
6.1. Introduction .. 110
6.2. Time Definitions ... 110

6.2.1. System time in DP .. 110
6.2.2. International Atomic Time (TAI) and FineTime 111
6.2.3. Coordinated Universal Time (UTC) .. 111
6.2.4. DecMec Time [PACS only] .. 111

6.3. Time in Instrument House-Keeping (HK) Data .. 112
6.4. Time conversion .. 112

6.4.1. Time conversion in HCSS .. 112
6.4.2. CucConverter ... 113

A. Advanced Product Access Layer .. 114
A.1. Product Storage .. 114

A.1.1. Creating a storage and registering pools .. 114
A.1.2. Saving and restoring Products ... 114

A.2. Product Pools ... 115
A.3. Local Pools .. 115

A.3.1. The Default Local Pool directory and how to change it 116
A.3.2. Registering Local Pools ... 116
A.3.3. Saving products in pools .. 117
A.3.4. Finding out what is in storage: Starting the Product Browser 117

Scripting and Data Mining

vi

A.3.5. More On Storage Queries: Other kinds of query and more examples of
command line queries ... 118
A.3.6. Retrieving products from storage ... 120
A.3.7. Deleting Products from Storage ... 120
A.3.8. Updating/Repairing Storage .. 121

A.4. DbPool ... 121
A.5. HsaReadPool .. 122
A.6. CachedPool .. 122
A.7. Setting up and Accessing Remote Pools .. 122

A.7.1. PoolDaemon .. 122
A.7.2. Accessing Remote Pools Using the SerialClientPool 122

A.8. More on querying ... 123
A.8.1. Querying strategy ... 123
A.8.2. Querying for metadata in products ... 123

A.9. Special Imports into Pools .. 123
A.9.1. Putting a Directory of FITS Files Into a Pool ... 124
A.9.2. Placing Image (PNG) Files in a Pool and/or FITS File 124

A.10. Context Products ... 124
A.11. Deep Copy or Cloning of Products ... 125
A.12. Common Problems .. 125
A.13. Storage Product Versioning ... 126

A.13.1. Versioning ... 126
A.13.2. Querying Product Versions ... 127
A.13.3. Tagging Products in a Store .. 127
A.13.4. Turning Off Product Versioning .. 128
A.13.5. Using the New Versioning Mechanism Against Existing Pools 128

A.14. The Product Browser ... 128
A.14.1. A visual tour of the browser ... 129
A.14.2. Simple use case .. 130
A.14.3. A: Query area .. 130
A.14.4. B: Result area .. 130
A.14.5. C: Result inspection area .. 131
A.14.6. D: JIDE basket area .. 132
A.14.7. Advanced: Adding a Table Layout ... 132

B. Using JIDE or the JIDE view in HIPE .. 134
B.1. Introduction ... 134
B.2. Scripting using the JIDE view of HIPE ... 134

B.2.1. File menu .. 136
B.2.2. Edit menu ... 137
B.2.3. Run menu ... 138
B.2.4. Window and Help menus ... 138

B.3. DP scripting using JIDE ... 139
B.3.1. File menu .. 141
B.3.2. Console menu .. 141
B.3.3. Edit menu ... 142
B.3.4. Run menu ... 142
B.3.5. Help menu .. 143

B.4. Quitting JIDE ... 144
B.5. Standard settings for JIDE and HIPE .. 145
B.6. DP working directory and file access .. 145
B.7. Getting command-line help ... 146
B.8. Programming loops ... 146

B.8.1. Loop performance on arrays ... 147
B.8.2. Using the Editor view with loops ... 148

B.9. Multiline statements in the console view ... 148
B.10. Pausing during script execution and debugging in JIDE and HIPE 149
B.11. Background script execution .. 149
B.12. Running scripts from a shell command line .. 150

Scripting and Data Mining

vii

B.13. Errors and exceptions in DP .. 150
B.13.1. Overview of the libraries used in a DP session 150
B.13.2. The error traceback mechanism ... 151
B.13.3. The HCSS exception and logging mechanism 153

C. Jython operators .. 155
D. Naming Conventions .. 157

viii

Preface
This manual is intended for the more advanced user who is interested in developing scripts and
tools within HIPE. It places an emphasis on command-line interactions which can be put together to
make flexible scripts for specific user tasks. It should be noted that such command-lines often mimic
the capabilities of HIPE tools, which are displayed in the console view of HIPE when being used
interactively. This allows for copying and editing of interactive operations into user scripts such as
is described in this manual.

1. Related documentation
This document complements the cookbook approach to using HIPE, incorporated in the Data Analysis
Guide. It is intended for more advanced users wanting to do more involved scripting as compared to
the cookbook (often GUI-based) interactions described in the Data Analysis Guide.

1

Chapter 1. Scripting and Jython
basics
1.1. Basics

The Herschel DP is a development system based on programs written in Java or Jython. Jython is a
Java implementation of the Python language. The syntax is therefore well defined and there is plenty
of documentation freely available.

Remember however that, while the C implementation of Python (what we usually refer to as just
"Python") is already at version 3.0, the version of Jython used for DP is still 2.1. This means that not
all available Python documentation will be applicable to Jython.

Warning

Standard Jython libraries are not automatically imported into HIPE. If you want to try
Python/Jython examples from external sources such as books and tutorials, you will have
to import them manually.

1.2. Numbers and basic arithmetic
You can use the interpreter as a calculator. The expression syntax is similar to other languages: for
example, the four basic operations are represented by the operators +, -, * and /, and parentheses can
be used for grouping. For example, you can type the following into the Console window of HIPE at
the HIPE> prompt. Note the use of the hash mark # for inserting comments:

HIPE> print 2+2
4
HIPE> # This is a comment and is ignored by the interpreter
HIPE> print 2+2
4
HIPE> print 2+2 # A comment on the same line as the code
4
HIPE> print (50-5*6)/4
5
HIPE> print 7/3 # Integer division returns the floor
2
HIPE> print 7/-3
-3

A list of Jython operators is provided in Appendix C.

There is full support for floating point; operators with mixed type operands convert the integer operand
to floating point:

HIPE> print 3 * 3.75 -/ 1.5
7.5
HIPE> print 7.0 -/ 2
3.5

Complex numbers are also supported; imaginary numbers are written with a j or J suffix. Complex
numbers with a nonzero real component are written as (real + imag j), or can be created with
the complex(real, imag) function:

HIPE> print 1j * 1J
(-1+0j)

http://www.jython.org/
http://www.python.org/

Scripting and Jython basics

2

HIPE> print 1j * complex(0,1)
(-1+0j)
HIPE> print 3+1j*3
(3+3j)
HIPE> print (3+1j)*3
(9+3j)
HIPE> print (1+2j)/(1+1j)
(1.5+0.5j)

To extract the real and imaginary parts from a complex number z, use z.real and z.imag:

HIPE> z = 1.5+0.5j
HIPE> print z.real
1.5
HIPE> print z.imag
0.5

For more information about numeric functions see Chapter 3.

1.3. Variables and variable types
Variables do not have to be declared like in other languages (that is, statements like int x are
not required). Variables appear when you assign to them and disappear when you do not use them
anymore. Assignment is done by the = operator and equality testing is via the == operator. You can
also assign several variables at once:

HIPE> x, y, z = 1, 2, 3
HIPE> a = b = 123

If you need to clear some or all of your variables, you can use the clear command:

HIPE> clear("x,y,z")
To clear all variables, but not the loaded classes and methods:
HIPE> clear(all = True)

There are four numeric types in Jython:

• Integer: a = 3

• Long integer, denoted by the l or L suffix: a = 3L

• Float: a = 3.0

• Complex: a = (3 + 1j)

There is no proper boolean type: instead, zero represents false and any other value represents true.
You can use the True and False keywords, which will be converted into numeric values:

HIPE> a = True
HIPE> print a
1
HIPE> a = False
HIPE> print a
0

1.3.1. Java variable types
The following Java numeric types are also available in Jython:

Scripting and Jython basics

3

• Byte: signed 8-bit integer.

• Short: signed 16-bit integer.

• Integer: signed 32-bit integer.

• Long: signed 64-bit integer.

• Float: single-precision 32-bit floating point.

• Double: double-precision 64-bit floating point.

• Boolean: either true or false.

These types are used as follows:

HIPE> a = Integer(3) # Create an Integer with value 3
HIPE> print a
3
HIPE> b = Double(3)
HIPE> print b
3.0
HIPE> c = Boolean(0)
HIPE> print c
false

You should use Jython primitive types in your scripting, but you may sometimes run into Java types.
This could result in strange errors when you try to operate on variables of incompatible types. See
Section 1.5 for more information.

1.4. Strings
Strings in Jython can be within single or double quotes:

HIPE> print -'spam eggs'
spam eggs
HIPE> print -"doesn't"
doesn't

String literals can span multiple lines in several ways. A backslash as the last character of a line
indicates that the next line is a logical continuation of the previous one:

hello = -"This is a rather long string containing\n\
several lines of text just as you would do in C.\n\
 Note that whitespace at the beginning of the line is \
significant."

print hello

Note that newlines still need to be embedded in the string using \n; the newline following the trailing
backslash is discarded. The previous example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.
 Note that whitespace at the beginning of the line is significant.

You can access individual characters like this:

HIPE> print hello[2]

Scripting and Jython basics

4

i
HIPE> print hello[10:16]
rather

Note that numbering of the characters starts at 0.

The variable hello essentially contains an array of characters (including blank spaces). We can find
the length of such an array using the len() function (see Section 1.11 for details on functions).

HIPE> print len(hello)
157

1.4.1. Java string types
As with numeric types, you can use Java strings in addition to Jython native strings:

HIPE> s1 = -"Blah blah" # Jython string
HIPE> s2 = String("Woof woof") # Java string

Java also has the Character type representing a single character. Note that it is not available by
default within HIPE, but it has to be explicitly imported (see Section 1.12 for more information about
importing):

HIPE> c = Character("a")
NameError: Character
HIPE> from java.lang import Character
HIPE> c = Character("a") # No error this time
HIPE> print c
a

Use Jython strings in your scripting, but be aware of the existence of Java string types.

1.5. Type conversions
There are conversion functions to change numbers into different Jython primitive types: float(),
int(), long() and complex():

HIPE> a = 1
HIPE>print a
1
HIPE> print float(a)
1.0
HIPE> print long(a) # No visible change
1
HIPE> print complex(a)
(1+0j)

These conversions do not work with complex numbers, even if they have zero imaginary part:

HIPE> a = 1 + 0j
HIPE> print float(a)
TypeError: can't convert complex to float; use e.g. abs(z)

1.5.1. Converting between Java and Jython types
When an external method returns a Java numeric type, Jython will automatically convert it into one
of its primitive types. Take for example the following code:

Scripting and Jython basics

5

HIPE> from java.util import Random
HIPE> a = Random().nextDouble()
HIPE> print a
0.7865746478405673 # You will get a different number!

The nextDouble() method returns a random number between 0 and 1 as a Java Double, but if
you inspect the type using the Jython __class__ attribute you will get something different:

HIPE> print a.__class__
org.python.core.PyFloat # PyFloat indicates a Jython float

Java types are converted to Jython types according to the following table:

Java to Jython type conversions

Java type Jython type
Byte Integer
Short Integer
Integer Integer
Long Long
Float Float
Double Float
Boolean Integer (false = 0, true = 1)
Character String (length 1)
String String

The valueOf method of the Java numeric types is useful to convert the string representation of a
number to a number:

HIPE> s = -"01234.56"
HIPE> print Double.valueOf(s)
1234.56
HIPE> print s + 2.22 # Incompatible types
TypeError: __add__ nor __radd__ defined for these operands
HIPE> print Double.valueOf(s) + 2.22
1236.78

Note that with this method when you try to convert a string representation of a floating point to integer
you will get an error:

HIPE> s = -"01234.56"
HIPE> print Integer.valueOf(s)
java.lang.NumberFormatException: For input string: -"01234.56"

1.5.1.1. Incompatible types

Java and Jython numeric types do not mix well:

HIPE> a = 123.45 # Jython float
HIPE> print a
123.45
HIPE> b = Float(123.45) # Java float
HIPE> print b
123.45
HIPE> print a + b
TypeError: __add__ nor __radd__ defined for these operands

Although the two variables look the same, inspecting them with the __class__ attribute reveals
their difference:

Scripting and Jython basics

6

HIPE> print a.__class__
org.python.core.PyFloat
HIPE> print b.__class__
java.lang.Float

To the Jython interpreter, these are just two different things for which no addition has been defined.
For the addition to succeed, you have to convert the Java type to Jython:

HIPE> print a + b.floatValue()
246.9 # You may get a slightly different result because of rounding errors

Converting the Jython type to Java will not work:

HIPE> print Float(a) + b
TypeError: __add__ nor __radd__ defined for these operands

To apply math operators to variables of Java numeric types, you always have to convert them to Jython
types (a very good reason to use Jython primitive types in the first place):

HIPE> x = Double(3)
HIPE> y = Double(4)
HIPE> print x * y
TypeError: __mul__ nor __rmul__ defined for these operands
HIPE> print x.doubleValue() * y.doubleValue()
12.0

The same problems exist with strings:

HIPE> a = -"Blah Blah -"
HIPE> b = -"Woof Woof"
HIPE> print a + b # Concatenating Jython strings
Blah Blah Woof Woof
HIPE> print a + String(b)
TypeError: __add__ nor __radd__ defined for these operands

1.6. Lists and Dictionaries
Lists and dictionaries are important data structures available in Jython.

Lists are simple arrays written in a specific order.

Dictionaries are like lists that can be accessed via a key (or label). To access an element you use a
key or "name". This is what is used to look up the value of an element.

1.6.1. Setting up and Accessing Lists
Lists are formulated within square brackets, which can be nested. E.g.,

name = ["Rolf", -"Harris"]

(note - strings of characters need to be placed inside quotation marks)

y = z = 5
x = [[1,2,3],[y,z],[1,[2,[3,4]]]]
print x
print x[0]
print x[2]
print x[2][1]

Scripting and Jython basics

7

print x[2][1][1]

In the first line we have set both the variables y and z to the value 5. In the second line, the variable x
is associated with a Jython array which itself contains three arrays, the third of which contains further
nested arrays. The print commands that follow show how the nested arrays can be accessed (counting
of array elements starts from 0). The last line therefore indicates we take the third element of x, take
the second element of that and then the second element of the array we are left with (i.e., [3, 4]).

You can access lists by individual names or groups

print name[0], name[1] # prints -"Rolf Harris"
print name[0:2] # gives list in brackets ['Rolf', -'Harris']
print name[:2] # ditto

In the first instance the parts of the name list are picked up individually, in the second part a range of
list components is picked out (0 to 2) and in the last case all components up to name[2] are picked
out. Notice how in the last two cases the command is interpreted as going up to but not including the
number range being given. We can try the same with the list 'x'.

print x[0] # gives the first element in the list -"[1,2,3]"

Try printing the other elements of the list (x[1] and x[2]) to see if you get what you expect!

1.6.2. Slicing Lists
The last two examples using the list name (above) are also examples of slicing. Slicing of this type
can also be performed with numerical and string arrays. For instance,

y = ["The", -"quick", -"brown", -"fox", -"jumped", -"over", -"the", -"lazy", -"dog"]
print y[1:4] # prints the list ['quick', -'brown', -'fox']

Again - the end integer value given for the slice is not included, so the above example only gives the
values for y[1], y[2] and y[3].

• Choosing y[:4] means "take every element from the beginning of the list up to element 4, not
including element 4 ."

• We can also to have y[4:] which means "take every element from number 4 up to the end" - note
that this will include element number 4.

• Lastly, negative numbers mean count from the end of the list y[-3] means take the third element
from the end of the list.

1.6.3. Setting Up and Using Dictionaries
A dictionary has a set of {key: value} pairs. E.g.,

person = {"Alice": 111, -"Boris": 112, -"Clare": 113, -"Doris": 114}
print person.get("Alice")
111
print person["Alice"]
111

We "get" the associated value for "Alice" within the dictionary "person". Alternatively, the key can be
given between square brackets as with the array notation. To see all the "keys" and "values" separately
use the keys() and values() methods of the dictionary "person".

print person.keys()
['Clare', -'Alice', -'Boris', -'Doris']
print person.values()

Scripting and Jython basics

8

[113, 111, 112, 114]

The use of the empty brackets at the end indicate that we are not passing a parameter on to "keys" or
"values" in order to get a printout of their current settings. In fact, no parameters are allowed for these
commands, but we still need the brackets.

Also note how the commands keys() and values() are applied/work on the dictionary "person".
We will see this frequently when running DP code in the future.

If we want to change the dictionary then we need to write something like

person['Alice'] = 222

Here, the value associated with Alice in the dictionary called person has been changed to the number
222.

1.6.4. Nested Dictionaries
Dictionaries can hold other dictionaries too. So advanced data structures can be made.

Let us set up a dictionary called abc

abc = {"John": 12345, -"Jerry" -: 23456, -"Joe" -: 34567}

We will now put this inside another dictionary called dict

dict = {"Alice" -: 111, -"Boris" -: abc, -"Charlie" -: -"angel"}

Note here that we have NOT got inverted commas around the value abc since we want it to point to
our dictionary abc and not be a string.

So now we can look at the value of "Boris"

print dict.get("Boris")

Which should simply give us the dictionary abc printed on our screen. Whereas,

print dict.get("Charlie")

Simply prints the string we gave as the value (we know it is a string since it has inverted commas
around it).

If we now want to get the value of "John" we would need to do

print dict.get("Boris").get("John")

First we get the dictionary abc which is pointed to by the key "Boris", then we look for the key "John"
inside. This returns the value 12345.

1.7. Augmenting Values and Lists
Jython allows a full range of augmentation assignment operators (including +=, -+, *=, and /=). These
all behave in a similar fashion.

a = 5
a += 2 # Adds 2 to the value of a
a *= 3 # Multiplies a by 3

We can add to lists too.

Scripting and Jython basics

9

b = [1]
b += [2] # Now b = [1, 2]. Note that the result is NOT b = [3]!

Note that here we have appended an element to the end of the list. This we could also do with the
append() method.

b.append(3) # Now b = [1, 2, 3]

1.8. Lists and Jython Tuples
A possibly confusing aspect of Jython is the use of brackets in producing what appear to be identical
lists. True Jython lists are mutable - they can be changed/sorted (represented by square brackets, "[]").
Whereas tuples are immutable and represented by curved brackets, "()" and are therefore unalterable,
including ordering. So while we can append new elements to a list, we can not do so to a tuple.

a = [1,2,3,4]
c = ["x","y","z"]
a.append(c)
print a
[1, 2, 3, 4, ['x', -'y', -'z']]

The list ["x","y","z"] has been added as a single fifth element of the list a. Whereas...

a = (1,2,3,4)
c = ("x","y","z")
a.append(c)

...gives an error:

AttributeError: -'tuple' object has no attribute -'append'

"Adding" lists or tuples can be done to form a resultant third list or tuple. For example

a = (1,2,3,4)
c = ("x","y","z")
b = a + c
print b
(1, 2, 3, 4, -'x', -'y', -'z')

If we wish to do arithmetic with one or more arrays of numbers, rather than individual list or tuple
elements, then we need to deal with numeric arrays. These are discussed in Chapter 2.

1.9. Basic programming statements
The basic programming statements are the conditional statement if/elif/else, the loop statements for and
while and the loop control statements break and continue. The conditional and loop statements serve
to execute blocks of commands depending on a given condition. Blocks are indicated by indentations
and only through indentations. No begin/end braces are required.

1.9.1. if/elif/else
The if/elif/else statement executes blocks of commands depending on given conditions. The
syntax is:

if condition1:
 block1
elif condition2:
 block2
else:
 block3

Scripting and Jython basics

10

A few examples to illustrate

x = 13

if x < 5 or (x > 10 and x < 20):
 print -"The value is OK"

if x < 5 or 10<x<20:
 print -"This value is OK"

if 0<= x <= 10:
 print -"The value is in the range [0,10]
elif 10<x<20:
 print -"The value is in the range [10,20]"
else:
 print -"The value is not in the range [0,20]"

The first two examples are identical.

1.9.2. for
The for loop was briefly discussed in Section B.8, where its use within the JIDE environment was
illustrated. The syntax of the for loop is the following:

for variable in list:
 block

where list can be an array of values, sequence of dictionary keywords, tuples, strings.

Some examples:

for i in [1,2,3]:
....print i

The above for loop goes through values in an array indicated in the square brackets. A simpler way
- particularly for large numbers of iterations - is to use the inbuilt range function to create an array.

The following example prints the values from 0 to 99 using the range function -- it actually creates a
list of rising integer values that can then be looped through.

for value in range(100):
.... print value

Note how values start from 0 and end one below the value assigned to the range function. Currently,
the print output is going to the Console window of HIPE.

A combined example of using for loop and if/elif/else is given below. Note the indentation
of the different blocks.

person = {"Alice" -: 111, -"Boris": 112, -"Clare": 113, -"Doris": 114}
first we get the list of people's names
list = person.keys()
for each name in the list we get the associated value --- this
could be a test score, for example.
for i in list:
 pval=person.get(i)
 # we check if the person is on the cutoff, and print the name
 if pval == 112:
 print i, -"is at the cutoff"
 # below the cutoff
 elif pval < 112:
 print i, -"is below the cutoff"
 # or else, above the cutoff
 else:
 print i, -"is above the cutoff"

Scripting and Jython basics

11

1.9.3. while
The while loop executes a block of commands, while a given condition is true. The syntax is:

while condition:
 block

The condition can be any expression which results to a value: the numeric zero is False, as well as
empty string, tuple, list, otherwise the condition is True.

Some examples:

x = 0
while x <= Math.PI:
....y = SIN(x)
....x += 0.1

1.9.4. Loop control: break and continue
The command break can be used to immediately exit from a loop and continue is used to jump
to the next iteration of the loop without executing the rest of the block.

An example for their usage is given below.

x = 0
while 1:
 y = TAN(x)
 if y < 0:
 break
 print x,y
 x += 0.1

The above example shows an infinite while loop (the condition is always true) and inside the loop
block we check for a given condition and jump out of the loop once it is true, so at the first negative
tangent we exit the loop.

for i in range(100):
 if i % 2: continue
 print i

The above example shows how we can skip the printing of the odd numbers (i % 2 is i modulus 2
and it is zero for all even numbers).

1.10. Printing to the screen and files
We have already seen how a print command can produce a result

print 1, 2, 1+2
1 2 3
print a
(1, 2, 3, 4)

(... following on from the above augmentation example).

The printout can be formatted in the same way as with the C sprinf format codes. Some examples:

print -"When %s is %i years old then PI will be %8.10f" %("John",23,Math.PI)
When John is 23 years old then PI will be 3.1415926536
print -"When %8s is %04i years old then PI will be %016.12f" %("John",23,Math.PI)
When John is 0023 years old then PI will be 003.141592653590

To print lists or arrays it is necessary to make a loop:

Scripting and Jython basics

12

a = [1,1,2,3,5,8,13,21,34]
for i in range(len(a)):
 print -"Line: %3i" %(a[i])

Another useful usage of formatted printout is with dictionaries as shown in the following example:

record = {"name": -"John", -"Room": 112, -"class": -"manager", -"age": 27}
print -"Extracted record\n Name: %(name)10s Room: %(Room)4i" % record
Extracted record
Name: John Room: 112

We can also print to a file.

file = open("output.txt", -'w') # -'w' allows write access overwriting
 # previous contents.
 # -'a' would append at the end of the file.
print >> file, 2 # Puts the number 2 into output.txt

Or

print >> file, a # Puts the array -"a" into output.txt

For printing an array/list to a file.

Note that it is not necessary to close access to a file within your DP session. To overwrite the original
text file, reopen the file. Reopening the file will remove the contents.

1.11. Defining and Using Functions
Here we name a piece of code, call it with some parameters and have it return a result. Functions are
set up with the keyword def. e.g.,

def square (x):
 -... return x*x
 -...
print square(2)
4

The arguments of the functions are passed by value, i.e. the input argument is not changed outside
the function:

def myfunc(a):
 a = a + 1
 return a
#
x = 4.0
print myfunc(x)
5.0
print x
4.0

Note that variables from the main HIPE session have global scope, i.e. they are accessible inside
functions but cannot be changed. The example below will produce an error:

def myfunc(a):
 a = a + 1
 x = x + 5
 return a
#
x = 4.0
print myfunc(x)
UnboundLocalError: local: -'x'

However, the following example shows a dangerous effect:

Scripting and Jython basics

13

def myfunc(a):
 b = a*z + 1
 return b
#
x = 4.0
z = 10.0
print myfunc(x) # this one works as z is global and accessible inside the function
41.0

This may have side effects especially when one has plenty of variables in the HIPE session and
seemingly the defined user functions work. There is no guarantee though that next time the same
global variables will be available or they may have different values, in which cause the functions will
throw errors or worse give wrong results. That is why our advice is when it is necessary to use global
variables inside user functions to pass them as arguments.

Some arguments of the functions may have default values. This is illustrated by the following example:

def myfunc(x,y=1.0,verbose=True):
 z = x*x + y
 if (verbose):
 print -"The input is %f %f and the output is %f" %(x,y,z)
 return z
#
myfunc(5.0) # using default values for y and verbose
The input is 5.000000 1.000000 and the output is 26.000000
print myfunc(5.0,y=5.0,verbose=False)
30.0
print myfunc(5.0,5.0,False) # the same as the previous
30.0.
print myfunc(5.0,5.0)
The input is 5.000000 5.000000 and the output is 30.000000
30.0

The arguments of a function can be functions themselves, like in the following example:

def func1(x):
 return x*x
def func2(x):
 return x/2.0
def myfunc(f1,f2,x):
 return f1(x) + f2(x)
#
x = 3.0
print myfunc(func1,func2,x)
10.5
Even the user can input any available function of one argument
print myfunc(SIN,func1,x)
1.6411200080598671

In actual fact, DP has a sophisticated numeric functions package that can allow squaring of values and
numeric arrays of various types (double, integer etc.). Numeric functions available in DP are discussed
in Chapter 3.

If you want to call a function without arguments then the () brackets are required.

A useful thing to know is that functions are values in Jython. So taking an example from the previous
section

print person.values()

Could be changed to

pvalue = person.values
print pvalue
which indicates -"pvalue" is a Jython values type
print pvalue()

Scripting and Jython basics

14

which actually prints out the values

1.12. Importing modules
Most useful classes and functions are put into Jython modules or Java packages. These are then
imported into a given environment or program with the import statement.

Try issuing the following command from within HIPE:

print localtime()

You will get an error:

NameError: localtime

This is because, although the localtime function is part of the software distribution, it has not been
imported into your session. The localtime function is part of the time Jython module, which you
can import by issuing this command:

import time

This imports the entire module, but forces you to use the qualified name of the function (that is,
including the module name):

print time.localtime()
(2009, 5, 17, 10, 41, 18, 6, 137, 1)

The following syntax allows you to use the localtime function without the qualified name:

from time import localtime
print time.asctime(localtime())
Sun May 17 10:44:35 2009

Note that asctime, which converts the time into a human-friendly format, still needs the qualified
name. To import all the names from a module, use the following syntax:

from time import *
print asctime(localtime())
Sun May 17 10:44:35 2009

Use this option with caution, because some of the names imported from the module could overwrite
names you defined locally. To see all the names contained in a module, use the following command
(here for the time module):

print dir(time)

To avoid name clashes, you can define a different name from what you import:

from time import localtime as ltime
print ltime()
(2009, 5, 17, 10, 41, 18, 6, 137, 1)

Importing Java packages works in exactly the same way as importing Jython modules. For more
information about Java packages, see Section 1.13.4.

Scripting and Jython basics

15

A basic set of packages most relevant to users is loaded when HIPE is started.

1.13. Object Oriented Programming
HIPE is based on Jython and Java. Java is an object oriented language, and Jython can be
used as an object oriented language, although it is mostly used in its procedural form. Object-
oriented programming, or OOP for short, has been (and still is) the subject of much hype, several
misconceptions and a few urban legends. It is not the remedy to all evils, but in many cases it can help
to write cleaner, more reusable and more maintainable code. Although you will not have to write a
single line of object-oriented code to use HIPE, being familiar with some of its concepts may help to
gain a better understanding of the DP system. We will now briefly explain the basic words of the trade
and describe the advantages of the OOP approach.

1.13.1. Classes and Objects
The traditional, or procedural, way of programming is relatively straightforward. We take program
inputs and store them in variables, which can be of many types (integer, string, float etc.). We process
this input using the set of commands provided by the language we are using. Other variables are
employed to store the outputs and any intermediate values we might need. Finally, the outputs are
given back to the user in some way and the program terminates.

To tidy up our code, we might want to group sets of commands that perform particular tasks into blocks
called functions or subroutines. Such blocks can be called multiple times using loops, thus avoiding
the need to duplicate code. At any point our program can decide to execute one function instead of
another, based on whatever criteria we set: this would be achieved via a control flow statement such
as an if...then block. By organising code into functions/subroutines we just made the leap from
unstructured to proper procedural programming.

Object oriented programming takes it one step further. The old ingredients are still there: variables,
functions (here called methods) and a set of commands such as control flow statements. So, where
is the big difference?

The difference lies in the way all these tools are organised. An object is a bundle of related variables
and methods (functions) acting on these variables. A class, on the other hand, is like a mould from
which objects are created.

The best way to grasp these concepts is to think of a concrete example. Imagine that, for some reason,
we have to code a model of an airplane. We all have a general idea of what an airplane is (it has a
fuselage, wings, one or more engines, landing gears...) and of what it does (it can take off, land, climb
and descend...). Also, we are probably not thinking of a particular aircraft, but of our idea of a plane.
This idea is what in OOP terms is called a class. A class is a general description of an object, of what
it is and what it does. What our Airplane object is, or its status, is described by instance variables
(just so you know, there is a distinction between instance and class or static variables; more on this
later). An instance or class variable could be of a primitive type (e.g. a float called wingspan) or a
full-fledged object (we could think of creating an Engine object). What an object does is described
by functions called methods.

As we said, a class is not the real thing, it is just a mould. When we create an object from a class it
is said that we instantiate, or create an instance of the class. In other words, besides the Airplane
class, which represents no specific plane, we now have the myAirplane object, which is a real plane
we can climb on and fly.

Finally, there can be properties that are specific of each instance of a class, i.e. of each particular object;
these are aptly called instance variables, as we already know. But there could be variables having the
same value for all the objects of a given class, which would then be better defined inside the class itself
and then shared by all its instances. These are called class or static variables. The same distinction also
applies to methods, but let us stop here for now. What we say below referring to instance variables
can also be applied to static ones, unless stated otherwise.

Scripting and Jython basics

16

1.13.1.1. A Note about Terminology

You might be confused about the exact meaning of the words method, function and subroutine. All the
three words denote a subprogram, i.e. a separate block of code that may be invoked from elsewhere
in the program. This block of code may take input values and return an output. The term method is
typically used in OOP to indicate a subprogram inside a class (or an object, which is an instance of
a class), while function or (less frequently) subroutine denote a subprogram in procedural code. Thus
we will usually speak of a method in a Java class, but a function in a Jython script.

Just when you think you got it, you may encounter the notion of function object. Why would a function
be mentioned in connection with an object? According to what we just said, we should call it a method,
right?

Not really. Function objects, also known as functors or functionoids, are objects that
can be invoked or called as if they were functions. For example, if you write y =
SORT(x) in HIPE to sort a vector, you are using an object, namely an instance of the
herschel.ia.numeric.toolbox.basic.Sort class. If you do not believe what you are
reading, try issuing this command in HIPE:

print SORT

You will get something like

herschel.ia.numeric.toolbox.basic.Sort@b65e0

The hex number after the '@' will likely be different. What you got is the output of the toString
method, whose aim is to give a string representation of an object. The default output contains the class
name of the object.

1.13.2. Interface, Implementation and Encapsulation
You already know that actions performed by objects are coded in functions called methods. Our
Airplane class will have methods like takeOff, land and so on. Some or all of these methods
will be public, i.e. visible (and callable) from other pieces of code. This is what is called the interface
of a class: a set of methods to operate on the object, make it do stuff and enquire about its internal state.

Going on with our airplane example, the interface is made of all the dials, displays, buttons and levers
in the cockpit. We can operate the plane and read the value of all the relevant variables (speed, fuel,
altitude...). The nice thing is that we do not have to know in detail how the controls work in order to
use them. It may be the latest fly-by-wire technology, or the old mechanical one, but in both cases
we know that pulling on the yoke the plane will climb. In OOP terms, the user just needs to know the
interface of an object, not its implementation, i.e. the gears and cogwheels behind its shiny surface.
The implementation is said to be hidden, with the advantage that it can be modified, tweaked and
patched as much as the developer wishes. As long as the interface remains the same, the user will
not notice anything.

It is good practice to prevent users from directly accessing instance variables. These are part of the
implementation, and could have to be changed (e.g. from int to float) possibly breaking external
code accessing our object. A much better way is to provide methods to get and set the value of a
variable (these methods are usually know as getters and setters). It may seem overkill, but it helps
keeping the code more maintainable. It is said that our instance variables are neatly encapsulated inside
our class. To say it with a metaphor, we want the pilot of our plane to read the fuel level from a dial
(the getFuelLevel method) rather than tampering with the fuel tank to get a look inside (trying to
directly access the fuelLevel instance variable).

1.13.2.1. Interfaces, the Java Way

Interface is a generic programming concept, but it is also a specific Java construct. Without getting
into too much detail, a Java interface is a collection of methods and constants. If a class implements

Scripting and Jython basics

17

an interface, you can be sure that all the methods and constants listed by the interface are right there
in the class and in all of its instances, ready to be used.

1.13.3. Inheritance
This is a slightly more advanced concept, which can be safely skipped without trouble. However it
is not very complicated. When you think of all the different kind of airplanes existing today, from
tiny ultralights to huge jets, you may wonder how a single Airplane class could represent them all.
Actually, it cannot: that is why we can define subclasses of Airplane. These subclasses receive, or
inherit, the variables and methods of their parent class, and we can override them, or add new ones,
to suit our needs. We can create the Boeing787 and Airbus380 subclasses of Airplane, with
specialised methods and different values of instance variables (like numberOfEngines). Note that
there are ways to prevent subclasses from inheriting certain variables or methods, but this goes beyond
the scope of this manual.

One more example: suppose we have a class Seat to describe airplane seats. We can subclass
it into FirstClassSeat and EconomySeat. Each of them will have (very) different
values of the seatPitch instance variable. Also, we could add a turnIntoBed method to
FirstClassSeat, which will definitely be absent from EconomySeat.

By creating such hierarchy of classes we can reuse general pieces of code many times, to tackle several
specialised tasks.

1.13.4. Packages and Namespaces
Common problems in programming are name clashes and, as a consequence, running out of
meaningful (or suitably short) names for variables, methods and the like. This is even more serious
when we use several different pieces of code, each developed by several people. Think about the DP
system, for instance: we are putting together Java, Jython and a lot of Herschel-specific code. How
can be sure that nobody thought of the same name for completely unrelated entities? How can we
avoid such confusion?

To answer this question, take a look at the HCSS Javadoc. You can access it by clicking on HCSS
developer's Reference Manual (API) in the table of contents of the HIPE Help System. Then click the
FRAMES link near the top of the page. This will open the traditional, three-frame Javadoc display.

Look at the upper left corner of the page. There is a list of names such as herschel.access,
herschel.access.db and so on. Click on any of these item. The box below will change to show a list
of the classes and interfaces contained in that package. Now go back to the list of packages and
scroll it from top to bottom. As you can notice, everything starts with "herschel". Then there are
subpackages such as herschel.ia and herschel.ccm, and finer subdivisions like herschel.ia.dataset and
herschel.ia.document. You get the picture: packages are used to organise classes, interfaces and other
programming constructs into a meaningful hierarchical structure. To use the functionality of a package
in a Jython script, you can import it with a command such as import herschel.ia.numeric.

That makes a lot of sense, but how can it prevent name clashes? In a way, it does not: it just makes
them harmless. The point is that every package is a separate namespace, i.e. a separate domain where
we can choose names as we please (well, almost), without worrying about names in other packages.
And what happens if we import two packages containing a class with the same name? For example,
herschel.ia.numeric.toolbox.basic and herschel.ia.dataset both have classes named Product (doing
completely different things). In that case we can use the fully qualified class name, that is, write
herschel.ia.dataset.Product instead of just Product to get rid of any ambiguity.

1.13.5. Advantages of OOP
The most commonly cited advantages of OOP can be summarised as follows:

• Modularity. Organising code into a hierarchy of classes is a natural invitation to build modular
programs. Natural, but not automatic: nobody prevents you from designing few enormous classes

Scripting and Jython basics

18

doing several unrelated tasks at once. To reap the most benefits from modularity, classes should
have one well-defined purpose (in object oriented jargon they are said to have high cohesion) and
interact with other classes only through their interfaces, without having to know about their internal
state (low, or loose, coupling). To get a picture of the concept, think of a plumber working with
several specialised tools rather than fumbling with a Swiss Army knife.

• Reuse of previous work. This is probably the most cited benefit. A set of modular classes, following
the guidelines mentioned above, are relatively easy to plug into one another, which allows creation
of new programs. As before, benefits are the result of good planning and design.

• Increased quality. We do not mean here that programmers developing object oriented code are
intrinsically better than their procedural colleagues. Increased quality is largely a result of the
previous point, code reuse. The more existing, tested code can be employed to develop a new
application, the less will have to be built and debugged from scratch.

• Faster development. Again, this is not because of some mysterious power of OOP that leads
developers to type much faster. Like the previous point, it is mainly an advantage of code reuse:
if a large part of a new application consists of existing code, this will automatically translate into
faster development.

• Better mapping to the problem domain. What we mean by this statement is that with OOP it is
easier to model the software on the real-world problem that has to be solved, rather than bending the
problem to the constraints of the programming language. New objects can be created representing
all sorts of things, like customers, machinery, banks or, well, airplanes. When dealing with the Task
framework in Chapter 4 we will discover that OOP works well even for representing more abstract
concepts, like the different stages of a data reduction pipeline.

1.13.6. Concluding Remarks
For people with a long tradition of writing procedural code, switching to the object oriented paradigm
can be painful at first, leading to decreased productivity and a strong desire to give up and keep writing
code the old way. A little perseverance will pay in the end, keeping in mind that the time lost at first
will be more than regained at the end.

As we said at the beginning, it is also important to remember that OOP, despite its advantages, is not
the solution to all problems. It is indeed possible to write excellent and easily maintainable procedural
code and absolutely messy object-oriented code. No coding approach, however ingenious, will avoid
ill-designed algorithms, cryptic variable names and inextricable spaghetti-like loops. Most important
of all, no piece of code, whether object-oriented or not, will spontaneously document itself at night.

Now it is time to put theory into practice. The following section deals with the Basket class, an
example class written in Jython.

1.14. Defining a Class in DP
The following is an example that can be placed in the Editor pane of HIPE. Remember to keep proper/
accurate indentation. Note that program command lines can be extended to the following line by
the use of a backslash, "\", at the end of a line. Although not needed for the example class given
here it appears in several example scripts later on this manual

class Basket:
 # always remember the self argument
 def __init__(self, contents=None):

 self.contents = contents or [] #
 def add(self, element):

 self.contents.append(element) #
 def print_me(self):
 result = -""
 for element in self.contents:

 result = result + -" -" + `element` #

Scripting and Jython basics

19

 print -"Basket contains: -"+result

this bit does a logical or - if a parameter is passed to it, it becomes the contents, otherwise we
get an empty basket!
this adds the element to the contents (self.contents)
this prints the contents of the Basket. Note the use of upper left keyboard single inverted commas
around element.

