
A Basic User's Manual

Scripting in the Herschel
Data Processing System

Version 1.1.0, Document Number: HERSCHEL-HSC-DOC-0517
14 June 2009

A Basic User's Manual: Scripting in the Herschel Data Processing
System

iii

Table of Contents
The Herschel Common Science System and Data Processing (DP) .. ix

1. Brief Overview .. ix
2. Availability of DP and Operating Systems .. ix
3. Related Documentation .. x
4. Versioning ... x
5. What's New and Previous Versions of DP User's Manual .. x
6. List of Contributors ... xix

1. HCSS Downloading and Installation ... 1
1.1. Introduction ... 1
1.2. Platform .. 1
1.3. Minimum System Requirements .. 1
1.4. Pre-Installation Requirements .. 1
1.5. User Installation Procedure ... 2
1.6. DP Property Initialisation ... 3

2. Using JIDE or the JIDE View in HIPE ... 4
2.1. Introduction ... 4
2.2. DP Scripting Using the Editor View of HIPE ... 4

2.2.1. File Menu ... 6
2.2.2. Edit Menu ... 6
2.2.3. Run Menu ... 7
2.2.4. Exiting HIPE ... 7
2.2.5. Window and Help Menus .. 7

2.3. DP Scripting Using JIDE ... 7
2.3.1. File Menu ... 9
2.3.2. Console Menu ... 9
2.3.3. Edit Menu ... 9
2.3.4. Run Menu ... 10
2.3.5. Help Menu .. 10

2.4. Quitting JIDE ... 13
2.5. Standard Settings for JIDE and HIPE .. 14
2.6. DP working directory and file access .. 14
2.7. Getting Command-line Help in JIDE or HIPE .. 15
2.8. Programming Loops in JIDE and HIPE ... 16

2.8.1. Loop Performance on Arrays .. 17
2.8.2. Using the Editor view with loops ... 17

2.9. Multiline Statements in the Console View of HIPE or JIDE 18
2.10. Pausing during script execution and debugging in JIDE (ONLY) 18
2.11. Background script execution in JIDE and HIPE ... 18
2.12. Running Scripts from a Shell Command Line ... 19
2.13. Errors and Exceptions in DP ... 19

2.13.1. Overview of the Libraries Used in a DP Session 19
2.13.2. The Error Traceback Mechanism .. 20
2.13.3. The HCSS exception and logging mechanism ... 22

3. Some DP Basics & Beginning Jython .. 24
3.1. Basics ... 24
3.2. Comments .. 24
3.3. Variables ... 24
3.4. Numbers and basic arithmetic .. 24
3.5. Boolean values ... 25
3.6. Strings ... 25
3.7. Type conversions .. 26
3.8. Lists and Dictionaries .. 26

3.8.1. Setting up and Accessing Lists .. 27
3.8.2. Slicing Lists ... 27
3.8.3. Setting Up and Using Dictionaries ... 27

A Basic User's Manual

iv

3.8.4. Nested Dictionaries ... 28
3.9. Augmenting Values and Lists .. 29
3.10. Lists and Jython Tuples .. 29
3.11. Basic programming statements ... 29

3.11.1. if/elif/else .. 30
3.11.2. for .. 30
3.11.3. while .. 31
3.11.4. Loop control: break and continue .. 31

3.12. Printing to the screen and files ... 31
3.13. Defining and Using Functions .. 32
3.14. Importing modules ... 34
3.15. Object Oriented Programming .. 35

3.15.1. Classes and Objects ... 35
3.15.2. Interface, Implementation and Encapsulation .. 36
3.15.3. Inheritance ... 37
3.15.4. Packages and Namespaces .. 37
3.15.5. Advantages of OOP ... 38
3.15.6. Concluding Remarks .. 38

3.16. Defining a Class in DP ... 39
3.17. Writing Scripts - Programming in DP .. 40
3.18. Some Useful Extra Items on Scripts .. 40
3.19. Interactivity in Jython Scripts .. 41

3.19.1. Basic Interactivity ... 41
3.19.2. A Little Bit of Swing ... 42

3.20. Useful Java bits ... 45
3.21. Jython and DP Quirks .. 46

3.21.1. Two functions for one goal ... 46
3.21.2. Long Names versus Short Names ... 46
3.21.3. Naming conventions .. 47
3.21.4. Miscellaneous quirks ... 47

4. Handling Array Data Objects, Datasets and Products .. 49
4.1. Introduction .. 49
4.2. Getting started .. 49
4.3. Types of Array Data Objects ... 49

4.3.1. DP Numeric Array Access and Slicing .. 50
4.4. Creating a Simple 1D DP Numeric Array .. 50
4.5. Creating and Handling Complex Array Data Objects .. 51
4.6. Creating and Accessing Multi-Dimensional Array Data Objects 51

4.6.1. A note on array ordering .. 52
4.7. Adding Attributes to Create an Array Dataset ... 52

4.7.1. Dataset Attributes and Metadata .. 53
4.8. Creating and Viewing a TableDataset ... 53

4.8.1. Row-wise appending of TableDatasets .. 55
4.8.2. Assigning Units .. 55

4.9. Creating and Accessing a Composite Dataset .. 58
4.10. Spectrum Datasets ... 59

4.10.1. Spectrum1d and SpectralSegments ... 59
4.10.2. Spectrum2d .. 60
4.10.3. Expanding Spectrum1d and Spectrum2d Datasets 61

4.11. Image and Cube Datasets .. 63
4.12. Assigning a World Coordinate System (WCS) to SimpleImage and SimpleCube 64
4.13. Wrapping it all up: Products .. 67