We have created a class called Basket and it has two associated methods add() and print_me()
(following def in the above example).

Try placing the above within the Editor pane of HIPE. Here we create an object to work on, called
self - which is customary. This is initiated by the def __init__ command (by the way, that is
two underscores on either side of init).

Leave a blank line at the end of the script when placing it within the Editor pane of HIPE. Now hit
the double arrow icon to load this into your DP session.

Once created, we can run the class by typing Basket() in HIPE via the Console window.

Now try the following in the command line window.

a = Basket() #

a.add("saw") #

a.add("hammer") #

a.print_me() #

this line sets up an empty basket which we have called a
this line adds the item saw to the basket. It runs the add() method on the object a.
this line adds the item hammer to the basket.
this line prints the contents of the basket we called a, which should be 'saw' and 'hammer'. This
runs the print_me() method on the object a.

We could equally have started our basket with one item

 a = Basket(["saw"])

Note

If we had written a = Basket("saw") (without the square brackets) the
print_me() method would have returned this: Basket contains: 's' 'a'
'w'.

Basically we have object.method(arg1, arg2)

In the above case a is the object and we have the methods add() and print_me().

__init__ is a special method that is said to be a constructor setting things up in the first place. The
constructor (initial call to the routine) creates an instance of the object (in the above case it creates
a basket we can put things in).

1.15. Writing Scripts - Programming in DP
Scripts take individual DP statements and combine them to make more complex routines. You can
edit a script directly in the Editor window of HIPE. A series of DP commands/instructions can then
be input and then run in the DP environment.

Following on from our Basket example. If the class Basket has already been created you can create a
script that uses it. For example, you can place the following in the HIPE Editor window.

a = Basket()

Scripting and Jython basics

20

a.add("saw")
a.add("hammer")
a.add("chisel")
b = Basket()
b.add("bread")
b.add("cheese")
b.add("milk")
a.print_me()
b.print_me()

Now if we hit the "Run all" button then we create two baskets the contents of which will be printed
to the command window (bottom left).

This script can be saved using the "File" pulldown menu or save icon (default is ".py" extension).

1.16. Some Useful Extra Items on Scripts
• Some arguments can be optional and can be given a default value. E.g.,

def spam(age=32):
 tammy_age = age -- 5
 print -"Tammy is -",tammy_age
 print -"Tammy's brother is -",age

Here, spam can be called with zero or one parameter. If no parameters are given it will be called with
the default parameter of age=32. If a parameter is given with the call then that will be assigned
to age instead.

Our little script can now be run using, for example,

spam()
spam(age=34)

• Backquotes (`) convert an object to its string representation (so the number 1 can be converted to
string "1").

age = 32
message = -"Tammy is -"+`age`
print message

Here we add (via the plus sign) the string value of age to our message.

• The + sign can be used to append string lists.

• One change to make printing easier. We can change to the special method __str__ so that our
last function starts with the line

def __str__(self):

Instead of

def print_me(self):

We should also change

print -"Basket contains: -" + result

to

result = -"Basket contains: -" + result
return result

Now we can use

Scripting and Jython basics

21

print a

to show our basket contents rather than

a.print_me()

1.17. Interactivity in Jython Scripts
Sometimes all we need is a script that is launched, performs all its calculations without asking anybody,
and then outputs the result and exits. Other times we would like the user to interact, give input while
the script is running, take decisions that influence what the script will do. This section takes a look
at the tools Jython offers to do just that.

1.17.1. Basic Interactivity
The most common case is for the script to ask the user to input a value. We can use the raw_input
function, as the tiny example that follows demonstrates.

myAnswer = -""
myAnswer = raw_input("Please write something, anything\n")
print -"You wrote -" + myAnswer + -"\nWell done."

Here is an interesting fact. When we run this script in HIPE, a small window pops up (see Figure 1.1)
with the text we passed to raw_input, a box where we can input text and two buttons, OK and
Cancel. Save this script and call it tinyScript.py, then execute it from the command line, outside
HIPE, issuing python tinyScript.py or jython tinyScript.py, or try double-clicking on the file icon.
You will see no fancy windows this time, everything will happen inside a text console. In other words,
the window we got is a feature courtesy of HIPE, not a Jython feature.

Figure 1.1. The window that appears calling the raw_input function from within HIPE.

Warning

Remember that raw_input takes everything the user inputs and turns it into a string,
including numbers. So be careful when comparing this input to other numbers: you might
need to cast your variable to a numerical type.

A fundamental flaw of our little example is that it does not check the input in any way. We could
even get away with writing absolutely nothing in the text box, and HIPE would give the seemingly
sarcastic reply

You wrote
Well done.

Of course if we had initialised myAnswer to anything else than an empty string, we would get
that value in the output. Worse still, if we press the Cancel button, regardless of whether we wrote
something or not, the myAnswer variable will be set to None and the following line will give an error.

One way to have the user input something sensible is to embed the request into a while loop, as the
following example demonstrates.

Scripting and Jython basics

22

myAnswer = -""
while myAnswer == -"":
 myAnswer = raw_input("Write something, anything\n")
if myAnswer == None:
 myAnswer = -""
print -"You wrote -" + myAnswer + -"\nWell done."

This way the window will not go away until we write something and press OK, and if we try to bypass
the check by pressing Cancel the following if clause will at least prevent an error on the last line.

More complicated checks can be put in place, for example to make sure that a numerical value stays
within the allowed range, and more sophisticated loops may be needed, but the principle is the same.

The above example can also be useful when we want to stop the execution of a script, for whatever
reason, and wait before resuming it until the user lets us know that he is in front of the computer
and is paying attention. In this case the input does not matter at all, since we just want the user to
acknowledge a request by pressing a button.

Well, it works but it is far from optimal. Why having a box for entering text if the text itself does not
matter? Wouldn't it be much better to have a window with Press OK to continue written on it, the OK
button, and nothing else? This is the subject of the next section.

1.17.2. A Little Bit of Swing
To put it simply, Swing is the name given to that part of Java that deals with creating graphical user
interfaces (or GUIs). Yes, you read correctly: Java, not Jython. Please do not let this scare you. We
have used Java bits before, almost without realising it (after all, it is what makes Jython so powerful)
and this case will not be different. As a matter of fact, using Swing within Jython is easier than doing
so within Java.

This section will teach you enough about Swing to get you started, but if you want to become a GUI
guru you may want to look elsewhere. The first chapter of the Jython Essentials book has something
more to say about Swing. You can find it here:

http://www.oreilly.com/catalog/jythoness/chapter/ch01.html

1.17.2.1. showMessageDialog

The first thing we will do is to invoke a Swing method to display a message in a window, together
with an OK button:

from javax.swing import *
print -"Let's stop for a while"
JOptionPane.showMessageDialog(None, -"Press OK to continue")
print -"Well done."

The first line imports the swing package (note that it is javax rather than java). Then we have the
line creating the window, embedded between two lines printing text messages to demonstrate that the
script will not advance until we press the OK button.

Figure 1.2. The window that appears calling the Swing showMessageDialog method.

http://www.oreilly.com/catalog/jythoness/chapter/ch01.html

Scripting and Jython basics

23

You have probably noticed that the showMessageDialog method takes two parameters, and we
have set the first one to None. It is used to indicate the "parent" element of the dialogue box we are
creating. In this case (and in everything that follows) we are just creating a single window and nothing
else, so we will not worry about this parameter anymore.

Actually the showMessageDialog can take more than two parameters. Notice that the text in the
title bar of our window was just "Message". In order to customise it we have to add another parameter,
like this:

JOptionPane.showMessageDialog(None, -"Press OK to continue", -"Title bar text")

Try this and you will get... an error. This is because this third argument must go with a fourth one,
telling what kind of window we are creating. Let us try again:

JOptionPane.showMessageDialog(None, -"Press OK to continue", -"Title bar text", \
JOptionPane.ERROR_MESSAGE)

Figure 1.3. Customising the icon and the window title.

Now it works, and it even allows us to change the icon to a nice "error" one. There
are a number of possibilities for this fourth parameter, all of which are self-explanatory:
ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE, QUESTION_MESSAGE
and PLAIN_MESSAGE. Feel free to try them at your leisure.

If you are sharp-eyed you might have noticed that the previous error message said "expected 2 or
4-5 args; got 3". This mysterious fifth argument is used to add a custom icon to the window, in case
you are not satisfied with the predefined ones. Since this is pure eye candy and adds nothing to the
functionality of the window, we will not cover it here.

1.17.2.2. showInputDialog

Now we would like to take it a step further and create a window for entering text, just like we did with
the raw_input function. We just have to use a different method, like this:

myAnswer = JOptionPane.showInputDialog(None, -"Please write something, anything")

Figure 1.4. The window that appears calling the Swing \showInputDialog method.

You can put this line in the scripts we used to describe the raw_input function and you will obtain
the same behaviour, quirks included (even the two windows look exactly the same). The big difference
is that, even if you are launching the script from a command line interface outside HIPE, a window
will still pop up.

Scripting and Jython basics

24

Granted, a wealth of additional options is available for this method as well. The ones we saw before
are still valid:

myAnswer = JOptionPane.showInputDialog(None, -"Please write something, anything", \
"Big question", JOptionPane.QUESTION_MESSAGE)

But there is more. We can put a default string of text in the box like this:

myAnswer = JOptionPane.showInputDialog(None, -"Please write something, anything", \
"Default text")

If we want the user to choose from a predefined set of options, we can use the showInputDialog
with a whopping seven parameters, as the following script demonstrates:

from javax.swing import *
myAnswer = -""
possibleAnswers = ["HIFI", -"PACS", -"SPIRE", -"No clue", -"All three"]
while myAnswer == -"":
 myAnswer = JOptionPane.showInputDialog(None, -"Favourite Herschel instrument?", \
 -"Test", JOptionPane.QUESTION_MESSAGE, None, possibleAnswers, possibleAnswers[4])
if myAnswer == None:
 myAnswer = -""
print -"Your answer is: -" + myAnswer

Figure 1.5. A more complex window with a combo box.

Let us go through the parameters one by one:

1. None: the "parent" element.

2. "Favourite Herschel instrument?": the window text.

3. "Test": the window title text.

4. JOptionPane.QUESTION_MESSAGE: the type of window.

5. None: the custom icon. We choose to provide no one and stick with the default one.

6. possibleAnswers: the array of possible answers.

7. possibleAnswers[4]: the default answer.

1.17.2.3. showConfirmDialog

Next we take a look at the showConfirmDialog method, which can be used to display a window
asking the user to confirm or block a certain action. One example will clarify what we mean:

from javax.swing import *
myAnswer = JOptionPane.showConfirmDialog(None, -"Yes or no?")
if myAnswer == 0: # Now myAnswer is an integer variable
 print -"You agree"
elif myAnswer == 1:
 print -"You disagree"
else:

Scripting and Jython basics

25

 print -"You have no opinion on this"

Figure 1.6. Using the Swing showConfirmDialog method.

Note that we can use predefined constants to make the code easier to understand, if a little more
verbose, as the following, slightly expanded example shows:

from javax.swing import *
myAnswer = JOptionPane.showConfirmDialog(None, -"Yes or no?")
if myAnswer == JOptionPane.YES_OPTION:
 print -"You agree"
elif myAnswer == JOptionPane.NO_OPTION:
 print -"You disagree"
elif myAnswer == JOptionPane.CANCEL_OPTION:
 print -"You have no opinion on this"
elif myAnswer == JOptionPane.CLOSED_OPTION:
 print -"You closed the window. How rude!"

As always we are free to make things more complicated than that. We can add another two parameters
to provide a title for the window and the type of buttons we want:

myAnswer = JOptionPane.showConfirmDialog(None, -"Yes or no?", -"Question", \
 JOptionPane.YES_NO_OPTION)

Here we decided to drop the Cancel button. Other possible options are YES_NO_CANCEL_OPTION,
OK_CANCEL_OPTION, both self-explanatory, and DEFAULT_OPTION, which will just display an
OK button.

1.18. Useful Java bits
The Jython language is an implementation of Python written in Java, which means that it is as good-
natured yet powerful as Python, but with the added benefit of thousands of packages and classes
developed for Java. We will be using some of these classes in the next chapters, and here is a brief
description of what they do.

• The java.awt package. As you already know a package is a collection of related classes, like a
binder on your desk keeping related documents together. The java.awt package contains all of
the classes for painting graphics and images. It is particularly useful for scripts involving plotting
and viewing images.

• The java.awt.Color class. With this class you can specify a colour for an object. There
are thirteen predefined colours available: BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN,
LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE and YELLOW. If you feel you need a
fancier shade you can provide the red, green and blue values individually, as three ints between
0 and 255 or floats between 0.0 and 1.0, like this: java.awt.Color(0.3, 0.2, 0.5).
You can also add the alpha (transparency) value as a fourth parameter: 0.0 means completely
transparent and 1.0 completely opaque.

• The java.awt.Font class. This class allows you to select fonts for annotations on your
graphical objects, together with their style and size. The syntax of the constructor (i.e. the special
method called to instantiate an object from a class) is like this: Font("SansSerif", 0,
64), where we have the font name, its style code (0 for plain, 1 for bold, 2 for italic) and its
size in points.

Scripting and Jython basics

26

• The java.awt.Window class. This class deals with the drawable area of a window on
your desktop (not with borders or menu bars). One useful method, especially for plotting, is
setLocation, inherited from java.awt.Component. It accepts two int parameters, the
x and y position of the top left corner of the object you want to move.

For more information on these and other classes of the standard Java API you should browse the
official Javadoc. If you are looking for a less traumatic introduction to the Java language, the Java
Tutorial is an excellent resource.

1.19. Jython and DP Quirks
Every programming language or software system has its quirks. Jython and DP are no exception, and
this section deals with some of the features you might find confusing.

1.19.1. Two functions for one goal
There are some mathematical function in DP existing in two forms, one in the usual
FirstLetterCapitalised form (the so-called CamelCase convention), the other in UPPERCASE. The
first form is the recommended way to go, since it is consistent with the rest of the system; the alternative
syntax (technically known as Jython wrapper) is being kept for backward compatibility, but is not
recommended for use in new code and is no longer described in this manual. Examples of Jython
wrappers are MATMUL and SOLVE instead of the classes MatrixMultiply and MatrixSolve,
or RESHAPE instead of Reshape to change the shape of arrays. You might still bump into them
when browsing legacy code.

Unfortunately Jython wrappers are not the only names in uppercase letters, so this is not a good way
to identify them, since also e.g. static instances (see Section 1.19.3) such as SIN and COS use the
same convention.

1.19.2. Long Names versus Short Names
The general rule used in developing the classes used in the DP system is to use long descriptive
names, e.g., TableDataset rather than TDset. An exception to the rule is, e.g., IOException rather than
InputOutputException

The general rule is that a class name must be self descriptive (easier to remember) which
sometimes conflicts with the requirement "I should do every thing by typing three-six letters".
The latter was a restriction in F77, and language developers fortunately diverted from that (as
it introduced names like CCDF12, CCEFLT, EMPXFF), which are indeed less typing but make
the code less (if not completely un-) readable. Exceptions are usually dealing with "well-known"
abbreviations. Acronyms such as "IBM Type Writer" is taken to become "IbmTypeWriter" rather than
"IndustrialBusinessMachinesTypeWriter."

Any Jython user can create aliases by do things like:

TDS=TableDataset
t1=TDS(description="Hello world, this is still a tabledataset!")
print TDS
herschel.ia.dataset.TableDataset
print t1
{description="Hello world, this is still a tabledataset!", meta=[], columns=[]}
print t1.__class__
herschel.ia.dataset.TableDataset

Here, in effect, we have created a shortened version of the command we can use to set up a
TableDataset called "TDS". We then create a TableDataset, called "t1", which initially contains only
a description in the second line. This is equivalent to writing

t1=TableDataset(description="Hello world, this is still a tabledataset!")

http://java.sun.com/javase/6/docs/api/
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/index.html

Scripting and Jython basics

27

The last two lines indicate the contents of "t1" and the class that created it.

1.19.3. Naming conventions
A potentially confusing aspect to the naming of DP classes is the mix of upper- and lower-case letters.
A comprehensive description of the naming conventions used in the HCSS is given in Appendix D
and here we just shortly describe the most important aspects.The upper-case/lower-case scheme used
in predefined DP classes has the following conventions.

• Classes

Class definitions have names that consist of words of which each first letter is capitalised:

MyOwnClass
TableDataset
HifiProduct

• Class instances -- objects

Objects (variables) of a particular class have names that should start with the first letter in lower
case. In general, this translates to

myOwnClass=MyOwnClass(....)
table=TableDataset
a=2

• Class instances as constants

Certain class instances (or simple variables) are used as constants. The convention is to use names
with all their letters capitalised and words separated by an underscore '_'. These are sometimes
referred to as static instances. An example is SIN: it is the only (allowed) instance of class Sin, as
it does not make sense to have multiple instances of these. Examples are:

VARIANCE
IS_FINITE
ALL_PRESENT

1.19.4. Miscellaneous quirks
• Working directories. Restrictions are placed on dealing with working directories due to the use of

Java. This is discussed in Section B.6.

• Loops, indentation and blank line usage. Indentation in loops is very strict within HIPE. Blank
lines can have particular significance, particularly with respect to setting up loops. These quirks are
described in Section B.8.

• Logical operators. The presence of Jython original features together with DP specific ones can
result in counter-intuitive behaviour and unexpected results Section 3.7 in Chapter 3 deals with
these quirks.

• Incompatible numeric types. Jython has its own primitive numeric types, but Java numeric types
can be used as well. Mixing Java and Jython types (and even using Java types on their own) can
lead to strange errors that are explained in Section 1.5.1.1.

• Script length. Each Jython script is compiled by the Java virtual machine into a single non-native,
non-abstract method and such Java methods cannot exceed certain limit, usually 65536 bytes. If
your Jython script is very long (more than a few thousands lines) then it is advisable to split it into
separate scripts.

28

Chapter 2. Arrays, datasets and
products
2.1. Introduction

This chapter aims to familiarize you with the DP Array data objects, Datasets and Algorithms concepts.
This is not an exhaustive reference to all the functionality provided, the full set of available array object
and dataset capabilities are discussed in the herschel.ia.numeric and herschel.ia.dataset packages
Javadoc.

There are three types of basic datasets:

• array datasets (datasets containing single ArrayData objects, holding numbers, strings, etc. in
1D, 2D, 3D, 4D or 5D)

• table datasets (x rows by y columns of numeric or string arrays). Table datasets can have columns of
various data types mixed in the same dataset and can also contain unit and descriptive information
for individual columns.

• composite datasets (combines multiple connected arrays/tables in a single dataset).

One of the major advantages of DP numeric array objects (as opposed to Jython lists) is the ability to
do array arithmetic in single line commands rather than having to loop through arrays.

In this chapter, we discuss how to formulate and use each array object and dataset type.

2.2. Getting started
All classes and methods associated with handling datasets and numeric functions are automatically
loaded when the DP session is started in this manner.

The DP numeric package currently contains many functions and is discussed in more detail in
Chapter 3. Here we include the use of portions of it to help illustrate how datasets may be handled.

2.3. Types of Array Data Objects
DP numeric array data objects can have up to 5 dimensions and have the types shown in the following
table.

Table 2.1. Numeric types available in DP (N = 1...5)

Name Type Dimensions

 1 2 3+

BoolNd boolean yes yes yes

ByteNd byte yes yes yes

ShortNd short yes yes yes

IntNd integer yes yes yes

LongNd long yes yes yes

FloatNd float yes yes yes

DoubleNd double yes yes yes

ComplexNd complex yes yes yes

Arrays, datasets and products

29

Name Type Dimensions

String1d string yes NO NO

The String1d array type is not strictly numeric.

2.3.1. DP Numeric Array Access and Slicing
The numeric package introduces the following square brackets notation:

[i_0,...,i_n-1]

where each element is separated by a comma, and the number of elements must be equal to the rank
of the array. Arrays are zero-based which means the first element of an array has index 0 (zero) and
the index of the last element of an array is array.length()-1.

In addition the package supports the colon (:) notation to designate a slice. A slice is a range of indices
defined as i:j, where i is the starting index and inclusive, and it is zero if not specified. The ending
index j is exclusive and it is equal to array.length() if not specified and array.length()-
j if negative.

The following example illustrates the access to elements in a multi-dimensional array and the use of
slices. More examples can be found in the section on Multi-Dimensional Arrays.

define something that is like a rectangular 2x3 array:
1 2 3
4 5 6
x=Int2d([[1,2,3],[4,5,6]])# Int1d can swallow the jython sequence.
print x # [[1,2,3],[4,5,6]]
print x[1] # 2 (second element of the first row)
print x[1,:] # access a row i.e. [4,5,6]
print x[1,1] # access an individual element i.e. 5
print x[:,:] # [[1,2,3],[4,5,6]]
print x[:,1] # access a column i.e. [2,5]

2.4. Creating a Simple 1D DP Numeric Array
In order to create an array data object we only need to do something like the following:

a = Int1d()

This provides us with an empty integer array. We can now add elements to this by

a.append(2)

Or

a.append(Int1d([1,2,3,4,5]))

to append a whole 1D integer array.

Alternately, we could have created the array in one go, like this:

a = Int1d([1,2,3,4,5])

The following show various ways in which numeric 1D arrays can be created in the DP environment.

y = Double1d([1.0,2.0,3.0,4.0]) # Create from a Jython array
y = Double1d(4) # [0.0,0.0,0.0,0.0]
y = Double1d(4, 42.0) # [42.0,42.0,42.0,42.0]

Arrays, datasets and products

30

y = Double1d.range(4) # [0.0,1.0,2.0,3.0]

2.5. Creating and Handling Complex Array
Data Objects

The numeric library has a Complex class and a ComplexNd class for N-dimensional arrays of
complex numbers (N = 1, 2, 3, 4 or 5).

z = Complex1d([1,2,3,4],[4,3,2,1]) # Set up complex array
print z # [(1.0+4.0j),(2.0+3.0j),(3.0+2.0j),(4.0+1.0j)]
print z.getReal() # Print real part
print z.getImag() # Print imaginary part
print z.conjugate() # [(1.0-4.0j),(2.0-3.0j),(3.0-2.0j),(4.0-1.0j)]

Complex numbers in the numeric package are constructed using the Complex constructor (with an
upper-case 'C'):

z1 = 2 + 3j # Jython complex (2+3j)
z2 = Complex(2,3) # Numeric Complex (2.0+3.0j)

In other respects, Complex arrays are used in much the same way as Double arrays. Their main
use, at present, is for discrete Fourier transforms.

2.6. Creating and Accessing Multi-
Dimensional Array Data Objects

Creating and manipulating multi-dimensional arrays occurs in a similar way to the 1D case. The DP
numeric library supports arrays of up to 5 dimensions. For example, to create a Double2d array:

x = Double2d([[2,4,6],[1,3,5]])

Multi-dimensional arrays are conceptually arrays of lower-dimensional arrays. For a two-dimensional
array, the first subscript selects a row and the second subscript selects an element within that row (the
column).

Note

This is the opposite order to some other computer languages, but it is the same behaviour
as in the Java programming language.

For example:

print x[1,:] # Get row 1 i.e. [1.0,3.0,5.0]
print x[1,2] # 5.0, the element in row 1, column 2

Note: indexing multi-dimensional arrays is done differently in DP numeric arrays as compared to
Jython arrays. The following code examples show the syntax for Jython and DP numeric arrays. The
reason for this is to allow slicing on multi-dimensional arrays in DP which is technically not possible
using the Jython syntax.

Jython array:
x = [[1,2,3,4],[5,6,7,8]]
print x[1][2] # 7
print x[1][1:3] # 6, 7

DP numeric array:
y = Int2d([[1,2,3,4],[5,6,7,8]])
print y[1,2] # 7

Arrays, datasets and products

31

print y[1,1:3] # 6, 7

Individual elements or slices can be set as follows:

x[1,2] = 22 # Set an element in place
x[0,1:3] = 42
print x # [
 # [2.0,42.0,42.0],
 # [1.0,3.0,22.0]
 # -]

It is possible to set a row to a copy of a 1d array of the same length:

x[0,:] = [5,6,7,8] # Set a row to (a copy of) a Jython array
y[1,:] = Int1d([9,7,6,5]) # Set a row to a Double1d array

2.6.1. A note on array ordering
Look again at the first example of Section 2.6:

x = Double2d([[2,4,6],[1,3,5]])

This line of code creates an array of two rows and three columns. The element corresponding to the
i-th row and j-th column can be accessed like this:

x[i, j]

The values are stored sequentially in memory as follows:

[2 4 6 1 3 5]

This means that, if we go through the array elements as they are stored in memory, their indices would
vary as follows:

x[0,0] x[0,1] x[0,2] x[1,0] x[1,1] x[1,2]

That is, index j varies more rapidly than index i. We can generalise to more than two dimensions
by saying that the rightmost index varies most rapidly. This is called row-major ordering, and is the
convention followed by languages such as Java and C, but not Fortran.

This has an implication on performance. When looping through a multidimensional array, it is more
efficient to read its elements in the order they are stored in memory.

Confusion may also arise when dealing with images, which are stored as two-dimensional arrays. If we
visualize the array with horizontal rows and vertical columns, then the number of rows and columns
represents the size of the vertical (y) and horizontal (x) side of the image, respectively. When accessing
a particular pixel (array element), you have to specify the y coordinate before the x coordinate:

myImage(y, x)

2.7. Adding Attributes to Create an Array
Dataset

Let's start by creating a simple dataset. Let's assume that we want to create a dataset containing one
component: a 1D array of double precision numbers (doubles in an array we will call 'x').

Type in the following steps (without the comments preceded by '#'):

x = Double1d.range(10) #

Arrays, datasets and products

32

s = ArrayDataset(data=x,description="range of double values") #

The range() function creates a 1D array of integers with the values 0, 1, 2...9. Putting
Double1d in the front converts the array values to doubles.
This actually creates the array dataset with data being the array x of values 0.0, 1.0, 2.0...9.0 and
some associated information, a description.

This creates an object x, corresponding to a 1D array of 10 doubles from 0 to 9, and writes that to a
dataset object, s, which also contains a description of the dataset. The range command produces ten
integer numbers from 0 to 9. This is placed in a 1D array of doubles by the first line.

Now let's look at the contents of the dataset s:

print s

If you want to be specific and print individual components of the dataset, you may do so using the
special description and data attributes:

print s.description # Just print the description that is attached to the dataset
print s.data # Print only the data contained in the dataset

And even individual elements of the data component:

print s.data[2] # View the value of the third element of the array
 # contained in the dataset

2.7.1. Dataset Attributes and Metadata
In the previous section, we have seen that the ArrayDataset s possesses at least 2 attributes:
description and data. They have in addition a third attribute not so far illustrated, meta. The
description and meta attributes are common across all dataset types.

The description attribute is used to store a human-readable text that helps the user to understand
the role of the dataset.

The meta attribute stores a map of keyword-value pairs of data that can be used to identify that data
in a database (for example) - the so-called meta-data. Examples of metadata for an observation include
the date of the current observation; the name of the source; the coordinates of the source, etc. These
are basically the DP equivalent of FITS keywords. The allowed data types for meta-data elements
are String, Double, Boolean, Long, and Date (e.g., StringParameter, DoubleParameter
etc.). See the JavaDoc for the MetaData class for more information on the allowed types.

The following code snippet shows how to add parameter information (in the form of strings or doubles)
to the meta attribute:

s.meta["observation"] = StringParameter("NGC 4151")
s.meta["principal investigator"] = StringParameter("Anthony Marston")
s.meta["ra"] = DoubleParameter(182.836)
s.meta["dec"] = DoubleParameter(39.405)

These are actually shortcuts to Java usage. For example, the first line could also have been written as

s.getMeta().set("observation", StringParameter("NGC4151"))

2.8. Creating and Viewing a TableDataset
What is often required is to store data in a tabular format with N columns. The TableDataset
provides such a means. A TableDataset is made up of a number of columns. Each column contains

Arrays, datasets and products

33

an ArrayDataset (data), a description and a quantity (unit -- require the Unit package import,
see below) value associated with the ArrayDataset. Each ArrayDataset can have up to 5
dimensions and can be of varying types. In the following example, a TableDataset is created with
3 columns each containing a 1D dataset, one being a sequence of numbers from 1 to 100, the second
being the sine value of each of the numbers in the first column, and the final column containing the
values in the first column multiplied by 100. The column names are x, sin and y respectively.

Note

For reasons of flexibility, memory consumption and performance, this class is not
checking whether all columns are of the same length: this is the responsibility of the user.

from herschel.share.unit import * # to allow the use of the Unit package

x = Double1d.range(100)

t = TableDataset(description="This is a table") #

t["x"] = Column(data=x, unit=Duration.SECONDS) #

t["sin"] = Column(data=SIN(x),description="sin(x)") #
t["y"] = Column(data=x*100,description="x*100")

This sets up the table dataset with an associated description
This creates our first column which has the data, x and its associated units, which in this case
is a time duration of SECONDS.
Here we have applied the SIN function from the numeric package, and we have also added a
description for the second column.

Tabledatasets can be viewed using the DatasetInspector GUI button. Values can also be obtained using
the following steps which show how the data can be listed:

print t # Print a TableDataset called t (see above)
print t.meta # Print the metadata (empty in this case)
print t["x"] # Print a column by name
print t[2] # Print a column by index
print t[2].data # Print the data inside the column
a = t[2].data # Assign data in column to a list variable, -"a".
print t[2].data[4] # Print element with index=4 in the last (third!) column
b = t[2].data[4] # Assign the data value to variable -"b".
print t[2].description # Prints column description only
print t["x"].unit # print the associated unit values for the column

Alternately, we can access columns via the getColumn method

print t.getColumn("y") # Print a column by name
print t.getColumn(2) # Print a column by index
print t.getColumn(2).data # Print the data inside the column
print t.getColumn(2).data[4] # Print element with index=4 in the third column
print t.getColumn(2).description # Prints column description only

We can also get row values

print t.getRow(1) # Gets a list of the values in the second row.

And here is how data can be modified:

print t["y"].data[0]
t["y"].data[0]=999.
print t["y"].data[0]

We may also get and set values at a position in a TableDataset.

t.getValueAt(0,1) # gets the value contained in row=0, column=1
t.setValueAt(30.5, 0, 1) # sets the value 30.5 at row=0, column=1

Arrays, datasets and products

34

2.8.1. Row-wise appending of TableDatasets
It is possible to append the data from one table dataset to data in another, provided that they have
the same number of columns and each column in either dataset is of the same type. The following
example adds t2 as a row to table t1.

t1 = TableDataset()
t1["x"] = Column(data=Int1d.range(5))
t1["y"] = Column(data=Double1d.range(5))
t2 = TableDataset()
t2["a"] = Column(data=Int1d.range(10))
t2["b"] = Column(data=Double1d.range(10))

The following will append the data in t2 to the data in t1
t1.rowCount will then report 15 rows:
t1.addRow(t2)

If we now use print t1["x"].data we can see that the "x" column has the values
[0,1,2,3,4,0,1,2,3,4,5,6,7,8,9].

2.8.2. Assigning Units
This section exaplins what units can be assigned and how they may be manipulated. As we have noted
above, we can assign units to the columns in our dataset. in order to use the Unit package we have
to import it:

from herschel.share.unit import *

Note that the Unit package are used in the whole HCSS and not only in the interactive analysis, that
is why it is part of the herschel.share library.

The units fall into several category types, as they are shown in alphabetical order in Table 2.2. To
assign a unit the type and value s required to be given. For example -- the variable "a" can be assigned
to be a unit of angle in degrees with

a = Angle.DEGREES # Type.VALUE

This can be associated with a column's unit in a table using

t["x"].unit = Angle.DEGREES

Table 2.2. All available basic units types

Type VALUES

Acceleration METERS_PER_SECOND_SQUARED

Angle RADIANS, DEGREES, MINUTES_ARC, SECONDS_ARC

AngularMomentum JOULE_SECOND

AngularSpeed RADIANS_PER_SECOND, DEGREES_PER_SECOND

Area SQUARE_METERS, SQUARE_KILOMETERS

Constant H_PLANCK, K_BOLTZMANN, ELECTRON_CHARGE,
SPEED_OF_LIGHT

Duration SECONDS, MINUTES, HOURS, DAYS

ElectricCapacitance FARADS, MILLIFARADS, MICROFARADS, NANOFARADS,
PICOFARADS

ElectricCharge COULOMBS

Arrays, datasets and products

35

Type VALUES

ElectricConductance SIEMENS

ElectricCurrent AMPERES, MILLIAMPERES

ElectricInductance HENRIES

ElectricPotential VOLTS, MILLIVOLTS

ElectricResistance OHMS

Energy JOULES, ERGS, ELECTRON_VOLTS

Entropy JOULES_PER_KELVIN

Flux density JOULES_PER_SQUARE_METER, JANSKYS, MILLIJANSKYS,
MICROJANSKYS

Force NEWTONS, DYNES

Frequency HERTZ, KILOHERTZ, MEGAHERTZ, GIGAHERTZ, TERAHERTZ

Length METERS, ANGSTROMS, KILOMETERS, CENTIMETERS,
MILLIMETERS, MICROMETERS

Mass GRAMS, KILOGRAMS

NEP (Noise Equivalent
Power)

WATTS_PER_SQRT_HERTZ

Power WATTS, KILOWATTS, MEGAWATTS

Pressure PASCALS, BARS, MILLIBARS

Scalar This class represents scalar units and provides some constants:ONE,
PERCENT,DECIBELS

SolidAngle STERADIANS, SQUARE_MINUTES_ARC,
SQUARE_SECONDS_ARC

Speed KILOMETERS_PER_SECOND, METERS_PER_SECOND

Temperature CELSIUS, KELVIN

ThermalConductivity WATTS_PER_METER_KELVIN

TimeInstant TAI, UTC

WaveNumber RECIPROCAL_METERS, RECIPROCAL_CENTIMETERS

2.8.2.1. Manipulating Units

We may manipulate units to obtain derived units. Examples are the following

N = Force.NEWTONS
m = Length.METERS
m2 = m**2 # Square meters
Pa = N -/ m2 # Pascals
J = N * m # Joules

2.8.2.2. Converting Units to Strings and Back Again

We can convert a unit variable to a string in several ways:

A = Length.ANGSTROMS
print A # angstrom [1.0E-10 m], no conversion
print A.name # angstrom. This is a string quantity.
print A.dialogName # Angstrom symbol. This is a string quantity.
um = Length.MICROMETERS
print um # micrometer [1.0E-6 m], no conversion, includes factor
 # with respect to SI unit
print um.name # micrometer, only ASCII characters. This is a string.
print um.dialogName # µm. This is a string quantity.

Arrays, datasets and products

36

We can also convert a string to a unit

print Unit.parse("km s-1")
or print (Unit.parse("km") -/ Unit.parse("s"))
print Unit.parse("km s-1") # Speed.KILOMETERS_PER_SECOND
print Unit.parse("arcsec") # Angle.SECONDS_ARC)
print Unit.parse("eV") # Energy.ELECTRON_VOLTS)
print Unit.parse("cm") # Length.CENTIMETERS)
print Unit.parse("mm") # Length.MILLIMETERS)
print Unit.parse("microm") # Length.MICROMETERS)

2.8.2.3. Derived Units

We can also provide derived units by application of .milli, .micro and .nano methods.

s = Duration.SECONDS
us = s.micro # micro seconds
ns = s.nano # nano seconds

2.8.2.4. Conversion to SI and Other Units

If the SI unit is needed rather than the unit used then SI unit and the factor between the two can be
provided.

print Angle.DEGREES.asSI # gives unit as Angle.RADIANS
print Energy.ERGS.asSI # gives unit as Energy.JOULES
print Speed.KILOMETERS_PER_HOUR.asSI # gives unit as Speed.METERS_PER_SECOND
print Unit.parse("g cm s-2").asSI # gives unit as Unit.parse("kg m s-2")
#
print Length.ANGSTROMS.toSI # 1.0E-10
print Duration.HOURS.toSI # 3600.0
print FluxDensity.MILLIJANSKYS.toSI # 1.0E-29
print Unit.parse("g cm s-2").toSI # 1.0E-5
or factor compared to other units
min = Duration.MINUTES
ms = Duration.MILLISECONDS
print min.to(ms) # 60000.0
mV = Unit.parse("mV") # millivolts
print mV.to(mV.asSI) # 0.001; same as mV.toSI

2.8.2.5. Physical Constants

Physical constants can also be provided to the system with their correct units, e.g.

h = Constant.H_PLANCK
print h.value # 6.62606896E-34
print h.unit # J s
print h # 6.62606896E-34 J s
k = Constant.K_BOLTZMANN
print k.value # 1.3806505E-23
print k.unit # J K-1
print k # 1.3806505E-23 J K-1

2.8.2.6. Unit Compatibility

We can compare units to see if they are of compatible types.

kg = Mass.KILOGRAMS
g = Mass.GRAMS
m = Length.METERS
print kg.isCompatible(g) # true
print kg.isCompatible(m) # false
print kg.isCompatible(Mass) # true
print kg.isCompatible(Area) # false

Arrays, datasets and products

37

print Unit.parse("g cm s-2").isCompatible(Force) # true
print Unit.parse("g cm s-2").isCompatible(Power) # false

2.8.2.7. Unit Equivalence

We can use the .isEquivalent method to determine if two unit types are the same.

kg = Mass.KILOGRAMS
s = Duration.SECONDS
m = Length.METERS
N = Force.NEWTONS
dyn = Force.DYNES
print N.isEquivalent(dyn) # false
print N.isEquivalent(kg * m -/ s**2) # true

2.9. Creating and Accessing a Composite
Dataset

The ArrayDataset and TableDataset types enable the user to encapsulate arrays and tables
of primitive data types easily. However, they do not allow arbitrary structures of data, or data within
data, to be constructed. Examples of complex datasets are grouped observations (making a map
with an offset reference position, for instance), which could have 1D and 2D array data together
with a table which might contain (for example) calibration data. Such complex structures can be
built using the CompositeDataset. Example 2.1 creates a CompositeDataset containing in
turn an ArrayDataset, a TableDataset, a few StringParameters, and another nested
CompositeDataset. It also illustrates how we can access the components of the composite dataset.

First we set up a one-dimensional array of doubles (0.0, 1.0 -... 9.0)
x = Double1d.range(10)
Then we create an array dataset with an added description
s = ArrayDataset(data=x,description="Range of doubles")
This sets up an empty table with a description
t = TableDataset(description="This is a table")
The array -'x' is then added to the table and given a
column heading -"x"
t["x"]=Column(x)
Each of the array elements of -'x' is multiplied by 4
and becomes the data in the table column labeled -"y".
The table column also has a description added to it.
t["y"]=Column(data=x*4,description="x*4")
c is an empty composite dataset.
c=CompositeDataset()
We add a description to c
c.description="This is a composite dataset. It contains three datasets!"
We add the author's name as a string parameter
c.meta["author"]=StringParameter("Jorgo Bakker")
We input a version number as a string parameter
c.meta["version"]=StringParameter("2.0")
We put the array dataset s into the composite dataset c
and give it the name mySimple so that we can refer to it
c["mySimple"] = s
We do the same for the table
c["myTable"] = t
This just shows you can add a composite dataset into another
composite dataset (nesting)
c["myNest"] = CompositeDataset("Empty nested composite dataset")

print c # View contents of the complex dataset.
tab = c["myTable"] # Gets our TableDataset back. Now called -"tab".
print tab # We see that it has two columns called -"x" and -"y"
print tab["x"] # Prints out what is in the -"x" column.
print tab["x"].data # To just print out the data values.