4.13.1. Mandatory Parameters in Products .. 67
4.13.2. Setting Date Information .. 68
4.13.3. Additional Metadata .. 68
4.13.4. Inserting and Getting Datasets from a Product .. 68

4.14. The Dataset Inspector ... 69
4.14.1. The TablePlotter ... 70

A Basic User's Manual

v

4.14.2. The Over Plotter ... 81
4.14.3. The Power Spectrum Viewer ... 86

5. DP Numeric: Basic Functions for Herschel DP ... 89
5.1. Introduction .. 89
5.2. Getting Started .. 89
5.3. Basic Numeric Array Arithmetic .. 89
5.4. Numeric Functions and Lambda Expressions .. 90
5.5. Selection, Data Filtering and Masking Methods .. 90
5.6. Array Access and Slicing ... 93
5.7. Making sense of logical operators .. 93
5.8. Advanced Tips for Improved Performance ... 94
5.9. Type Conversions ... 95

5.9.1. Explicit conversion ... 95
5.9.2. Implicit conversion ... 95

5.10. Function Library ... 95
5.10.1. Basic Functions .. 96
5.10.2. Integral Transforms ... 96
5.10.3. Convolution ... 97
5.10.4. Boxcar and Gaussian Filters .. 98
5.10.5. Interpolation Functions ... 98
5.10.6. Basic Fitter Routines .. 100
5.10.7. Spectral Fitting. ... 107
5.10.8. Matrix Manipulations ... 114
5.10.9. Random numbers generation .. 115
5.10.10. Numeric Integration ... 116
5.10.11. Interpolating Discrete Data .. 117

5.11. Example Programs ... 118
5.12. Mathematical Operations on Spectra .. 118

5.12.1. Introduction .. 118
5.12.2. Toolbox Primer: Selection ... 119
5.12.3. Toolbox Primer: Average Spectra ... 120
5.12.4. Toolbox Primer: Subtract Spectra ... 121
5.12.5. Toolbox Primer: Divide Spectra ... 121
5.12.6. Toolbox Primer: Add and Muliply Spectra ... 121
5.12.7. Toolbox Primer: Resample and Smooth Spectra 121
5.12.8. Toolbox Primer: Statistics on Spectra .. 122
5.12.9. Summary of Toolbox Operations .. 122

6. DP Plot: Basic Plotting of Data .. 124
6.1. Introduction .. 124
6.2. What do I need to make a simple XY plot? .. 125

6.2.1. Introducing PlotXY ... 125
6.3. How to setup your PlotXY properties .. 127

6.3.1. How to modify properties ... 128
6.3.2. Plot properties .. 128
6.3.3. Layer properties .. 129
6.3.4. Axis properties. .. 131
6.3.5. How to use properties. ... 132
6.3.6. Resizing a plot ... 134

6.4. Manipulating Layers, Axes, and Annotations in DP Scripts 135
6.4.1. What about these Layers? ... 135
6.4.2. What can I do with Axis? ... 140

6.5. Adding Error Bars to a Plot ... 146
6.6. How can I annotate, decorate and save my plot? .. 148
6.7. How can I make my plots more colourful? ... 150
6.8. Creating file output and printing a plot without displaying 150

6.8.1. Using batch mode ... 151
6.9. Windows containing more than one plot .. 151
6.10. Mouse Interactions with Plots .. 153

A Basic User's Manual

vi

6.11. What about a complete PlotXY example? ... 154
7. Display - Handling Images and Cubes .. 155

7.1. Introduction .. 155
7.2. Images and Cubes ... 155

7.2.1. Flagging out Pixels : the Flag Class .. 157
7.2.2. Coordinate Conversions: the Wcs Class ... 157

7.3. Display vs. Image Explorer ... 159
7.3.1. Display .. 159
7.3.2. Image explorer ... 169

7.4. Visualisation, Analysis and Manipulation of Images ... 170
7.4.1. Profile Plotting ... 170
7.4.2. Aperture Photometry .. 173
7.4.3. Histograms ... 183
7.4.4. Contour Plotting ... 189
7.4.5. Mosaicking .. 194
7.4.6. Smoothing ... 195
7.4.7. Clamping/Clipping .. 196
7.4.8. Cropping ... 198
7.4.9. Rotating .. 199
7.4.10. Scaling .. 201
7.4.11. Translating ... 203
7.4.12. Transposing .. 204
7.4.13. Flagging saturated Pixels .. 205
7.4.14. Getting the Cut Levels ... 207
7.4.15. Image Arithmetics ... 208

7.5. Visualisation, Analysis and Manipulation of Cubes .. 212
8. Introduction to Tasks .. 214

8.1. The Task framework .. 214
8.2. My first Task .. 214

8.2.1. Before the Task .. 214
8.2.2. What makes a Task? .. 215
8.2.3. An Example of a Task: Average .. 216

8.3. Guideline on How to Work With GUIs Within Tasks ... 222
8.3.1. The use of task parameters handled via a dialog 222
8.3.2. The use of more enhanced GUIs .. 222
8.3.3. Example Task Handled by a Dialog .. 222
8.3.4. Example Task Controlled by a GUI .. 223

9. Other DP Packages: What is Available? ... 224
9.1. Introduction .. 224
9.2. Overview of JavaDocs Documentation for DP Packages 224
9.3. Package view .. 225
9.4. Class view .. 227
9.5. Tree view ... 229
9.6. Deprecated view .. 229
9.7. Index view ... 229
9.8. DP Packages And Documentation ... 229

9.8.1. herschel.ia.dataflow ... 229
9.8.2. herschel.ia.dataset .. 229
9.8.3. herschel.ia.demo ... 230
9.8.4. herschel.ia.doc .. 230
9.8.5. herschel.ia.document .. 230
9.8.6. herschel.ia.help ... 230
9.8.7. herschel.ia.image ... 230
9.8.8. herschel.ia.inspector ... 231
9.8.9. herschel.ia.io .. 231
9.8.10. herschel.ia.jconsole .. 231
9.8.11. herschel.ia.numeric .. 231
9.8.12. herschel.ia.plot .. 232

A Basic User's Manual

vii

9.8.13. herschel.ia.task .. 232
9.8.14. herschel.ia.ui ... 232

10. IO of DP Variables, Tabular ASCII and FITS Files .. 233
10.1. Introduction .. 233
10.2. Saving and Restoring DP Variables ... 233
10.3. Getting Started with ASCII Import/Export .. 234

10.3.1. Basic ASCII Table Import/Export Tool Usage 234
10.3.2. Examples of How to Import/Export ASCII Tables in DP 237

10.4. Overview of FITS IO ... 239
10.4.1. Getting Started With FITS IO .. 239
10.4.2. Parameter Name Conversion and FITS Header 240
10.4.3. Caveats .. 242

11. Using Time in the DP Environment ... 244
11.1. Introduction .. 244
11.2. Time Definitions .. 244

11.2.1. System time in DP .. 244
11.2.2. International Atomic Time (TAI) and FineTime 245
11.2.3. Coordinated Universal Time (UTC) .. 245
11.2.4. DecMec Time [PACS only] ... 245

11.3. Time in Instrument House-Keeping (HK) Data .. 246
11.4. Time conversion .. 246

11.4.1. Time conversion in HCSS ... 246
11.4.2. CucConverter .. 247

12. Accessing and Retrieving Data ... 248
12.1. The Product Access Layer and Product Pools ... 248

12.1.1. Available Product Pools .. 248
12.1.2. Local Pools ... 248
12.1.3. DbPool .. 254
12.1.4. HsaReadPool .. 254
12.1.5. CachedPool .. 254
12.1.6. Setting up and Accessing Remote Pools ... 255
12.1.7. Special Imports into Pools ... 255
12.1.8. Common Problems .. 256
12.1.9. Storage Product Versioning ... 257
12.1.10. The Product Browser .. 259

12.2. Databases ... 263
12.2.1. Introduction .. 263
12.2.2. Starting Up A Database: ... 264
12.2.3. Schema Evolution .. 264
12.2.4. Providing Database Access for a DP Session .. 264
12.2.5. Changing the Database to be Accessed .. 265
12.2.6. Browsing a Database .. 265
12.2.7. Getting Data Frames From a Database ... 266
12.2.8. Accessing Housekeeping (HK) Data .. 270
12.2.9. Removing a Database ... 273

A. Data Reduction Tutorial -- contributed by Russ Shipman .. 274
A.1. Introduction ... 274
A.2. Getting Data into Your Session ... 274
A.3. Products and Data Wrappers ... 275
A.4. Numerical Calculations .. 276
A.5. Plotting ... 277
A.6. Writing a Task ... 281
A.7. Fitting a Model .. 283
A.8. Saving Data and Session .. 288

B. Example User's Property File ... 290
C. Jython Operators ... 292
D. Demo script ... 294

D.1. Introduction ... 294

A Basic User's Manual

viii

D.2. Demonstrations illustrating specific functionality .. 294
E. Naming Conventions .. 296

ix

The Herschel Common Science
System and Data Processing (DP)
1. Brief Overview

The Herschel Common Science System (HCSS) is being developed by the Herschel Science Center
(HSC) and Herschel Instrument Control Centers (ICCs) to provide the complete software system for
the Herschel Observatory mission. The intention is to provide a common system that is able to handle
test data, observation planning, mission planning and instrument data from observations within one
common development. An important element of this common development is Data Processing (DP).

DP handles computed, stored or simulated data and has access to much of the software developed for
other purposes within the HCSS (e.g., Quick Look Analysis, which runs on real-time data or replayed
data streams from a database).

Branches of the HCSS have also been developed for handling Herschel instrument-specific tasks.
So software packages for HIFI, PACS and SPIRE also reside within the HCSS framework and are
available within DP.

Since the Herschel DP uses Java and Jython programming, it is very flexible and Java classes can be
imported into a session. However, the basic DP system is already a fully-fledged standalone system
being developed to deal with data from the Herschel spacecraft, so that users should not need to import
additional Java modules, unless stated otherwise.

This manual is intended for the more advanced user who is interested in developing scripts and tools
within the DP system. It places an emphasis on command-line interactions which can be put together
to make flexible scripts for specific user tasks. It should be noted that such command-lines often mimic
the capabilities of HIPE tools -- which are displayed in the console view of HIPE when being used
interactively. This allows for copying and editting of interactive operations into user scripts such as
is described in this manual.

2. Availability of DP and Operating Systems
DP is available free of charge as part of the HCSS and can be downloaded for use on networked or
individual desktop/laptop machines. Current operating systems supported by DP include

• Solaris 2.8+

• Linux (Red Hat 8.0+, SuSE 9.1+ and LSB 1.3 compliant distributions)

• Mac OS X

• Windows (2000, XP)

• Note that Windows Vista is NOT currently supported and an installer is not provided for this system.

In order to allow full use of the system, including download, the following browsers should be used.

• IE 6+ ,

• Netscape 7+,

• Mozilla (Firefox) 1.5+,

• Safari (Mac)

For download and installation instructions see Chapter 1.