Example 2.1. Example of how to create a composite dataset

Arrays, datasets and products

38

2.10. Spectrum Datasets
Spectra are contained within datasets that also contain raw data counts together with metadata that
allows for the correct handling of combinations of spectra (e.g., spectral arithmetic) and display of
spectra. Basic spectral types are SpectralSegment, Spectrum1d and Spectrum2d.

2.10.1. Spectrum1d and SpectralSegments
A one-dimensional representation of a spectrum. Container has a TableDataset() that has columns for
flux, flag, weights and numbered segments (components of the 1d spectrum). It contains

• A flux column (Double1d). This can be obtained from a SpectralSegment using the getFlux()
method. For example; a = %spectrum1d_name%.getFlux().

• A wavelength/frequency column (Double1d). The wavelength column can be obtained using the
getWave() method.

• A weight column (Double1d). The weight column can be obtained using the getWeight() method.

• A segments column (Double1d). The segments column can be obtained using the getSegment()
method.

• A flag column (Int1d). The flags can be obtained using the getFlag() method.

A Spectrum1d can also have metadata (header information) added. The following illustrates how a
Spectrum1d dataset can be built from scratch.

flux = Double1d([12.2,12.5,13.0,11.8,11.9,12.6,14.2,15.8,12.2,15.2])
segs = Int1d([0,0,0,0,0,1,1,1,1,1]) # segment id for each point
wave = Double1d([1000.0,1000.2,1000.4,1000.6,1000.78,
 \ 1100.0,1100.2,1100.4,1100.6,1100.78])
flag = Int1d(10) + 1
weight = Int1d(10) + 1.0
a = Spectrum1d(flux,weight,flag,segs) #indicate the fluxes and segments.
a.set("wave", wave) # add the wavelengths column
a.setMeta("name","Arp220") # sets keyword name in metadata of Spectrum
other metadata can be added, as needed.
print a.getWave() # shows the -"wave" column
Using the Dataset viewer, the full information can be viewed

The spectrum can be made of several segments. A SpectralSegment is the smallest spectrum
component dealt with by the DP system. This can be a piece of a spectrum extracted from a larger
one-dimensional spectrum to be used for fitting purposes (for example). It can be extracted from a
Spectrum1d using the following.

b=a.getSpectralSegment(1) # get second spectral segment (numbering starts at 0)
print b.getWave() # provides the wavelengths associated with this segment

Many of the spectral tools (arithmetic, fitters) work with the basic unit of a spectral segment.

2.10.2. Spectrum2d
For multiple spectra taken in an observation, a 2D structure is required. The components of a
Spectrum2d dataset is similar to that of a Spectrum1d dataset, except for having a second dimension.
An additional component is the ability to contain subbands. A clear example of the usefulness of this
comes in the output from the HIFI spectrometers where several CCD or autocorrelator readouts lead
to several "chunks" (subbands) of spectra in one data frame. Having subbands is an option for the
Specrum2d. It contains

Arrays, datasets and products

39

• A flux column (Double2d). This can be obtained from a SpectralSegment using the getFlux()
method. For example; a = %spectrum1d_name%.getFlux().

• A wavelength/frequency column (Double2d). The wavelength column can be obtained using the
getWave() method.

• A weight column (Double2d). The weight column can be obtained using the getWeight() method.

• A flag column (Int2d). The flags can be obtained using the getFlag() method.

• (optional) a subbandstart column (Int1d). Indicates where in the arrays that a subband starts.

• (optional) a subbandlength column (Int1d). Indicates the length of array section that a subband takes
up.

The number of channels is automatically generated in the metadata when setting up a Spectrum2d. An
example of setting up a Spectrum2d from scratch is given below.

flux2 = Double2d([[12.2,12.5,13.6,12.8],[12.8,12.2,13.3,12.9],
\ [10.2,14.5,12.5,11.4],[12.2,12.5,13.6,12.8]])
flag2 = Int2d([[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1]])
weight2 = Double2d([[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1]])
a2 = Spectrum2d(flux2,weight2,flag2) # sets up 4 channels each with 4 pixels
wave2 = Double2d([[1000.0,1000.2,1000.4,1000.6],[1000.0,1000.2,1000.4,1000.6],
 \ [1000.0,1000.2,1000.4,1000.6],[1000.0,1000.2,1000.4,1000.6]])
a2.set("wave", wave2) # add the wavelengths
print a2.getWave() # to print out the wavelengths
print a2.getFlux() # to print out the fluxes.

We can also set up a Spectrum2d with associated subbands. This basically allows us to set up, in one
dataset, a container which holds many individual spectra which as many subbands each covering a
different wavelength range, if necessary (e.g., with the individual subbands of the HRS spectrometer
of HIFI). This forms the basis of how spectral observations, which typically are made up of many
frames, are stored in the Herschel DP environment.

Now deal with subbands.
Create the container for the spectra
a3 = Spectrum2d()
indicate the number of subbands it will have
a3.setSubbands(2)
a3.setSubbandStart(Int1d([0,2]))
a3.setSubbandLength(Int1d([2,2]))
flux3 = Double2d([[12.2,12.5,13.6,12.8],[12.8,12.2,13.3,12.9]])
flux4 = Double2d([[10.2,14.5,12.5,11.4],[12.2,12.5,13.6,12.8]])
a3.set("flux_1",flux3)
a3.set("flux_2",flux4)
print a3.getFlux(1)
wave3 = Double2d([[1000.0,1000.2,1000.4,1000.6],[1000.0,1000.2,1000.4,1000.6]])
a3.set("wave_1",wave3)
a3.set("wave_2",wave3)
#get wavelengths for second subband
note that there are two sets of measurements
print a3.getWave(2)
#get fluxes for first set of measurements
of subband number 1.
print a3.getFlux(1).get(0)
or second set
print a3.getFlux(1).get(1)
this way you can go through multiple
measurements using the same subband that are
stored in the same dataset.
We can do the same for wavelengths, e.g.,
print a3.getWave(1).get(0)
instrument pipelines producing spectra store the data in Spectrum2d
or a variant (see next section).

Arrays, datasets and products

40

2.10.3. Expanding Spectrum1d and Spectrum2d
Datasets

Extensions to the basic Spectrum1d and Spectrum2d datasets have been created that allow for more
convenient access to specific instrument data types. Typically, the full spectral information, including
metadata, is created from the original instrument dataframes and housekeeping information coming
from the spacecraft. However, it can be instructive to formulate things from their basic components.

2.10.3.1. HIFI Extensions

Examples of HIFI extensions to the Spectrum1d and Spectrum2d datasets are the
WbsSpectrumDataset and HrsSpectrumDataset available for the two types of spectrometer
data from HIFI. These can be created by obtaining HIFI dataframes and housekeeping telemetry source
packets (these are not generally available to most users).

creating a WBS spectrum dataset
from herschel.hifi.pipeline.product import *
w = WbsSpectrumDataset(array of WBS dataframes, array of HK telemetry)

Such a spectrum dataset automatically includes more metadata such as observation identification and
data creation date. It can also contain the information for the wavelength as a model -- typically
polynomial fit information.

Displaying the table of dataset, for each spectrum not only is flux and wavelength listed but other,
HIFI-specific, information such as chopper position and on-board buffer storing the data (see Fig.***).

Typical observations actually contain groupings of such datasets. For example, internal flux calibrator
dataframes, science dataframes and frequency calibrator data frames. These are typically grouped
together in a HIFI timeline product. So a typical HIFI observation with all four spectrometers used
would have four HIFI timeline products.

Creating a HIFI timeline product
from herschel.hifi.pipeline.product import *
htp = HifiTimelineProduct(array of WBS dataframes, array of HK telemetry)

For the most part users will not need to create the datasets/products but will need to access the data
in them. We can use the getFlux() and getWave() methods as before. For HIFI spectra, the
getWave() method provides the IF frequency values. The lower or upper sideband frequencies can
also be obtained using the getLsbFrequency() or getUsbFrequency() methods. So we can
crudely plot -- with labels to be attached later -- the spectrum (upper or lower sideband) using the
following.

Continuing from above.
Get the first dataset in the product
wbs = htp.get(1)
Plot of flux against IF frequency
p = PlotXY(wbs.getWave().get(1),wbs.getFlux().get(1))
This provides a plot of the second frame, called frame number 1.
Similar but now will plot the LSB frequency which takes
the local oscillator frequency information into account
p = PlotXY(wbs.getLsbFrequency().get(1),wbs.getFlux().get(1))

2.10.3.2. SPIRE extensions to Spectrum1d

The SPIRE instrument also uses an extension of Spectrum1d. The basic component dataset
for the spectrum obtained by a single SPIRE pixel is the SpireSpectrum1d. As opposed to
Spectrum1d, complex data are possible (stores Numeric1d inputs as Complex1d). The data is

Arrays, datasets and products

41

composed of complex values of flux and flux error with associated units. A mask can also be added
(type Int1d).

Individual spectra from separate pixels can be grouped together to formulate a single SPIRE scan
dataset. This in turn can be grouped into a set of scans that would be more typical of a single SPIRE
observation.

from herschel.share.unit import *
from herschel.spire.ia.dataset import *
c = Complex1d([2+3j, 3+2.1j,3.6 +2.4j,0.9+2.1j])
err = Complex1d([0.2+0.2j, 0.8+0.3j,0.4+0.3j,0.15+0.1j])
flu = FluxDensity.JANSKYS
wu = WaveNumber.RECIPROCAL_METER
wn = Double1d([0.3,0.4,0.5,0.6])
mask = Int1d([1,1,1,1])
sps = SpireSpectrum1d("Pixel name")
sps.setComplexFlux(c,flu)
sps.setComplexFluxError(err,flu)
sps.setWavenumber(wn,wu)
sps.setMask(mask)
Now we can get the data by replacing set by get,
and removing the arguments, e.g.,
sps.getComplexFlux() # returns the flux data
and we can get the units separately, e.g.,
sps.getComplexFluxUnits()
Now we can place a number of pixels in a single unit
a SpireSpectrumCompositeDataset.
Create sps, sps1, sps2, sps3 etc.
spire_cds = SpireSpectrumCompositeDataset("Scan number")
Scan number can be a string name (as above) or a long numeric value.
add pixels of data.....
spire_cds.setPixel(sps)
spire_cds.setPixel(sps1)
spire_cds.setPixel(sps2)
spire_cds.setPixel(sps3)
pixel names are as set up in the original SpireSpectrum1d
we can get a pixel using
wanted_sps = spire_cds.getPixel("Pixel name")
Most SPIRE spectrometer observations are composed of many scans
which we can then place several composite datasets in a single dataset.
spire_sds =SpectrometerDetectorSpectrum() # create empty dataset
spire_sds.setScan(spire_cds) # add in scan, given next scan number available = 0.
spire_sds.setScan(spire_cds1) # add in scan, given next scan number available = 1.
Now access a scan.
wanted_cds = spire_sds.getScan(0) # for the first scan

2.10.3.3. PACS Spectrum1d and Spectrum2d extensions

PACS spectral is based on handling the Frames and Ramps based on the readout of the PACS
spectrometer. The handling of these data is currently discussed in the PCSS User's Manual.

2.11. Image and cube datasets
Image and cube datasets are made of Double2d and Double3d components representing intensity,
masks and errors, in addition to metadata providing coordinate information.

A SimpleImage is a standard two-dimensional image represented by a Numeric2d (such as
Double2d or Int2d). The following components can be added:

• The Error, as a Numeric2d.

• The Exposure, as a Numeric2d.

• A set of flags as a Flag object.

• Measurement units as a Unit object.

Arrays, datasets and products

42

• WCS information as a Wcs object.

An example of creating a SimpleImage from an imported JPG file is given below. You can find
the ngc6992.jpg file in the /data/ia/demo/data folder of your HIPE installation.

from herschel.share.unit import *
Choose units
myQuant = FluxDensity.MILLIJANSKYS
Create WCS
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = --22.5)
Create the simple image with an assigned WCS and a description
myImage = SimpleImage(description="Veil nebula", unit = myQuant, wcs = myWcs)
Import an image
Note: we assume that the current directory is -"bin"
in your HIPE installation.
importImage(myImage, -"../data/ia/demo/data/ngc6992.jpg")
Assign a reference wavelength to the image
myImage.setWavelength(12.0,Length.MICROMETERS)
Print the reference wavelength in millimetres.
print myImage.getWavelength(Length.MILLIMETERS)
Print the units being used
print myImage.getUnit()
Print the intensity at pixel position 30, 35
print myImage.getIntensity(30, 35)
Display the image
Display(myImage)

To add exposure and error maps, use the setExposure and setNoise methods, each taking a
Numeric2d map as input. Use getExposure and getNoise to retrieve these maps.

In a similar vein to the above, you can create a SimpleCube to store three-dimensional images
(or multiple stacked 2D images). The SimpleCube can also include error, flag and exposure maps,
which must also be 3D arrays. Only a single WCS can be applied to the SimpleCube: for example,
it is not possible to provide different WCS's for each image in an image stack.

To create a SimpleCube you need to import a Double/Int3d object. This is shown by the
following example, which reuses the myImage, myQuant and myWcs variables from the previous
example. The d3 "cube" is just a stack of three copies of the same image.

l1 = myImage.getImage()
l2 = myImage.getImage()
l3 = myImage.getImage()
d3 = Double3d()
d3.append(l1,0) # Append the image along the 0 axis (stacking)
d3.append(l2,0) # Append the same image
d3.append(l3,0) # Append the same image
Create the SimpleCube
myCube = SimpleCube(description="Veil nebula in 3D", \
 unit = myQuant, image = d3, wcs = myWcs)
Print the units
print myCube.getUnit()
Print intensity at pixel position 30, 35 in layer (depth) 0, the first layer
print myCube.getIntensity(0, 30, 35)

A SimpleCube accepts the following components:

• Image: this is the most important field. It contains the flux of the cube, and its dimensions define the
dimensions of the other fields. When initialised, this field automatically initialises a WCS containing
the needed information.

The type of this field is a subtype of AbstractOrdered3dData, usually Double3d.

• Error: contains the error values for the corresponding spaxels. This is an optional field. The unit of
the error is the same as the one of the image.

Arrays, datasets and products

43

• Exposure: contains a 3d array of the same dimension as the image. It gives the exposure of each
pixel: one exposure time per sky position and spectral value.

• Flag: contains the Flag array for all the pixels of the cube.

• Unit: gives the unit of the image itself, i.e. the unit of the flux per pixel.

2.11.1. Spectral cubes

A spectral cube is a set of three-dimensional data, with two spatial and one spectral dimensions.

Conceptually, a spectral cube can be seen in three ways:

• As a stack of monochromatic images, like the SimpleCube created in the previous example.

• As a cloud of points, when at least one of the axes is not regularly sampled.

• As a set of spatially related spectra.

In the HCSS, as we have just seen, a spectral cube can be represented by a SimpleCube. However,
this class is generally aimed at three-dimensional data, not necessarily with a spectral dimension.

A more specialized class is SpectralSimpleCube. This product is an evolution of SimpleCube,
and as such it includes all its features, such as the error and exposure maps seen before. The main
difference is that reading an (x, y) position in a SpectralSimpleCube will return a Spectrum1d,
while doing the same with a SimpleCube will return a generic one-dimensional array of flux values.

It is possible to convert a SimpleCube to a SpectralSimpleCube:

mySpecSimpleCube = SpectralSimpleCube(mySimpleCube)

As for all Herschel products, both can be exported to FITS format.

Note

The Cube Spectrum Analysis Toolbox (CSAT) is a handy graphical utility available within
HIPE to display and manipulate in detail spectral cubes. It is described in detail in the
Data Analysis Guide.

Note that spectral cubes must have a valid WCS to be accepted by the CSAT. For more
information about adding WCS see Section 2.13.

2.12. Importing spectral cubes from external
applications

The following two scripts show how to create spectral cubes from data produced with other
applications.

The first script opens a FITS file originally created with NOAO-IRAF from IRAS.

homefolder ="/home/agueguen/_WorkHipe/"
myfitsfilename ="katrina_N1569.fits"
from herschel.ia.io.fits import FitsArchive
force the hipe fits reader to read a non-HIPE FITS file
fits = FitsArchive(reader = FitsArchive.STANDARD_READER)
fits_N1569 =fits.load(homefolder+myfitsfilename) # Read the file

Arrays, datasets and products

44

print fits_N1569.class ## this is a Product which contain -:
print -" -------- -"
print fits_N1569
print -" -------- -"
PrimImage = fits_N1569["PrimaryImage"]

print -"PrimImage.class=", PrimImage.class # arrayDataset
print -"PrimImage.data.class=", PrimImage.data.class # Float3d array

dd= Double3d(PrimImage.data) # creation of a Double3d from the original Float3d
Simcube=SimpleCube() # creation of the SimpleCube
Simcube.setImage(dd) # Setting up the image

mywcs=Simcube.getWcs()

to read the header of the fits file,
access it via <Product>.meta[i].getValue()
#for i in katrina_N1569.meta.keySet():
print -"meta = -"+i
print -"Value ="
print katrina_N1569.meta[i].getValue()

initialisation of the wcs
for i in fits_N1569.meta.keySet():
 print -"meta = -",i, -" value -",fits_N1569.meta[i].getValue()
 mywcs.setParameter(i,fits_N1569.meta[i].getValue() -,"automatically copied")

#usual values for various keywords, can be updated afterwards with commands like:
java style
#mywcs.setCunit1("arcsec")
#mywcs.setCunit2("Arcsec")
#mywcs.setCtype1("RA--TAN")
#mywcs.setCtype2("DEC-TAN")
-......
jython style
#mywcscunit1="arcsec"
#mywcscunit2="Arcsec"
#mywcsctype1="RA--TAN"
#mywcsctype2="DEC-TAN"
Both ways are working in the HIPE editor

If some parameters are missing they should be added manually:
in this file cunit3 is missing we add it.
mywcs.cunit3 ="angstrom"

To check for missing keywords a method exists:
mywcs.isCompleteWcs()

Finally we update the wcs of the simplecube
Simcube.wcs = mywcs
Simcube can now be opened with the CubeSpectrumAnalysis toolbox.

The second script imports a cube from Sinfoni.

localfolder = -"/home/agueguen/_WorkHipe/fitsfiles/"
sinfoniefilename = -"cube_sinfonie_UDF3538_bourneau.fits"
Manual import of FITS files
fits = FitsArchive()

Sinfoni data converted in a SimpleCube
fits = FitsArchive(reader = FitsArchive.STANDARD_READER)
sinfoniproduct = fits.load(localfolder+sinfoniefilename)
print sinfoniproduct.class ## This is a Product which contains:
print -" -------- -"
print sinfoniproduct
print -" -------- -"
PrimImage = sinfoniproduct["PrimaryImage"]

print -"PrimImage.class=", PrimImage.class # arrayDataset
print -"PrimImage.data.class=", PrimImage.data.class # Float3d array

Arrays, datasets and products

45

dd= Double3d(PrimImage.data) # Creation of a Double3d from the original Float3d
sinfoniCube=SimpleCube() # Creation of the SimpleCube
sinfoniCube.setImage(dd) # Setting up the image

mywcs=sinfoniCube.getWcs()

initialisation of the wcs
for i in sinfoniproduct.meta.keySet():
 if (sinfoniproduct.meta[i].getType() == java.lang.Long):
 mywcs.setParameter(i,sinfoniproduct.meta[i].getValue()*1. -,"automatically
copied but corrected")
 else:
 mywcs.setParameter(i,sinfoniproduct.meta[i].getValue() -,"automatically copied")
In the previous for loop we convert long values to double
to comply with HCSS requirements.
When you have problems importing data you should have a look at
the type of data coming from the FITS file and convert it
it needed.
To do this you can use
sinfoniproduct.meta[i].getType()
sinfoniproduct.meta[i].getClass()

Usual values for various keywords,
can be updated after if needed with commands like:
java style
#mywcs.setCunit1("arcsec")
#mywcs.setCunit2("Arcsec")
#mywcs.setCtype1("RA--TAN")
#mywcs.setCtype2("DEC-TAN")
-......
jython style
#mywcscunit1="arcsec"
#mywcscunit2="Arcsec"
#mywcsctype1="RA--TAN"
#mywcsctype2="DEC-TAN"

To check for missing keywords a method exist:
print mywcs.isCompleteWcs()
Another way is to print the WCS or open it in the spectrum explorer.
print mywcs.isValid()
Finally we update the WCS of the Simple Cube
sinfoniCube.wcs=mywcs
Simcube can now be opened with the Cube Spectrum Analysis Toolbox.

2.13. Assigning a World Coordinate System
to images and cubes

You can assign WCS information to images and cubes. The World Coordinates System (WCS)
describes the coordinates of a SimpleImage or SimpleCube. It makes it possible to convert image
coordinates to world coordinates and the other way around. The WCS can have a lot of parameters,
as defined in the FITS standard:

• naxis: the number of axes

• crval1: First coordinate of the centre

• crval2: Second coordinate of the centre

• crpix1: Reference pixel X coordinate

• crpix2: Reference pixel Y coordinate

• cdelt1: Pixel scale of axis 1. Step per pixel or number of degrees per pixel along x-axis when
converting to Sky Coordinates. These parameters are no longer used in modern Wcs definition, but
are included in the CDi_j matrix.

Arrays, datasets and products

46

• cdelt2: Pixel scale axis 2. Step per pixel or number of degrees per pixel along y-axis when converting
to Sky Coordinates. These parameters are no longer used in modern Wcs definition, but are included
in the CDi_j matrix.

• ctype1, ctype2: Projection type name. This can be "LINEAR", "PIXEL" or the FITS convention.
The default value for ctype1 and ctype2 is "LINEAR". When using the FITS convention, the first
four characters are:

• RA-- and DEC- for equatorial coordinates

• GLON and GLAT for galactic coordinates

• ELON and ELAT for ecliptic coordinates

The next four characters describe the projection. Possibilities are:

• -AZP: Zenithal (Azimuthal) Perspective

• -SZP: Slant Zenithal Perspective

• -TAN: Gnomonic = Tangent Plane

• -SIN: Orthographic/synthesis

• -STG: Stereographic

• -ARC: Zenithal/azimuthal equidistant

• -ZPN: Zenithal/azimuthal PolyNomial

• -ZEA: Zenithal/azimuthal Equal Area

• -AIR: Airy

• -CYP: CYlindrical Perspective

• -CAR: Cartesian

• -MER: Mercator

• -CEA: Cylindrical Equal Area

• -COP: COnic Perspective

• -COD: COnic equiDistant

• -COE: COnic Equal area

• -COO: COnic Orthomorphic

• -BON: Bonne

• -PCO: Polyconic

• -SFL: Sanson-Flamsteed

• -PAR: Parabolic

• -AIT: Hammer-Aitoff equal area all-sky

• -MOL: Mollweide

• -CSC: COBE quadrilateralized Spherical Cube

Arrays, datasets and products

47

• -QSC: Quadrilateralized Spherical Cube

• -TSC: Tangential Spherical Cube

• -NCP: North celestial pole (special case of SIN)

• -GLS: GLobal Sinusoidal (Similar to SFL)

• Other types are also possible (for example TEMP for temperature.)

• cunit1: The Unit of Axis 1.

• cunit2: The Unit of Axis 2.

• epoch: Epoch of coordinates.

• Radesys: The reference frame, default value is "ICRS".

• pc1_1: Element (1,1) of the linear transformation matrix. The pc1 and pc2 parameters are no
longer used in modern Wcs definition, but are together with CDELT1 and CDELT2 included in
the CDi_j matrix.

• pc1_2: Element (1,2) of the linear transformation matrix.

• pc2_1: Element (2,1) of the linear transformation matrix.

• pc2_2: Element (2,2) of the linear transformation matrix.

• cd1_1: Element (1,1) of the corrected linear transformation matrix.

• cd1_2: Element (1,2) of the corrected linear transformation matrix.

• cd2_1: Element (2,1) of the corrected linear transformation matrix.

• cd2_2: Element (2,2) of the corrected linear transformation matrix.

With a third dimension the following also applies:

• ctype3: Description of what the 3rd axis represents, for instance Wavelength, Time, M1
Temperature, and so on.

• cunit3: The Unit of Axis 3.

• crval3: [Optional - in case of equidistant 3rd dimension]. Wavelength, time, ... of reference layer;
unit : length, time, ...

• crpix3: [Optional - in case of equidistant 3rd dimension] Reference layer index

• cdelt3: [Optional - in case of equidistant 3rd dimension] Scale in 3rd dimension - unit: length,
time, ...

• PC elements:

• pc1_3: Element (1,3) of the linear transformation matrix.

• pc2_3: Element (2,3) of the linear transformation matrix.

• pc3_1: Element (3,1) of the linear transformation matrix.

• pc3_2: Element (3,2) of the linear transformation matrix.

• pc3_3: Element (3,3) of the linear transformation matrix.

Arrays, datasets and products

48

To create a WCS object that can be assigned to an image you can use something like the following.

Create the WCS object, units in degrees by default
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = --22.5, \
 cdelt1 = 0.0004, cdelt2 = 0.0004, cunit1 = -"DEGREES", \
 cunit2 = -"DEGREES", ctype1 = -"RA---TAN", ctype2 = -"DEC--TAN")
Check whether the WCS is valid
print myWcs.valid
Assign the world coordinates to our image
myImage = SimpleImage(description = -"Veil nebula", wcs = myWcs)
You can then obtain the world coordinates at any pixel
print myImage.getWcs().getWorldCoordinates(31,31)
This provides an array of sky coordinates in degrees.
We can get the intensity at a given WCS position
First put an image in...
importImage(myImage, -"../data/ia/demo/data/ngc6992.jpg")
Get the intensity at a given WCS position.
print myImage.getIntensityWorldCoordinates(30.0012, --22.498)

For the SimpleCube and SpectralSimpleCube objects you can do this almost identically.
Using the d3 cube defined in a previous example:

Create WCS object, units in degrees by default
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = --22.5, \
 cdelt1 = 0.0004, cdelt2 = 0.0004, cunit1 = -"DEGREES", \
 cunit2 = -"DEGREES", ctype1 = -"RA---TAN", ctype2 = -"DEC--TAN")
Create the cube
myCube = SimpleCube(description="Veil nebula", image = d3, wcs = myWcs)
Add third axis (WCS is created with two axes by default)
myWcs.NAxis = 3
Add quantities related to the third axis
myWcs.crval3 = 300.0
myWcs.crpix3 = 0
myWcs.cdelt3 = 0.001
myWcs.ctype3 = -"Wavelength"
myWcs.cunit3 = -"MICROMETERS"
You can obtain the world coordinates at any pixel on the image.
print myCube.getWcs().getWorldCoordinates(31,31)
Get the intensity at a given WCS position. We need three
arguments now, with the first argument being the layer number (depth)
from which we want the intensity measure. Count starts from 0.
print myCube.getIntensityWorldCoordinates(0,30.0012, --22.498)

If the third axis of the cube is irregularly sampled, you can define an imageIndex array with the
sampling values of each layer along the axis. Such array would replace the values of the crval3,
crpix3 and cdelt3 parameters:

Create WCS object, units in degrees by default
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = --22.5, \
 cdelt1 = 0.0004, cdelt2 = 0.0004, cunit1 = -"DEGREES", \
 cunit2 = -"DEGREES", ctype1 = -"RA---TAN", ctype2 = -"DEC--TAN")
Create the cube
myCube = SimpleCube(description="Veil nebula", image = d3, wcs = myWcs)
Add third axis (WCS is created with two axes by default)
myWcs.NAxis = 3
Add quantities related to the third axis
myWcs.ctype3 = -"Wavelength"
myWcs.cunit3 = -"MICROMETERS"
Add the imageIndex array
from herschel.share.unit.Length import MICROMETERS
wavelengths = Double1d([20.0, 45.0, 100.0])
myWcs.setImageIndex(wavelengths, MICROMETERS)

To check whether the third axis is regularly sampled, the following will return 1 if true, 0 if false:

Arrays, datasets and products

49

print myWcs.equidistantInZ

2.14. Products
Let us briefly run through what we have covered so far. We started with simple arrays in Section 2.3,
went on with multidimensional arrays in Section 2.6 and introduced array datasets in Section 2.7.
Then it was time for table datasets in Section 2.8 and composite datasets in Section 2.9. As you can
see, every object we have examined acted as a container for the previous ones. Now we complete the
journey by introducing the highest level of them all, the Product.

A Product is an object containing a set of metadata entries (some of which are mandatory) and one
or more datasets. The mandatory metadata values are description, creator, creationDate,
instrument, startDate, endDate, modelName and type. They will be automatically added
whenever you create a new product. Let us check:

myProduct = Product() # Creating a new, empty Product
print myProduct.meta # Printing its metadata
print myProduct.getMeta() # Same thing, -"Java style"

2.14.1. Mandatory Parameters in Products
As you can see some entries are already set to meaningful values, others are set to Unknown. You can
now modify the mandatory metadata and add as many new entries as you wish. There are so-called
"setter" methods for setting values of the mandatory metadata, which currently includes a description,
the creator, an instrument, model name of the instrument in use and type, as shown below:

myProduct.setDescription("My SPIRE product")
myProduct.setCreator("Myself")
myProduct.setInstrument("SPIRE")
myProduct.setModelName("PFM")
myProduct.setType("UM")

Alternately, these can be set using

myProduct.creator = -"Myself"
myProduct.instrument = -"SPIRE"
etc...

Finally, we can include many of these settings on a single line

myProduct=Product(creator="Myself", instrument="SPIRE", \
 description="My SPIRE product", modelName="PFM", type="UM")

2.14.2. Setting Date Information
The creation, start and end dates for a Product need to be expressed in terms of a FineTime. If all of
these are the current date then we can convert a Java date to a FineTime and include it as metadata
in our product. For example:

from herschel.share.util.fltdyn.time import FineTime

myProduct.setCreationDate(FineTime(java.util.Date()))
myProduct.setStartDate(FineTime(java.util.Date()))
myProduct.setEndDate(FineTime(java.util.Date()))

Because the startDate, the endDate and the creationDate are mandatory metadata
parameters, they are set to the current date and time at the moment when the product is created. If
those dates are not the current date then it is possible to set it up using UTC or TAI representation of
a calendar day (see e.g. Section 6.2), like it is shown in the following example:

from herschel.share.fltdyn.time import *

Arrays, datasets and products

50

formatter = SimpleTimeFormat(TimeScale.UTC)
timeUtc = formatter.parse("2008-01-31T12:35:00.0Z") # Z at the end is mandatory
for UTC

formatter = SimpleTimeFormat(TimeScale.TAI) # or just SimpleTimeFormat()
timeTai = formatter.parse("2008-01-31T12:35:00.0TAI") # TAI at the end is
mandatory for TAI

myProduct.setCreationDate(timeUtc) # or
myProduct.setCreationDate(timeTai)

Note that the two previous dates, represented as FineTime, are different:

print timeUtc # 2008-01-31T12:35:33.000000 TAI (1580474133000000)
print timeTai # 2008-01-31T12:35:00.000000 TAI (1580474100000000)

2.14.3. Additional Metadata
Now, to add, modify and read additional metadata:

myProduct.getMeta().set("Here goes a name", StringParameter("Here goes a value"))
print myProduct.meta["Here goes a name"]
{description="", string="Here goes a value"}

In the example above we set a name and a value for the metadata. In this case the value was
represented by a String object, but as you already now you can also assign other types of values
with LongParameter, DoubleParameter, BooleanParameter and DateParameter.

2.14.4. Inserting and Getting Datasets from a Product
But how do you insert and get the contents of the datasets in a product? You can use the
getDefault() method to get the first dataset stored in the product, or the get() method to get
any stored dataset, whose name you have to provide as argument. The name is a string assigned when
the dataset is first inserted into the product. Here is an example:

myTable = TableDataset()
myTable.setDescription("This is a Table Dataset")
myComposite = CompositeDataset()
myComposite.setDescription("This is a Composite Dataset")
myProduct.set("oneDataset", myTable) # We have to give a name to every
 # dataset we insert
myProduct["anotherDataset"] = myComposite # Jython style to add a dataset
myProduct.set("anotherDataset", myComposite) # Java style
print myProduct.getDefault() # As you will see from the description,
 # this is the Table Dataset
print myProduct["anotherDataset"] # Getting the Composite Dataset,
 # Jython style...
print myProduct.get("anotherDataset") # -...and Java style

Instead of just printing out the datasets you get, you can assign them to variables and execute other
operations on them. To see how to explore the contents of datasets please refer to the previous sections
of this chapter.

If you are not a fan of the command line you can use the handy Dataset Inspector tool to view and
manipulate datasets and products. This tool is described in the Data Analysis Guide.

51

Chapter 3. The Numeric library

3.1. Introduction
This chapter describes how to use the Numeric library in your Jython scripts. For further details of the
functions provided, or use of the library from Java programs, please see the API documentation for
herschel.ia.numeric in the Developer's Reference Manual.

The purpose of the numeric library is to provide an easy-to-use set of numerical array classes
(programs) and common numerical functions. The library also supports arrays of booleans and strings.

3.2. Getting started
The DP numeric packages are loaded and available to the user on starting an DP/JIDE session. Basic
setup and arithmetic manipulation of array datasets of various types are discussed in Chapter 2.

3.3. Basic numeric array arithmetic
DP numeric arrays support arithmetic operations that are applied element-by-element. For example:

y = Double1d.range(5) # [0.0,1.0,2.0,3.0,4.0]
print y * y * 2 + 1 # [1.0,3.0,9.0,19.0,33.0]

This is much simpler (and runs much faster) than writing an explicit loop in Jython. It is important
to appreciate that the '+' operator does not concatenate arrays, as it does with Jython arrays.
For example:

Adding Jython arrays
print [0,1,2,3] + [4,5,6,7] # [0, 1, 2, 3, 4, 5, 6, 7]

Adding DP numeric arrays
print Double1d([0,1,2,3]) + Double1d([4,5,6,7]) # [4.0,6.0,8.0,10.0]

Concatenate two DP numeric arrays
print Double1d([0,1,2,3]).append(Double1d([4,5,6,7]))
[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0]

Adding Jython arrays to DP numeric arrays
print [0,1,2,3] + Double1d([4,5,6,7]) # [4.0,6.0,8.0,10.0]
print Double1d([0,1,2,3]) + [4,5,6,7] # [4.0,6.0,8.0,10.0]

All arrays currently support the following arithmetic operators:

+, --, *, -/, %, **

Note that the 'modulo' operator '%' provides the normal Jython semantics for this operation, which
is not the same as that of the Java '%' operator. The Jython definition is more consistent with the
mathematical notion of congruence for negative values.

The following relational operators are also provided, which return a Bool1d array:

<, >, <=, >=, ==, -!=

For example:

y = Double1d([0,1,2,3,4])
print y > 2 # [false,false,false,true,true]

The Numeric library

52

3.4. Numeric functions and lambda
expressions

In DP, functions can be applied very simply as follows:

print SQRT(16) # 4.0 (applied to a scalar)
y = Double1d([1,4,9,16])
print SQRT(y) # [1.0,2.0,3.0,4.0] (applied to a DP numeric array)

As shown by this example, functions on scalars (such as SQRT) are implicitly mapped over each
element of an array. Functions may be combined with arithmetic operators to perform complex
operations on each element of an array:

t = Double1d([1,2,3,4])
print SIN(1000 * t * (1 + -.0003 * COS(3 * t)))
[0.6260976237441638,0.5797470124743422,0.8629107307631398,
#-0.9811675382238753]

The names of functions in the numeric library have ALL LETTERS capitalised. This is to avoid
ambiguity, as Jython already defines certain functions, such as 'abs', which are not applicable to our
DP numeric arrays.

There are various types of functions in the numeric library:

y = Double1d([1,2,3,4])

print SQRT(4) # double->double
print SQRT(y) # double->double (mapped)
print REVERSE(y) # Double1d->Double1d
print MEAN(y) # Double1d->double

It is possible to define new functions as lambda expressions in Jython and apply them to DP numeric
arrays. For example:

y = Double1d([1,2,3,4])

f = lambda x: x*x + 1 #take the given array, call it -'x' and
#return the value x^2 +1 to an array called f.

print f(y) #[2.0,5.0,10.0,17.0]. Each element of y was
#taken --> x then each element was squared
#plus 1 added.

However, in this case, it's much easier and faster to do this with array operations.

print y * y + 1

Lambda expressions are not as fast as the standard Java functions provided by the numeric library, but
this is often not a problem. Where performance is an issue, new functions can be defined in Java (see
the JavaDoc of the herschel.ia.numeric library).

More complex functions (equivalent to subroutines) can be created using the def command, which
is discussed in Section 1.11.

3.5. Selection, data filtering and masking
methods

The numeric library provides operations, such as 'filter', which allows the selection of array
elements based on a given criterion (e.g., element with values between 3 and 6). There is no 'map'
operation because mapping is implicit with the array style of processing.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

The Numeric library

53

The 'filter' method returns a Double1d array. The selection criterion for the filter method MUST
be declared using a lambda function:

u = Double1d.range(10)
print u.filter(lambda x: x>3 and x<6)

Note: The Jython filter operation can be used but returns a Jython array:

print filter(lambda x: x>3 and x<6, u)
__class__ returns org.python.core.PyList
print filter(lambda x: x%2==1, u)

Jython list comprehensions can be used but also return Jython arrays:

print [x for x in u if x>3]
print [x*x for x in u if x>3 and x<6]
print Double1d([x*x for x in u if x>3 and x<6])
#this last now provides us with a numerical array as we have also
#translated into a Double1d array.

The SQUARE function could equally have been applied:

print u.filter(lambda x: x>3)
print SQUARE(u.filter(lambda x: x>3 and x<6))

Warning

If a lambda expression is applied to an array, remember that it is applied to the entire
array and not mapped over the elements. This can lead to unexpected behaviour as in the
following example:

u = Double1d.range(10)
print (lambda x: x>2 and x<4)(u)
[true,true,true,true,false,false,false,false,false,false]

This is equivalent to the following:

u > 2 and u < 4

The expression 'u>2' results in a Bool1d array. The Jython 'and' treats this as 'true', as it is a non-empty
list, and returns the result of the second expression 'u<4', which is not the intended result.

One way of overcoming this problem is to use the '&' operator instead of 'and' to give the intended
result:

print (lambda x: (x>2) & (x<4))(u)
[false,false,false,true,false,false,false,false,false,false]

Warning

This shows how the '&' operator and the 'and' operator are not identical operators.

If you wish to select elements of an array based on a given criterion then we can find out 'where' in a
sequence of data a certain type resides (e.g., at what position the maximum value of an array occurs)
and how to get the data that fits your selection.

For example, the where method returns the array indices of elements that satisfy a predicate often
given as a lambda function. The input to the where method is a Boolean array. This differs from the
filter where the actual elements themselves are obtained. Using the modulo function (%) we can
find where within an array odd values occur.

y = Double1d([2,6,3,8,1,9])

The Numeric library

54

print y.where(y%2==1) # [2,4,5] indices of odd elements

Now return the actual elements, which can be done in three ways

print y[y.where(y%2==1)] # [3.0,1.0,9.0]
print y.filter(lambda y: y%2==1) # [3.0,1.0,9.0]
print y.get(y%2==1) # [3.0,1.0,9.0]

Predicates support standard jython operators such as not, and and or:

y = Double1d([1,2,3,4])
print y.where(lambda x: x<3 and x>1) # [1]

Java/C-style logical operators '!', '&&', and '||' are not allowed.