The Herschel Common Science
System and Data Processing (DP)

x

Note

Being DP a multiplatform software, screenshots in this manual come from different
operating systems. Do not worry if the look and feel you get on your system is different
from what you see in this manual; while things like window decorations may vary, all the
relevant features are system independent.

3. Related Documentation
The current document is intended to complement the "cookbook" approach to using the HIPE user
interface by users -- incorporated in the "HowTo's Manual." The current document is intended for the
more advanced user who intends to do more involved scripting as compared to the cookbook (often
GUI-based) interactions described in the "HowTo's manual."

Currently available is a User's Reference Manual that contains a command dictionary for all available
DP tasks.

4. Versioning
DP is still very much a system under development. This manual will be updated with the regular
user release updates of the system. Each new version will report the HCSS version it is associated
with. Every care has been put into ensuring that the text and example code are consistent with the
corresponding HCSS User Release; however, no guarantee can be given on compatibility with future
releases or developers' builds.

This version of the User's Manual is associated with User Release 1.1 of the HCSS.

5. What's New and Previous Versions of DP
User's Manual

The following was changed for version 1.1.0:

• Added section on plot resizing to Plot chapter.

• Removed reference to old and new style from Task chapter.

• Added section on array ordering to Chapter 4.

• Integrated new documentation on OverPlotter.

• Added instructions on unzipping FITS files.

• Expanded section on package imports.

• Removed references to SimplePool.

v0.26 contains a substantial update to chapter 7 on the use of image displays in DP plus some minor
updates to the plotting chapter (chapter 6), for working with 0.6.7 of the Herschel DP system.

Example scripts for v0.25 using the HCSS user release version 0.6.6.8.

• The following was changed for v0.25

• Chapter 1: Fixed minor typo

• Chapter 2: Changing working directory explained.

• Chapter 6: Added note on Auto-variable update to plots.

The Herschel Common Science
System and Data Processing (DP)

xi

• Chapter 7: Section added on display of SimpleCube 3-d images.

• Chapter 11: Time conversion example clarified.

• Chapter 12: HsaReadPool information updated.

Example scripts for v0.24 were tested using build 1776 of the HCSS, equivalent to HCSS user release
version 0.6.5.

• The following was changed for v0.24

• Subtitle: Updated to indicate hierarchical view of UM more describibg scripting possibilities.

• Preface: Updated preface to accentuate use of Basic User's Manual

• Chapter 1: Installation instructions updated to use installer, plus system recommendations included.

• Chapter 2: Complete upgrade to include full description of Classic(JIDE) perspective for HIPE and
updates within JIDE. Background processing corrected/updated for both HIPE and JIDE. Added
more prominently tips on best performance methods (especially with respect to loops).

• Chapter 5: Tips on speed improvements updated.

• Chapter 7: Updates with respect to Display and WCS API changes.

• Chapter 12: HsaReadPool added to pools available.

Example scripts for v0.23 were tested using build 1708 of the HCSS, equivalent to HCSS user release
version 0.6.4.

• The following was changed for v0.23

• Preface: Updated preface to contain information on supported platforms and browsers plus updated
section on relted documents.

• Chapter 1: Installation instructions updated to use installer, plus system recommendations included.

• Chapter 2: Added information on the use of "jylauncher."

• Chapter 5: Updates to spectral arithmetic and spectral fitting added.

• Chapter 5, 6, 7 and 8: Updates to examples due to changes in API.

• Chapter 7: Updates to Display incorporated

• Chapter 12: Complete revamp of PAL section of the chapter. Added information on importing FITS
and PNG files into pools.

Example scripts for v0.22 were tested using build 1602 of the HCSS, equivalent to HCSS user release
version 0.6.3.

• The following was changed for v0.22

• Chapter 4: Added examples of setting dates in a Product; Added information on Spectrum1d,
Spectrum2d, SimpleImage and SimpleCube datasets and the application of WCSs; Extended
information on the use of Units.

• Chapter 6: PlotXY updates w.r.t. updated API.

• All: Updated all chapters to new documentation framework.

Example scripts for v0.21 were tested using build 1547 of the HCSS, equivalent to HCSS user release
version 0.6.2.

The Herschel Common Science
System and Data Processing (DP)

xii

• The following was changed for v0.21

• Chapter 2: JIDE "Run" menu updates.

• Chapter 5: Added information on input of own non-linear fitter function with examples; SIGMA
removed.

• Chapter 6: Updated information and examples to match new PlotXY API.

• Chapter 7: Complete document update of all Image functions with updated Image API.

Example scripts for v0.20 were tested using build 1480 of the HCSS, equivalent to HCSS user release
version 0.6.1.

• The following was changed for v0.20

• Chapter 2: JIDE interactive debugger (pause()); JIDE "File" menu updates.

• Chapter 3: Warning on maximum Jython script size inserted.

• Chapter 4: Updated TablePlotter documentation included. Mandatory Product metadata updated
and date creation for Products illustrated.

• Chapter 5: Spectrum arithmetic section added. Spectrum fitter section added with example.

• Chapter 7: Removed deprecated Histogram() task.

• Chapter 12: Simplified query included and example time query. Removed PoolManager section.
Added short section indicating how to turn off product versioning in pools.

Example scripts for v0.19 were tested using build 1403 of the HCSS, equivalent to HCSS user release
version 0.6.0.

• The following was changed for v0.19

• All chapters: Checks on code examples.

• Chapter 4: DatasetInspector updates included. TableDataset section updated to include TableModel
method of obtaining/changing table values. A section was added about units and how to handle
them based on the herschel.ia.share.unit package.

• Chapter 6: Plot introduction changed, no reference to old plot package and removal of composite
plot discussions. All plot properties (plot, layer and axis) descriptions updated and extended.

• Chapter 7: All nanoTITAN library discussions removed and examples now use share.unit instead.

• Chapter 10: RegexParser described in ASCII table input section plus example given.

Example scripts for v0.18 were tested using build 1349 of the HCSS, equivalent to HCSS user release
version 0.5.2.

• The following was changed for v0.18

• All chapters: Checks on code examples.

• Chapter 3: More information on type conversion.

• Chapter 4: Convenience setter methods added to section 4.10.

• Chapter 5: Interpolating discrete data -- FitterFunction -- section added to the end of the chapter.

• Chapter 6: Removed deprecations (e.g. setText) and indicated TEX-like method for getting
subscripts and superscripts in labels.

The Herschel Common Science
System and Data Processing (DP)

xiii

• Chapter 12: Local store section moved from 12.2.4 to 12.2.1.9. Added information on PoolDaemon
in sections 12.2.1.9 and in association with PoolManagers in section 12.2.2. Added section on
Storage Product Versioning.

Example scripts for v0.17 were tested using build 1278 of the HCSS, equivalent to HCSS user release
version 0.5.1.

• The following major changes were made in v0.17

• Chapter 5: Further feedback on example code for fitters. Added sub-section on numerical
integration capabilities within DP.

• Chapter 12: Updates and fixes to parts of the PAL section, including local store usage. Updated
database setup info for the user (requires Versant client software).

• Appendix A: Updated the data analysis tutorial.

Example scripts for v0.16 were tested using build 1225 of the HCSS, equivalent to HCSS user release
version 0.5.0.

• The following was changed for v0.16

• Chapter 2: Extensive updates on the new JIDE console capabilites including find/replace and Goto
line edit capabilities.

• Chapter 5: Extended documentation of examples in the chapter. Updated one example script.

• Chapter 6: Documented Axis class quirks and information on default property storage.

• Chapter 7: Updated information on Histogram plots -- new plot types available in the Image
package. Also gave more examples on getting image information, e.g. sky coordinates.

• Chapter 7: Included image analysis task information -- aperture photometry, area histograms, 2D
profiles and contouring.

• Chapter 12: Updates and fixes to parts of the PAL section.

Example scripts for v0.15 were tested using build 1176 of the HCSS, equivalent to HCSS user release
version 0.4.3.

• The following was changed for v0.15

• All chapters: Comprehensive checks on code examples.

• Chapter 6: Documented several new methods of the LayerXY and Axis classes.

• Chapter 12: Updates and fixes to the PAL section.

Example scripts for v0.14 were tested using build 1106 of the HCSS, equivalent to HCSS user release
version 0.4.1.

• The following was changed for v0.14

• Chapter 2: Documented the new CompileAndRun function in JIDE.

• Chapter 3: Modified Section 3.21 on Jython and DP quirks. Now the shorter descriptions are
grouped in a single section, Miscellaneous quirks.

• Chapter 4: Added documentation on how to access the contents of Products in Section 4.13. Added
a section on the Dataset Inspector and the TablePlotter manual (Section 4.14).

• Chapter 5: Added documentation on logical operators in Section 5.7. Reference to this section added
to the list of quirks.

The Herschel Common Science
System and Data Processing (DP)

xiv

• Chapter 7: Fixed error in ??? on how to start the Annotation Toolbox.

• Chapter 8: Added a warning on the old and new interaction styles. Added features of the new
interaction style in Section 8.2.2 Added Section 8.2.3.5 on how to get help on Tasks.

• Chapter 12: Added ??? on the Pool and Storage Managers.

• Appendix D: Naming conventions document added as new appendix.

Example scripts for v0.13 were tested using build 1023 of the HCSS, equivalent to HCSS user release
version 0.3.6.

• The following was changed for v0.13

• Chapter 2: Added short section on blank line treatment in the debugger window (section 2.8.1,
SPR886). Added short section on working directories and accessing files in DP (section 2.6,
SPR1721). Short section added on running scripts in the background (section 2.10).

• Chapter 3: Added "clear" method on how to clear some or all variables from a session (section 3.3).
Wrote new section: "basic programming statements" which includes subsections on for, while, if/
elif/else, continue, break (section 3.10). Added information on formatting of printed output (section
3.11). Added material on defining user functions (section 3.12). Updated and enlarged the DP
"quirks" section at the end of the chapter.

• Chapter 5: Implemented SPR 2304 -- removal of INDEX from numerics.

• Chapter 6: Added sections on i) creation of composite plots with new PlotXY API (section 6.9), ii)
placing error bars on plots (section 6.5), iii) mouse interactions with plotted information (section
6.10).

• Chapter 8: Added section on keyword and positional parameter settings when calling tasks (section
8.2.3.6). Corrected one of the task examples.

• Chapter 12: Included documentation on the use of local store in the Product Access Layer (section
12.2.3). Updated ProductBrowser section to fit changed API (section 12.2.2).

Example scripts for v0.12 were tested using build 994 of the HCSS.

• The following was changed for v0.12

• Chapter 2: Removed warning about jide_new, updates on Help access, other minor updates about
JIDE

• Chapter 3: Fixed typos and US spelling, added warning on loading of Jython libraries, new sections
on interactivity and Jython/DP quirks

• Chapter 5: Implemented SPR 2183, added sections on random numbers generation and 2D fitting,
updated old plot examples, updated section on matrix manipulation

• Chapter 6: Updated notice on new and old plot

• Chapter 7: Implemented SPR 2103

• Chapter 8: Updates on Task interaction

• Chapter 10: Reorganised chapter structure

• Chapter 12: Added section on Product Browser, updated section on database access, reorganised
chapter structure

• Appendix A: Removed notice on new plot

Example scripts for v0.11 were tested using build 898 of the HCSS.