It can be useful to have the indices, rather than the values, when there are two or more arrays with a
predicate applied to one of them. For example:

x = Double1d([5,6,7,8])
s = y.where(y%2==1)
print x[s] + y[s] # [6.0,10.0]

The 'where' function can also be used to set values:

s = y.where(y%2==1)
y[s] = 0 # Set all matching elements to 0
print y # [0.0,2.0,0.0,4.0]
y[s] = [9,8] # Set matching elements using an array of values
print y # [9.0,2.0,8.0,4.0]

Note

You can't use the where function like this:

a=Double1d.range(10)
b=a.where(a < 3)
print b[0]
print b[0:2]
print a[b[0]]

The last three lines will give an error. Technically, this is because b is a Selection
object rather than a Jython or Numeric array. For the above to work you need to convert
it to Int1d:

c = b.toInt1d()
print c[0] # Now these three lines will work
print c[0:2]
print a[c[0]]

The 'get' method enables you to grab individual elements or a subset of element values from an
array. It requires the input of a Boolean array (e.g., a mask). Along with getting individual elements,
there are three other forms. One enables you to select element values based on a Bool1d mask:

y = Double1d([5,7,8,9])
mask = Bool1d([0,0,1,0])
x = y.get(mask) # x == [8.0]

The second form enables you to select on a set of indices, contained in a Selection object:

indices = Selection(Int1d([2,3]))
x = y.get(indices) # x == [8.0,9.0]

The third form enables you to select elements from a range, specified by a Range object:

The Numeric library

55

range = Range(2,4)
x = y.get(range) # x == [8.0,9.0]

It is possible to combine 'get' calls to perform the same operation as a compound IDL WHERE
execution. Let's set up a few arrays first:

a = Double1d([1, 2, 3, 4, 5, 6])
b = Double1d([2, 3, 4, 5, 6, 7])
c = Double1d([3, 4, 5, 6, 7, 8])

The following operations on the three arrays are the equivalent of the IDL WHERE statement 'where(a
ge 2 and b lt 6 and c gt 5)':

q = (a >= 2) & (b < 6) & (c > 5)
x = a.get(q),b.get(q),c.get(q) # x == ([4.0], [5.0], [6.0])

3.6. Array access and slicing
The numeric package introduces the following square brackets notation:

[i_0,...,i_n-1]

where each element is separated by a comma, and the number of elements must be equal to the rank
of the array. Arrays are zero-based which means the first element of an array has index 0 (zero) and
the index of the last element of an array is array.length()-1.

In addition the package supports the colon (:) notation to designate a slice. A slice is a range of indices
defined as i:j, where i is the starting index and inclusive, and it is zero if not specified. The ending
index j is exclusive and it is equal to array.length() if not specified and array.length()-
j if negative.

The following example illustrates the access to elements in a multi-dimensional array and the use of
slices. More examples can be found in the section on Multi-Dimensional Arrays.

define something that is like a rectangular 2x3 array:
1 2 3
4 5 6
x=Int2d([[1,2,3],[4,5,6]])# Int1d can swallow the jython sequence.
print x # [[1,2,3],[4,5,6]]
print x[1] # 2 (second element of the first row)
print x[1,:] # access a row i.e. [4,5,6]
print x[1,1] # access an individual element i.e. 5
print x[:,:] # [[1,2,3],[4,5,6]]
print x[:,1] # access a column i.e. [2,5]

3.7. Making sense of logical operators
Here we try to guide you through the jungle of logical operators you are likely to encounter when
using DP.

First of all, since Jython is embedded in DP, it won't surprise anyone that the Jython logical operators
and, or and not are available. These work like normal Boolean operators (see Appendix C for more
details), but using them with arrays (both the native Jython ones and those from the DP Numeric
package) can give unexpected and seemingly inexplicable results. See below for an example. The
important thing to keep in mind is that these operators do not work on an element-by-element basis
when applied to arrays, but they evaluate the entire array at once.

Another tool coming straight from the Jython language are the bitwise operators, represented by the
symbols &, | and ^. See again Appendix C for more details. The possible source of confusion here

The Numeric library

56

is that these symbols can be used with Numeric arrays (e.g. Int1d, Bool3d etc.), but what you get
is not a bitwise comparison. Instead, these operators perform the usual boolean comparisons, but this
time working element by element. Precisely what and, or and not do not do.

Finally, Numeric array classes have the and, or and xor methods acting like boolean operators
working element by element. An example will hopefully clarify the differences among all the operators
described here:

jythonOne = [1, 0, 0, 1]
jythonTwo = [0, 0, 1, 1]
numericOne = Bool1d(jythonOne)
numericTwo = Bool1d(jythonTwo)
print jythonOne and jythonTwo
[0, 0, 1, 1] # jythonOne is not empty so it is treated as true, which means that
 # jythonTwo is evaluated and returned
print numericOne and numericTwo
[false,false,true,true] # Same thing as with the Jython native arrays
print jythonOne & jythonTwo
Here an error is returned
print numericOne & numericTwo
[false,false,false,true] # Here the operator works element by element
print numericOne.and(numericTwo)
[false,false,false,true] # Same thing as the & operator

3.8. Advanced tips for improved performance
The underlying array operations and functions are very fast, as they are implemented in Java. The
overhead of invoking them from Jython is relatively small for large arrays. However, the advanced
user may find the following tips useful to improve performance in cases where it becomes a problem.

The arithmetic operations, such as '+', have versions that allow in-place modification of an array
without copying. For example:

y = Double1d.range(10000)
y = y + 1 # The array is copied
y += 1 # The array is modified in place

Copying an array is slow as it involves allocating memory (and subsequently garbage collecting it).
For simple operations, such as addition, the copying can take longer than the actual addition.

Function application also involves copying the array. This can be avoided by using the Java API
instead of the simple prefix function notation. For example:

x = Double1d.range(10000)
x = SIN(x) * COS(x) # This operation involves three copies
x = x.apply(SIN).multiply(x.apply(COS)) # Only one copy

When writing array expressions, it is better to group scalar operations together to avoid unnecessary
array operations. For example:

y = Double1d([1,2,3,4])
print y * 2 * 3 # 2 array multiplications
print y * (2 * 3) # 1 array multiplication
print 2 * 3 * y # 1 array multiplication

It is better to avoid explicit loops in the HCSS DP system over the elements of an array. It is often
possible to achieve the same effect using existing array operations and functions. For example:

sum = 0.0
for i in y:
 sum = sum + i * i # Explicit iteration

The Numeric library

57

sum = SUM(y * y) # Array operations

3.9. Type conversions
Since the numeric library supports different types it would be very convenient to be able to convert
an array from one type to another. The numeric library supports both implicit conversion from within
jython for all supported dimensions and explicit conversion from one data type to another.

3.9.1. Explicit conversion
Explicit conversion is supported for all data types by constructing a numeric array from another DP
numeric array of the same or a different type. Note however that some explicit conversions may result
in rounding and/or truncation of the values e.g. an explicit conversion from Long1d to Double1d will
reduce the number of significant digits.

i = Int1d([1,2,3]) # [1,2,3]
r = Double1d(i) # [1.0,2.0,3.0]
c = Complex1d(r) # [(1.0+0.0j),(2.0+0.0j),(3.0+0.0j)]
b = Byte1d(r) # [1,2,3]

3.9.2. Implicit conversion
Implicit conversions are conversions that can be done by the DP package automatically, provided that
such a conversion is a widening operation e.g. from Int1d to Double1d. Implicit narrowing conversions
are not allowed and result in an error message as shown below:

TypeError: Conversion of class org.python.core.PyFloat to class java.lang.Long implies narrowing.

The library supports implicit conversions in the following cases:

• access: [...]

• operators: +, -, *, /, ^ and %

• in-line operators: +, -, *, /, ^ and %

The few examples below show allowed implicit conversions.

d = Double1d(5) # [0.0,0.0,0.0,0.0,0.0]
d[1] = 3 # [0.0,3.0,0.0,0.0,0.0]
d[1:4] = [-5, 0, 5] # [0.0,-5.0,0.0,5.0,0.0]

Please note that the DP package considers the conversion from int to float and from long to float/
double as an automatic widening operation, but some of the least significant digits of the value may
be lost during the conversion. You will not be notified of this loss of significant digits.

Another thing to notice is that floating point operations will never throw an exception or error. As
shown in the following example, a division by zero results in NaN or Infinity.

d = Double1d.range(5)
l = Long1d.range(5)
print d/l # [NaN,1.0,1.0,1.0,1.0]
print d/SHIFT(l, 1) # [0.0,Infinity,2.0,1.5,1.3333333333333333]

3.10. Function library
The numeric package includes a library of basic numeric processing functions, which will continue
to grow as development of the library progresses.

The Numeric library

58

The functions that are currently available are outlined below. For further details, reference should be
made to the Javadoc documentation and demo programs .

3.10.1. Basic functions

Basic functions applicable to scalars or arrays, and returning scalars or arrays of the same size:

• ABS: Section 2.2

• ARCCOS: Section 2.19

• ARCSIN: Section 2.20

• ARCTAN: Section 2.21

• CEIL: Section 2.47

• COS: Section 2.74

• EXP: Section 2.110

• FIX (not applicable to scalars): Section 2.130

• FLOOR: Section 2.140

• LOG: Section 2.225

• LOG10: Section 2.224

• ROUND: Section 2.316

• SIGNUM: Section 2.331

• SIN: Section 2.339

• SQRT: Section 2.365

• SQUARE: Section 2.366

• TAN: Section 2.374

These are applied in the form

b = SIN(a)

b will be an array of the same dimension as a or a single value if a is single valued.

Array functions on Double<n>d returning a double:

MIN, MAX, MEAN, MEDIAN, RMS, SUM

b = MIN(a) #'b' has the minimum value of the array -'a'.

Functions applicable to one-dimensional arrays and returning an array of the same size:

• REVERSE: Section 2.311

Functions applicable to arrays and returning an array of increased rank (number of dimensions):

The Numeric library

59

• REPEAT: Section 2.305

Warning

Many of these functions have lower case equivalents built-in in Jython. Be aware of which
one you are using, because their behaviour could differ in some cases, as shown by the
example below which creates a table with Not-a-Number's (NANs) in it.

tt=Double1d.range(10)
tt[0]=Double.NaN
print max(tt)
NaN
print min(tt)
NaN
tt[1]=Double.NaN
tt[0]=1.0
print max(tt) # By using the built-in Jython functions
9.0
print min(tt)
1.0
print MAX(tt) # By using the DP Numeric functions
NaN
print MIN(tt)
NaN

3.10.2. Integral transforms

A Discrete Fourier Transform is provided for Complex1d arrays. This uses a radix-2 FFT algorithm
for array lengths that are powers of 2 and a Chirp-Z transform for other lengths. Future releases might
support multi-dimensional arrays, if required, and optimised transforms of real data.

Window functions are provided for reducing 'leakage' effects using the Hamming or Hanning window.

Example 3.1 shows the generation of a frequency modulated signal, followed by a FFT both with and
without windowing:

ts = 1E-6 # Sampling period (sec)
fc = 200000 # Carrier frequency (Hz)
fm = 2000 # Modulation frequency (Hz)
beta = 0.0003 # Modulation index (Hz)
n = 5000 # Number of samples

pi = java.lang.Math.PI # define pi

t = Double1d.range(n) * ts
t is a 5000 element array holding time values

signal = SIN(2 * pi * fc * t * (1 + beta * COS(2 * pi * fm * t)))
#create the modulated signal with modulation frequency fm and carrier
#frequency fc, t is the array we created above for the time elements.

spectrum = ABS(FFT(Complex1d(signal)))
#spectrum holds the absolute value (ABS) of the FFT of the signal.
#We need to handle these arrays as Complex1d rather than Double1d.

freq = Double1d.range(n) -/ (n * ts)
#The frequency values for the spectrum.

Repeat with apodizing
spectrum2 = ABS(FFT(Complex1d(HAMMING(signal))))

Example 3.1. FFT of a modulated signal , with and without HAMMING smoothing

The Inverse Fourier Transform of a Complex1d array (only) "x" can be obtained using, e.g., inverse
= IFFT(x).

The Numeric library

60

3.10.3. Power spectrum
With the PowerSpectrum class you can create the power spectrum of each column of a Table
Dataset. Table dataset that are suitable for power spectrum conversion typically contain a column
bearing units of time, plus other columns of quantities from which to compute power spectra. Since real
signals sometimes contain unwanted strong excursions, called glitches or spikes, that will dominate
the power spectrum, the Task includes a simple de-glitcher, that detects and removes such events from
the data stream, replacing them with an average of the surrounding data.

The Power Spectrum Viewer, a graphical interface wrapping the functionality of this class, is described
in the Data Analysis Guide.

You can obtain your power spectra by invoking the getPowerSpectrum method on the
PowerSpectrum class. The method takes the following arguments:

• table: the input Table Dataset.

• flimit: the inverse cut-off frequency (default 0.1).

• sigma: the deglitcher threshold (default 4).

• deglitch: boolean, activates the deglitcher if true (default).

• timeColumn: a Column containing time information.

The inverse cut-off frequency determines the length of the intervals into which the data timeline is
subdivided before performing the FFT. Each of these datasets is Fourier transformed individually, and
the resulting power spectra are quadratically co-added to yield a power spectrum with a better S/N
ratio, that is, a higher cut-off frequency will yield a better S/N for the resulting power spectrum.

The sigma value controls a simple sigma/kappa deglitcher, that eliminates all datapoints that are more
than sigma (default = 4) times the standard deviation away from the mean. After eliminating these
data points the procedure is repeated iteratively until no more data can be discarded.

The getPowerSpectrum method has the following variants:

• getPowerSpectrum(table);

• getPowerSpectrum(table,
 timeColumn);

• getPowerSpectrum(flimit,
 table);

• getPowerSpectrum(flimit,
 table,
 timeColumn);

• getPowerSpectrum(flimit,
 sigma,
 table);

• getPowerSpectrum(flimit,
 sigma,
 table,
 timeColumn);

• getPowerSpectrum(flimit,
 sigma,

The Numeric library

61

 deglitch,
 table);

• getPowerSpectrum(flimit,
 sigma,
 deglitch,
 table,
 timeColumn);

3.10.4. Convolution
Convolution is currently supported for Double1d arrays. A direct convolution algorithm is used,
although a future release might implement Fourier convolution to improve the speed for large arrays
and large kernels. An example of its use is given in Example 3.2.

from herschel.ia.numeric.toolbox.filter.Convolution import *
x = Double1d.range(100)
Create array [0.0, 1.0, 2.0 -... 99.0]
kernel = Double1d([1,1,1])
#provide kernel for the convolution
f = Convolution(kernel)
#create the convolution
y = f(x)
#apply it to the array x. The result is in array y

Example 3.2. Example of the use of the convolution algorithm

This illustrates a general approach with the numeric library i.e. general function objects may be
instantiated using parameters to create a customised function which can then be applied to one or more
sets of data.

The constructor of the Convolution class allows optional keyword arguments to be specified, to
further customise the function:

• The 'center' parameter allow selection of a causal asymmetric filter for time domain filtering or
a symmetric filter for spatial domain filtering.

• The 'edge' parameter controls the handling of edge effects, as well as allowing a choice between
periodic (circular) and aperiodic convolution.

The following examples show construction of filters using these options:

Note

Make sure you have input the following import line before trying these out.

from herschel.ia.numeric.toolbox.filter.Convolution import *

Use zeroes for data beyond edges, causal

f = Convolution(kernel, center=0, edge=ZEROES)

Circular convolution, causal

f = Convolution(kernel, center=0, edge=CIRCULAR)

Repeat edge values, causal

f = Convolution(kernel, center=0, edge=REPEAT)

The Numeric library

62

Use zeroes for data beyond edges with centred kernel

f = Convolution(kernel, center=1, edge=ZEROES)

Circular convolution with centred kernel

f = Convolution(kernel, center=1, edge=CIRCULAR)

Repeat edge values with centred kernel

f = Convolution(kernel, center=1, edge=REPEAT)

3.10.5. Boxcar and gaussian filters

Finite Impulse Response (FIR) filters and symmetric spatial domain filters can be defined by
instantiating the Convolution class with appropriate parameters. In addition, special filter
functions are provided for Gaussian filters and box-car filters :

from herschel.ia.numeric.toolbox.filter.Convolution import *

f = GaussianFilter(5, center=1, edge=ZEROES)
f = BoxCarFilter(5, center=0, edge=ZEROES)

These filters are subclasses of Convolution and hence inherit the use of similar keyword
arguments.

3.10.6. Interpolation

Interpolation functions are provided for a variety of common interpolation algorithms.

Example 3.3 illustrates the use of the currently available interpolation functions.

from herschel.ia.numeric.toolbox.interp import *
Create the array x [0.0, 1.0, 2.0, -..., 9.0]
x = Double1d.range(10)
print x # [0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]
Create an array y which contains the sine of each element in x
y = SIN(x)
u contains the values at which to interpolate
u = Double1d.range(80) -/ 10 + 1
print u #[1.0,1.1,1.2,1.3....8.6,8.7,8.8,8.9]
Linear interpolation
This sets up the interpolation, linear x-y fit
Interpolate at specified values
interp = LinearInterpolator(x,y)
Prints out the values interpolated at each position noted in array u
print interp(u) #[0.8414709848,0.848253629....0.5275664375,0.4698424613]

NearestNeighbour and CubicSpline interpolation may be performed
in the same way:

Cubic-spline interpolation
interp = CubicSplineInterpolator(x,y)

Nearest-neighbour interpolation
interp = NearestNeighborInterpolator(x,y)

Example 3.3. Interpolation functions in DP

The result of the interpolations used in the above example is illustrated in Figure 3.1.

The Numeric library

63

Figure 3.1. Illustration of various forms of interpolation functions.

3.10.7. Data fitting

Here we provide information on the basic linear and non-linear fitting routines available within DP.

3.10.7.1. General approach

Input Data: The fitter package expects your data to be in two datasets that are related to each other.
Typically, these are Double1d arrays, e.g.,

Data points: each element in x and y define a data point
x = Double1d.range(12) # Make x vector (the data positions/channels)
y = Double1d([1.0,1.2,0.9,2.2,3.3,\
 4.5,3.6,2.7,1.8,1.2,1.0,1.1]) # Make y vector (the data values)

Model Selection: Fitting means adjusting the parameters of a known function, called model, so that
it best matches the input data. This toolbox provides some pre-defined linear models as well as non-
linear models. Viewing your data will hopefully give you some hints about what function model would
reflect your input data. For example, if it seems to be polynomial of a certain degree, you would choose
a PolynomialModel.

The Numeric library

64

Note

For the case of non-linear fitters (e.g., used with Gaussians) it is also necessary to provide
initial guesses in the form of a parameter set to the model before invoking a fitter. The
closer the initial guess for the parameter set to the true values the higher the likelihood
that the minimisation will not find a local minimum with wrong/unrealistic parameter
estimation.

An example of the use of a linear fitter:

Choose a model: 4th degree polynomial
myModel = PolynomialModel(4)
Create a fitter and feed it your positions/channels along the array
(x, a Double1d array) and your model
myFitter = Fitter(x, myModel)

Or for a non-linear fitter applied to our array 'x':

myModel = GaussModel()
peak = 4.5
channel = 5.5
width=1.0
initialvalues = Double1d([peak, channel, width])
Apply the initial estimates: peak height, channel position and
width of gaussian
myModel.setParameters(initialvalues)
Choose non-linear fitter to use
myFitter = AmoebaFitter(x, myModel) # see later section on available fitters

Fit Execution (with and without weights)

Now actually fit the data values at each x position (the y array) to the model
fitresults = myFitter.fit(y)
Or with associated weights array
fitresults = myFitter.fit(y, yWeights)

Results Now the fitter has done its job. We can print the results (fitresults) to see the parameters
fitted.

 print fitresults # from using the polynomial fitter
[1.0993589743591299,-1.1096331908843398,0.8923489704745665,
--0.14688390313399513,0.006825466200470528]
provides coefficients of the polynomial fit
print fitresults # from using the Gaussian fitter
[3.751009700481534,5.353351564022887,2.5098951536394383]
#peak of fit, channel of Gaussian peak, width of Gaussian

The fit parameters model are computed and we can start using that model to e.g. re-sample your model
fit data:

Re-sample with equally spaced x data points and a finer grid:
xs = Double1d.range(1200) -/ 100 # Re-sampled x positions
ys = myModel(xs) # Computed y data points
#a plot of xs versus ys plots out 1200 points with the fit.

Statistical Information The above procedure demonstrates how to use the fit package to fit your data
against a certain model. However, it does not tell you how good the fit actually is. The fitters provide
ways to extract such information from the fit.

After fitting
print myFitter.getChiSquared() # Goodness of the fit
e.g., 2.5765684980727577 for Gaussian fit
print myFitter.autoScale() # How well does the data fit the model.

The Numeric library

65

e.g., 0.5350564350372312 for Gaussian fit
print myFitter.getStandardDeviation() # Standard deviations for the parameters.
e.g., [0.30907540430060004,0.24531121048289006,0.2525757390634412]
for Gaussian fit parameters
print myFitter.getHessian() # Retrieve the Hessian matrix
es = myFitter.monteCarloError(xs) # Errors on the resampled datapoints
es is now an error array with a length the same as -"xs" --- 1200 samples

3.10.7.2. Available linear models

There are several models that can be used for linear fitting.

In the descriptions below, the models provide parameter fit values p0, p1 ... pk.

Note

In the following examples the parameter subscripts match the position of the parameter in
the output array (fitsresult in the previous section). So p0 will be the first element
of the fitsresult array, p1 the second one, and so on.

BinomialModel, which allows for the fitting of a binomial model with two variables -- f(x,y:p) = Σ
pk x

k y(d-k) , where d is the degree. Usage: BinomialModel(4) -- provides a binomial model of degree 4.

PolynomialModel, which allows for the least squares fitting of a polynomial to the data -- f(x:p) = Σ
pk x

k . Usage: PolynomialModel(3) -- provides a third order polynomial fitting of the data.

SineAmpModel, which allows for the fitting of cosine and sine waves of a given frequency to get

amplitudes -- f(x:p) = p0 cos(2 π f x) + p1 sin(2 π f x) , where x is the data. Usage: SineAmpModel(f)
-- which provides cosine/sine fits with a frequency, f.

PowerModel, which allows for the fitting of a power law of order k -- f(x:p) = p0 xk . Usage:
PowerModel(3) -- provides a third-order power-law fit

CubicSplinesModel, which allows for the fitting of a cubic splines with arbitrary knots settings.
Usage: CubicSplinesModel(5) -- provides a cubic splines fit with 5 knots.

3.10.7.3. Available non-linear models

There are a number of models that can be used for non-linear fitting. For fitting of these models we
need initial values (guesses) for parameters labelled p0, p1 and p2 (see example given in the "General
Approach" section).

ArctanModel, which allows for the fitting of a general arctan function -- f(x:p) = p0 arctan(p1 (x -
p2)). Usage: ArctanModel()

ExpModel, which allows for the fitting of a general exponential function -- f(x:p) = p0 exp(p1 x).
Usage: ExpModel()

LorentzModel, which allows for the fitting of a Lorentz function -- f(x:p) = p0 (p2/((x - p1)2 + p2
2)).

Usage: LorentzModel()

PowerLawModel, which allows for the fitting of a general power-law function -- f(x:p) = p0 (x - p1)p2.
Usage: PowerLawModel()

SincModel, which allows for the fitting of a sinc function -- f(x:p) = p0 sin ((x - p1)/p2)/(x - p1)/p2.
Usage: SincModel()

SineModel, which allows for the fitting of a general cosine/sine wave -- f(x:p) = p1 cos(2 π p0 x) +

p2 sin(2 π p0 x). Usage: SineModel()

The Numeric library

66

GaussModel, which allows for the fitting of a 1-D gaussian -- f(x:p) = p0 exp(-0.5 ((x - p1) / p2)2, where
p0 is the amplitude, p1 the x-shift (from zero) and p2 the sigma of the fit, with initial values of 1.0, 0.0
and 1.0 respectively. Note that Gauss2DModel produces a fit to 2D data. Usage: GaussModel()

User supplied non-linear function, which allows for fitting a function (linear or non-linear)
constructed by the user. This function must be put in a jython class and optionally the user could
provide an analytical calculation of the partial derivatives with respect to the parameters (otherwise
they are calculated numerically). This is shown in the following example for the following function
of four parameters: f(x:p) = p0/(1+(x/p1)2)p2 + p3 (the so called beta-profile):

from herschel.ia.numeric.toolbox.fit import NonLinearPyModel

class BetaModel(NonLinearPyModel):
the full 4-parameter beta-model with partial derivatives
f(x:p) = p0/(1+(x/p1)**2)**p2 + p3
#
 npar = 4
 def __init__(self):
 # Constructor
 NonLinearPyModel.__init__(self, self.npar)
 self.setParameters(Double1d([1,1,-1,1]))
 #
 def pyResult(self,x,p):
 model = p[0]/(1.0 + (x/p[1])**2)**p[2] + p[3]
 return model
 #
 def pyPartial(self,x,p):
 # the partial derivatives
 arg1 = 1.0 + (x/p[1])**2
 dp = Double1d(self.npar)
 #
 dp[0] = 1.0/arg1**p[2] # df/dp0
 dp[1] = 2.0*p[0]*p[2]*x*x/((p[1]**3)*arg1**(p[2]+1.0)) # df/dp1
 dp[2] = --p[0]*Math.log(arg1)/arg1**p[2] # df/dp2
 dp[3] = 1.0 # df/dp3
 return dp
 def myName(self -):
 # Return an explicatory name (String). Optional.
 return -"beta-profile: f(x:p) = p[0]*{1 + (x/p[1])2}^p[2] + p[3]"

Once we define the function as shown in the example then we can proceed as before and create a
model and then perform the fitting using either the Lavenberg-Marquardt or Amoeba fitters:

bm = BetaModel()
bm.setParameters(Double1d([10.0,1.0,-2.0,5.0]))
myfit = LevenbergMarquardtFitter(x, bm) # see section on available fitters below
or myfit = AmoebaFitter(x, bm)
result = myfit.fit(y)
print result

3.10.7.4. Compound and mixed models

It is possible to add two models, e.g. if one wants to fit a spectral line (a Gaussian) on a background
(a Polynomial). The resulting model is non-linear.

myModel = GaussModel() # Define a Gaussian
myModel += PolynomialModel(1) # Add a Polynomial to it of order 1. Only with +=
print myModel.toString() # Information about the model

More models can be added if wished.

3.10.7.5. Available fitters

Fitter. Fitter for linear models. You create a fitter by providing the model assumption and the x points
of the data. With that information you compute the parameters within the model by fitting the y data

The Numeric library

67

points. Once the computation of those parameters is done, you can extract statistical information from
the fitter. Syntax: myFitter=Fitter(xDataPoints, model)

LevenbergMarquardtFitter. Fitter for non-linear models. The LMFitter is a gradient fitter, which
means that it goes downhill from the starting location until it cannot go down anymore. There is
no guarantee that the minimum found is an absolute or global minimum. If the chisq-landscape is
multimodal it ends in the first minimum it finds. See also Numerical Recipes, Ch 15.5. Syntax:
myFitter = LevenbergMarquardtFitter(xDataPoints, model)

AmoebaFitter. Fitter for non-linear models. The AmoebaFitter implements the Nelder-Mead simplex
method. It comes in 2 varieties, one where the simplex simply goes downhill (temperature = 0) and
one which implements an annealing scheme. Depending on the temperature, the simplex sometimes
takes an uphill step, while a downhill steps always is taken. This way it is able to escape from
local minima and it has a better chance of finding the global minimum. No guarantee, however.
AmoebaFitter is also able to handle limits on the parameter range. Parameters stay within the
limits when they are set. See also Numerical Recipes, Ch. 10.4 and 10.9. Syntax: myFitter =
LevenbergMarquardtFitter(xDataPoints, model)

3.10.7.6. Obtaining a model fit to 1D and 2D data

1D fit example

Example 3.4 shows how a polynomial can be fitted to a set of 1D data.

The Numeric library

68

Create some data
x = Double1d([3,4,6,7,8,10,11,13]) # These are the positions of the 1D data
y = Double1d([2,4,5,6,5,6,7,9]) # These are the data values at each position
The created arrays are:
print x # [3.0,4.0,6.0,7.0,8.0,10.0,11.0,13.0]
print y # [2.0,4.0,5.0,6.0,5.0,6.0,7.0,9.0]

Decide that we will fit it with a polynomial

model = PolynomialModel(3)

The Fitter class expects the -'x' data point positions and the model.
In the binomial case, a Double2d array of x,y values is required.
The Fitter class deals with non-iterative models only.
[Note: For non-linear models the fitter toolbox provides
the AmoebaFitter and the LevenbergMarquardtFitter]

fitter = Fitter(x, model)

Now we fit the data values(y); the returned array contains the parameters
that make up a 3rd degree polynomial.
Note: the model that we fed into the fitter is modified along the
way, such that it contains the computed parameters of the polynomial.

poly = fitter.fit(y)

Printing the fit results (truncate to 3 decimal places to fit in line)

print poly # [-6.921,4.463,-0.543,0.022]

-..and also getting the Chi-squared. The fitter has already been applied
and we can use the getChiSquared() method to determine the fit

print -"Chi-Squared = -", fitter.getChiSquared()
Chi-Squared = 0.9933079890409999

The fitted polynomial can then be applied as a function to interpolate
between fitted points. Interpolate at -'n' uniformly spaced x values

n = 100
u = MIN(x) + Double1d.range(n + 1) * ((MAX(x) -- MIN(x)) -/ n)

Apply the model
umodel = model(u)

Now we can plot the data (x vs y) and the polynomial fit (u vs umodel)
Set up the plot space
plot = PlotXY()
Plot x against y in blue.
plot[0] = LayerXY(x, y, name = -"Data")
Overlay a second plot showing the polynomial fit in green.
plot[1] = LayerXY(u, umodel, name = -"Fit", color = java.awt.Color.green)

Example 3.4. A 1D polynomial fit.

The final plotted display should look like Figure 3.2

The Numeric library

69

Figure 3.2. Illustration of polynomial fit.

2D fit example

For 2D data we express the positions at which we have data by a Double2d array -- this is basically
a list of x, y positions at which we have known data values that we will fit a 2D Gaussian to. So the
x array in our previous example is now replaced by a 2D array of data positions. The y array has the
data values at those positions.

In Example 3.5, an array with values that provide a Gaussian with random noise added is fitted by
the Gauss2D model.

The Numeric library

70

We start by making a little routine that creates the data for us.
The output contains the -'xy' positions as a Double2d array and the data
values are held in in the Double1d array -'y2'.
def makeData():
Define some constants
 N = 9 # We will create an array that is NxN
 a0 = 10.0 # Amplitude of gaussian
 x0 = 0.7 # x position of gaussian
 y0 = --0.3 # y position of gaussian
 s0 = 0.4 # Width
Make data with an underlying gaussian model.
 x = Double1d.range(N) -/ 2.0 -- 2 # create x values
 NN = N * N # the number of x and y positions (NxN)
 xy = Double2d(NN, 2) # Create empty array of xy positions
 ym = Double1d(NN) # Create empty array for amplitude of pure Gaussian
 y2 = Double1d(NN) # Create empty array for Gaussian with noise (our
data).
These have amplitude values only.
 rng = java.util.Random(12345 -) #provide a random amplitude (noise)
To add to our model Gaussian with a seed value.
 si = 1.0 -/ s0 #just inverse of Gaussian width to be used
 for i in Int1d.range(NN):
 xy[i,0] = x[i -/ N] # Fills x positions for our data array
 xy[i,1] = x[i % N] # Fills y positions for our data array
 xx = (xy[i,0] -- x0 -) * si
 yy = (xy[i,1] -- y0 -) * si
 ym[i] = a0 * EXP(-0.5 * xx * xx) * EXP(-0.5 * yy * yy)
 # Fills 1d array with amplitude values...
 y2[i] = ym[i] + 0.2 * rng.nextGaussian() # -...and adds noise to it
 return xy,y2

Create the array with a 2D gaussian in it using the above routine.
a = makeData()
The first item in -"a" has the xy positions in it
xy=a[0]
The second item has the data values
y2=a[1]

Define the model to be used in the fit
gaus2d = Gauss2DModel()

Define the fitter: LevenbergMarquardt, a non-linear fitter is needed for
a gaussian fit. We could use an AmoebaFitter here also --- user preference.
fitter = LevenbergMarquardtFitter(xy, gaus2d)

A useful way to make data formats prettier for the printout of our results
F = DataFormatter()
Find the parameters
param = fitter.fit(y2)
print -"Parameters %s" % F.p(param)
Parameters [9.645 0.694 --0.300 0.413]
print -"Parameters are: gaussian height, x position, y position, width"
#Parameters are: gaussian height, x position, y position, width
Find the standard deviations of the all four parameters...
stdev = fitter.getStandardDeviation();
print -"Stand Devs %s" % F.p(stdev)
#Stand Devs [0.218 0.009 0.009 0.007]

-...and the chi-squared for the fit
print -"ChiSq %s" % F.p(fitter.getChiSquared())
#ChiSq 3.552

Example 3.5. A 2D Gaussian fit

3.10.8. Spectral fitting

This section describes how to use the spectrum fitting toolbox in HCSS to fit a spectrum. To access the
toolbox it will need to be loaded from the into the session. This can be done by typing in the following
in the JIDE command line interface.

The Numeric library

71

from herschel.ia.toolbox.spectrum.fit import *

The toolbox is continuing to be developed and it is expected that new features will be added to what
is described here. Features that are certain to be added are listed in the 'To Be Added' section below.

3.10.8.1. Data format

The data that is used by the classes can be any Java or Jython object, as long as it implements the
SpectralSegment interface (e.g., extracted from a Spectrum1d object).

You can create a SpectralSegment using a little helper class, FitData. This class takes
two Double1d's (representing wavelength/frequency and flux/values) and wraps them into a
SpectralSegment.

If you have two Double1d arrays, x and y, then the statement:

data = FitData(x,y)

creates a SpectralSegment.

3.10.8.2. General usage

In general, data to be fitted contains three kinds of features:

• a background/continuum level

• >one or more spectral lines

• noise

These can be fitted using the SpectrumFitter tool.

The purpose of the SpectrumFitter is to fit models to the background and the spectral lines in
such a way that when the models are subtracted from the data, the residual only contains the noise.

Although fitting spectral lines and the background does not differ mathematically, the two cases must
be handled separately. That is, you better first fit the background, subtract that from the data, and only
then fit the lines.

3.10.8.3. Fitting your data

As the user you interact with the SpectrumFitter tool. To have more control over the models (see
below) you can also interact with the class SpectrumModel.

Note that you normally must know where (approximately) you expect a spectral feature in your data
to be, plus its expected shape, and rough shape parameters. So, an initial guess is required - if this
guess is completely wrong you may end-up fitting noise rather than your spectral lines.

The SpectrumFitter tool provides graphical information on the fitted data to assess the fits that
are made.

3.10.8.4. A simple fit case

The simplest spectral fitting case involves data with one spectral line and with no background/
continuum.

The basics are, a) create a SpectrumFitter; b) add models to it.

The Numeric library

72

We assume you know that you have a SpectralSegment which contains the spectral line has a
Gaussian shape that is located near x0, has an amplitude of about a0, and a width of about s0 (the exact
values of a0 and s0 are not so important). The following is an example:

x = Double1d.range(15)
y = Double1d([0.0,0.1,-0.1,0.05,0.1,0.2,1.0,3.6, \
 2.5,1.5,0.7,0.0,0.1,-0.13,-0.01])
data=FitData(x,y)
This has a peak near value number 7 with an
amplitude of 3.6 and a width close to 1.
x0 = 7.0
a0 = 3.6
s0 = 1.0
These are our initial guesses.

We can fit this using the SpectrumFitter:

sf = SpectrumFitter(data) # note that a plot of the data is
 # automatically drawn in a separate window
see Figure 3.3
sf.addModel('gauss', [a0, x0, s0]) # note the square brackets
 # and the order of the parameters
print sf # this prints out the fitted Gaussian parameters
 # and their standard deviations.
Fit results:
 # p0 = 3.3890821693817763, stddev= 0.2568383201833762
 # p1 = 7.444866152807009, stddev= 0.09308190130219554
 # p2 = 1.0796490360796016, stddev= 0.09333220808910589
for the amplitude, position and width respectively.

Figure 3.3. Spectrum fit data setup.

The result of adding the model is the production of two further plots. One plot contains:

• the data (blue line)

• the input model as given by you (green line)

• the resulting fit (red line)

The second plot displays the residuals. See Figure 3.4 and Figure 3.5.

Figure 3.4. Data fit - data in blue, input model in green, fit in red

Figure 3.5. Residuals on the fitted data

3.10.8.5. Available models for fitting

There are a number of models available for fitting. In order to see the available models in the system
at any time you can use the following.

 print SpectrumFitter().info()

This command provides a listing of available models that can be fit. If we pick one of these models
we can get more information on it. For example we can look to fit a polynomial -- the 'poly' model.

The Numeric library

73

 print SpectrumFitter().info('poly')

This indicates there is one constructor (only one way of calling it). The order needs to be given in one
array and initial parameter guesses in a second array.

from herschel.ia.toolbox.spectrum.fit import *
from herschel.ia.toolbox.spectrum.fit.testdata import *
#There are 7 inbuilt datasets for spectrum fit checking and illustration
m = MakeData(3) # integer value represents different models
m.addNoise(10) # add some noise to the data
now do fit --- the guess and final model fit are displayed overlayed on the data
sf = SpectrumFitter(m) # setup spectrumfitter
mod=sf.addModel('poly',[3],[1.0,0.0,0.0,0.0])
3rd order poly model and guess for fit parameters
sf.doFit() # fit displayed.
print sf # provides fitted parameters with their standard deviations

The models currently available and an illustration of their use is given in Table 3.1.

Table 3.1. Spectrum fit model types and their use.

Name Example use -- names in brackets should be
replaced by numerical values representing

the initial guess for the parameter(s)

'atan' mod=sf.addModel('atan',[amplitude,slope,offset])

'exp' mod=sf.addModel('exp',[amplitude,exponent])

'gauss' mod=sf.addModel('gauss',[amplitude, position, width])

'gaussmix' mod=sf.addModel('gaussmix',[amplitude, position, width])

'harmonic' mod=sf.addModel('harmonic',[Order,Period],[params]).

Number of parameters provided = 2*order + 1

'lorentz' mod=sf.addModel('lorentz',[amplitude, shift, gamma])

'pade' mod=sf.addModel('pade',[Num,Denom],[params]).

Number of parameters provided = Num + Denom + 1

'poly' mod=sf.addModel('poly',[Order],[params]).

Number of parameters provided = Order + 1

'power' mod=sf.addModel('power',[Degree],[param]).

Number of parameters provided = 1

'sinc' mod=sf.addModel('sinc',[amplitude, position, width])

'sine' mod=sf.addModel('sine',[frequency, cosine amp, sine amp])

'sineamp' mod=sf.addModel('sineamp',[frequency], [two params])

'sinemixed' mod=sf.addModel('sinemixed',
[frequency, cosine amp, sine amp])

3.10.8.6. Multiple line fitting

If, in the simple line case above, the residual is only noise, you have completed your fit. If not, then
there may be another spectral line in your data. From the original data or from the residual you can

The Numeric library

74

often determine the initial parameters of a second line: a1, x1, s1. In order to include a fit to this second
line also we can simply add another model to the fitter by using the 'addModel' method:

sf.addModel('gauss', [a1, x1, s1])

This will update the fit and plots automatically. In the first plot you will now also see the two models
separately using the fitted parameters as black lines.

3.10.8.7. Background/continuum fitting

Background/continuum fitting is not treated differently from the above. The only difference is the
model used to fit the background.