The Herschel Common Science
System and Data Processing (DP)

xv

• The following was changed for v0.11

• Chapter 12: Minor textual corrections to the Product Access Layer Description

Example scripts for v0.10 were tested using build 898 of the HCSS.

• The following was changed for v0.10

• Preface: added note on different look & feels in screenshots

• Chapter 2: added notes on usage of jide_new instead of jide and on usage of debugging
window. More detailed explanation of save and exit options.

• Chapter 5: added note on the proper usage of selection and on the difference between max, MAX
and other similar Jython/Numeric function pairs

• Chapter 6: Updated with new plot interface.

• Chapter 8: Fixed broken example layout.

• Added Appendix C with list of Jython operators.

• Chapter 12: Added a description of the Product Access Layer

• Updates to plotting code in all the other chapters.

Most example scripts in v0.9.1 were "randomly" tested (i.e. most but not all) using build 848 of the
HCSS. In particularly, there was no systematic attempt to find out which "from" imports are necessary
or redundant with startup initialization.

• The following was changed for v0.9.1

• Chapter 5: Update to UM on "and" and "&" closing AI DP-CCB-14/1.

• Chapter 6: Warning on use of the "old" plotting package.

• Chapter 10: Added xref "FITS-start" as section ID (reference from tutorial).

• Appendix A and B: Included Russ Shipman's tutorial on data processing as Appendix A; moved
existing Appendix A to "B" position

Example scripts for v0.9 were tested using build 800 of the HCSS.

• The following was changed for v0.9

• Chapter 1: Updated installation instructions and reference platform information.

• Chapter 3: Expanded textual explanations and a number of examples. Added if/elif/else example.

• Chapters 4 and 5: Removed redundancy between two chapters.

• Chapters 5: Improved fitter usage explanations.

• Chapter 6 and 7: Fixed typos, clarified DP command usage for PlotXY and Image.

• Chapter 8: Tidied up Task examples to run under build.

• Chapter 10: Expanded FITS conversion explanation.

• Chapter 11: Expanded time conversion discussion. Included use of java.text.SimpleDateFormat.

• Chapter 12: Small code corrections in the examples.

Scripts for v0.8 were tested using build 766 of the HCSS.

The Herschel Common Science
System and Data Processing (DP)

xvi

• The following was changed for v0.8

• Chapter 1: Updated installation instructions.

• Chapter 5: Reduced use of lambda functions (replaced with "where"). Amplified information on
how to do non-linear model fitting. Extended examples on non-linear model fitting.

• Chapter 6: Simplified introduction. Improved presentation of different plot initiation possibilities.
Introduced nT.quantity library and provided URL link to nanoTITAN.com who supply this third-
party library in section discussing Units in PlotXY.

• Chapter 7: Provided nT.quantity link.

• Chapter 8: Tidied up examples to run under build.

• Chapter 10: Minor changes to examples.

• Chapter 12: Small code corrections in the examples.

• All Chapters: minor typos and inconsistencies fixed, code examples adapted to newer build.

Scripts were tested using build 728 of the HCSS.

• The following was changed for v0.7

• Chapter 1: Updated JRE version.

• Chapter 2: Double, not single click needed in JIDE to get info about an error. Fixed. Also
documented the System.exit(1) command.

• Chapter 3: Added introduction on Object Oriented Programming with brief explanation of its
advantages. Fixed links to Jython and Python homepages. Fixed a couple of bugs in the Basket
class. Added the Useful Java bits section with a brief explanation on frequently used Java
components.

• Chapter 4: Fixed confusion between array data objects and array datasets.

• Chapter 7: Link to example JPG file moved to the beginning of the chapter.

• Chapter 8: Brand new chapter on the Task framework. Therefore Chapters 8 to 11 in version 0.6
are now Chapters 9 to 12.

• Chapter 10: Changed section on ASCII table import/export. Now a table is first exported and then
imported, so that the ASCII file already has the correct format.

• All Chapters: minor typos and inconsistencies fixed, code examples adapted to newer build.

• The following was changed for v0.6

• Preface: Updated "What's New..." section. Added Editorial Board membership list.

• Chapter 1: Updated known installation bugs section. CLASSPATH length no longer an issue.

• Chapter 2: Revised section 2.8 on errors and exceptions.

• Chapter 3: Added a section on naming conventions (short/long names and upper/lower case) in DP.

• Chapter 5: Updated numerics section to include more information on linear and non-linear model
fitting. Updated example to provide polynomial model fit example. Moved all "Numeric User
Guide" information into User Manual (fitters, models, matrix manipulations, integral transforms).

In all sections -- updated/removed "import" commands used in examples (as appropriate). Also
updated all example scripts for running with build 645 of the HCSS.

The Herschel Common Science
System and Data Processing (DP)

xvii

• The following was changed for v0.5

• Preface: Updated contributors and "What's New..." section

• Chapter 1: Added full link names to text in section 1.4

• Updated property initialization section 1.5

• Chapter 2: Added more information on on-line help within JIDE.

• Updated text and figures dealing with dataset and session inspectors.

• Chapter 3: Updated to include more on basic JIDE usage as well as components on numbers/
conversions/booleans and string handling

• Added explanation of lists/tuples and the differences with numeric arrays (in chapter 5)

• Chapter 4: Added sub-section on row-wise appending of TableDatasets

• Short explanation Jython/Java shortcuts when discussing meta data

• Chapter 5: Extended section 5.4 on filtering

• Added section on array slicing

• Added section on multi-dimensional arrays

• Added section on complex arrays

• Updated scripts to new numeric scheme -- notably the use of fitting routines

• Chapter 6: Removed all deprecated plot mode components discussed and in examples (and it
chapters which used plots for illustration).