When being combined with spectral line fits, it is best to fit the background first then add the spectral
line model fit. If you don't, the fit of your spectral lines will initially be quite poor.

One model to use for a background is a polynomial. For a first order Polynomial (y = c0 + c1*x):

sf.addModel('poly', 1, [c0, c1]) # the second value is the polynomial order

For a higher order (n):

sf.addModel('poly', n, [c0, c1, -..., cn])

3.10.8.8. Fit of line and continuum

We can fit a line and continuum simultaneously by adding more than one model before doing the fit
(e.g., a polynomial and gaussian model). We can then do a global fit. An example is given below.

#import the appropriate packages
from herschel.ia.toolbox.spectrum.fit import *
from herschel.ia.toolbox.spectrum.fit.testdata import *
m = MakeData(5) # values represent different models
m.addNoise(10) # add noise to the model
sf = SpectrumFitter(m)
mod=sf.addModel('gauss',[4.0,30.0,1.0]) #also plots initial guess
mod=sf.addModel('gauss',[1.2,10.0,2.0]) #second line
mod=sf.addModel('poly',[3.0],[0.0,0.0,0.0,0.0]) # polynomial for continuum
sf.doGlobalFit() #fits all models at the same time --- residual plot also shown

The results of this are a plot of the data, initial guess and fit (in red) plus a separate plot of the fit
residuals (see Figure 3.6 and Figure 3.7).

The Numeric library

75

Figure 3.6. Fit using multiple models. In black are the individual guesses, in green the total initial guess
and in red the final fit.

The Numeric library

76

Figure 3.7. Residuals on the multiple model fit data shown in Figure 3.6.

3.10.8.9. Changing parameters

If you wish to change the initial parameters of any of the models, you can use the setParameters
method of the models. To use them you must have a reference (label) to the model. This is in fact the
return value of the addModel operation. In the example below, the label is simply 'm':

m = sf.addModel(...) # m is now a reference we can do things with

To change the initial parameters of the model

m.setParameters([...])

A new fit will be made on the fly and your plot display updated.

3.10.8.10. Removing fitted models

Removing models can only be done when you have a reference to the Model (as above). There are
two ways to remove models:

sf.removeModel(m)

Or:

m.remove()

The Numeric library

77

3.10.8.11. Using fit parameters

Once you are satisfied with a fit, you can set the fitted parameters as the default for the models:

m.useResults()

This may be useful when using the same models for a following dataset.

3.10.8.12. Subtracting a fit

You can subtract the model from the dataset:

sf.subtractModel(m)

This also removes the model from the fitter tool.

3.10.8.13. New data

Once you are satisfied with your models, you may want to apply them to a different dataset as well.
This can be done with the operation:

sf.setData(otherData) # this replaces the data held in the
 # SpectrumFitter with the SpectralSegment
 # held in the variable -'otherData'

Once again, the fit will be redone on the fly.

3.10.8.14. Functions to be added in the future

>The following features are likely to be added to the system:

• add more model types

• subtract a model from the data, continue with the residuals;

• fix any of the given parameters in a model;

• select parts of the X-axis to include/exclude in the fit;

• make an initial guess for the model parameters.

3.10.9. Masks
The Numeric library offers two classes for handling data masks:

• FixedMask represents a traditional mask definition, with different masks (up to 64) defined at
different bit offset positions. Note that this class only stores mask definitions, with mask data stored
in different arrays. For more information and several examples, see the entry in the User's Reference
Manual: Section 2.125.

• PackedMask instead stores the mask data itself. There is in principle no limit on the number
of masks that can be stored in a single PackedMask object. For more information and several
examples, see the entry in the User's Reference Manual: Section 2.260.

3.10.10. Matrices
Most of the utilities for dealing with matrices are provided by the numeric.toolbox.matrix package.
However, we must not forget that simple vectors are just matrices with just one row (or one column),

The Numeric library

78

so even vector classes like Double1d provides tools like a dotProduct method for scalar
multiplication of vectors:

x = Double1d([1,2,3,4])
y = Double1d([1,3,5,7])
print x.dotProduct(y) # 50.0

We now take a closer look at the numeric.toolbox.matrix package and its classes and function objects
for matrix manipulation.

Transpose

To transpose a matrix do the following:

A = Int2d([[1,2],[3,4],[5,6]])
print TRANSPOSE(A) # [[1,3,5],[2,4,6]]

Determinant

Use this function to find the determinant of a square matrix given by a Double2d array.

A = Double2d([[1,2],[3,4]])
print DETERMINANT(A) # --2.0

Note: This currently does not work for complex matrices.

Inverse

You can find the inverse of a square matrix as follows:

A = Float2d([[1,2],[3,4]])
print INVERSE(A) # [[-2.0,1.0],[1.5,-0.5]]

Note: This currently does not work for complex matrices.

Matrix multiplication

Use MatrixMultiply for matrix multiplication:

x = Double2d([[2,4,6],[1,3,5]])
y = TRANSPOSE(x)
z = MatrixMultiply(y)(x)
print z

It is important not to use the Jython * operator for matrix multiplication. However, the + operator
performs element-wise addition as expected.

It is also possible to multiply a matrix by a vector as follows (since, as we already pointed out, a vector
is nothing more than a matrix with just one row or column):

a = Double2d([[1,2,3],[7,5,4],[7,4,9]])
b = Double1d([4,1,7])
print MatrixMultiply(b)(a) # [27.0,61.0,95.0]

Warning

The correct syntax to multiply matrix a by matrix b is MatrixMultiply(b)(a).

The Numeric library

79

LU decomposition

For an m x n matrix A, LU decomposition returns matrices P, L and U so that PA = LU:

• P is a permutation matrix, so that the product PA results in a permutation of A's rows. In the class
described below, P is replaced by an equivalent permutation vector p.

• L is a unit lower triangular matrix.

• U is an upper triangular matrix.

The LUDecomposition class provides this functionality. The following example shows how it is
used:

A = Double2d([[1,1,1],[1,2,3],[1,3,6] -] -)
print A
[
[1.0,1.0,1.0],
[1.0,2.0,3.0],
[1.0,3.0,6.0]
-]
d = LUDecomposition(A)
print d.l # Getting L
[
[1.0,0.0,0.0],
[1.0,1.0,0.0],
[1.0,0.5,1.0]
-]
print d.u # Getting U
[
[1.0,1.0,1.0],
[0.0,2.0,5.0],
[0.0,0.0,-0.5]
-]
print d.pivot # Getting the permutation vector
[0,2,1]

You can easily verify that the result is correct:

print MatrixMultiply(d.u)(d.l)
[
[1.0,1.0,1.0],
[1.0,3.0,6.0],
[1.0,2.0,3.0]
-]

LU gives A with the row order changed as described by the permutation vector: row 0, then row 2,
then row 1.

Eigenvalue decomposition

The EigenvalueDecomposition class provides eigenvalues and eigenvectors of a real matrix.
The following examples shows how it can be used:

A = Double2d([[1,1,1],[1,2,3],[1,3,6]] -) # Creating matrix
evd = A.apply(EigenvalueDecomposition()) # Performing decomposition
D = evd.d # Obtaining the block diagonal eigenvalue matrix
V = evd.v # Obtaining the eigenvector matrix
print evd.imagEigenvalues # Printing the imaginary parts of the eigenvalues
print evd.realEigenvalues # Printing the real parts of the eigenvalues
print evd.vcond # Printing the condition (2-norm) of the matrix, defined as
 the ratio of the highest and smallest singular value

The Numeric library

80

If A is symmetric, then A = V D V T, where the eigenvalue matrix D is diagonal and the eigenvector
matrix V is orthogonal.

If A is not symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvalues in 1-

by-1 blocks and any complex eigenvalues, λ + i µ, in 2-by-2 blocks, [λ, µ; -µ, λ]. The columns of V
represent the eigenvectors in the sense that A V = V D. The matrix V may be badly conditioned, or
even singular, so the validity of the equation A = V D V -1 depends upon vcond.

Matrix equations

Use MatrixSolve to solve matrix equations. For example, if you wanted to solve the matrix
equation: A.X = B:

x = MatrixSolve(b)(a)
print x # [-0.9838709677419352,0.5322580645161287,1.3064516129032258]

A note on naming conventions

You might find a bit confusing that some names, like dotProduct, start with a lowercase letter and
have all the other initials capitalised, while other names, like MatrixMultiply, have all initials
capitalised, and there is a fair share of names like TRANSPOSE with all uppercase letters. You can
find more about these quirks in the appropriately named Section 1.19.

3.10.11. Random numbers
Note

For simplicity we will speak of random numbers throughout this section, even if we
know very well that a computer can only create pseudorandom numbers. Discussing the
subtleties of generating (pseudo-)random numbers on a computer is beyond the scope of
this section.

To create random numbers with DP we first have to instantiate a generator. There are three generators
currently available:

• RandomUniform: generates random numbers in the range 0 <= x < 1 if invoked without
parameters, like this:

myGenerator = RandomUniform()

It is also possible to give a maximum value different from 1 to have random numbers created in
the range 0 <= x < max:

myGenerator = RandomUniform(max)

• RandomGauss: generates random numbers following a Gaussian distribution.

• RandomPoisson: generates random numbers following a Poisson distribution of specified mean
value greater than zero. It is instantiated like this:

myGenerator = RandomPoisson(mean)

It can only produce integer-type random numbers (int, short and long).

In all cases what is being used under the hood is the Donald Knuth generator (see The Art of Computer
Programming, Volume 2, Section 3.2.1) as implemented in the java.util.Random class.

Once we have a generator in place, how do we create random numbers? The handy feature is that we
can create a single scalar random number or an array of any size and dimension we like (as long as it

The Numeric library

81

fits in memory). Just put the type of numeric value you want as input, and the output will be the same
thing, but populated with random numbers. A few examples:

myGenerator = RandomUniform() # Generating random numbers between 0 and 1
print myGenerator(0.0) # We want a floating point random number...
0.8754230073094597 # -...and there it is (don't expect to get the
 # same number)
x = Double1d(10) # Now for an array of ten doubles...
print myGenerator(x) # We leave it to you to see the result
print myGenerator(Double1d(10)) # Of course you can create the input on the fly
print myGenerator(Int1d(100)) # What's the result of this one? Does it make sense?

You might have been puzzled to see a hundred zeroes scroll on your screen after executing the last
command of the example. It's not so surprising if we think that we asked the computer to produce
integer random numbers between zero and one, excluding one. The choice of possible values was
pretty limited.

If we want to change the seed of the random number generator we can do so by the setSeed method,
which takes a long parameter as an input:

myGenerator.setSeed(54653856L)

3.10.12. Numeric integration
Numeric integration in DP is implemented via an Integrator interface. The function to be integrated
has to be declared as a class of a RealFunction containing a method called calc which takes one
argument, the independent variable.

The following Integrators for a standard integration interval [a,b] are available:

• RectangularIntegrator

• RombergIntegrator

• SimpsonIntegrator

• TrapezoidalIntegrator

• GaussianQuad4Integrator

• GaussianQuad5Integrator

• GaussLegendreIntegrator

All these integrators have two arguments for initialisation: the lower limit of integration (a) and the
upper limit (b). Once the integrator is initialised and the user function is defined then to perform the
integration a method called integrate() is executed with an argument the user function. This is shown
in the following example:

from herschel.ia.numeric.toolbox import RealFunction

class MyFunction(RealFunction):
 def calc(self,x):
 return x*x

f = MyFunction()
a = --3.0
b = 3.0
i = RombergIntegrator(a, b)
print i.integrate(f) # 18.0
print -"Analytical answer: -",(b**3 -- a**3)/3.0

The following special cases of numeric integration are also implemented:

The Numeric library

82

• GaussHermiteIntegrator: for integration with limits (-Inf,+Inf) of a special class of functions

• GaussLaguerreIntegrator: for integration with limits [0,+Inf) of a special class of functions

The input for the integrator initialisation is α.

• GaussJacobiIntegrator: for integration with limits [-1,1] for a special class of functions

The input for the integrator initialisation are α and β.

If a tabular data of x,y is to be integrated then it is necessary to interpolate first and then apply a
suitable integrator. This is shown in the following example:

from herschel.ia.numeric.toolbox import RealFunction

x = 0.1 + 1.9*Double1d.range(11)/10.0 # 11 points between 0.1 and 2.0
y = 1.0/x

f = CubicSplineInterpolator(x,y) # interpolate first.
a = 0.1
b = 2.0
integrator = SimpsonIntegrator(a, b) # use Simpson's rule

res = integrator.integrate(f) #
print -"Result: -",res
print -"Analytical result: -",LOG(b) -- LOG(a)

3.10.13. Interpolating discrete data
If the objective is to integrate discrete data, this can be done by means of a FitterFunction, which
is a function that interpolates the given data, with a specific model. For example:

from herschel.ia.toolbox.fit import FitterFunction

x, y are Double1d that represent the abscissas and values of our data
f = FitterFunction(x, y, PolynomialModel(3)) # Uses a Fitter
g = FitterFunction(x, y, PolynomialModel(2), FitterFunction.AMOEBA)
Uses an AmoebaFitter

If more precise fitting is needed, you can do it by yourself, and then pass the already built fitter (or
the model) to the FitterFunction:

x, y are Double1d that represent the abscissas and values of the data
model = CubicSplinesModel(x)
fitter = AmoebaFitter(x, model)
fitter.setSimplex(params, range) # customize the fitter as you want
fitter.fit(y)
f = FitterFunction(fitter) # or f = FitterFunction(model)

The Numeric library

83

If one of the defined interpolators suites your needs, it can be used directly, instead of a
FitterFunction. For example:

x, y are Double1d that represent the abscissas and values of the data
f = CubicSplineInterpolator(x, y)

3.11. Example programs
The HCSS distribution includes a number of Jython example programs that demonstrate not only basic
arrays functions but also use of filters, fitters, Fourier transforms, etc. They are currently kept at ftp://
ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts. These are:

numeric_whatisnew.py
Example of the newest components

of the numeric package.

numeric_demo.py Example of how to use the 1D functionality.

numeric_2D_demo.py Example of how to use the 2D functionality

convolution_demo.py
Example of how to use the
convolution functionality

polyfitter_demo.py Example of how to perform polynomial fitting

3.12. Mathematical operations on spectra

3.12.1. Introduction
The spectrum arithmetic toolbox allows to combine Herschel spectrum data. Operations are
performed either on subclasses of spectrum datasets (Spectrum1d, Spectrum2d), on
cubes (SimpleCube, SlicedCube), or on products containing such data structures (e.g.,
HifiTimelineProduct).

Operations on Spectra include Selection and Arithmetic Operations.

• Selection: Provide means of selecting those spectra that can be combined. For instance HIFI cold-
load spectra, ON spectra, etc. Selection can be applied to datasets, such as rows of a Spectrum2d,
or to tables within a product, such as datasets included in a HifiTimelineProduct.

• Arithmetic Operations: Provide means of combining the selected spectra. This includes:

• Basic arithmetic operations such as addition, subtraction, multiplication, or applications of scalar
functions.

• Statistical operations such as mean, median, variance, standard deviation or percentiles for
samples / selections of spectra.

• Data transformations such as smoothing or frequency re-sampling.

It is planned that the arithmetic toolbox will provide generic functionality for all instruments (HIFI,
PACS and SPIRE). Instrument-specific behaviour will be pre-configured by defaults in the system
but can also be overwritten by the user.

3.12.2. Toolbox primer: selection
We present the power of the toolbox with a few code examples. Assume we have started a jide session
and loaded a Spectrum2d dataset with name 'data' from a local pool or a database.

We might want to work only with a sub-set of the spectra included in our data. For a Spectrum2d
this means we have to (1) select specific rows from the data and (2) combine them into a new

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_whatisnew.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_2D_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/convolution_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/polyfitter_demo.py

The Numeric library

84

dataset by applying some arithmetic operations on the selection. Task (1) is performed with the
SelectSpectrum task,

from herschel.ia.toolbox.spectrum import SelectSpectrum

The SelectSpectrum-task can be configured and used in many different ways. A frequent usage is to
identify all the rows of the dataset that have a specific value in a particular column:

ds1 = SelectSpectrum()(ds=data, selection_lookup={"bbtype":[3260]})

The example above selects all the rows with a value=3260 in the column named 'bbtype'. Hence, the
selection is performed by using the keyword selection_lookup in the call of the task, using what is
called a python dictionary. This py-dictionary contains the name of the attribute to look up as key
(column name) and the attribute value as value. All the rows in the resulting dataset ds1 have values
3514 in the bbtype column.

Using py-dictionaries suggests that we may combine several selections by adding further lookup
properties to the dictionary. Indeed, all the rows in the dataset resulting from

ds1 = select(ds=data, selection_lookup={"bbtype":[3260],"buffer":[1]})

ds2 = select(ds=data, selection_lookup={"bbtype":[3260],"buffer":[2]})

have values 3260 in the bbtype column and values 1 in the buffer column (hence ds2 is a subset of
ds1). Note that the lookup values are specified as py-lists. By specifying a list of admissible values
those spectra are selected that match one of values found in the list. As will be explained below, there
are other selection models better suited for floating point values.

3.12.2.1. More on selection methods

• Lookup specific attribute value(s):
For one (or several) discrete criteria use the keyword selection_lookup:

ds1 = select(ds=data, selection_lookup={"bbtype":[3413]})

Spectra with bbtype=3413 are selected and included in the result container.

ds2 = select(ds=data, selection_lookup={"bbtype":[3412, 3413]})

Spectra with bbtype=3412 or bbtype=3413 are selected and included in the result container.

ds3 = select(ds=data, selection_lookup={"bbtype":[3413],"buffer":[1]})

Spectra with bbtype=3413 and buffer=1 are selected and included in the result container.

• Index selection:
If you want to select specific spectra included in the container by its index, use the keyword
selection_index:

ds1 = select(ds=data, selection_index=[1,5,12])

The spectra with indices 1, 5, 12 are selected and included in the result container.

• More general selection model:
Use the keyword selection and use one of the selection models found in the package

herschel.ia.toolbox.spectrum.selections.models

The Numeric library

85

chopperSelection = RangesSelectionModel("Chopper", [-4.4, 5.9], 0.1)

The first parameter specifies the name of the attribute, the second parameter gives an array of centers
of the ranges and with the third parameter you specify the radius of the ranges to be considered. In
summary, this ranges selection model will identify all spectra for which the attribute "Chopper" has
values located within a distance r = 0.1 around one of the centers [z1=-4.4,z2=5.9].

ds4 = select(ds=data, selection=chopperSelection)

For further selection models see further down in the documentation.

3.12.3. Toolbox primer: average spectra
After selecting the data, we can move to task (2), the application of some arithmetic operations
to the selected spectra. For example, if we now want to average the selection, we can invoke the
AverageSpectrum task:

from herschel.ia.toolbox.spectrum import AverageSpectrum

avg21 = AverageSpectrum()(ds=ds2)

The selection explained in task (1) can also be included in the average spectrum task, thus allowing
to perform selection and averaging in one step:

avg22 = AverageSpectrum()(ds=data, selection_lookup={"bbtype":[3260],"buffer":[2]})

This result is identical to the separate operations. It includes a single row with the average flux. The
resulting dataset contains exactly the same columns as the input dataset. Thus, what values should we
fill in the columns not affected by the operation? This is determined by a default action that depends
on the input data type (sub-class of Spectrum2d in our example). For the Spectrum2d, the default
action consists of copying the values found in the input spectrum.

This way of processing the data is general: we always try to keep as much information as possible.
All columns and also the meta data are set in a type specific, instrument specific, or user specific way.
The output data type is the same as the input data type.

The toolbox operations are not restricted to operations on Spectrum2d as our example may suggest.
In all the operations in the herschel.ia.toolbox.spectrum no reference is made to Spectrum2d. The
operations only refer to a specific contract (a java-interface), the SpectrumContainer-interface.
Spectrum2d also fulfills this contract. All the datastructures that obey this contract can be processed
by the arithmetic tools. The efforts to have this contract implemented for other data types is relatively
small.

3.12.4. Toolbox primer: subtract spectra
Other arithmetic operations are available such as pair operations (subtract, divide, pair-wise add/
multiply) and scalar operations (add/subtract or multiply/divide by a scalar quantity). Here is an
example that shows how to use the subtraction:

from herschel.ia.toolbox.spectrum import SubtractSpectrum

diff12 = SubtractSpectrum()(ds1=ds1, ds2=ds2)

Here, the datasets ds1 and ds2 either must have the same number of rows, or one of them must have
only a single row. If they have the same number of rows, the subtraction is carried through for the flux
data on a row-by-row basis. If the second contains only one row, this row is subtracted from all the
rows in the first dataset (or the other way around).

The same task can also be used for subtracting a scalar:

The Numeric library

86

ds_m2= SubtractSpectrum()(ds=data, param=2.0)

Here the number two is subtracted from all the flux columns in our data.

3.12.5. Toolbox primer: divide spectra
The use of the DivideSpectrum -task is identical:

from herschel.ia.toolbox.spectrum import DivideSpectrum

ratio12 = DivideSpectrum()(ds1=ds1, ds2=ds2)
ds_d2 = DivideSpectrum()(ds=data,param=2)

3.12.6. Toolbox primer: add and muliply spectra
Similarly, for multiplication and addition we can import tasks that can be used in a similar fashion.

from herschel.ia.toolbox.spectrum import MultiplySpectrum
from herschel.ia.toolbox.spectrum import AddSpectrum

These tasks work in exactly the same way.

3.12.7. Toolbox primer: resample and smooth spectra
Additional tasks included in the toolbox include smoothing, frequency resampling or extracting/
cutting the spectra. The system again provides the instance

from herschel.ia.toolbox.spectrum import ReamplingFrequency

resample = ReamplingFrequency()

which allows for resampling non-equidistant grids to linear grids and the other way around.
Resampling to a linear grid with given resolution (width) would look like

data_resampled = resample(ds=data, density=true, resolution=1.0)

where the resolution is given in the same units as the frequencies in the data. The density parameter
indicates whether the flux is specified as a per channel (true) or as a per frequency unit quantity (false).

For the smoothing, the instance

from herschel.ia.toolbox.spectrum import SmoothSpectrum

smooth = SmoothSpectrum()

is again loaded automatically by the system and it can be used by

data_smoothed = smooth(ds=data, filter="box", width=10)

3.12.8. Toolbox primer: statistics on spectra
Finally, the toolbox also allows to compute the statistics for the spectra included in a spectrum
container.

The Numeric library

87

from herschel.ia.toolbox.spectrum import SpectrumStatistics

statistics = SpectrumStatistics()

There are two alternative ways to compute the statistics for the spectra included in a spectrum
container, the statistics computed on a per channel basis over all the spectra included in the container,
or the statistics computed for each spectrum included in the container across the channels, possibly
restricted to a range.

stats = statistics(ds=data)

The result of this operation stats is a product which contains the per channel statistics in Spectrum1d
and the across channel statistics in a suitable TableDataset.

3.12.9. Summary of toolbox operations
Operations are available both at the task level and at the java level. The tasks are most suited for
being used from the command line. The java classes which are wrapped by the tasks might be more
helpful when developers want to integrate the functionality into other modules. The java classes will
be discussed in the developer's sections.

• SelectSpectrum (use select): Select spectra from a container and create a new spectrum container
of the same runtime type.

• AverageSpectrum (use avg): Average the spectra included in the container on a channel by channel
basis. Restrict the average to specific selections or define groups and apply the average on a per
group basis.

• AddSpectrum (use add): Pairwise or scalar add.

• SubtractSpectrum (use subtract): Pairwise or scalar subtract.

• DivideSpectrum (use divide). Pairwise or scalar divide.

• MultiplySpectrum (use multiply): Pairwise or scalar multiply.

• ResampleFrequency (use resample): Resample each spectrum included in the container to a new,
not necessarily linear grid.

• SmoothSpectrum (use smooth): Smooth each spectrum included in the container.

• ExtractFreqRanges (use extract): Cut the spectra included in the container to given frequency
intervals.

• ReplaceFreqRanges (use replace): Replace spectrum information in one container by information
from another.

• SpectrumStatistics (use statistics): Compute statistics of the spectra in the container - either on a
per channel basis or across the channels.

3.12.9.1. Remarks

1. Fitting: There is a separate documentation on fitting: see the module ...

2. Datastructures: As indicate in the primer, all the data structures that fulfill the contract a spectrum
container must have can be processed by the toolbox modules. Currently:

• Spectrum1d: implements contract.

The Numeric library

88

• Spectrum2d: implements contract.

• Cubes: under consideration.

• Other instrument-specific data structures (such as HifiTimelineProduct or
SpectrometerDetectorSpectrum): under consideration.

89

Chapter 4. Introduction to Tasks
This chapter aims to be an introduction for users to the Task framework. Writing Tasks allows us to
create modular and reusable code for data reduction and analysis, easier to distribute and to be used
by people other than the author.

4.1. The Task framework
When we were talking about OOP in Chapter 1, we used as example a very real and tangible object like
an airplane. However, we mentioned that objects can also represent more abstract concepts. Dealing
with astronomical data presents us with such a situation. When reducing or otherwise treating our data
we go through a succession of self-contained operations. Data enter each of these "boxes" in a certain
state and exit in a modified state. We might want to have a general template to represent such boxes,
with a way to specify input and output parameters and check for their consistency. It would also be
great to have some form of history to track what we have been doing to a given set of data, without
the need to write it in a separate place or try and squeeze the information in the file name. Another
handy tool would be a command to get help on that particular "box", to know at a glance what it does
and what kind of parameter it expects.

The Task framework provides it all. Here we can see many concepts of OOP in action: reusable code
(that of the Task class) to create modular pieces of software (our tasks) easy to plug together into
more complex structures. In the following sections we will learn how to write a Task in Jython.

4.2. My first Task

4.2.1. Before the Task

Before writing a Task we should have something to turn into a Task. Paste the following code into
your HIPE Editor view and then execute it with the double arrow button in the HIPE toolbar.

Introduction to Tasks

90

#--
Average function
Takes a TableDataset as input
Returns a Double1d (1D array of real numbers)
in which each row is the average of the values
in the input table columns
#--
Routine for calculating the average
def average(table):
 columns = table.columnCount
 divider = 1.0 -/ columns
 result = Double1d(table.rowCount)
 for column in Int1d.range(columns):
 result.add(table.getColumn(column).data)
 return result.multiply(divider)

Routine for creating the initial table
def createTable():
 # Create array x (0.0, 1.0, 2.0, 3.0, 4.0)
 x = Double1d.range(5)
 columns = 5
 # Create an empty table with a name
 table = TableDataset(description = -"A test table")
 # Iterate for the the number of columns to fill up the table
 # Using -" -"%i" % column -" creates a string name for the
 # table-column which contains the integer value contained in
 # the variable name that appears after -"%". In this case
 # column labels are just 0 1 2 3 4.
 for column in Int1d.range(columns):
 table["%i" % column] = Column(x)
 x = x + 1
 # Return the result, a table called -'table'
 return table

Routine for checking it out!!
def testAverage():
 # Create the table
 table = createTable()
 # Get the average and put it into an array called -'result'
 result = average(table)
 # Print the result (a 1D array)
 print -'Result:', result

Example 4.1. Before the Task

The above code has three functions in it. The important one is average, which does the "useful"
bit of computation, giving the average of each column of a TableDataset. The createTable
function simply creates the input TableDataset for average, while testAverage just calls the
two functions above and prints out the result.

You can see how the above works by the following. The brackets indicate it is a function.

testAverage() # Result: [2.0,3.0,4.0,5.0,6.0]

4.2.2. What makes a Task?
In the current implementation, a task has two components:

• Signature. Someone's signature is something by which we can unambiguously identify that person
(leaving forgery aside). In the same way a Task's signature, consisting of its name and the number
and type of input parameters, is a way to identify the Task with no ambiguity.

• Execution. This component is made of three methods, i.e. object member functions. First we have
the preamble, which checks the actual input parameter values. The execute method, as its name
suggests, contains the algorithm performing the useful stuff. Finally, the postamble checks the
output parameter values. The preamble, execute and postamble are empty by default (no input or

Introduction to Tasks

91

output parameters) and the developer usually writes only the execute method to perform a given
algorithm.

Note

Once parameters (input or output) receive a value, they are automatically reset to their
default values after the Task has been executed. Note in particular that also output
parameters are reset, so to keep a Task output for further inspection it has to be assigned
to a variable upon execution, like this:

result = myTask()

One more thing to note is the possibility to define new default values for Task parameters. If we have
a myInput integer parameter for our myTask Task, we can set its new default value to 42 like this:

myTask.setAsDefault("myInput", 42)

Now equipped with this knowledge we can turn our average algorithm into a Task.

4.2.3. An Example of a Task: Average
To turn our average algorithm into a Task we need to wrap the algorithm into a suitable piece of code.

We will name the task itself Average (a Task is a class, it is callable from the command line, and
generally class names are capitalised nouns). In our Average class we have no needs other than
setting up a signature and calling the average function as part of its execution.

One change from our function to our class is that we will explicitly have two parameters in the class
definition. One (in a similar way as the function) is our input table, but for the class we declare a
second parameter to hold the result of computing the average. As a requirement, we would like to
change our original average function as little as possible.

In the next paragraphs we explain (with code and comments) what packages are necessary to import,
how to define the Task (creation code), the method to perform a function (execute) and how we use
and test the Task (with different parameter access methods).

4.2.3.1. Importing definitions

For our given code we need to import definitions that are used by our task:

Import task framework classes.

from herschel.ia.task.all import * #

Some explanation about the import:

Here we import all the task framework classes we need. Task and TaskParameter classes will be
automatically imported with the all import statement.

Note that the preferred way to import the needed classes from the task framework is the so called 'all'
import statement:

from herschel.ia.task.all import *

4.2.3.2. Creation

First the code for the creation method called __init__ in python:

class Average(JTask): #
Creation method

 def __init__(self,name = -"averageTable"): #

 p = TaskParameter("table",valueType = TableDataset, mandatory = 1) #

Introduction to Tasks

92

 self.addTaskParameter(p) #

 p = TaskParameter("result",valueType = Double1d, type = OUT) #
 self.addTaskParameter(p)

And some explanations about the code...

Here we define a class Average which has JTask as a parent class. In other words, Average
inherits from JTask. Note that Jtask is a python file and has no JavaDoc therefore.
This line declares the creation method used by any instance of the Average class. self as the
first argument represents the instance that we are currently working on. The name argument is
the default value indicated (which the user can of course overwrite).

The rest of the code is the definition of the signature for the task Average and is as follows:

This line creates a parameter whose name is table, data type is TableDataset. This is a
mandatory parameter, i.e. an input parameter which must have a value before the algorithm is
performed. The preamble will verify that the user has set a value for this parameter and will
eventually warn the user that the execution of the task cannot take place.
Here we add the parameter to the signature of this task.
We proceed in a similar way for our second parameter (as mentioned above) which will hold the
result of our computation. The only difference for the second parameter is the type = OUT
statement which means that this parameter will hold an output value. As a side note the mode of
parameters can be IN, OUT or IO (both input and output), the default being IN.

4.2.3.3. Execution

First we examine the code for the execution method called execute as predefined in the JTask
base class. This simply follows on from the previous set of code that initiated the task and should be
added to the end of it:

Execute method itself

 def execute(self): #

 self.result = average(self.table) #

This is a declaration stating that we define the method execute. Actually we redefine the empty
execute method of JTask. This method has a parameter self which refers to the task we
are currently working with, rather than to any other parts of the current IA session.
This line means 'take this instance table value, perform the average operation on it and deliver
the result to this instance result'. So in one line we perform the whole operation using our own
actual parameters.

Together with the signature defined in the previous section we have set up our Task. The complete
script should look like the Task Average (below). We now load this into our session.

File: Average.py
#==
Import task framework classes.
from herschel.ia.task.all import *
from herschel.ia.task.JTask import JTask

class Average(JTask):
 #Creation method
 def __init__(self,name = -"averageTable"):
 #
 p = TaskParameter("table",valueType = TableDataset, mandatory = 1)
 self.addTaskParameter(p)
 p = TaskParameter("result",valueType = Double1d, type = OUT)
 self.addTaskParameter(p)
 # Execute method itself does the running of -'average'
 def execute(self):
 self.result = average(self.table)

Example 4.2. The Average Task

Introduction to Tasks

93

4.2.3.4. Usage

Below is the command line code to input into the HIPE Console view for testing our Average task.
First we instantiate the Average class creating an object called avg:

avg = Average()

We are using the default name of averageTable for our Task. To change the name we would have
written for instance avg = Average("Simple average of table data set") or avg
= Average(name = "Mine").

We can now formulate a table using the createTable routine in the set of three functions we created
at the outset.

table = createTable()

The interesting part comes when we use the following:

print avg(table)

We have executed the Task and printed its result. To make sure that it indeed executed successfully,
we can look at the statusMessage:

print avg.statusMessage

A more direct way to execute our Task would be

print avg(createTable())

On the other hand, we could do everything in a long-hand fashion, doing one little step at a time:

avg.table = table
avg()
result = avg.result
print result

Here we tell our average task that its input is called 'table'. The second line runs the task itself and we
assign the result from this to a variable called 'result' in the third line. Finally, this result is printed.

4.2.3.5. Getting help on Tasks

If you stumble upon a task you have never used before you will probably want some way of finding
out about is parameters, whether they are mandatory or not, and so on. Taking our Average task as
example, if you type

info('Average') # Note it's -'Average' with single quotes

you will be greeted by the following window:

Introduction to Tasks

94

Figure 4.1. Getting help on a Task.

It may appear fairly intimidating, but it provides a lot of useful information to users once they get past
the initial shock. In particular, look at the sections called Inputs: and Outputs:. They list the
input and output parameters, which are most of what is needed in order to use a Task. In particular,
here we see that we have one input parameter called table, that it's a TableDataset and is
mandatory (Optional: false). Similarly, we see that the Task will output a single Double1d.
The information about status, statusMessage, progress and views, found in the lower part
of the help window (not shown in the picture) is of limited interest to users.

What appears in the help window also depends on what developers originally put into the Task. For
example, in our case we have the hardly reassuring Task: null and Name: null messages at
the very top of the window. But if we give a name to our Task like this

avg.setName("My first Task")

we will see that after a short while the new information will appear in the help window.

4.2.3.6. Adaptations in the Preamble to a Script

The adaptation to the input of our Average script can be made in a preamble to the task, such as in
the following script. Note that here we import the task classes one by one, just to show in detail
what is needed.

Introduction to Tasks

95

Importing JTask classes
from herschel.ia.task.all import *
Other needed imports
from org.python.core import PyList
And here is our AdaptAverage class
class AdaptAverage(JTask):
 # Creation method
 def __init__(self,name = -"Running Average"):
 p = TaskParameter("vector1",valueType = PyList, mandatory = 1)
 self.addTaskParameter(p)
 p = TaskParameter("vector2",valueType = PyList, mandatory = 1)
 self.addTaskParameter(p)
 p = TaskParameter("result",valueType = Double1d,type \
 = OUT)
 self.addTaskParameter(p)
 # Create an internal JTask variable -'table' which is our table data set
 self.__dict__['table'] = TableDataset()
 # In the preamble we do the adaptation from 2 vectors to one table
 def preamble(self):
 JTask.preamble(self)
 self.table["0"] = Column(Double1d(self.vector1))
 self.table["1"] = Column(Double1d(self.vector2))
 # Execute method itself
 def execute(self):
 self.result = average(self.table)

Example 4.3. The Adapt Average Task

In this example, the from org.python.core import PyList statement allows us to work
with Python array lists (vectors). The task now takes two Python arrays and produces a table from the
arrays with each array forming a column of the table. We then can run our average script on the
table created in the preamble.

An internal instance variable is declared in the creation method with the statement:
self.__dict__['table'] = TableDataset().

Rewriting the preamble method. One should note that we first invoke the preamble from our parent
task (JTask) to guarantee that our needed parameters do have a suitable value before putting them
into the table.

The following short script can be used to test this adapted version of our averaging routine.

def test():
 sample1 = [1.0, 2.0, 3.0, 4.0]
 sample2 = [3.0, 4.0, 5.0, 6.0]
 avg = AdaptAverage()
 # Invocation using positional parameter
 print -'Result:', avg(sample1,sample2)

Input of the following command

test()

provides the following printed result

Result: [2.0,3.0,4.0,5.0]

4.2.3.7. Positional and Keyword Arguments in Tasks

Note

It should be noted that positional or keyword arguments can be used with tasks but NOT
a mix of the two.

For example, the last line of our 'test' script effectively runs the following (try replacing the last line
of the test() routine):

Introduction to Tasks

96

Positional arguments
print -'Result:', AdaptAverage()(sample1, sample2)
Keyword arguments
print -'Result:', AdaptAverage()(vector1=sample1, vector2=sample2)
Since -'vector1' and -'vector2' are the two arguments for the
AdaptAverage task.

Mixing of the two modes is ONLY allowed following all positional arguments. For example:

print -'Result:', AdaptAverage()(sample1, vector2=sample2)

But once keyword arguments start to be used then they must continue to be used. For example the
following code snippet will result in a compiling error when added to the 'test' program and recompiled.

print -'Result:', AdaptAverage()(vector1 = sample1, sample2)
If this is added to -'test' and -"test' is then recompiled we get the
following syntax error.
SyntaxError: ('non-keyword argument following keyword',
('<string>', 6, 49, -''))

A similar syntax error occurs if the AdaptAverage() task was run on a single line outside of the 'test'
routine.

4.2.3.8. The Transformer example

Yet another JTask example. This one takes an array and transforms it into the first column of a
TableDataset. As before, the code comes with a testTran() function to check what the Task does.

from herschel.ia.task.all import *
from org.python.core import PyList

class Transformer(JTask):
 # Creation method
 def __init__(self, name = -'Vector Transformer'):
 p = TaskParameter(name = -"input", valueType = array(Integer), mandatory =
1)
 self.addTaskParameter(p)
 p = TaskParameter(name = -"result", valueType = TableDataset)
 p.type = OUT
 self.addTaskParameter(p)
 # Execute method
 def execute(self):
 self.result = TableDataset(description = -'Integrated vector as column
zero')
 r = Double1d(len(self.input))
 index = 0
 for data in (self.input):
 r[index] = data
 index = index + 1
 self.result['0'] = Column(r)

def testTran():
 sample = [10, 20, 30, 40]
 # Turn it into a table data set
 transform = Transformer()
 table = transform(sample)
 print -"Printing the table"
 print table
 print -"Printing the first column of the table"
 print table['0']
 print -"Printing just the data in the first column"
 print table['0'].data

Example 4.4. The Transformer Task

Introduction to Tasks

97

4.3. Guideline on How to Work With GUIs
Within Tasks

This section describes how to handle GUI's and/or a dialog related to a task, how to check whether a
certain task supports the use of a dialog and/or GUI, as well as describing how to apply them.It should
be emphasised that the developer of a task needs to implement a dialog or GUI in the task. This section
simply provides guidance to the user for using tasks that have dialog or GUIs included within them.

4.3.1. The use of task parameters handled via a dialog
In the case where a task includes a long or complex set of parameters a dedicated dialog can be provided
by the original developer of the task. Such a component is handled by a boolean parameter called
"dialog" which the user can invoke using

result = Task()(dialog=1)

Such a call results in a pop-up window which can be completed by selecting for example the "accept"
button, which will close the GUI.

Note that all tasks in the future will include a boolean-parameter called "dialog". In cases where all
the available input parameters are of the type String or Number (i.e. those the framework can handle
for setting up a dialog) a dialog-popup will be provided, otherwise an exception is thrown.