• Updated figures of PlotXY properties windows (plot, layers and axes)

• Added section on CompositePlot -- two new figures added

• Chapter 7: Updated text on image import

• Chapter 8: Updated IO (including FITS) description

• Updated discussion of numerics

• Added descriptions of numeric toolbox sub-packages

• Small update to dataflow description (event as well as thread based dataflows)

• Chapter 9: Renamed to include DP variable IO

• Added section on save and restore

• Updated to include new FitsArchive capability

• Chapter 11: Updated examples to remove plot deprecations

• The following was changed for v0.4.1

The major difference between this and the previous version is that the source for this document
is no longer in Windows Word format, but in DocBook XML format. This greatly simplifies the
maintenance of the document e.g. now several writers can work on selected chapters concurrently.
In addition it is very easy to generate different formats from this DocBook XML format i.e. XHTML
for the Herschel DP Web page, JavaHelp for the JIDE on-line help, PDF for printing a paper
version of this manual.

The Herschel Common Science
System and Data Processing (DP)

xviii

The main content of the User Manual is currently left untouched. There are a few minor changes
thought:

• The first chapter is turned into a Preface which means the number of all other chapters is
decreased by one.

• The Appendix B is left out since it is merely a duplication of the Javadoc for herschel.ia.

• At several places, thought not all, the acronym 'IA' is replaced by 'DP' and the word 'jconsole'
has been replaced by 'JIDE'.

• The following was added in v0.4

• Introduction: Added full list of contributors.

• Chapter 1: Changed chapter 1 to allow for description of updates. Added list of contributors.

• Chapter 2: Updated installation information. Provided pointer to HCSS installation.

• Chapter 3: Section 3.2.5 was added providing short descriptions on new components added to
the Jconsole environment (i.e., session and dataset inspectors).

• Figure 3-1 was updated to the new view of Jconsole and Figures 3-2, 3-3 and 3-4 were added
in section 3.2.5.

• Added section 3.7 on error and exception handling in IA.

• Chapter 4: Augmented discussion on classes and methods in section 4.7.

• Clarified last paragraph in section 4.9

• Added section on script writing in IA (section 4.8).

• Chapter 5: Changed required imports section.

• Added components on complex and multi-dimensional datasets.

• Basic numeric arithmetic moved into chapter 6.

• Chapter 6: Changed required imports section.

• Added basic numeric arithmetic from chapter 5.

• Added two figures illustrating fitting capabilities.

• Chapter 7: Updated introduction to reflect new setup of the HCSS.

• Extended PlotXY introduction in section 7.2. First example split into two.

• Added sections 7.2.1.1 and 7.2.1.2 on handling arrays and datasets in PlotXY.

• Updated all examples to present system.

• Added section 7.4.2.1 and 7.2.2.2 to better illustrate command axes adjustment.

• Chapter 8: Updated required imports section.

• Included new subsections on the use of each of the Image operations.

• Updated use of numeric2d arrays.

• Examples rewritten and extended to include new information on Image and Image operations.

The Herschel Common Science
System and Data Processing (DP)

xix

• Chapter 9: Updated import information with regard to IA startup.

• Added subsections on 'inspector' and 'help' packages.

• Chapter 10: Updated information regarding required package imports.

• Updated introduction to highlight current FITS usage.

• Examples updated.

• Chapter 11 (NEW): Chapter added on time usage within the HCSS and time conversions.

• This is based on the original user HowTo document, heavily revised.

• Chapter 12 (previously chapter 11): Revised package imports needed for using databases and
examples. Reworded and typo corrected sections 1 to 6.

• Significantly revised (made clearer?) sections on getting Dataframes and Housekeeping (HK)
data into an IA session.

• Appendix B: Updated listing of classes (including links) available in IA packages.

• The following new sections were added in v0.3.1

• Section 2.4.1 on updating Versant databases and schema evolution

• Section 2.6.3 on known installation problems.

• Updates were included in the following places

• Section 2.5.2 Windows installation instructions updated.

• Chapter 4 typo edits

• V0.3.1, 22 December 2004 (A.Marston)

• V0.3, 22 July 2004 (A. Marston & H. Siddiqui)

6. List of Contributors
The following people have contributed to the creation of this manual:

Philip Appleton, Jorgo Bakker, Helen Bright, Jon Brumfitt, Nicola de Candussio, Diego Cesarsky,
Alessandra Contursi, Steve Guest, Rik Huygen, Juliet Kemp, Sarah Leeks, Tanya Lim, Andrea
Lorenzani, Anthony Marston, Wim de Meester, Craig Porrett, Sarah Regibo, Davide Rizzo, Peter
Roelfsema, Bernhard Schulz, Russ Shipman, Hassan Siddiqui, Ivan Valtchanov, Roland Vavrek,
Michael Wetzstein, Ekkehard Wieprecht, Peer Zaal, Rob Zondag.

The following people comprised the Editorial Board for this edition of the User's Manual.

Katrina Exter, Anthony Marston, Carolyn McCoey, Brian O'Halloran, Chris Pearson, Davide Rizzo,
Markos Trichas, Russ Shipman, Ivan Valtchanov,

1

Chapter 1. HCSS Downloading and
Installation

Important

In case of any problems during installation please contact the Herschel Helpdesk via the
Herchel Science Centre website.