4.3.2. The use of more enhanced GUIs
In case you have a more complex task or you want to re-execute a task several times using different
inputs, a GUI might be introduced. Such a component is handled by a boolean parameter called "gui":

task = MyTask()
task.gui = 1 # gui interaction might include an task.execute()
result = task.result # another gui interaction
result2 = task.result

Such a command sequence is very useful as it increases transparency. For example, the GUI might
show the state of the parameters by including a field for each parameter and a plot or image representing
the quality of the resulting output.

To summarise: the user of a task applies its views by the use of related the booleans (task parameters).
In case of a one-time user interaction such a boolean is called "dialog" and otherwise it is called "gui".
Note that in case more GUI components are involved additional booleans could be introduced, the
task specific documentation should include this info.

4.3.3. Example Task Handled by a Dialog
The following provides an example interaction between a user (USR) and the system (HCSS) for the
use of a task "dialog".

USR: Asks to set up parameters of a task via dialog: result = MyTask()(dialog=1)

HCSS: looks for the default dialog provided by the task developer

a) dialog is found and displayed

b) dialog is not found in which case the framework (ia.task) tries to provide the user with an automatic
dialog for the task signature

HCSS: display the dialog

Introduction to Tasks

98

USR: set/adjust parameter values AND approve those (for example, by selecting an "accept" button)

HCSS: close the dialog, run the task, return to the command line

Justification:

The user is given the possibility to setup the tasks signature via a GUI which is launched on his request.

Note: in case b) fails it will notify the user that a dialog cannot be provided by the framework and was
not previously defined by the task developer

4.3.4. Example Task Controlled by a GUI
In this case we have a task that can be controlled via a GUI. The following shows a typical use case
for a user (USR) interaction with the system (HCSS).

USR: Asks to run a tasks via a GUI:

mytask = MyTask()

mytask.gui = 1

HCSS: display the GUI interface provided by the task developer

USR: (possibly) insert parameter values

USR: execute the task (for example by selecting the "execute" button)

HCSS: run the task, update GUI to (possibly) show result in a plot of image or text field

USR: retrieve data within HIPE by calling:

result = task.result

USR: possible further analysis of result in HIPE session

USR: repeat steps 3 to 7 to compare results using diff. parameter settings, or close the GUI

Justification:

The GUI can provide more functionality: setup signature, allow task to execute, see results in a image/
plot. The user is able to retrieve the task output -- for further analysis in DP -- as described above, i.e.
the result can be fed back into HIPE by requesting "res1 = mytask.result". In this scenario the GUI
lives next to HIPE.

99

Chapter 5. Overview of DP packages

5.1. Introduction
To access functionality within HCSS packages you have to import it into your HIPE session. For many
packages this is done automatically by default; if not you can do it manually via commands like the
following:

from herschel.ia.numeric import *

There are several packages available within the HCSS. In this chapter we provide an overview of the
main DP packages only. A full listing of packages and classes available in your HCSS installation
is given in the API documentation, which you can access by selecting HCSS Developer's Reference
Manual (API) from the HIPE Help System table of contents.

A number of DP packages are discussed elsewhere in some detail. The Numeric package was
discussed in Chapter 3, while the Plot and Display packages are discussed in the Data Analysis Guide.
Illustrations of how to use parts of several other HCSS packages are also shown in other chapters.

5.2. Overview of Javadoc Documentation for
DP Packages

The javadoc is normally started up as three frames in a web browser as illustrated in Figure 5.1 The
upper left frame contains the packages index which is a clickable list of all packages in the system.
The title in that frame represents the HCSS build number for which this documentation is valid. The
lower left frame contains the classes index which is a clickable list of all classes. The selection of
classes shown in this frame depends on the package that was selected in the packages index frame.
The Main frame contains overview information on the system and packages or shows the javadoc for
a selected class.

Figure 5.1. Web browser page of JavaDocs top level frame.

Click in the Packages index frame to select a package and update the Classes index frame to show
those classes for the selected package. Click the Classes index frame to show the javadoc of a particular
class in the Main frame.

Overview of DP packages

100

The Main frame contains a kind of navigation bar at the top where the view in this frame can be
selected. The figure above shows the overview of all the packages. Other views are: Package, Class,
Tree, Deprecated, Index, and Help. These views will be explained in more detail below. In the
overview the Package and Class views are disabled, they become available when a package or class
is selected. Figure 5.2 shows the slightly expanded navigation bar for the Class view.

Figure 5.2. Navigation bar on the class view of JavaDocs.

Note that the navigation bar provides the possibility to browse through packages and classes with
NEXT and PREVIOUS and provides direct access to the specific parts of the class documentation e.g.
constructors (start class/program) or methods (which can be thought of as sub-routine components of
programs that can be applied). It is also possible to switch between FRAMES and NO FRAMES. With
NO FRAMES only the Main frame of the javadoc will be shown and index frames become unavailable.

5.3. Package view
Each package has a page that contains a list of its classes and interfaces, with a summary for each.
This page can contain four categories: Interfaces summary, Classes summary, Exceptions and Error
summary. Not all categories are always present. At the end there is the package description and possible
links to specific and/or related documentation.

Figure 5.3 shows the herschel.ia.dataset package which contains a number of interface and
classes e.g. Dataset and TableDataset. You can see that the Classes index frame provides a clear
separation of interfaces and classes and the Main frame shows the interface and class summaries and
provides a brief package description with links to package specific info at the bottom (The image of
the Main frame has been manipulated to shows the categories available without too much cluttering
the picture). You can navigate to the interface and class detailed documentation by clicking the names
in the summary tables or in the Classes index frame.

Overview of DP packages

101

Figure 5.3. Package description page in JavaDocs.

Overview of DP packages

102

5.4. Class view
Each class and interface has its own separate page in the Main frame. Each of these pages has three
sections consisting of a class/interface description, summary tables for constructors and methods, and
detailed descriptions of constructors, methods and attributes. The information shown in the class view
is restricted to the public API (Application Programming Interface).

Each summary entry contains the first sentence from the detailed description for that item. The
summary entries are alphabetical, while the detailed descriptions are in the order they appear in the
source code. This preserves the logical groupings established by the programmer.

Figure 5.4 is taken from the Main frame of the TableDataset class and shows the class description
together with its hierarchy. You can see that the TableDataset implements a number of interfaces
and also has one known sub-class i.e. SpectrumDataset. The second part of the figure shows a more
detailed description of the class usage. This description is provided by the programmer in the source
code.

Figure 5.4. The class view of TableDataset showing a brief description and a short example of its usage.

Scrolling down in the Main frame brings you to the summary section which is shown in Figure 5.5.
The constructor summary shows all public constructors for this class with their specific argument
list. To see detailed information on the constructor click the name of the constructor that you need.
Constructors are methods that create objects of a particular type. The code example in the description
section above shows you how to create a TableDataset on the jython command line.

Overview of DP packages

103

Figure 5.5. Page showing the constructor mechanism (how to create a TableDataset) and the associated set
of methods (what you can do with the TableDataset you created).

The method summary shows all public methods for this class in alphabetical order. For detailed
information on a specific method, click its name. In this method summary there are a number of things
to note. The return values of the methods are in the left column while the method signature and a
summary line is in the right column. The summary line can be preceded with a deprecation note.
Deprecation means that this method should not be used anymore because it is marked to be removed
from future releases. The deprecation comment normally provides the alternate or new method to
be used instead. An overview of all deprecated methods in the whole system is available from the
navigation bar at the top of the Main frame.

Overview of DP packages

104

Sometimes method names can start and end with two underscore characters like in __getitem__
above. These methods are special constructs which allow you to use the specific jython syntax to
access and manipulate objects from this class.

5.5. Other views

5.5.1. Tree view
There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each hierarchy
page contains a list of classes and a list of interfaces. The classes are organised by inheritance structure
starting with java.lang.Object. The interfaces do not inherit from java.lang.Object. When viewing the
Overview page, clicking on "Tree" displays the hierarchy for all packages. When viewing a particular
package, class or interface page, clicking "Tree" displays the hierarchy for only that package.

5.5.2. Deprecated view
The Deprecated API page lists everything that has been deprecated. A deprecated API is not
recommended for use, and a replacement API is usually suggested.

Warning

Deprecated APIs may be removed in future versions.

5.5.3. Index view
The Index contains an alphabetic list of all classes, interfaces, constructors, methods, and fields.

5.6. DP Packages And Documentation
The following short paragraphs outline the packages currently available within the Herschel DP
system. For full details please see the Javadoc.

5.6.1. herschel.ia.dataflow
Handles processing threads. Particularly useful for Quick Look Analysis (QLA) and Standard Product
Generation (SPG). It can be used in interactive sessions too. Allows the user to connect scripts from
process modules as is typically required for a set of data reduction steps. Dataflow also supports event-
based processing as well as threads.

Main subpackages:

• herschel.ia.dataflow.data.process: Classes for handling the processes used in a dataflow session.

• herschel.ia.dataflow.example.indicator_control.monothread: Classes used to illustrate the
control of a dataflow.

• herschel.ia.dataflow.example.indicator_control.multithread: Same as above, but for multiple
threads.

• herschel.ia.dataflow.template: Class to allow template dataflow to be created.

• herschel.ia.dataflow.util: Class for identifying dataflows.

5.6.2. herschel.ia.dataset
Contains Table Datasets, Array Datasets, Composite Datasets, Products and all auxiliary components
such as columns, parameters and metadata. Datasets and products are described in Chapter 2.

Overview of DP packages

105

Main subpackages:

• herschel.ia.dataset.demo: Contains classes that demonstrate the use of datasets.

• herschel.ia.dataset.gui: Contains the Dataset Inspectro graphical interface.

• herschel.ia.dataset.image: Provides a framework for defining images, cubes of images and stacks
of images. Includes tools for adding World Coordinate System information.

• herschel.ia.dataset.history: Defines the History Dataset, which records the complete history of
the tasks which were executed to produce a Product.

• herschel.ia.dataset.spectrum: Contains tools for defining one- and two-dimensional spectra, and
spectral cubes.

5.6.3. herschel.ia.demo
Contains demonstration scripts.

Warning

Many of these scripts may be out of date and not work with recent versions of HIPE.

5.6.4. herschel.ia.doc
Contains developer-oriented documentation in HTML format. Contents of this package are also
available from within the HIPE Help System.

Warning

The Javadoc available in this package is incomplete. Please access the Javadoc from the
HIPE Help System

5.6.5. herschel.ia.document
Provides tools to generate documentation of dynamic as well as static DocBook documents in different
formats.

5.6.6. herschel.ia.gui
Contains several subpackages related to graphical applications.

Main subpackages:

• herschel.ia.gui.apps: Contains the classes used to build graphical applications such as HIPE.

• herschel.ia.gui.cube: Graphical interfaces to analyse data cubes.

• herschel.ia.gui.explorer: Graphical interfaces to analyse datasets, such as TablePlotter and
OverPlotter.

• herschel.ia.gui.image: Classes for handling images. The display capabilities from this package are
discussed in the Data Analysis Guide.

• herschel.ia.gui.plot: Plotting utilities. For more details see the Data Analysis Guide.

5.6.7. herschel.ia.inspector
Contains the classes and utilities for providing the dataset and session inspectors available in HIPE
(see Section B.3.5).

Overview of DP packages

106

5.6.8. herschel.ia.io
Provides a means of accessing local archives where Products can be saved or loaded from. Products
are combinations of data and information and can be likened to the contents of a single FITS file.

Main subpackages:

• herschel.ia.io.ascii: Allows input and output of data to and from ASCII files.

• herschel.ia.io.fits: A FITS implementation that can write Products to a FITS file and read such
FITS files back into the system. Allows the production of a FITS archive.

• herschel.ia.io.dbase: Allows data/products to be put into objects that can be stored in databases
(Versant databases are currently available for use with the HCSS).

5.6.9. herschel.ia.jconsole
Contains the classes used in running JIDE, a legacy application for running and editing of Jython
scripts, developed before HIPE. Allows control of the JIDE setup and access to classes that setup the
components of the GUI interface (in herschel.ia.jconsole.gui).

5.6.10. herschel.ia.numeric
Contains numeric and mathematical tools described in Chapter 2 and Chapter 3

Main subpackages:

• herschel.ia.numeric.toolbox: Provides a large set of numeric classes. These include mathematical
functions (trigonometric functions, polynomials), Fourier transforms, fitter functions, interpolation
and matrix functions. Note that these classes are automatically loaded when starting HIPE.

This package contains the following subpackages:

• herschel.ia.numeric.toolbox.basic: Provides classes that allow basic mathematical
manipulation of numeric arrays: trigonometric functions, mathematical product, variance and so
on.

• herschel.ia.numeric.toolbox.filter: Provides the classes BoxCarFilter, Convolution
and GaussianFilter.

• herschel.ia.numeric.toolbox.fit: Provides classes that allow the fitting of data with numerous
models (iterative fitters, sine model fitters, polynomial model fitters and so on).

• herschel.ia.numeric.toolbox.integr: Provides integrator functions for several integral models
(Gauss-Jacobi, Gauss-Laguerre and so on).

• herschel.ia.numeric.toolbox.interp: Provides classes that allow the interpolation of
data. These include Interpolator (a general interpolator), LinearInterpolator,
CubicSplineInterpolator and NearestNeighborInterpolator.

• herschel.ia.numeric.toolbox.mask: Provides tools for creating and managing masks, in
particular the two classes FixedMask and PackedMask.

• herschel.ia.numeric.toolbox.matrix: Provides classes that allow the manipulation of
Double2d arrays holding matrices. It includes the classes MatrixDeterminant,
MatrixInverse and MatrixSolve.

• herschel.ia.numeric.toolbox.random: Provides tools for generating pseudo-random
numbers with uniform (RandomUniform), Gaussian (RandomGauss) and Poisson
(RandomPoisson) distributions.

Overview of DP packages

107

• herschel.ia.numeric.toolbox.util: Provides the classes MoreMath, which has methods for
mathematical manipulation of single numerical elements (integers, doubles, bytes and so on), and
Util, which has utilities for converting arrays.

• herschel.ia.numeric.toolbox.xform: Provides the classes FFT, Hamming and Hanning for
Fourier transforms and Hanning/Hamming smoothing of data.

5.6.11. herschel.ia.obs
Defines the Observation Context, a container for Products applicable to a specific obervation, and
related classes.

Main subpackages:

• herschel.ia.obs.auxiliary: Defines the auxiliary Products related to an observation, and their
container, the Auxiliary Context.

• herschel.ia.obs.cal: Calibration-related classes.

• herschel.ia.obs.quality: Defines the Quality Context and the flags used for quality control.

5.6.12. herschel.ia.pal
Defines the Product Access Layer, which allows storage and retrieval of Products both locally and
remotely. The Product Access Layer is treated in detail in Appendix A.

Main subpackages:

• herschel.ia.pal.browser: Defines the Product Browser graphical application.

• herschel.ia.pal.io: Defines classes for importing and exporting Products to FITS format.

• herschel.ia.pal.pool: Defines, in various subpackages, the available types of Product Pools.

• herschel.ia.pal.query: Defines the types of query that can be applied to a Product Storage.

5.6.13. herschel.ia.pg
Describes the Product Generation Framework, on which running of instrument pipelines is based.

Main subpackages:

• herschel.ia.pg.od: Defines the Operational Day Plugin, used to process an entire OD before
processing its observations.

• herschel.ia.pg.plugins: Defines basic versions of other plugins that are applied during pipeline
processing, such as BasicLevel0Plugin and BasicQualityPlugin.

5.6.14. herschel.ia.qcp
Defines components and utilities to handle Quality Control messages.

Main subpackages:

• herschel.ia.qcp.example: Provides an example Task for using the facilities of this package.

• herschel.ia.qcp.flags: Provides a hierarchical structure of Quality Control flags.

• herschel.ia.qcp.gui: Provides graphical components for displaying Quality Control messages.

Overview of DP packages

108

• herschel.ia.qcp.plugin: Provides plugins for logging Quality Control messages during Operational
Day and pipeline processing.

• herschel.ia.qcp.tools: Provides a standalone application for displaying Quality Control
information.

5.6.15. herschel.ia.spg
Manages the execution of the data reduction process for all the instrument in the Herschel satellite. It
is built upon the framework defined in the herschel.ia.pg package (see Section 5.6.13).

Main subpackages:

• herschel.ia.spg.gui: Contains the Pipeline Manager graphical interface.

• herschel.ia.spg.kayako: Contains a helper class for creating a ticket in the kayako system.

• herschel.ia.spg.od: Tools for scheduling and executing Operational Day processing.

• herschel.ia.spg.ops: Miscellaneous tools for configuring pipeline processing.

• herschel.ia.spg.tools: Classes for memory monitoring and the remote management of processing
queues.

5.6.16. herschel.ia.task
herschel.ia.task Provides the tools needed to create a data processing Task which you can then
incorporate into your scripts. Tasks have an associated signature (parameter setup); in setting up a
Task, parameter checks can be performed and a history of the processing can be kept.

This package is discussed in Chapter 4.

Main subpackages:

• herschel.ia.task.example: Provides example Tasks that demonstrate some features of the package.

• herschel.ia.task.gui: Provides components used to build graphical interfaces for Tasks.

• herschel.ia.task.history: Provides a class for managing the history of a Task.

• herschel.ia.task.mode: Provides different execution modes for a Task (interactive, on demand,
systematic and test).

• herschel.ia.task.util: Miscellaneous utility functions for Task development.

5.6.17. herschel.ia.toolbox
Provides tools for a wide range of data analysis needs. Tools are organized in thematic subpackages.

Main subpackages:

• herschel.ia.toolbox.astro: Astronomical utilities.

• herschel.ia.toolbox.cube: Tasks for importing and analysing data cubes.

• herschel.ia.toolbox.fit: Tasks for function fitting.

• herschel.ia.toolbox.hsa: Provides an interface for accessing the Herschel Science Archive.

• herschel.ia.toolbox.image: Tasks for image processing (cropping, smoothing and so on).

Overview of DP packages

109

• herschel.ia.toolbox.mapper: Tasks for mapmaking.

• herschel.ia.toolbox.pointing: Provides a task for plotting pointing information.

• herschel.ia.toolbox.spectrum: Tasks for analysing spectra. This package contains several
subpackages, among which are the following:

• herschel.ia.toolbox.spectrum.fit: Tools for fitting spectra.

• herschel.ia.toolbox.spectrum.gui: Tools for visualising spectra.

• herschel.ia.toolbox.spectrum.operations: Tools for performing mathematical operations on
spectra (divide, average, resample and so on).

• herschel.ia.toolbox.spectrum.projection: Tools for projecting spectral data on the sky.

• herschel.ia.toolbox.spectrum.selections: Tools for selecting and managing ranges and discrete
values within spectra.

• herschel.ia.toolbox.spectrum.standingwaves: Tools for fitting and removing fringes.

• herschel.ia.toolbox.spectrum.utils: Other utilities, for example to integrate and interpolate
spectra.

• herschel.ia.toolbox.srcext: Tools for point source extraction.

• herschel.ia.toolbox.trend: Tools to support trend analysis processing. See this TWiki page for
more details.

• herschel.ia.toolbox.util: Miscellaneous tools, among which are tasks for importing from and
exporting to ASCII tables and FITS files.

5.6.18. herschel.ia.vo
Contains tools that implement the interface to the Virtual Observatory.

http://www.herschel.be/twiki/bin/view/Hcss/TrendAnalysis
http://www.euro-vo.org/pub/index.html

110

Chapter 6. Time measurement
6.1. Introduction

This note describes which and how time is defined within HCSS and how to deal with it. Unfortunately,
there are several ways in which time can be represented. The standard for the HCSS/DP is a
FineTime - which is the number of microseconds since the beginning of 1 January 1958. This
provides the kind of accuracy needed to represent time on a space mission.

However, there are several other time representations and it is often the case that conversions between
times/dates is necessary. In particular, it is noted that the standard Java commands lead to date
measurements with respect to 1 January 1970. This chapter indicates how to deal with times within
DP and converting between the various times, particularly between dates and FineTime's.

6.2. Time Definitions

6.2.1. System time in DP
There are many ways to access the system time within DP. See also the description of the Java class
"Date" for a discussion of slight discrepancies that may arise between "computer time" and coordinated
universal time (UTC).

The Java Date class is deprecated and is being replaced by a more flexible SimpleDateFormat
capability within Java that allows the user to express dates more conveniently. A Date object is still
obtained and can be turned into a FineTime (see below) once created.

Two possibilities for creating a "Date" object are:

To get the current time in milliseconds:
The difference, measured in milliseconds, between the current
time and midnight, January 1, 1970 UTC.
print java.lang.System.currentTimeMillis()
To get the number of milliseconds since
January 1, 1970, 00:00:00 GMT represented by a Date object.
d = java.util.Date()
#printing this gives the current time and date at the location of the
#system on which the java is being run.
print d
#We can also get the number of milliseconds since Jan 1, 1970 using
#this Java Date
print d.getTime()

Example 6.1. Current Time

Note that while the unit of time of the return value is a millisecond, the granularity of the value depends
on the underlying operating system and may be larger.

If we want to get the number of milliseconds since 1 January 1970 for any other date then we can use
a non-default form of the Java Date capability where the year, month, day, hour, minute and second
are provided.

• Year format -- year (A.D.) - 1900. So the year 2006 = 2006 - 1900 = 106

• Month format -- number of the month, beginning from January = 0. E.g. March = 2.

• Day -- just day number in the month.

• Hours, minutes, seconds -- on the 24-hour clock.

NOTE: This is the time on our computer system.

Time measurement

111

#Format of date is year (in units of true year -- 1900), month (number 0...11),
#day, hour, minute, second. So the following gives us the number of milliseconds
#between the beginning of 1 January 1970 and 3:15:00 pm on 23 October 2004.
d = java.util.Date(104, 9, 23, 15, 15, 0)
print d # should indeed show we have 3:15pm on 23 October 2004
print d.getTime() # provides the number of milliseconds between this
#date and 1 Jan 1970.

The following sample code shows how to use SimpleDateFormat to create a "Date" object.

simpleDate = java.text.SimpleDateFormat("yyyy.MM.dd HH:mm:ss z")
#set up how you want to set up your input Date format. In this
#case we could input -"2006.01.14 01:00:00 CST" for 1a.m. on 14
#January 2006. z --- indicates the time zone (default is the zone for the
#computer system being used).

simpleDate.applyPattern("dd/MM/yy HH:mm")
#change the pattern to a different format

startTime = simpleDate.parse("13/01/06 14:06")
#create the data object -"startTime"

print startTime
#...and see what this looks like

Allowed choices for the data format are available from Java documentation of the SimpleDateFormat
capability.

6.2.2. International Atomic Time (TAI) and FineTime
TAI is an international standard measurement of time based on the comparison of many atomic clocks.
TAI is the basis for Coordinated Universal Time (UTC). Finetime is based on TAI as measured
from 00:00:00 1 January 1958.

6.2.3. Coordinated Universal Time (UTC)
UTC , World Time, is the standard time common to every place in the world. UTC is derived from
International Atomic Time (TAI) by the addition of a whole number of "leap seconds" to synchronise
it with Universal Time 1 (UT1), thus allowing for the eccentricity of the Earth's orbit and the rotational
axis tilt (23.5 degrees), but still showing the Earth's irregular rotation, on which UT1 is based.

6.2.4. DecMec Time [PACS only]
The commands DPUSelectTime and DPUWriteTime are selecting and setting a start time which is
written to the TMP1 and TMP2 fields of the Dec/Mec headers. This is used in coordinating the
activities of the mechanical devices on board PACS. It is possible to construct an absolute time by
adding counters (CRDC) to the start time considering an offset between setting and writing the start
time.

This offset is expected to be a number with an uncertainty depending on the system load. It might
require a calibration file. Currently this offset is not considered.

In case the commands and are not given the TMP1 and TMP2 fields are zero. To avoid software
confusions the time will be related to a fixed date (1.Jan 1970, 0:00).

During construction of the SpuBuffer the time is computed from the TMP1, TMP2 entries in the Dec/
Mec header and the CRDC counter. This time is used during construction of the DataFrameSequence
and the associated Tables holding the SPU science data.

Between the Dec/Mec time and the packet time (see PusTmBinStruct) we have an offset. Therefore
the association between HK and science data will be within an accuracy of 2 seconds.

Time measurement

112

6.3. Time in Instrument House-Keeping (HK)
Data

The most convenient method of obtaining time stamped HK information is the use of the
"herschel.binstruct" package. The use of this is illustrated in Chapter 12.10 where HK data is obtained
from a database and then read/converted for use within the DP environment.

When dealing with HK time information directly, it is important to know that telemetry packets contain
the time as defined within the "PUS Data Field Header". The field represents the on-board reference
time of the packet, referenced to TAI, expressed in spacecraft time units - CCSDS Unsegmented Time
Code (CUC) units. CUC units are multiples of 1/65536 sec from 1 January 1958 in TAI time. CUC
units cannot be expressed in whole microseconds but can be converted to the FineTime standard (see
below).

CUC time is written for HK by the data processing unit (DPU).

Current PusTmBinStruct methods related to time:

long getTime()

Returns the packet time of the Pus telemetry packet.

boolean isTimeSynchronized()

Returns true if the telemetry packet is synchronized, false otherwise.

java.util.Date getTimeAsDate()

Returns the packet time as a Date object.

FineTime getTimeAsFineTime()

Returns the packet time of the Pus telemetry packet as FineTime.

6.4. Time conversion
6.4.1. Time conversion in HCSS

It can often be the case that we need to convert between FineTime (TAI) and Date (UTC). Coordinated
Universal Time is expressed using a 24-hour clock and uses the Gregorian calendar. FineTime
represents a TAI time (epoch 1958), whereas the Java Date class is used to represent UTC, by resetting
the system clock whenever a leap second occurs and don't need to handle leap seconds. Converting
between Java dates and the FineTime standard requires the use of the DateConverter() class. Long
integers can also be directly converted to FineTimes and are interpreted as representing the number of
microseconds since 00:00:00 1 January 1958. In Example 6.2 we illustrate how to create a FineTime
from a long integer and convert back and forth between FineTime and Java Dates.

from herschel.ccm.util import *
from herschel.share.fltdyn.time import *

FineTime to Date
Enter a time in seconds (a long integer -- put letter -"l"
at the end of the number)
c = FineTime(1436094449715400l) # convert to a FineTime
Prints corresponding date and time
print DateConverter.fineTimeToDate(c)
Date to a FineTime
d = java.util.Date() # gets today's date and time
Prints corresponding FineTime
print DateConverter.dateToFineTime(d)

Example 6.2. Time conversion between Date and FineTime

Time measurement

113

6.4.2. CucConverter
Converts between Spacecraft Elapsed Time, in CCSDS Unsegmented Time Code (CUC) format and
FineTime (TAI). This implementation is for the Herschel CUC format, which is corrected on-board
the spacecraft to TAI (epoch 1 Jan 1958). This representation uses 32-bits for seconds and 16 bits
for fractional seconds. CUC times are multiples of 1/65536 sec and cannot be expressed as an exact
multiple of 1 microsecond (the resolution of FineTime). However, the following relations hold for
'coarse' and 'fine' values in the allowed range:

long coarse(FineTime t)

Return the number of whole seconds since the epoch 1 Jan 1958.

long cucValue(FineTime t)

Return the number of 1/65536 fractional seconds since the epoch 1 Jan 1958.

int fine(FineTime t)

Return the fractional part of the number of 1/65536 seconds since the epoch 1 Jan 1958.

FineTime toFineTime(long cuc)

Return a new FineTime constructed from a 48-bit CUC time.

FineTime toFineTime(long coarse, int fine)

Return a new FineTime constructed from CUC coarse & fine fields.

from herschel.share.fltdyn.time import *

d=CucConverter.toFineTime(50000000000000L)
#Converts the long integer -- representative of a CUC time --
#into a FineTime. The FineTime is stored in d.
e = CucConverter.coarse(d)
#provides the number of whole seconds since 1 Jan 1958
#and stores it in e.
print e

114

Appendix A. Advanced Product
Access Layer

The Product Access Layer (PAL) allows you to create and access Product Pools. Product Pools are
data storage areas that could be on your laptop (a local store) or on a remote system. Examples of a
remote pool are:

• The Herschel Archive

• Products accessed from a Versant database

• A pool which you can share with others on a remote computer

A useful component of the PAL is the Product Browser. This is a graphical visualisation tool covered
in Section A.14. We will show an example of how to launch it from a HIPE session.

A.1. Product Storage
A Product Storage is the front-end interface that allows you to communicate with Products stored
in pools.

Simply by registering a pool to your storage, you can access the Products in that pool.

A Product Storage provides mechanisms to load, save and query Products in the registered pools.
When doing so you receive a reference to a Product (returned by the load() and save() commands)
or a set of Product references (when querying). This functionality of a Product reference is provided
by the ProductRef class; it allows to fetch information of the Product, such as metadata, without
loading the Product in question in your memory completely.

A.1.1. Creating a storage and registering pools
You can create a storage as follows:

storage=ProductStorage()

Then you have to assign the Product pools that you want to access. You have to register at least one
pool:

storage.register(SerialPoolClient("abc.xyz.org",123,"dummy"))
:
storage.register(poolN)

A.1.2. Saving and restoring Products
Saving a Product:

Create a dummy product
product=Product(creator="Me")
product["array"]=ArrayDataset(data=Int1d.range(5))

Saving the product returns a reference
reference=storage.save(product)
print reference.urn
urn:simple.default:herschel.ia.dataset.Product:0

Advanced Product Access Layer

115

Loading a Product:

reference=storage.load("urn:simple.default:herschel.ia.dataset.Product:0")

A reference provides access to parts of the product as well as access to the product itself:

print reference.urn
urn:simple.default:herschel.ia.dataset.Product:0

print reference.type
herschel.ia.dataset.Product

meta=reference.meta
print meta["creator"]
Me

product=reference.product
print product.creator
Me

A.2. Product Pools
Before you can do something useful with a Product Storage, you have to register one or more pools
to that store.

Product pools can load, save and query simple Products. All pools share the same features (the so-
called ProductPool interface) such that they can be registered to a Product Storage.

Typically you set up one Product Storage and register one or more Product pools to it. However the
design permits to create multiple Product Storages with a different registry of Product pools. Product
pools can also be shared between two Product Storages.

Two main pools are available (LocalStore and DbPool), plus some mechanisms for setting up
and accessing remote pools:

• A LocalStore for storing and accessing Products in your local system (default is FITS format).

• A DbPool for accessing Products from a remote object database, such as a Versant database.

• A SerialClientPool to read/write or access a remote pool. When used in conjunction with a
PoolDaemon (which runs on the machine of the remote pool) this can make the remote pool
immediately available to your session.

• A CachedPool is a way to cache everything retreived from a pool. It is useful if the pool you are
working with is a remote on-line pool, and you want to work offline.

• A HsaReadPool to access the Herschel Science Archive (HSA).

• A HttpClientPool, a networked pool similar to SerialClientPool.

In the next few sections we will discuss and provide examples of pools mainly in the context of Local
pools, but most of these examples can be generalized to any kind of pool. In later sections we will
describe these other kinds of pools and some other useful concepts that refer to them.

A.3. Local Pools
We will in this subsection discuss Local pools. However much of this information presented here is
applicable generally to any kind of pool.

Advanced Product Access Layer

116

A.3.1. The Default Local Pool directory and how to
change it

By default, data is stored in a directory with the user-supplied store name in the following directory

home/.hcss/lstore/

This can be changed by changing the property hcss.ia.pal.pool.lstore.dir.

For example, in Windows you can do this using the following statement in your HIPE session:

hcss.ia.pal.pool.lstore.dir=${user.home}/.hcss/alternate_store/

Or in Linux with:

hcss.ia.pal.pool.lstore.dir=~/.hcss/alternate_store/

Note

The local store directory can also be a link to another directory. This is useful if you want
to store your products in a different hard disk with more space.

A.3.2. Registering Local Pools
The storage location pointed to by hcss.ia.pal.pool.lstore.dir can contain several
pools, which in the specific implementation of local store are subdirectories in that location. After
importing the PAL classes with from herschel.ia.pal import *, we create a storage object
with storage=ProductStorage(). We obtain a reference (pool1) to a pool from the pool
manager using the statement pool reference = PoolManager.getPool(poolname),
where poolname is a string. Then the pool reference is registered by storage.register(pool
reference). With the command print PoolManager.getPoolMap() we can see which
pools are currently registered.

A practical example where we open two pools would look like this:

from herschel.ia.pal import *
storage = ProductStorage()
pool1 = PoolManager.getPool('default')
pool2 = PoolManager.getPool('test')
storage.register(pool1)
storage.register(pool2)
print PoolManager.getPoolMap()

In case there is already a pool with that name in the default directory, it is registered and becomes
accessible. If it doesnt exist, the pool is created as soon as we store a product there. This can be verified
by inspecting the respective directory before and after.

Warning

Currently it is not possible to rename local pools. Renaming the directory corresponding
to the pool will not work.

At this point we have created a storage and opened two pools. Note that when writing to the storage,
the data is written to the first pool that was registered. If you want to write to a different pool you can
create and use another storage for writing, where you register the desired pool. The same pool can be
registered with more than one storage at the same time. Here an example where we make the pool
"test" accessible for saving products.

Advanced Product Access Layer

117

otherStorage = ProductStorage()
otherStorage.register(PoolManager.getPool('test'))

We should also note that storage can also be obtained with the LocalStoreFactory, however this
is discouraged by developers who strongly recommend using the PoolManager.

A.3.3. Saving products in pools
Let us first create some products to play with. In this case we will create two products containing one
table dataset each. First the table datasets are created from random numbers.

r = RandomGauss()
n = 1000
tbl1 = TableDataset(description='Test Dataset 1')
tbl1['time'] = Column(Double1d.range(n))
tbl1['signal'] = Column(Double1d(n).apply(r))
tbl1['error'] = Column(Double1d(n).apply(r) * 0.3)
prod1 = Product(creator='ThatsMe', description='Test Product 1')
prod1['Table1'] = tbl1

Well do the same for a second product:

tbl2 = TableDataset(description='Test Dataset 2')
tbl2['time'] = Column(Double1d.range(n))
tbl2['signal'] = Column(Double1d(n).apply(r))
tbl2['error'] = Column(Double1d(n).apply(r) * 0.5)
prod2 = Product(creator='ThatsMe', description='Test Product 2')
prod2['Table1'] = tbl2

Now we have two products, prod1 and prod2, at our disposal. Their contents can be verified by
launching the dataset inspector. Any product can be saved in our storage using the following statement:
urn = Storage.save(product), where product is the product to be saved and urn is the
resulting Uniform Resource Name that is a unique identifier of the product within the storage. This
URN can be used directly to retrieve the product from the storage, however typically the URN is not
remembered, but rather re-obtained by a query to the storage. This will be shown later.

Let us save our two products using:

urn1 = storage.save(prod1)
urn2 = storage.save(prod2)

To see how the URN looks just use:

print urn1, urn2

As they are written by default to the first registered pool of storage, they will end up in the pool named
default. Let us store one of the products also in the pool named test using:

 otherStorage.save(prod1)

As we will recover the URN of this product later by a query, we dont bother to store the URN right now.

A.3.4. Finding out what is in storage: Starting the
Product Browser

If we have followed all previous examples, there should be now 3 new products in our storage that
have listed as creator ThatsMe. Two of the products should be in the first pool named default, while
the third product should be found in test.

Advanced Product Access Layer

118

We will examine first the simpler way to examine the contents of the storage using a GUI tool called
the Product Browser. It is launched with the statement: uri = browseProduct(storage),
where storage is the storage we want to access and uri contains a list of references that result from
our query. In our example we would type:

result = browseProduct(storage)

which brings up the GUI.

In the field "Creator:" type ThatsMe to restrict the selection to the files we created in our example
and hit the "Submit" button. The Query result panel in the middle left should now show a table with 3
rows, one for each product. Clicking on one of the rows will highlight it and bring up a diagram of the
product contents on the panel to the right, where we can verify that our products contain attributes,
metadata and datasets. The string to the right of the P is the URN. Clicking subsequently on the 3 rows
shows how the URN changes for each product. We can see that the pool names default and test are
part of the string, which shows that indeed two products ended up in the first and one in the latter. The
Product Browser can be used to bring the URN for a given product into the HIPE session, i.e. make
it available on the command line. Let us click on the squares to the left of the result table so that they
are marked and the corresponding entries appear in the Download panel below. Upon clicking Apply,
a list of the selected URNs becomes available in the variable result.

The statement:

print result

will show the list of the URNs we have selected. Note that after changing the selection and hitting
"Apply" again, the print result command will give a different result corresponding to your
selection. The "OK" button will update "result" as well and close the GUI.

The object "result" contains now a list of references to our products. We can obtain the same result
"GUI-free" by creating a query on the command line and applying this to our storage:

query1=Query("creator == -'ThatsMe'")
res = storage.select(query1)
print res

Now "res" contains the list of references. Printing "res" should give the same result as the previous
first example with the Product Browser.

If we want to execute an unconditional query to find all products in our storage, we can use:

query2=Query("True")
res2 = storage.select(query2)
print res2

In case we have used the default storage before, there may be other products here that would now
show up in the list.

A.3.5. More On Storage Queries: Other kinds of query
and more examples of command line queries

The Product storage can handle three types of queries:

• Attribute query is a (fast) query on meta data that all Products contain: creator, creationDate,
startDate, endDate, instrument, modelName. This is akin to querying a standard set of FITS header
keywords.

Advanced Product Access Layer

119

• Meta data query is a (semi fast) query on meta data that can be different from Product to Product,
depending on what was placed in the product by the person creating it in the first place. This is akin
to doing a query on any FITS keywords (if present).

• Full query is a data mining query that allows querying on all data elements in Products, using the
general methods provided for Products and datasets as well as the additional methods provided in
specialisations of those datasets and Products.

All query types have the same syntax, but a different purpose as described above. Setting up a query
is as follows:

#Simple query
query = Query(expression)
#More advanced queries
query = AttribQuery(product-class, variable, expression)
query = MetaQuery(product-class, variable, expression)
query = FullQuery(product-class, variable, expression)

where the parameters to the query are:

• product-class: restricts a family of products. All Product classes have
herschel.ia.dataset.Product as the base class. You can restrict the query to a sub-family
of Product. For example, if all HIFI Calibration Product classes stem from HifiCalProduct,
you can limit your search by specifying that class.

• variable: is a string denoting the variable name of the product that will be used in the expression.

• expression: is a string holding the query expression, which is limited to the query type.

It is worthwhile mentioning that the syntax of the expression above uses the same syntax as you would
usually use when inspecting the contents of numerical data in a HIPE session, (see eg Chapter 2) so
there is no additional syntax to learn.

• Query Example

query = Query("instrument ==HIFI and band == 1a")
a simple query should be the default form used by most users.

• AttribQuery Example

query = AttribQuery(Product, -'product', \

 -'product.creator=="Me" and product.instrument="HIFI"')

• MetaQuery Example

This type of query allows to inspect any part of the meta data of the product specified in the first
argument.

query = MetaQuery(HifiCalProduct, -'h', -'h.meta["key1"].value < 123 and \
 h.meta["key2"].value == -"Hello world"')

Note

In order to obtain a numerical value (rather than, e.g., the string equivalent) it is
necessary to stipulate that the meta key "value" is required, hence the need for the
stipulation of query on 'h.meta["key1"].value' rather than 'h.meta["key1"]'

• FullQuery Example

Advanced Product Access Layer

120

A data mining query exploits the full interface of the product in question. Numeric functions defined
in the basic toolbox are allowed:

query = FullQuery(Product, -'p', -'p.creator=="Me" and (ANY(p.spectrum.data <
2) \
 or ALL(p["myTable"]["myColumn"].data > 5)')

Note

Note that the ANY function used above is one of the standard numerical function
provided for DP, and simply checks whether the expression provided in its argument
is true for any of the elements in that argument. See the DP User's Reference Manual
for more information.

A.3.6. Retrieving products from storage
The list of references obtained by our query with either the Product Browser or the
command line allows to load the product back from the storage using product =
storage.load(res[index].urn).product, where index is the index of the list entry to be
retrieved. Following our example and assuming we still have the result res from our query1, we would
retrieve and plot the first product in our list by:

p1 = storage.load(res[0].urn).product

The Table Dataset would be extracted and plotted with:

t1 = p1.get('Table1')
pl = PlotXY(t1['time'].data, t1['signal'].data,\
style=Style(line=Style.MARKED, symbol=Style.TRIANGLE) -)
pl.setErrorY(t1['error'].data,t1['error'].data)

In order to help know which index in the reference list is the one we are intere sted in without opening
every product and inspecting it, we could sort the refer ence list by metadata entries. For example, to
make the reference to the latest product appear last:

MetaComparator.sort(res, ["creationDate"])

This sorts the reference list by "creationDate", with oldest first. Other metada ta items, or multiple
metadata items are also possible). However, beware: it cha nges the contents of the original variable,
"res", rather than making a new list.

The Java "Collections" package (this must be imported into our session) can also be used for simple
reference list manipulation. For example to reverse the order:

from java.util import Collections
Collections.reverse(res)

A.3.7. Deleting Products from Storage
Now we want to clean up our storage again, as this was just an exercise. In theory we could go into
the relevant directory, identify the products by their filename and delete the respective FITS files.
After that we would need to re-build the index. This would work for the Local Store, we used in our
example, but in other implementations like the DbPool that would not be an option.

Advanced Product Access Layer

121

To remove our test products within the PAL context, we first need to identify them again by obtaining
their URNs and use the method .remove() on the storage. In our example we can remove the first
two items in our list as follows:

 query1 = Query(creator == ThatsMe)

 res = storage.select(query1) storage.remove(res[0].urn)

 storage.remove(res[1].urn)

We can verify now with:

 print storage.select(query1)

Trying to remove the third product in the previous list will result in an error, as we have no write
permission to the pool test through this storage. We will need to access this pool through the other
storage which was created by registering test as the first pool.

res1 = otherStorage.select(query1)
otherStorage.remove(res1[0].urn)
print storage.select(query1)
print otherStorage.select(query1)

The last two statements verify that the operation was successful and affected both storages because
the pool test is registered in both. Both queries result in an empty list.

A.3.8. Updating/Repairing Storage
If the storage index becomes inconsistent, for example in the case of files being deleted or added in the
directory, the index can be re-built using pool.rebuildIndex(), where pool is a pool reference
obtained from the pool manager as shown above. For example the index of Pool1 can be rebuilt with:

pool1.rebuildIndex()

There should be no attempt to access this pool during the operation, which can take a while depending
on pool size.

A.4. DbPool
Used to access Products stored in a remote object (Versant) database. Here's an example:

Access to Products from the default
object database of logical name
-'hcss.test.database'.
pool = DbPool.getInstance()
Access to Products from an
object database of logical
name -'hifi.test.database'.
pool = DbPool.getInstance("hifi.test.database")

Note that this is an early implementation that needs to be tested thoroughly, so it is recommended to
use DbPools only around test databases, or databases that are used for casual development purposes
such that if data is lost, it is not a big problem.

It is recommended for performance purposes to cache products locally. To do this, wrap a CachedPool
around a DbPool as follows:

pool = CachedPool(DbPool.getInstance())

Advanced Product Access Layer

122

A.5. HsaReadPool
The HSA read pool is an implementation that allows you to access and download observations held in
the Herschel Science Archives. By default, the whole observation context is downloaded when using
this pool (level 0, 0.5, 1 and 2, plus auxiliary products):

 archive = HsaReaPool()
 store = ProductStorage(archive)

A.6. CachedPool
The cached pool is an implementation that allows you to cache everything (including queries and
their results!) retrieved from any remote pool. Any remote pool, regardless of whether it is an Oracle,
Versant or whatever implementation, can therefore be cached as follows:

pool = CachedPool(remotePool)

Registering a cached remote pool allows you to work offline.

A.7. Setting up and Accessing Remote Pools
A.7.1. PoolDaemon

If you have a pool that you wish to share with someone then you can start a PoolDaemon that allows
a person access and indicates whether they have read/write/query access. The PoolDaemon can be
started from a command line in your system.

java herschel.ia.pal.pool.serial.PoolDaemon [<hostPort>(=4444)
[<poolname>(=${hcss.ia.pal.defaultpool}=stdprod)
[<loadAccess>(=true) [<saveAccess>(=true)]]]]
Examples:
 java herschel.ia.pal.pool.serial.PoolDaemon
 java herschel.ia.pal.pool.serial.PoolDaemon 4567
 java herschel.ia.pal.pool.serial.PoolDaemon 4567 stdprod
 java herschel.ia.pal.pool.serial.PoolDaemon 4567 stdprod true true

This makes the pool available on port number 4567.

A.7.2. Accessing Remote Pools Using the
SerialClientPool

SerialClientPool (prototype) and PoolDaemon can be used to access remote pools.

SerialClientPool can be used for accessing a remote product pool. Usage:

a PoolDaemon is running at
host=the.host.domain
port=4567
pool.id=foo
create a store and register the pool:
store=ProductStorage()
store.register(SerialClientPool("the.host.domain",4567,"foo"))

A simple mechanism to allow read/write/query access to remote pools. This remote pool can be a
Versant one (making happy all those who cannot run a Versant client such as the MacOS X fellows,
or those who do not have a Versant licence), or a local store of a colleague.

Advanced Product Access Layer

123

Note that wrapping it up in a CachedPool ensures that you do not have to download a product twice.

A.8. More on querying

A.8.1. Querying strategy
Typically an AttribQuery is faster than a MetaQuery which is in turn faster than a FullQuery.
Depending on the product pools that are registered, a query can take some time; to avoid unnecessary
waiting time one can adopt a strategy of staged queries.

For example, a query on attributes is executed first. If too many hits are found, you can refine your
query by executing another query using the hits returned from the previous query. This process can
be repeated until the number of hits have been reduced to a reasonable amount:

results=storage.select(AttribQuery(...)) # 1000 hits
results=storage.select(MetaQuery(...),results) # 100 hits
results=storage.select(MetaQuery(...),results) # 50 hits
results=storage.select(FullQuery(...),results) # 3 hits

A.8.2. Querying for metadata in products
One thing you need to watch out when performing a meta or full query, is when you try to query for
a metadata that does not exist in one or more products that you are applying the query to.

For example, consider the following MetaQuery:

query = MetaQuery(Product, -'p', -'p.meta["temperature"].value==10)
resultset = storage.select(query)

The query first starts creating a shortlist of all products in the storage matching type Product. It
then runs the query string on each product in that shortlist. If any of those products don't contain the
information referenced in the query string, an error is raised.

There are two ways to avoid this:

• Be as specific as you can when it comes to specifying the product type in a query. If you know the
product type you want to query is of type CalHrsQDCFull, then specify that. Running queries
using the most general product type of Product is not recommended, unless the products you
have saved are of this type only.

• Run a two-stage query, using the containsKey() operator to check whether a component exists
first. For example, first get a sub-set of products that contain the metadata 'temperature':

queryOne = MetaQuery(Product, -'p', -'p.meta.containsKey("temperature")')
resultsetOne = storage.select(queryOne)

Then run the original query on this subset:

queryTwo = MetaQuery(Product, -'p', -'p.meta["temperature"].value==10)
resultsetTwo = storage.select(queryTwo, resultSetOne)

A.9. Special Imports into Pools
We can import/store files of various types in pools. Here, we give some specific examples.

Advanced Product Access Layer

124

A.9.1. Putting a Directory of FITS Files Into a Pool
It is possible to take any set of FITS files (e.g. from the Herschel Science Archive) and place these
into a pool. We can iteratively place all FITS files from a directory into a pool which can be accessed
via a browser and queried using the mechanisms described in this chapter.

from java.io import File

lstore = LocalStoreFactory.getStore("newdir") # or any local store name
storage = ProductStorage()
storage.register(lstore)

lstore.ingest(File("C:/testdata/"), 0) # or any directory name

To look at what you have use the Product Browser
a = browseProduct(storage)

In the above example a local store is placed in the default area (.hcss directory under the user's home
directory) of the user's computer. It is directly accessible in the same way as other pools from there.
This method does, however, not reproduce any hierarchy to the pool. It is a "flat" pool.

A.9.2. Placing Image (PNG) Files in a Pool and/or FITS
File

Image data can be stored in a pool by placement in a Product with a suitable name, and saving this
product in pool or in a FITS file:

Obtain bytes from PNG image
bytes = -...

Create a product with PNG data
p = Product()
p["png"] = ArrayDataset(bytes)

Save it in a PAL pool
pool = PoolManager.getPool("myPool")
storage = ProductStorage()
storage.register(pool)
storage.save(p)

Save it directly in a FITS file
fits = FitsArchive()
fits.save("myPng.fits", p)

The image can be placed in a byte array for storage in a dataset that can be placed in the pool.

Obtain bytes from PNG image
(it depends on how you generate the PNG image of a plot)
from java.awt.image import BufferedImage
from java.io import ByteArrayOutputStream
from javax.image import ImageIO

image = BufferedImage(<image name>) # implementing java.awt.image.RenderedImage
stream = ByteArrayOutputStream()
ImageIO.write(image, -"png", stream)
bytes = Byte1d(stream.toByteArray())

A.10. Context Products
Contexts are special types of products that contain references to other products stored.

Advanced Product Access Layer

125

This enables a means of building complex data structures in a storage.

There are two standard types of context products provided: ListContext (for grouping products
into sequences or lists) and MapContext (for grouping products into containers with access to each
by key).

A.11. Deep Copy or Cloning of Products
Say you had a context in one storage that referenced another product, and you wanted to copy that
data tree to a different storage. How would you do that?

It is possible to do this using the usual ProductStorage.save() method. If you pass as an
argument the context pointing to the 'head' of the data tree you want to clone, the whole data tree is
cloned.

So for example, we have create a context with a child and store it in storageA:

 l=ListContext()
 p=Product()
 l.refs.add(ProductRef(p))

 storageA.save(l)

then we want to copy the context and child to a new storage, say storageB, all we do is as follows:

 storageB.save(l)

The above cloning operation has one proviso: if a product within the data tree already exists in the
destination product storage, it is not copied. A product can exist in the destination storage if for
example, the original and destination storage happen to share a pool, and one of the products in the
data tree being copied is in that common pool.

Note that a context may have older versions of it stored in a storage (a older version of a context
may be saved when a context is saved, modified, then saved again). The older versions of the context
specified in the ProductStorage.save() argument are also cloned (if that context has any decendents
that are contexts, the local versions of those descendent contexts are not cloned, however).

A.12. Common Problems
Why do I keep getting 'IndexError' or 'IllegalArgumentException: <query> could not be
evaluated correctly' messages when I run my query on my PAL Product Storage?

You could get these message for one of the following reasons:

1. Your query string (the third argument of a query, eg 'p.creator==..') is simply not consistent with
the jython syntax and could not be correctly interpreted by the internal jython interpreter the PAL
uses. Check your query string by evaluating it on the jython command line. If your query uses a
'handle' to a product (eg the 'p' in a query 'p.meta[..]' is a handle), then create a dummy product of
the type you want to query on the command line to test the query against.

2. It could be possible that the query references some data that does not exist in *any* of the products
that match the product type you have passed in that query. If you see in the details of the error
message something along the lines of '<something> does not exist', then this may be the case for
you.

For example, consider the following MetaQuery:

Advanced Product Access Layer

126

query =MetaQuery(Product, -'p', -'p.meta["temperature"].value==10)
resultset=storage.select(query)

The query first starts creating a shortlist of all products in the storage matching type 'Product'. It
then runs the query string on each product in that shortlist. If any of those products don't contain
the information referenced in the query string, an error is raised.

There are two ways to avoid this:

• Be as specific as you can when it comes to specifying the product type in a query. If you know the
product type you want to query is of type 'CalHrsQDCFull', then specify that. Running queries
using the most general product type of 'Product' is not recommended.

• Run a two-stage query, using the containsKey() operator to check whether a component exists
first, e.g.

Get a sub-set of products that contain the metadata -'temperature'
queryOne= MetaQuery(Product, -'p', -'p.meta.containsKey("temperature")')
resultsetOne = storage.select(queryOne)
Run the original query on this subset
queryTwo =MetaQuery(Product, -'p', -'p.meta["temperature"].value==10)
resultsetTwo = storage.select(queryTwo, resultSetOne)

Accessing the Results of a Query

The results set can be accessed in the following way

a = resultsetTwo.toArray()[0].product
b = resultsetTwo.toArray()[1].product

Why is my PAL query so slow?

One of the possible reasons is that you are executing a FullQuery, and full queries by their very nature
are the most intense of queries and are therefore the slowest.

FullQuery executions should be run as the last stage of a multi-stage query operation. Below is an
example of how to search a storage for products of type 'MyProduct' that are created by a developer
called 'timo', but contain a specific value in the product data itself.

Stage one: Find all products of type MyProduct with creator -'timo'
attquery = AttQuery(MyProduct, -'p', p.creator=='timo')
resultset = storage.select(attquery)
Final stage: Find all products in selection generated from previous queries,
that has a value 10 in the column -'mycolumn' in dataset -'mydataset'
fullquery = FullQuery(Product, -'p', -'p["mydataset"]["mycolumn"].data[5]==10')
storage.select(fullquery, resultset)

There can be as many intermediate queries between the first stage and final stage involving
AttribQuery or MetaQuery, but FullQuery's should be left to last.

A.13. Storage Product Versioning

A.13.1. Versioning
To save a set of versions of a particular edition of a Product:

Advanced Product Access Layer

127

edition = Product()
storage.save(edition) # version 0 of Product saved
Modify edition
storage.save(edition) # version 1 of Product saved

To get the latest version of the Product edition, or the list of versions for that edition, you need to have
available at least one, arbitrary, version. With this, you can recover the latest version of that Product,
and the list of all versions of the Product in the storage. For example:

latest=storage.getHead(productRefOfAnyVersionOfEdition)

versions=storage.getVersions(productRefOfAnyVersionOfEdition)

You can get information on the current version of each product, as well as tag information, as follows:

print storage.versioningInfo

A.13.2. Querying Product Versions
The default query is to search for just the latest version of a Product edition:

query=AttribQuery(Product, -"p", -"1")
storage.select(query) # Just the latest versions

If you want to get all versions of editions that match a query, use the extended query constructors,
setting the fourth argument to true (or 1):

query=AttribQuery(Product, -"p", -"1", 1)
storage.select(query) # All versions of Product editions that match

(Note that with this extended query, the special products containing versioning information,
VersionTrackProduct and TagsProduct, are also returned if they match the query.)

Warning: make sure that you use the meta.containsKey() checks when performing Full or Meta-data
queries, as the presence of versioned products may affect those queries, or worse, result in an exception
if the metadata being queried for is not present in any product version.

A.13.3. Tagging Products in a Store
To save a product with a given tag:

storage.saveAs(myproduct, -"mytag")
saves myproduct to URN=product:123, and links tag -'mytag' to that URN
storage.load("mytag")
returns a ProductRef to product at URN=product:123

To assign a tag to an existing product in the storage:

storage.setTag("mytag", urn)

You can assign multiple tags to the same product:

storage.setTag("mytag1", urn)
storage.setTag("mytag2", urn)
storage.setTag("mytag3", urn)

You can re-assign tags from one product to another:

Advanced Product Access Layer

128

storage.setTag("mytag", urn1)
storage.setTag("mytag", urn2)

Note that the above steps removes the tag mytag from urn1, and re-assigns it to urn2. A given tag
maps to only one URN.

You can also remove tags from the system:

storage.removeTag("mytag")

And check if a given tag exists:

print storage.tagExists("mytag")

A.13.4. Turning Off Product Versioning
If Product versioning is not wanted or required, you can turn off the use of versioning within your
session by using.

hcss.ia.pal.version = none

A.13.5. Using the New Versioning Mechanism Against
Existing Pools

You can use the new versioning mechanism against pools with previously existing data. Although it
is highly recommended to use the mechanism against new pools with no data.

If you wish to use the mechanism against pools with existing data be aware that existing products in
your pool do not have versioning information. So if you modify such products, and then save them:

p = oldstorage.load("myurn").product
// modify p
oldstorage.save(p)

The PAL does not know what version the modified product belongs to, and therefore saves the
modified version of the product as the first version of a whole new version track.

It is therefore recommended to use the new versioning mechanism against a clean ProductStorage,
devoid of any products, or as the next best thing, migrate your products to a fresh pool as follows:

storage.register(newpool)
storage.register(oldpool)
p = storage.load("urn:123").product
storage.save(p) # saves the product with versioning information, to newpool

And then use the newpool for future sessions (archive or remove oldpool).

Note also that a tool for copying pools, which reads all products and saves them back again, by
preserving their hierarchy, will be placed in the HCSS at a later date. This will allow migration from
old to new pools to be done more easily.

A.14. The Product Browser
The Product Browser was the first graphical application developed to simplify the retrieval and
analysis of Products from storages.

Advanced Product Access Layer

129

Warning

If you are working in HIPE, we recommend you use the Product Browser perspective

instead (Window → Show Perspectives → Product Browser).

To start the Product Browser to analyse the contents of a local store called myLocal, open a HIPE
session and execute the following script:

storage=ProductStorage()
pool = LocalStoreFactory.getStore("myLocal")
storage.register(pool)
result = browseProduct(storage)
Use the popped up GUI to explore and select products.
The result variable will not be populated until you push
either -'Ok' or -'Apply' in the Product Browser.
print result

Note

Alternatively, execute the script herschel/ia/pal/browser/
browserStart.py

A.14.1. A visual tour of the browser
The following image shows the product browser user interface. The screen is divided into four areas:

1. The query area, where you enter query parameters.

2. The result area, where you view the query result.

3. The result inspection area, where you inspect a selected product.

4. The JIDE basket area (named after JIDE, a precursor to HIPE), where you collect the products to
be returned to HIPE.

Figure A.1. The Product Browser

Advanced Product Access Layer

130

The following sections describe first a typical use case and then each area in more details.

A.14.2. Simple use case
1. Specify attributes of a product in the query area (A).

2. Click on the "submit" button to execute the query.

3. Review the results in the result area (B).

4. Optional: if there are too many results, refine the query by specifying values in the Attributes and
Meta Data panes, and/or a query in the Full python query pane. Then select the Refine radio button
and press submit again.

5. Inspect selected results in the result inspection area (C).

6. Transfer the results of interest to the JIDE basket from the area (B), by marking the checkbox at the
beginning of the corresponding row, and (C), by right-clicking and selecting Add to JIDE Basket
from the menu.

7. Click Ok or Apply and process the selected results in HIPE. The results are available in the
return variable of the browseProduct method (in the browser start example above it is called
result).

A.14.3. A: Query area
The query area is divided into three input panes: Attributes, Meta Data, and Full python query.

1. Attributes queries search commonly defined attributes only.

2. Meta data queries search on additional meta data specific to a product. You need detailed knowledge
about a product to specify meta data queries. However, the result inspection area (C) may be used
to see available meta data for a product.

3. Full python queries allow to specify free form queries in the Jython query language. Refer to the
documentation of the ProductStorage class for further information on this topic.

Note that all attributes and meta data parameters are joined by the AND operator.

Note for power users: for simple OR-queries you can use the JIDE basket (D). First, do a query for
the first term (for instance, Creator = André) and add the results to the JIDE basket. Then, do a query
for the second term (for instance, Creator = Marc) and add the results to the JIDE basket.

For more complex OR-queries you can use full Python queries, although they might become very
slow. Complex OR-queries on meta data level are currently not supported.

A.14.4. B: Result area
This table displays all products that match a specific query.

Check or uncheck a product to move it to or remove it from the JIDE basket.

You have several possibilities to rearrange the products:

• Click on a column header to sort rows in ascending or descending order.

• Right click on a table header to pop up a context menu where you can select which columns to
show (shown in Figure A.1).

• Drag and drop a column header to rearrange the column order.

• Click between two column headers to resize a column.

Advanced Product Access Layer

131

Settings are stored between sessions. To revert to default settings, choose Reset User Preferences from
the Window menu. You will have to close and restart the browser for the change to take effect.

You can choose the column layout for the Query result pane from the Table Layout entry of the View
menu. Two predefined layouts are available:

• The Default Table Layout includes the following columns:

• Description (Attribute): self-explanatory.

• Instrument (Attribute): self-explainatory.

• Model Name (Attribute): self-explanatory.

• Type (Attribute): self-explanatory.

• Creator (Attribute): self-explanatory.

• Creation Date (Attribute): self-explanatory.

• Start Date (Attribute): self-explanatory.

• End Date (Attribute): self-explanatory.

• Site: the data store of the result.

• Class: the class of the Product as encoded in the URN.

• Id: the unique id within the data store.

• URN: convenience column for copy & paste. If you triple click into a cell of this column you can
select and copy the URN to your operating system clipboard. This is one way to use the browser
independently from HIPE.

• The ObservationContext Layout lists data of interest to astronomers from an Observation Context,
that is, a Context containing all the Products related to an observation. The layout contains the
following columns, which should all be self-explanatory:

• Observation ID.

• Operational day number.

• Observation start time.

• AOT ID.

• Instrument mode.

• Target name.

• Proposal ID.

• AOR label.

See Section A.14.7 for instructions on how to add a new layout (for advanced users only).

A.14.5. C: Result inspection area

Select any entry in the query result area (B) or in the JIDE basket (D) to inspect its attributes, meta
data and children in the result inspection area C. The selected product or context will be displayed
in a hierarchical tree structure.

Advanced Product Access Layer

132

There are five types of nodes:

• P: a Product contains the real data and can be examined with the dataset inspector. To open the
dataset inspector you can either double or right click on the node.

• C: a Context contains other Contexts or Products.

• A: a predefined set of Attributes common to all products and contexts.

• M: Meta data that is specific to each type of products.

• V: old Versions of a product or context.

To add or remove products and contexts to or from the JIDE basket you can right click and select the
appropriate action from the menu (both entries are shown in Figure A.1.

First note for power users: The current implementation of the tree supports only contexts that are
inherited from ListContext or MapContext. This is due to missing generic meta information
about the children of an ordinary context.

A.14.6. D: JIDE basket area
The JIDE basket collects the products and contexts of interest. Clicking on Ok or Apply will make the
content of the basket available within HIPE. Ok will close the browser, Apply will keep it open for
further usage. Note that the results are sorted the same way as in the JIDE basket.

Now you can further analyse the results in HIPE. Note that the ProductBrowser will return a list of
ProductRefs rather than a list of Products. A ProductRef is a small object that stores a pointer to a
Product, without loading the Product into memory.

result = browseProduct(storage)
This will print the list of ProductRefs
print result
This will print the first ProductRef in the list.
print result[0]
This will print the first Product in the list.
print result[0].getProduct()

A.14.7. Advanced: Adding a Table Layout
These instructions show you how to add a new entry to the Table Layout submenu of the View menu.

You can use either Jython or Java to register new Table Layouts. You can even add a new set
while the browser is running and you can define your own columns as long as you extend from
AbstractBasketColumn.

The Java code to register a Table Layout is shown below:

TableLayoutRegistry.instance().registerTableLayoutBuilder(new TableLayoutBuilder() {

 public void configureBasketTableModel(BasketTableModel model) {
 model.addColumn(new AttributeColumn(model,
AttributeColumn.ProductAttribute.DESCRIPTION));
 model.addColumn(new MetadataColumn(model, -"test", -"test label",
String.class));
 -}

 public String getId() {
 return -"simpletablelayout";
 -}

Advanced Product Access Layer

133

 public String getLabel() {
 return -"Simple Table Layout";
 -}

});

134

Appendix B. Using JIDE or the JIDE
view in HIPE

B.1. Introduction
A DP session involving scripting is typically initiated within a console window of HIPE or JIDE. This
window includes help and history for the session. Individual commands can be input to the console
using DP/Jython commanding, which is discussed later in this chapter. Alternately, the console and
associated editor window allow for the construction and running of complete algorithms based on
the Jython language or even sections/individual lines of algorithms. Since no separate compilation is
required, individual lines or sections of algorithms can be checked for validity very quickly. DP scripts
that use GUIs can also be started from within the HIPE/JIDE view. Example HIPE/JIDE input code is
provided throughout the text in shaded boxes. Comments on the code and, frequently, example output
are provided within the boxes on lines preceded by the "#" mark.

In this chapter we discuss how to start working in the DP console view of HIPE or JIDE. We provide
some simple DP interactions to illustrate its use. We discuss some more detailed scripting capabilities
in Chapter 1.

B.2. Scripting using the JIDE view of HIPE
For an introduction to HIPE see the HIPE Owner's Guide.

In this section we describe the Classic (JIDE) perspective of HIPE, which gives access to a legacy
graphical interface called JIDE.

From the HIPE Welcome window select the Classic (JIDE) icon at top right of the screen ().

Alternatively, select Window → Show Perspectives → Classic (JIDE), as shown in the following
figure:

Figure B.1. Selecting the Classic(JIDE) perspective in HIPE.

The JIDE perspective contains three windows: an Editor view to the top of the screen, a Console view
towards the bottom left and a History view towards the bottom right:.

Using JIDE or the JIDE view in HIPE

135

Figure B.2. The Classic(JIDE) perspective in HIPE.

An interactiveConsole view appears at the bottom left of the perspective with a customizable HIPE>
prompt. Individual DP commands can be run here. Click in the Console view with your mouse, then
type the following and press Enter:

 print 5 + 3

The answer will appear on the next line, followed by the HIPE> prompt again:

HIPE> print 5 + 3
8
HIPE>

Note

In a plain Python or Jython console it would be enough to type "5 + 3" followed by
the Enter key to get the result. In DP we have to use the print keyword, otherwise we
would get no output.

The bottom right of the perspective contains a History window that lists the commands (including
those inside algorithms) executed in the current session. A red circle with a cross in the Status column
means that the corresponding command caused an error. Information on the error can be obtained
from the Error and Trace columns.

You can try this functionality with the following command, which will generate an error:

sign 5

The top pane of the perspective is an editor for developing your scripts. To start using it, select File

→ New → Jython Script. This will create a blank script within the New-1 tab:

Using JIDE or the JIDE view in HIPE

136

Figure B.3. The Classic (JIDE) perspective with script screen made available.

Click in this window and type in a similar print command to the above example. Pressing Enter will
not run this simple script. To run the one line, click in the grey margin to the left of the line you have
typed. An arrow should appear beside the line. Now go to the line of icons at top left of the HIPE

screen and click on the single arrow (). This will run your one-line algorithm and the result will
appear in the lower left command line window.

After this introduction to the three windows of the HIPE Classic (JIDE) perspective we will consider
each of the menu and icon items in turn.

B.2.1. File menu
Only one of the File menu items has an associated icon (the "Save" capability).

Use New creates a new window for algorithm development ("Jython script") or text ("Text file") in
the top "Editor" view of HIPE (note that a new "Tool" window feature is yet to be developed).

Open File allows a file to be opened in the Editor that is chosen from anywhere within the system
(ASCII - DP script files are typically stored with the suffix .py, in ASCII format). If the suffix is .py
the window is always a Jython script window -- otherwise a text window.

Close closes the current window shown in the Editor view. Close All
closes all the windows showing in the Editor view.

Save and Save As for saving the current algorithm shown in the top window. The "Save" capability

is also available using the icon shown in the line of icons to top left of the HIPE window.

Using JIDE or the JIDE view in HIPE

137

Revert Reverts back to the original version of the file currently being editted.

Refresh this IS NOT FOR USE WITH THE EDITOR. This capability is for the Navigator view
available in HIPE. The Navigator view automatically updates every 5 seconds so that new/changed
files in the computer system (e.g., copied files) are made available in the Navigator view of HIPE.
Hitting F5 or "Refresh" does this instantaneously.

Rename this IS NOT FOR USE WITH THE EDITOR. This capability is for the Navigator view
available in HIPE. It allows the renaming of a highlighted file showing in the Navigator view of HIPE.

Print prints text of HIPE Editor session to a printer (various page types and setups) or postscript file.

Exit exits from the HIPE session. For any unsaved changes to any of the files showing in Editor
windows the user is given the opportunity to accept or reject changes before HIPE is closed down.

B.2.2. Edit menu

Most of the Edit Menu functions (except Cut, Copy, Paste and Open) have an associated icon at the
top of the HIPE panel. The associated shortcut icons are shown next to the function name in the menu.
Each function also has an (standard) associated CTRL combination (except for Open and Open With).
See Figure B.4.

Figure B.4. The HIPE edit menu.

Undo (CTRL-Z) and Redo (CTRL-Y) and allows edits (cut/paste or deletion from
the keyboard) to be undone or redone.

Cut (CTRL-X), Copy (CTRL-C) and Paste (CTRL-V) These provide the usual cut, copy and paste
facilities, using the mouse to select and position text in the Editor window.

Open (enter key), Open With, and Delete (delete key) these are NOT FOR USE WITH THE
EDITOR. This capability is for the Navigator view available in HIPE. It allows the highlighted file
in the navigator view to be opened in the HIPE Editor view -- as Jython Script, text editor (default

Using JIDE or the JIDE view in HIPE

138

for Open) or File Overview (gives size/type of file info), or delete the highlighted selection from the
system.

Find/replace (CTRL-F) does the usual find and replace of text within the current window
of the HIPE Editor view.

Go to Line (CTRL-L) allows the user to go to a specified line number.

B.2.3. Run menu

The Run Menu items all have associated icons at the top of the HIPE window.

Stop (ALT-T) - stops a script being executed. Click on this button or choose Stop from the
pulldown menu to stop the execution of a script before it reaches the end. Note that this icon is greyed
out when there is no script in execution.

Run (ALT-U) - runs a single line or logical block of a script. A selected set of lines can be
highlighted using the mouse and these can be executed by then clicking the Run button or selecting
Run from the menu. The lines are iterated to the console window and their status shown in the History
window to bottom right. While running, the red stop button is lit.

Run all using pulldown or icon, this allows all DP commands in the current Editor window
of HIPE to be run in sequence. The lines are iterated to the console window. The stop button turns
red while running.

B.2.4. Window and Help menus

The "Window" menu allows access to HIPE perspectives (such as the Classic(JIDE) discussed here)
and views. There are a number of views available which are discussed more extensively in the "DP
HowTo's" document. By selecting one of the offered views an extra panel is added to your HIPE
perspective. For example, in Figure B.5 the Navigator view showing the available directories and files
on your system is added in a panel to the right on the HIPE screen.

Using JIDE or the JIDE view in HIPE

139

Figure B.5. Adding the Navigator view to the Classic(JIDE) perspective in HIPE.

The "Help" menu, in addition to providing access to Help inside of HIPE (together with Help search
facilites) also provides "About" information on HIPE and access back to the Welcome page that you
get on starting up HIPE.

B.3. DP scripting using JIDE
DP users who wish to do scripting may choose to work within DP JIDE separately from HIPE. You can
start the JIDE console can be initiated from the "Start" menu after installation using the HCSS installer.

Alternately, it can be started at a command window prompt.

$ jide

Note

• Under Windows, open a command window and type in the same thing, or execute
jide.bat from the bin directory of your HCSS build.

• Under Mac, starting from the command line only works if you installed a developer
build via the Continuous Integration System. If you used the InstallAnywhere installer
instead, you have to start the application via its icon.

Note that some feedback from the DP session is provided to the terminal window from which it
was started. This includes information on the settings used on JIDE startup and information on
database access (basically feedback on where interactions occur with systems outside the immediate
DP session). The JIDE shell performs the following tasks:

• Loads a customised DP environment (imports a set of libraries and defines a set of variables).

http://herschel.esac.esa.int/hcss/install.php

Using JIDE or the JIDE view in HIPE

140

• Keeps a history of successful DP statements.

• Implements a set of basic editing functions (copy, paste, find and replace).

It is an extension of the standard Jython shell. Here, we provide some basic startup information.

If entering the JIDE command from a terminal window, information on preloaded elements in the DP
session appear in the terminal window. Startup from the "Start" menu goes directly to the following.
After any feedback, a separate three-paned console window should appear (see Figure B.6). The bar
at the bottom of the window displays the amount of memory used by the session: as memory usage
increases the bar will turn from green to yellow and then to red.

Figure B.6. The JIDE window set-up.

The JIDE window has three components. An interactive command line/console window is given to
bottom left of the view with a customizable "IA>>" prompt. Individual DP commands can be run
here. Click in the bottom left window with your mouse, then type in

 print 5 + 3

Followed by Enter. The answer should be provided on the next line, prior to receiving the "IA>>"
prompt back again:

IA>> print 5 + 3
8
IA>>

Note

In a plain Python or Jython console it would be enough to type "5 + 3" followed by
the Enter key to get the result. In JIDE we have to use the print keyword, otherwise
we would get no output.

The bottom right of the console contains a command history window that lists the commands
(including those inside algorithms) used in the current session. Any command highlighted by a red
cross next to it caused an error. Some information on the error that occurred can be obtained using
the mouse to click on the command highlighted. A response with the error is shown in the command
line window to bottom left. Try the following

Using JIDE or the JIDE view in HIPE

141

sign 5

After hitting Enter the user will see the history window has a command highlighted by a red cross
next to it. Click on this using the left button of the mouse. This then expands the information on the
error incurred.

The top pane of the console is available for the user to develop his/her own algorithm using the
available DP commands. Click in this window, type in a similar print command to the above example.
Hitting return will not run this simple script. To run the one line, click in the grey margin to the left
of the line you have typed. An arrow should appear beside the line. Now go to the line of icons and

click on the single arrow (). This will run your one line algorithm and the result will appear in
the lower left command line window (again). If you want to "print" a string it needs to be in quotes
(e.g., print "Hello World").

Note

The top pane is not meant to be a fully-fledged text editor, nor a sophisticated IDE
(Integrated Development Environment). It offers basic editing and debugging capabilities
for developing simple scripts, but larger projects should be developed in external tools
and then loaded into JIDE for execution.

Now that we have a brief introduction to the three windows of JIDE we will consider each of the menu
and icon items in turn.

B.3.1. File menu
Each of the File menu items has an associated icon except for exit. These are the first 5 icons on the
bar under the menu headings.

New creates a new window for algorithm development. New history and/or command line
windows are not created.

Open allows a file to be opened in the top window (ASCII - DP files are stored in ASCII
format).

Save and Save As for saving the current algorithm shown in the top window.

Close closes the file in the top window pane. Only closes the window showing the current
algorithm.

Print prints text of JIDE session to printer or postscript file.

Screenshot as JPG creates JPG file of screen view.

Screenshot as PNG creates PNG file of screen view.

Exit exits from the JIDE session.

B.3.2. Console menu
Execute in the console requests the input of a DP script file, loads it and runs it inside of JIDE.

Using JIDE or the JIDE view in HIPE

142

Execute does a similar thing, except it runs the whole script on the system rather than using the JIDE
console

Execute in the background does the same as Execute, but runs the script in the background.

Save history and Save history as ... saves a history of successful JIDE commands from this session.

B.3.3. Edit menu
Each of the Edit Menu functions (except Goto) has an associated icon at the top of the JIDE panel
(middle section of icons).

Import history allows the import of the history of a saved JIDE session.

Undo and redo and allows edits (cut/paste or deletion from the keyboard) to be
undone or redone.

Cut and paste and the usual cut and paste using the mouse to select and position text.

Find/replace does the usual find and replace of text within the upper window of the JIDE
console.

Goto allows the user to go to a specified line number.

B.3.4. Run menu
The next four icons at the top of the JIDE window relate to the Run menu.

Script mode This only appears in the Run Menu. The default is that the script mode is disabled, the
Run, Run selection and Run all buttons then work as if on the command line for lines of code written
in the debug window and the commands are reiterated to the console. In script mode, only requested
output (e.g., from a "print" command) will have output sent to the console.

Stop - stops a script being executed. Click on this button or choose Stop from the pulldown
menu to stop the execution of a script before it reaches the end. Note that this icon is greyed out when
there is no script in execution.

Run - runs a single line or logical block of a script. The line is iterated to the console window,
unless in script mode (see under "Run Menu") when only explicit outputs from script commands
appear at the console. In script mode the button turns red.

Run selection select a set of commands by dragging the mouse over them. Pull down
to Run selection (or click the icon) to run these DP commands only. The lines are iterated to the
console window, unless in script mode (see under "Run Menu") when only explicit outputs from script
commands appear at the console. In script mode the button turns red.

Using JIDE or the JIDE view in HIPE

143

Run all using pulldown or icon, this allows all DP commands in the top pane of JIDE to be
run in sequence. The lines are iterated to the console window, unless in script mode (see under "Run
Menu") when only explicit outputs from script commands appear at the console. In script mode the
button turns red.

B.3.5. Help menu

The last four icons at the top of the JIDE window relate to various forms of help that are also available
under the Help pulldown menu.

Dataset Inspection allows the user to view datasets (notably tables) currently available in the
DP session in a separate Dataset Inspector code window (see Figure B.7). For more about the
Dataset Inspector see the Data Analysis Guide.

Figure B.7. The Dataset Inspector window

Session Inspection allows the user to view the classes (programs) and functions available in
the current DP session. Also allows the user to inspect all variables used in a session. See Figure B.8.
Further classes and functions can be made available by importing "packages" (see Chapter 5).

Using JIDE or the JIDE view in HIPE

144

Figure B.8. The Session Inspector window

Log Window provides a listing of the feedback from running commands in the system,
including error messages. These appear in a separate Log window. The log can be saved when exiting
from JIDE.

Access to On-line Help Documentation opens the HIPE Help System in your default browser.

B.4. Quitting JIDE
We already know that the Exit entry in the File menu can be used to quit JIDE. In this case a new
window appears, prompting the user to save the current work (scripts and command history). You will
get a list of all unsaved files, together with entries like

• [New-1]: -no file associated-. This is a script that has not been saved yet (beware that it could be
an empty script).

• [History of Console1]: -no file associated-. This is the history of the commands you have issued,
listed in the lower right panel. Useful if you want to save to a script what you have typed.

To select an item click on it. You can select multiple items by holding Ctrl while clicking on them;
if they are contiguous you can select them in one go by clicking on the first one and then clicking on
the last one while holding Shift.

Below the list of unsaved items there are four buttons: Select all to select all the items, Save Selected
to save the selected items, Cancel to go back to JIDE without quitting, and Close to quit JIDE.

After pressing Close, a second confirmation window is displayed. Click Yes to quit or No to go back
to JIDE.

Using JIDE or the JIDE view in HIPE

145

An alternative way to quit is to type System.exit(1) at the IA>> prompt and press the Enter
key. This command can also be added to a script (for more information about writing scripts, see
Section 1.15).

Warning

The System.exit(1) command causes the current JIDE session to terminate
immediately. All unsaved work will be lost.

B.5. Standard settings for JIDE and HIPE
JIDE and HIPE come with a memory specification that is dependant on the installer information
supplied by the user when setting up the system initially. The settings are specified in the startup
script for JIDE. This script is located in the $HCSS_DIR/bin directory (named jide.lax. These
settings can be modified by editing this JIDE startup script. The following two lines adjust the initial
and max memory allocations.

 lax.nl.java.option.java.heap.size.initial=134217728

 lax.nl.java.option.java.heap.size.max=536870912

A similar hipe.lax file has the same editable lines. Make sure that the environment variable
HCSS_PROPS is properly defined.

Make sure HCSS_PROPS contains the specification of the standard var.hcss.dir property (this
should be the property defined in your $HOME/.hcss/myconfig file IF you have set up your
own environment and are not using a local network installation or an installer). And be sure that
var.hcss.dir points to the HCSS build directory. You can check any property with a command
such as the following in the Console area.

 print Configuration.getProperty("var.hcss.dir")

B.6. DP working directory and file access
The current working directory of DP is the directory from which JIDE/HIPE was started. Jython has
some limitations, inherited from Java, with regard to navigation of the underlying operational system.
However, changing the default directory can be accomplished in two ways.

By changing the underlying system path using sys.path. This can dynamically change the default
directory.

 # at the console command line type
 import sys # if -"sys" not already imported
 sys.path.insert(0, -'/dir/path')
 # the -'0' puts it to the front of the directory path of the user.

By setting a standard directory in the path by putting the name of a directory in the file ".jython" under
the users home directory. This then means that, from whatever directory JIDE or HIPE is started, this
directory is always in the path.

But the user is advised to start JIDE/HIPE from a directory where he/she is going to read/write files
by default and to use absolute paths for the file names.

When using "Save" under the File menu of JIDE/HIPE the user can specify any directory.

Using JIDE or the JIDE view in HIPE

146

A view of the current directory contents is available through the HIPE navigator view. Such a view
is not possible with JIDE. Opening a file in either HIPE or JIDE under the "File" menu does allow a
view of the available files in any directory on the system.

It is possible to print the file contents of the current working directory using the following in a console
window.

import os

print the working directory
print os.getcwd()
print the names of the files in the working directory
print os.listdir(os.getcwd())
any directory name can be placed in the brackets

This provides an unsorted listing of all files and directories in the working directory. If the user wants
to filter the file list, e.g. to select only the fits files, then a glob module can be used with search pattern
following the UNIX shell rules, i.e. "*", "?", "[]" etc which are interpreted in the same way as in the
UNIX shell.

import glob

ffiles = glob.glob("*.fits")
or even more elaborate example to provide the list of all fits file
in a given directory and perform some action on them
ffiles2 = glob.glob("/home/user/scratch/fitsfiles/*.fits")
fits = FitsArchive(reader = FitsArchive.STANDARD_READER)

for fi in ffiles2:
 product = fits.load(fi)
 # do something on the products, like print the dimensions
 print fi, product.default.data.dimensions

B.7. Getting command-line help
Further help in JIDE or HIPE is available through command-line interaction. There are two methods.

• help() -- which provides an overview of the help system via a separate popup window (see
Figure B.9). The window also includes all documentation provided by each of the instruments,
for specific aspects associated with handling instrument information, providing more specialised
documentation.

• In HIPE, selection of help through any button marked provides access to Help that is shown in
a browser. Search and full Help document selection is available through this system.

Figure B.9. The online help() popup window

B.8. Programming loops
Earlier in the chapter we tried some basic commands to illustrate the components of the HIPE and
JIDE windows. One particular capability of JIDE and HIPE is allowing block support for DP coding.
Suppose we want to take a basic print command typed in the command line window.

a = 5 [Enter]
print a [Enter]
5

Now simply input (the [Enter] means you have to press the enter key on your keyboard)

for i in (1,2,3): [Enter]

Using JIDE or the JIDE view in HIPE

147

This will return a response in the command line. Note that the colon at the end of the line is
important for starting the block. The command is incomplete. Input a print i command indented by
at least one space. A further is returned. Hit Enter once more, the command is now complete.

The whole session should look like (again, note the indent prior to the print statement on line 2):

for i in (1,2,3):
.... print i
....
#1
#2
#3

We could have added a number of commands to this for loop. The block statement continues until
a blank line is produced. The history of the window is now available. The up arrow will provide the
previous command, which can then be edited as desired and re-entered

for i in (1,2,3):
 print i

You can edit this block statement in the bottom left panel of JIDE by using the LEFT and RIGHT keys
(not UP and DOWN, these are used to move through the history) and deleting/adding characters.

Blocks within blocks (nested for loops or if statements) are also possible. Basic rules about the use
of blocks follow Jython language syntax.

• Each statement in a block must begin in the same column;

• Each of the DP key statements and clauses (class, def, for/else, if/elsif/else, try/except/else, try/
finally and while/else) denotes the beginning of a new block;

• A new block must be indented at least one space from the enclosing block;

• The end of a block is marked by having the next statement begin in the same column as the enclosing
blocks.

For example

for x in (1,2,3):
 print x # outer block
 for y in (4,5,6):
 if y == 5: # inner block
 print y # inner-inner block
 print x*y # inner block
 # insert inner block statement here
 # insert outer block statement here

As usual, end with a blank line! Note the end of each for loop is determined by where the indentation
ends.

B.8.1. Loop performance on arrays
Numeric Arrays are discussed in Chapter 4 of this manual. But we mention here how loops can be
computationally expensive when used with numeric arrays in the system.

In performance checks using the HCSS timing differences for standard operations (e.g., division and
multiplication many times on arrays) are found to be very similar to using similar programming
languages such as Python. However, Jython/HCSS loops can be slow and for large computations this
can become very inefficient for the user.

One means of reducing quite significantly the computation time for simple arithmetic computations
on arrays is to use the ability of the HCSS language to do in-line calculations. For example:

Using JIDE or the JIDE view in HIPE

148

z=Double1d(x.size) # create a 1d numeric array of the same size as an original
 # array called -"x"
for i in range(1000):
 z.set(x) # assign, not allocate
 z-=y # inline subtraction
 z/=c # inline division

instead of the following --- which is much slower
for i in range(1000):
 z = (x-y)/c

For large operations this can reduce computation time by nearly an order of magnitude.

Some further advanced tips to improve performance are provided in Section 3.8.

B.8.2. Using the Editor view with loops
The top edit window of JIDE and Editor view of HIPE can be used to keep lines of code in your session.
To run things in this window we have three "arrows" at the top of the JIDE screen (two in HIPE). The
single arrow on the left of these will run things as if you were putting them on the command line. So
if we have a "for" loop a blank line will stop the loop. However the middle arrow (runs a highlighted
section of code -- incorporated into single arrow also for HIPE) and the double arrow (which runs
everything within the currently opened edit window) run commands within the whole group in the
editor window sand ignores blanks. For example, we may consider the following lines of code.

for i in range(4):
 if i > 0:
 print i

 j=i
 print j-i
print -"Finished"

If run line-by-line (mouseclick to produce arrow next to the "for i in range(4)" line -- then hit the single
arrow at the top of JIDE or HIPE) then only the first loop is run before a blank line is encountered. If
the double arrow is used then the blank is ignored and the whole thing is run.

Warning

This means that the way blank lines are treated depends on how the DP code is run. Your
code will run differently if you run it line-by-line as compared to running it as a complete
script.

B.9. Multiline statements in the console view
Another improvement of JIDE/HIPE compared to other Jython interpreters is that it allows multiline
statements. The backslash (\) character at the end prevents execution of the line when hitting Enter
and the statement can be continued.

The following example breaks up a longer definition of a tuple into three lines:

IA>> a = ("meaning", -"of", -"life", \
.... -"shrubbery", -"killer rabbit", \
.... -"holy hand granade")
IA>> print a
('meaning', -'of', -'life', -'shrubbery', -'killer rabbit', -'holy hand granade')
IA>>

Note that the backslash initiates a continuation mode. The mode is left upon hitting Enter after the
first line without backslash, and the entire line is executed.

Using JIDE or the JIDE view in HIPE

149

B.10. Pausing during script execution and
debugging in JIDE and HIPE

A script may be paused at any point using the pause() command. This allows values to be changed
while a script is paused in the Debug window.

See the following example script.

from herschel.ia.jconsole.util import * # import pause
def test(arg=1):
 a=12
 for i in range(arg):
 pause() # pause here, change of a within the debugger is allowed!
 a=a+i
 print a
 pause() # and here
 print a

test(5) # run the example

Once you execute the above script, the following window will pop up.

Figure B.10. The Debug window

You can change the value of the required variable by setting it via the DEBUG command line, and
can be checked by clicking on the variable name in the main window. Once the change has been made
in the Debug window to the required variables, select the "Console" pull-down menu in the Debug
window. To continue to execute the scroll down to "Resume". This will allow you to exit the Debug
window and to continue to execute your script.

B.11. Background script execution
There are two ways to run time consuming scripts in background. One is from the drop-down menu
under "Console" -> "Execute in background" which executes, in the background, the script which is
loaded in the JIDE editor window. This is not available in HIPE.

Using JIDE or the JIDE view in HIPE

150

The other method is by using the execfile capability, e.g.,
bg('execfile("script_name.py")') from the JIDE or HIPE command line. Print
statements are redirected to the console and can be used to monitor the state of the execution.

Statements passed as parameters to the function are evaluated in the global namespace therefore the
following example is legal:

IA>> a = 5
IA>> bg('execfile("print a")')
IA>> bg('execfile("a = anExtensiveComputation(12)")')
IA>> bg('execfile("b = aComputation(a)")')

There is no guarantee however that the last statement will be executed after the preceding returns the
value and that uncertainty can easily lead to cases where "aComputation" is run passing the value 5
(the first assigned to a) or the value returned by "anExtensiveComputation(12)". This is unpredictable
and should be carefully avoided.

B.12. Running scripts from a shell command
line

it is possible to run user-created DP scripts from the command line of a shell window using the
jylaunch command.

The following line at the command prompt can be run from a shell.

> jylaunch myscript.py

where, of course, myscript.py should be replaced with the filename of the script you want to run.

The jylaunch command can also be run from the Start menu for the 'hcss' provided by the HCSS
installer script.

With the use of the HCSS installer, the jylaunch capability is also available under the Program
Files start menu as a stand-alone task.

B.13. Errors and exceptions in DP
Here we explain how errors are generated within DP and how these are reported back to the user.
Following from this the user should be able to:

• understand error messages that might show up (i) while running an application, or (ii) during a DP
session.

• report the error to the custodian of a HCSS module in case a badly described exception occurred,
i.e., one which cannot be handled by the user.

B.13.1. Overview of the libraries used in a DP session

The base routines for DP are written in Java, but DP user development uses the more friendly Jython.
Typical user development is expected to take place in the console panel with plots and images
appearing in separate windows. Within a DP session one can run commands from the JIDE tool that
enables the execution of DP/Jython commands, saves and loads scripts, and provides command history
support. This tool often provides the core of a user's DP session.

http://www.jython.org/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/jconsole/index.html

Using JIDE or the JIDE view in HIPE

151

Figure B.11. The overall library structure for a DP session

Library usage for a DP session is illustrated in Figure B.11. Errors, as thrown by Jython and/or JAVA
classes, have the same means by which they follow the error back down the program layers to find the
root of the error -- "traceback mechanism" (although they differ in the way they present error messages
to the user, as shown in the next section).

Interpretation of these error messages allows the user to identify the place where the exception/error
originated from.

B.13.2. The error traceback mechanism
In this section we describe the differences in the way Jython and JAVA libraries present error
messages.

B.13.2.1. The way Jython presents error messages

Errors in the use of Jython are typically returned directly to the user after their attempted
implementation. An example of how Jython presents error messages is given in the following short
code example:

array = [1,2,3,4,5]
print array[5]
IndexError: index out of range: 5

Another typical Jython error form is a syntax error. Consider the following lines of code

x = 2
y = 3
a = x + 2y

An error message using this piece of code has the form

Traceback (innermost last):
(no code object) at line 0

Using JIDE or the JIDE view in HIPE

152

SyntaxError: ('invalid syntax', ('<string>', 1, 10, -'a = x + 2y'))

which indicates the fault happening in line 1 of the block of code (we only have one line in this case)
at the position of character number 10. Note that this information appears in the bottom right panel,
by double clicking on the red line corresponding to the error and selecting the Traceback entry.

B.13.2.2. The way Java presents error messages

Most DP packages use JAVA classes. If JAVA classes are run within a DP session and an error occurs,
an exception is thrown which is propagated upwards to the DP level. An example:

dbl = Double("wrong arg")
java.lang.NumberFormatException: For input string: -"wrong arg"

In the history window the command line will be indicated by a red cross, showing that there is an error
for this command. Information on the command can be obtained by clisking on the indicator to the
left of the red cross. This provides access to the error message and traceback of the error (again, via
a mouse click on the indicator).

A Log window can be obtained by using a right-click of the mouse on the history line, in JIDE
ONLY, and using the pull-down menu. This provides a separate window with all the information on
the problem command.

INFO:
<COMMAND>
 <STATEMENT>
 dbl = Double("wrong arg")
 </STATEMENT>

 <EXCEPTION>
 <MESSAGE>
 java.lang.NumberFormatException: For input string: -"wrong arg"
 </MESSAGE>
 <STACK_TRACE>
 Traceback (innermost last):
 File -"<string>", line 1, in -?
 java.lang.NumberFormatException: For input string: -"wrong arg"
 java.lang.NumberFormatException: For input string: -"wrong arg"
 at java.lang.NumberFormatException.forInputString\
 (NumberFormatException.java:48)
 at java.lang.FloatingDecimal.readJavaFormatString\
 (FloatingDecimal.java:1207)
 at java.lang.Double.valueOf(Double.java:202)
 at java.lang.Double.<init>(Double.java:277)
 at sun.reflect.NativeConstructorAccessorImpl.newInstance0\
 (Native Method)
 at sun.reflect.NativeConstructorAccessorImpl.newInstance\
 (NativeConstructorAccessorImpl.java:39)
 at sun.reflect.DelegatingConstructorAccessorImpl.newInstance
 (DelegatingConstructorAccessorImpl.java:27)\
 at java.lang.reflect.Constructor.newInstance
 (Constructor.java:274)\
 at org.python.core.PyReflectedConstructor.__call__\
 (PyReflectedConstructor.java)
 at org.python.core.PyJavaInstance.__init__(PyJavaInstance.java)
 at org.python.core.PyJavaClass.__call__(PyJavaClass.java)
 at org.python.core.PyObject.__call__(PyObject.java)
 at org.python.pycode._pyx113.f$0(<string>:1)
 at org.python.pycode._pyx113.call_function(<string>)
 at org.python.core.PyTableCode.call(PyTableCode.java)
 at org.python.core.PyCode.call(PyCode.java)
 at org.python.core.Py.runCode(Py.java:1136)
 at org.python.core.Py.exec(Py.java:1158)
 at org.python.util.PythonInterpreter.exec(PythonInterpreter.java)
 </STACK_TRACE>
 </EXCEPTION>
</COMMAND>

Using JIDE or the JIDE view in HIPE

153

The places in JAVA classes where the code breaks down are indicated. Typically, the traceback starts
with the line number of the original program where the problem occurs and follows this with the line
numbers in the classes accessed where the problem propagates from. In the above example we have
simply tried to attach a string, "wrong arg", to a numeric double. So it is of the wrong format -- as
indicated in the first line of the traceback. On other occasions, a more fundamental JAVA error may
be occurring deeper in the system. The traceback allows the user to find where this may be happening.

B.13.3. The HCSS exception and logging mechanism
Next to the standard JAVA exception handling mechanism the HCSS is using, it also has a logging
mechanism which forwards information, error and warning messages to the user.

B.13.3.1. Exceptions thrown from HCSS classes

In case an error occurs inside the HCSS, for example due to a missing or incorrectly defined
configuration variable, the information as part of the exception thrown should explain to the user the
cause of the exception. In this way the user should be capable to adjust his/her input arguments and/
or property settings. Property settings can be set using the Property Generation tool ("propgen") -- see
Chapter 1. For example:

Let us assume the user has set the configuration variable "var.database.devel" to a database name that
does not exist:

var.database.devel = -"idonotexist@iccdb.sron.rug.nl"

when trying to access this database in a DP-session by:

from herschel.access import *
tm = PacketAccess(1030)
packets = HcssConnection.get(tm)

Here, a query is done on the database as set by the above property and the exception, appearing in
the command line window, reads:

herschel.access.LocationException: Exception in constructor of
 herschel.access.db.LocalConnection:
herschel.access.LocationException: Failed to get store
herschel.store.api.StoreException: Failed to create store for
 idonotexist@iccdb.sron.rug.nl:
herschel.store.api.StoreException: Failed to create
 ObjectStore -"idonotexist@iccdb.sron.rug.nl
Cannot open database: idonotexist@iccdb.sron.rug.nl
Error while accessing database: idonotexist@iccdb.sron.rug.nl
{ VException(7001:UT_DB_NOT_FOUND: DB directory not found) -}

In cases where the information as passed by the Exception thrown is not sufficient (for example
a NullPointerException without any textual explanation), then there is a problem with the
current system and the user is encouraged to provide feedback to the HSC regarding the lack of
exception handling information (currently, this is best achieved through the SPR/SCR system).

In the above example the "access" package might improve its exception notification by adding
information to the LocationException, including a hint for the user that the database is not
existing and that the user should check whether var.database.devel is properly defined.

B.13.3.2. The HCSS logging mechanism

The logging mechanism allows (HCSS) classes to pass errors, warnings and/or info to the end-user. To

view the error logging mechanism, go to the Help menu or click on the icon (see also Section
2.2.5).

Using JIDE or the JIDE view in HIPE

154

For the HCSS end-user this mechanism, rather than the analysis of exception handling, is likely to
be used more often, especially when HCSS software is fully matured. The difference between the
two is that exception handling is more often used by the developer for debugging purposes, whereas
the logging mechanism is intended to be used by the end-user to get insight into the behaviour of an
(HCSS) application or class. The logging mechanism enables the developer to include messages when
an exception is thrown on how the class internally handles possibly thrown exceptions.

To give an example why, next to the exception mechanism, the logging mechanism was introduced:
suppose we have a layered HCSS component (i.e. within an instance of a class there are calls to
instances of other classes and these will call others on their turn), deep within this component an
exception occurs and at a higher level this exception is caught again. In such a scenario the end-user
of the component will not be aware of the fact that this exception occurred. However, by use of the
logging mechanism the developer of the component can pass a message (an error, warning or info;
depending on how severe this exception was) next to the exception thrown, as well as being able to
pass relevant information to the user when the exception is caught.

155

Appendix C. Jython operators
The following tables shows all the various operators you can use in Jython. For completeness we have
also listed one operator introduced in version 2.2 of Jython, but absent from version 2.1, the one used
by the HCSS software.

This list and the associated operator descriptions have been largely taken from the Python Reference
Manual, which you can find online at http://docs.python.org/ref/.

Table C.1. Jython unary arithmetic operators

Operator Operator description Example

+
Unary plus: yields its numeric
argument unchanged.

print +5
5

-
Unary minus: yields the
negation of its numeric
argument.

print -5
-5

~
Invert: yields the bitwise invert
of its plain or long integer
argument.

print ~5
-6

Table C.2. Jython binary arithmetic operators

Operator Operator description Example

+
Sum: yields the sum of its
arguments.

print 2 + 2
4

-
Subtraction: yields the
difference of its arguments.

print 2 - 3
-1

*
Multiplication: yields the
product of is arguments.

print 3 * 2
6

/
Division: yields the quotient of
its arguments.

print 5 / 2
2
print 5.0 / 2
2.5

//

Floor division (Jython 2.2
alpha only): yields the result of
the floor() function applied
to the quotient of its arguments.

print 5 // 2
2
print 5.0 // 2
2.0

%
Modulo: yields the remainder
from the division of its
arguments.

print 5 % 2
1

**
Power: yields its left argument
raised to the power of its right
argument.

print 5**2
25

Table C.3. Jython shifting operators

Operator Operator description Example

<<
Left shift: a << b shifts plain
or long integer a by b bits.

print 5 << 1
10

>>
Right shift: a >> b shifts plain
or long integer a by b bits.

print 5 >> 1
2

http://docs.python.org/ref/

Jython operators

156

Table C.4. Jython binary bitwise operators

Operator Operator description Example

&
Bitwise AND: yields the bitwise
AND of its plain or long integer
arguments.

print 5 & 6
4

^
Bitwise XOR: yields the bitwise
exclusive OR of its plain or long
integer arguments.

print 5 ^ 6
3

|
Bitwise OR: yields the bitwise
inclusive OR of its plain or long
integer arguments.

print 5 | 6
7

Table C.5. Jython comparison operators

Operator Operator description Example

<
Less than: a < b yields true if
a is less than b.

print 5 < 6
1

>
Greater than: a > b yields true
if a is greater than b.

print 5 > 6
0

==
Equal to: a == b yields true if
a and b are equal.

print 5 == 6
0

>=
Greater or equal to: a >= b
yields true if a is greater than or
equal to b.

print 5 >= 6
0

<=
Less or equal to: a <= b yields
true if a is less than or equal to b.

print 5 <= 6
1

!= (preferred) or <>
Not equal to: a != b yields
true if a is not equal to b.

print 5 != 6
1
print 5 <> 5
0

Table C.6. Jython boolean operators

Operator Operator description Example

and
Boolean AND: yields True if
both arguments are true, False
otherwise.

print 1 and 0
0

or
Boolean OR: yields True if
at least one argument is true,
False otherwise.

print 1 or 0
1

not
Boolean NOT: yields True if
the argument is false, False
otherwise.

print not 1
0

157

Appendix D. Naming Conventions
for Java and Jython users and developers. Version 0.3, 6th December 2006

Element Description Naming convention

Class

UM section 3.14.1

Defines the state and behaviour
of something. Classes are
defined as declaring variables
(fields) and functions (methods)
associated with the objects of
that class.

Names should be nouns and
written in mixed case starting
with an upper case letter. Do
not use underscores to separate
words.

DataFrameGenerator,
FitsArchive

Interface

UM section 3.14.2.1

Defines a collection of
method definitions and constant
values. It can later be
implemented by classes that
define this interface with the
implements keyword.

Names have the same
convention as class names but
are preferably adjectives. Try to
end the names with -able or -ible:

Sortable, Accessible,
Savable

Variable An item of data named by an
identifier. Each variable has a
type, such as int or Frame, and
a scope.

Names should be mixed case
starting with a lower case letter.
Do not use underscores to
separate words.

frameBufferCounter,
nSamples, line,
detectorNo

Instance Variable

UM section 3.14.1

A variable that is part of an
object.

For the rationale of this naming
convention see HSCDT/TN009
on ESA Livelink

Names should start with an
underscore, otherwise follow
the general conventions for
variables (see above).

_packetType,
_isVisible

Local Variable A variable that is part of a
function or method.

Names follow the naming
convention of normal variables.

counter, length,
pixelName

Constant A variable whose value that can
not be changed during execution.

Names should be all uppercase
using an underscore to separate
words:

MAX_ITERATIONS

Boolean variable and method A logical type/function that can
only have or return the values
'true' or 'false'. Methods have
parentheses () while variable
haven’t.

Names should start with is-, has-,
can-, or should-.

isVisible,
hasChanged(),
canHandle(),
shouldAbort

Parameter

http://www.rssd.esa.int/llink/livelink/fetch/2000/414493/10737/2557707/14323/Coding_standards_for_the_FCSS_development.pdf?nodeid=28008&vernum=-2

Naming Conventions

158

Element Description Naming convention

An argument to a function or a
method.

Names follow the naming
convention of normal variables.

name, packet

Property

UM section 1.5

A platform independent
implementation of environment
variables and settings.

Names should be all lower
case and start with 'hcss'. The
hierarchical parts should be
separated with a dot.

hcss.binstruct.services

Method

UM section 3.14.1

A function defined in a class. Names should be verbs and
written in mixed case starting
with a lower case letter. Do
not use underscores to separate
words.

getName(), load()

Function

UM section 3.12

A jython function is a collection
of code lines to perform a
specific task under one name.
Functions take arguments and
provide one output. They are
like methods, except they are not
inside a class. A function can
also be an instance of the Task
class.

Names follow the same
convention as method names in
classes.

resample(), readTm()

Numeric function

UM section 5.4

Parameterless Java functions
provided by the
herschel.ia.numeric toolboxes.
For these function only one
instance is needed. Other
numeric functions follow the
same convention as classes.

Names are in all uppercase with
an underscore to separate words.

UNIQ, MEDIAN,
IS_FINITE

Task

UM chapter 8

A Task is a class which can be
called as a function. Tasks do
input and output parameter type
checking and provide history to
Products.

Names follow the same
conventions as for classes. Task
names should end with the word
'Task'.

DisplayDataFrameTask,
ResampleTask

Package

UM section 3.14.4

Defines a collection of related
classes and interfaces in Java.
Packages provide the namespace
in Java and Jython.

Names should be in lower-
case letters and digits, don't use
underscores.

herschel.ia.numeric

Package names should be short
so that the fully qualified
package name doesn't become
excessively long.

Abbreviations and acronyms should not be all uppercase when used as a name:

Naming Conventions

159

GOOD BAD

exportAsHtml() exportAsHTML()

saveAsJpeg() saveAsJPEG()

OolPacket OOLPacket

Using all uppercase for the abbreviations in base names will give conflicts with the naming
conventions given above. A variable of this type would have to be named hTML, jPEG etc. which
obviously is not very readable. Another problem is illustrated in the examples above: when the name
is connected to another, the readability is seriously reduced, since the word following the acronym
does not stand out as it should.

The term compute can be used in methods where something is computed and might take considerable
time to execute.

computeAverage(), matrix.computeInverse()

Give the reader the immediate clue that this is a potential time consuming operation, and if used
repeatedly, he might consider caching the result. Consistent use of the term enhances readability.

The 'n' prefix should be used for variables representing a number of objects, note that the names are
plural.

nPoints, nLines, nSamples

The notation is taken from mathematics where it is an established convention for indicating a number
of objects. Note that Sun uses the num prefix in the core Java packages for such variables. This is
probably meant as an abbreviation of number of, but as it looks more like number it makes the variable
name strange and misleading. If "number of" is the preferred phrase, numberOf prefix can be used
instead of just n. The num prefix must not be used.

The 'No' suffix should be used for variables representing an entity number.

tableNo, employeeNo

The notation is taken from mathematics where it is an established convention for indicating an entity
number.

Reserved words: the following words are reserved by Java as language keywords and can not be used
for variables, methods or class names in Java.

abstract, continue, for, new, synchronized, assert, default, goto,
package, this, boolean, double, if, private, throws, break, do,
implements, protected, throw, byte, else, import, public, transient,
case, enum, instanceof, return, try, catch, extends, interface,
short, void, char, finally, int, static, volatile, class, final,
long, super, while, const, float, native, switch.

Java code example

package herschel.ia.numeric; -// herschel.ia.numeric: PACKAGE
public final class Complex1d -// Complex1d: CLASS
 implements Serializable -// Serializable: INTERFACE
{
 private transient double[][] _internal; -// _internal: INSTANCE VARIABLE
 -// writeObject: METHOD
 private void writeObject(ObjectOutputStream os) { -// os = METHOD PARAMETER
 os.defaultWriteObject();
 os.writeInt(length());
 if (length()==0) return;

Naming Conventions

160

 for (int i=0,n=length();i<n;i++) { -// i = LOCAL VARIABLE
 os.writeDouble(_re[i]); os.writeDouble(_im[i]);
 -}
 -}
}

Jython code example

herschel.ia.dataset.gui = PACKAGE; DatasetInspector = CLASS
from herschel.ia.dataset.gui import DatasetInspector
PI = CONSTANT
from java.lang.Math import PI
testName = VARIABLE
testName = -"chop_freq_test_2909_1832_1902_"
load = METHOD
t2 = fits.load(myDir+testname+"PHOTF.fits").default
MAX = NUMERIC FUNCTION
maxStep = MAX(step[step.where(step < 0xffff)])
startEndTimes = FUNCTION; step, maxStep, time... = FUNCTION PARAMETERS
def startEndTimes(step, maxStep, time, startTime, endTime):
 for i in range(0, maxStep): # i = LOCAL VARIABLE
 temp=(step.where(step == i+1))
 endTime[i] = time[MAX(temp.toInt1d())
 return endTime
len = FUNCTION
upper = len(startarr)

	Scripting and Data Mining
	Table of Contents
	Preface
	1. Related documentation

	Chapter 1. Scripting and Jython basics
	1.1. Basics
	1.2. Numbers and basic arithmetic
	1.3. Variables and variable types
	1.3.1. Java variable types

	1.4. Strings
	1.4.1. Java string types

	1.5. Type conversions
	1.5.1. Converting between Java and Jython types
	1.5.1.1. Incompatible types

	1.6. Lists and Dictionaries
	1.6.1. Setting up and Accessing Lists
	1.6.2. Slicing Lists
	1.6.3. Setting Up and Using Dictionaries
	1.6.4. Nested Dictionaries

	1.7. Augmenting Values and Lists
	1.8. Lists and Jython Tuples
	1.9. Basic programming statements
	1.9.1. if/elif/else
	1.9.2. for
	1.9.3. while
	1.9.4. Loop control: break and continue

	1.10. Printing to the screen and files
	1.11. Defining and Using Functions
	1.12. Importing modules
	1.13. Object Oriented Programming
	1.13.1. Classes and Objects
	1.13.1.1. A Note about Terminology

	1.13.2. Interface, Implementation and Encapsulation
	1.13.2.1. Interfaces, the Java Way

	1.13.3. Inheritance
	1.13.4. Packages and Namespaces
	1.13.5. Advantages of OOP
	1.13.6. Concluding Remarks

	1.14. Defining a Class in DP
	1.15. Writing Scripts - Programming in DP
	1.16. Some Useful Extra Items on Scripts
	1.17. Interactivity in Jython Scripts
	1.17.1. Basic Interactivity
	1.17.2. A Little Bit of Swing
	1.17.2.1. showMessageDialog
	1.17.2.2. showInputDialog
	1.17.2.3. showConfirmDialog

	1.18. Useful Java bits
	1.19. Jython and DP Quirks
	1.19.1. Two functions for one goal
	1.19.2. Long Names versus Short Names
	1.19.3. Naming conventions
	1.19.4. Miscellaneous quirks

	Chapter 2. Arrays, datasets and products
	2.1. Introduction
	2.2. Getting started
	2.3. Types of Array Data Objects
	2.3.1. DP Numeric Array Access and Slicing

	2.4. Creating a Simple 1D DP Numeric Array
	2.5. Creating and Handling Complex Array Data Objects
	2.6. Creating and Accessing Multi-Dimensional Array Data Objects
	2.6.1. A note on array ordering

	2.7. Adding Attributes to Create an Array Dataset
	2.7.1. Dataset Attributes and Metadata

	2.8. Creating and Viewing a TableDataset
	2.8.1. Row-wise appending of TableDatasets
	2.8.2. Assigning Units
	2.8.2.1. Manipulating Units
	2.8.2.2. Converting Units to Strings and Back Again
	2.8.2.3. Derived Units
	2.8.2.4. Conversion to SI and Other Units
	2.8.2.5. Physical Constants
	2.8.2.6. Unit Compatibility
	2.8.2.7. Unit Equivalence

	2.9. Creating and Accessing a Composite Dataset
	2.10. Spectrum Datasets
	2.10.1. Spectrum1d and SpectralSegments
	2.10.2. Spectrum2d
	2.10.3. Expanding Spectrum1d and Spectrum2d Datasets
	2.10.3.1. HIFI Extensions
	2.10.3.2. SPIRE extensions to Spectrum1d
	2.10.3.3. PACS Spectrum1d and Spectrum2d extensions

	2.11. Image and cube datasets
	2.11.1. Spectral cubes

	2.12. Importing spectral cubes from external applications
	2.13. Assigning a World Coordinate System to images and cubes
	2.14. Products
	2.14.1. Mandatory Parameters in Products
	2.14.2. Setting Date Information
	2.14.3. Additional Metadata
	2.14.4. Inserting and Getting Datasets from a Product

	Chapter 3. The Numeric library
	3.1. Introduction
	3.2. Getting started
	3.3. Basic numeric array arithmetic
	3.4. Numeric functions and lambda expressions
	3.5. Selection, data filtering and masking methods
	3.6. Array access and slicing
	3.7. Making sense of logical operators
	3.8. Advanced tips for improved performance
	3.9. Type conversions
	3.9.1. Explicit conversion
	3.9.2. Implicit conversion

	3.10. Function library
	3.10.1. Basic functions
	3.10.2. Integral transforms
	3.10.3. Power spectrum
	3.10.4. Convolution
	3.10.5. Boxcar and gaussian filters
	3.10.6. Interpolation
	3.10.7. Data fitting
	3.10.7.1. General approach
	3.10.7.2. Available linear models
	3.10.7.3. Available non-linear models
	3.10.7.4. Compound and mixed models
	3.10.7.5. Available fitters
	3.10.7.6. Obtaining a model fit to 1D and 2D data
	1D fit example
	2D fit example

	3.10.8. Spectral fitting
	3.10.8.1. Data format
	3.10.8.2. General usage
	3.10.8.3. Fitting your data
	3.10.8.4. A simple fit case
	3.10.8.5. Available models for fitting
	3.10.8.6. Multiple line fitting
	3.10.8.7. Background/continuum fitting
	3.10.8.8. Fit of line and continuum
	3.10.8.9. Changing parameters
	3.10.8.10. Removing fitted models
	3.10.8.11. Using fit parameters
	3.10.8.12. Subtracting a fit
	3.10.8.13. New data
	3.10.8.14. Functions to be added in the future

	3.10.9. Masks
	3.10.10. Matrices
	3.10.11. Random numbers
	3.10.12. Numeric integration
	3.10.13. Interpolating discrete data

	3.11. Example programs
	3.12. Mathematical operations on spectra
	3.12.1. Introduction
	3.12.2. Toolbox primer: selection
	3.12.2.1. More on selection methods

	3.12.3. Toolbox primer: average spectra
	3.12.4. Toolbox primer: subtract spectra
	3.12.5. Toolbox primer: divide spectra
	3.12.6. Toolbox primer: add and muliply spectra
	3.12.7. Toolbox primer: resample and smooth spectra
	3.12.8. Toolbox primer: statistics on spectra
	3.12.9. Summary of toolbox operations
	3.12.9.1. Remarks

	Chapter 4. Introduction to Tasks
	4.1. The Task framework
	4.2. My first Task
	4.2.1. Before the Task
	4.2.2. What makes a Task?
	4.2.3. An Example of a Task: Average
	4.2.3.1. Importing definitions
	4.2.3.2. Creation
	4.2.3.3. Execution
	4.2.3.4. Usage
	4.2.3.5. Getting help on Tasks
	4.2.3.6. Adaptations in the Preamble to a Script
	4.2.3.7. Positional and Keyword Arguments in Tasks
	4.2.3.8. The Transformer example

	4.3. Guideline on How to Work With GUIs Within Tasks
	4.3.1. The use of task parameters handled via a dialog
	4.3.2. The use of more enhanced GUIs
	4.3.3. Example Task Handled by a Dialog
	4.3.4. Example Task Controlled by a GUI

	Chapter 5. Overview of DP packages
	5.1. Introduction
	5.2. Overview of Javadoc Documentation for DP Packages
	5.3. Package view
	5.4. Class view
	5.5. Other views
	5.5.1. Tree view
	5.5.2. Deprecated view
	5.5.3. Index view

	5.6. DP Packages And Documentation
	5.6.1. herschel.ia.dataflow
	5.6.2. herschel.ia.dataset
	5.6.3. herschel.ia.demo
	5.6.4. herschel.ia.doc
	5.6.5. herschel.ia.document
	5.6.6. herschel.ia.gui
	5.6.7. herschel.ia.inspector
	5.6.8. herschel.ia.io
	5.6.9. herschel.ia.jconsole
	5.6.10. herschel.ia.numeric
	5.6.11. herschel.ia.obs
	5.6.12. herschel.ia.pal
	5.6.13. herschel.ia.pg
	5.6.14. herschel.ia.qcp
	5.6.15. herschel.ia.spg
	5.6.16. herschel.ia.task
	5.6.17. herschel.ia.toolbox
	5.6.18. herschel.ia.vo

	Chapter 6. Time measurement
	6.1. Introduction
	6.2. Time Definitions
	6.2.1. System time in DP
	6.2.2. International Atomic Time (TAI) and FineTime
	6.2.3. Coordinated Universal Time (UTC)
	6.2.4. DecMec Time [PACS only]

	6.3. Time in Instrument House-Keeping (HK) Data
	6.4. Time conversion
	6.4.1. Time conversion in HCSS
	6.4.2. CucConverter

	Appendix A. Advanced Product Access Layer
	A.1. Product Storage
	A.1.1. Creating a storage and registering pools
	A.1.2. Saving and restoring Products

	A.2. Product Pools
	A.3. Local Pools
	A.3.1. The Default Local Pool directory and how to change it
	A.3.2. Registering Local Pools
	A.3.3. Saving products in pools
	A.3.4. Finding out what is in storage: Starting the Product Browser
	A.3.5. More On Storage Queries: Other kinds of query and more examples of command line queries
	A.3.6. Retrieving products from storage
	A.3.7. Deleting Products from Storage
	A.3.8. Updating/Repairing Storage

	A.4. DbPool
	A.5. HsaReadPool
	A.6. CachedPool
	A.7. Setting up and Accessing Remote Pools
	A.7.1. PoolDaemon
	A.7.2. Accessing Remote Pools Using the SerialClientPool

	A.8. More on querying
	A.8.1. Querying strategy
	A.8.2. Querying for metadata in products

	A.9. Special Imports into Pools
	A.9.1. Putting a Directory of FITS Files Into a Pool
	A.9.2. Placing Image (PNG) Files in a Pool and/or FITS File

	A.10. Context Products
	A.11. Deep Copy or Cloning of Products
	A.12. Common Problems
	A.13. Storage Product Versioning
	A.13.1. Versioning
	A.13.2. Querying Product Versions
	A.13.3. Tagging Products in a Store
	A.13.4. Turning Off Product Versioning
	A.13.5. Using the New Versioning Mechanism Against Existing Pools

	A.14. The Product Browser
	A.14.1. A visual tour of the browser
	A.14.2. Simple use case
	A.14.3. A: Query area
	A.14.4. B: Result area
	A.14.5. C: Result inspection area
	A.14.6. D: JIDE basket area
	A.14.7. Advanced: Adding a Table Layout

	Appendix B. Using JIDE or the JIDE view in HIPE
	B.1. Introduction
	B.2. Scripting using the JIDE view of HIPE
	B.2.1. File menu
	B.2.2. Edit menu
	B.2.3. Run menu
	B.2.4. Window and Help menus

	B.3. DP scripting using JIDE
	B.3.1. File menu
	B.3.2. Console menu
	B.3.3. Edit menu
	B.3.4. Run menu
	B.3.5. Help menu

	B.4. Quitting JIDE
	B.5. Standard settings for JIDE and HIPE
	B.6. DP working directory and file access
	B.7. Getting command-line help
	B.8. Programming loops
	B.8.1. Loop performance on arrays
	B.8.2. Using the Editor view with loops

	B.9. Multiline statements in the console view
	B.10. Pausing during script execution and debugging in JIDE and HIPE
	B.11. Background script execution
	B.12. Running scripts from a shell command line
	B.13. Errors and exceptions in DP
	B.13.1. Overview of the libraries used in a DP session
	B.13.2. The error traceback mechanism
	B.13.2.1. The way Jython presents error messages
	B.13.2.2. The way Java presents error messages

	B.13.3. The HCSS exception and logging mechanism
	B.13.3.1. Exceptions thrown from HCSS classes
	B.13.3.2. The HCSS logging mechanism

	Appendix C. Jython operators
	Appendix D. Naming Conventions
	Java code example
	Jython code example