1.1. Introduction
In this chapter we explain how to download and install the Herschel Common Science System (HCSS)
software. For local area networks this is likely to be done by a system manager. The system can then
be run by anyone on the network. However, personal versions (e.g., for laptops) can also be set up
by a user.

If you are not worried about using Versant databases (only typically for Herschel calibration scientists)
for now then the Section 1.5 section is probably all you need to follow at present.

This chapter describes how to set up a basic user (or user-as-developer) HCSS environment. A key
component of the HCSS is its interaction with local and remote databases storing test data and
(later) observations. Upgrading your installation to allow for database interactions is discussed in
Chapter 12 of this manual. Chapters 2 and 3 introduce the user to DP/Jython and do not require database
interactions.

1.2. Platform
The reference platform used for Unit and System testing the HCSS software, prior to release, is now
SuSE 9.1 (previously used RedHat 8.0) running on an Intel processor.

Note that this OS version is LSB (Linux Standard Base) v1.3 so theoretically one should be safe using
another Linux distribution providing it has been certified LSB v1.3, see: LSB certified products for
more information.

1.3. Minimum System Requirements
Software can be run on a server or individual workstation running Windows XP, Linux or Solaris.
The minimum recommended system is Windows/Linux 32-bit w/1GB RAM or 64-bit W/Lin/Mac
w/1GB RAM; Browsers for use with the systemm (including download) IE 6+ , Netscape 7+, Mozilla
(Firefox) 1.5+, Safari (Mac).

1.4. Pre-Installation Requirements
The following third-party software is required to be installed prior to run (or develop software for)
the HCSS. In order to run all the facilities of the HCSS the necessary components are completely
available with the HCSS installer.

• In many cases users will not require any additional software in order to install and run the HCSS.

• ALL USERS: You will need access to a Java JRE (Java Runtime Environment), which can be
downloaded from the SUN web pages. A Java runtime environment is usually available as standard
on most modern computer systems. The reference platform build is currently version 1.5.0_06. You
can check the Java version recommended in the Reference Platform at ftp://ftp.rssd.esa.int/pub/
HERSCHEL/csdt/releases/doc/refPlatformVersion . To see which Java version is installed on your
machine type the following in a terminal window:

http://www.opengroup.org/lsb/cert/cert_prodlist.tpl
http://java.sun.com/j2se
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion

HCSS Downloading and Installation

2

>> java -version

• For database usage: Versant Database System (see notes on Versant in the full installation
instructions at ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html) will need to be
installed. This will allow setting up databases and accessing databases. Not needed if you are not
using HCSS Versant databases. The setup and use of databases within DP is described in Chapter 12.

• For users of TestControl: If you are using HCSS in a Herschel instrument testlab environment
for ILT/AIV tests then you will also need TclBlend. This can be downloaded from: http://
sourceforge.net/projects/tcljava

• For users who want to become involved in the development of HCSS, the following should be
installed. Note that development of DP/Jython scripts can be done with the HCSS Users software
needs noted above.

• Java JDK (Java Development Kit), which can be downloaded from: http://java.sun.com/j2se

• Versant Database System (see notes on Versant below)

• JavaCC, which can be downloaded from: https://javacc.dev.java.net/servlets/
ProjectDocumentList.

• CVS (client/server version), which can be downloaded from: http://ccvs.cvshome.org/servlets/
ProjectDownloadList

• TclBlend (only needed if you are developing the TestControl package), which can be downloaded
from: http://sourceforge.net/projects/tcljava.

• Together (optional), can be downloaded from: www.borland.com/together.

Note

the exact version numbers of the applications listed above, can be obtained from: ftp://
ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion

Warning

Please note that you may/will need system administrator support and/or privileges in order
to install one or more of the component(s) listed above.

All other third-party libraries required (see the HCSS reference platform specification for a complete
list), can be redistributed and are included with the HCSS installer.

For those who are considering HCSS development, the full third-party packages may be required
(including its Javadoc, sample code, etc.). A compressed TAR-file containing these libraries (matching
the latest reference platform set) can be downloaded from the HCSS ftp area: ftp://ftp.rssd.esa.int/
pub/HERSCHEL/csdt/refPlatformDownloads. Alternatively you can download all libraries from the
supplier site (most of the URLs can be found in the HCSS reference platform specification, ftp://
ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion).

You must now configure your environment to include the above listed packages in your PATH and
CLASSPATH environment variables, following the installation instructions provided by the suppliers.
In addition, developers should include the JavaCC library 'javacc.jar' in their CLASSPATH,
because of the way that the HCSS 'jake' tool invokes JavaCC.

1.5. User Installation Procedure
Installation of the HCSS/DP system is relatively straightforward and has recently been simplified for
both UNIX and Windows users. It can installed with a software installer (see Herschel Science Centre

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html
http://sourceforge.net/projects/tcljava
http://sourceforge.net/projects/tcljava
http://java.sun.com/j2se
https://javacc.dev.java.net/servlets/ProjectDocumentList
https://javacc.dev.java.net/servlets/ProjectDocumentList
http://ccvs.cvshome.org/servlets/ProjectDownloadList
http://ccvs.cvshome.org/servlets/ProjectDownloadList
http://sourceforge.net/projects/tcljava
http://www.togethersoft.com/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/refPlatformDownloads
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/refPlatformDownloads
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion

HCSS Downloading and Installation

3

website, or HCSS installer script). Software can be run on a server or individual workstation running
Windows XP, Linux or Solaris. The minimum recommended system is Windows/Linux 32-bit w/1GB
RAM or 64-bit W/Lin/Mac w/1GB RAM; Browsers for use with the system (including download) IE
6+ , Netscape 7+, Mozilla (Firefox) 1.5+, Safari (Mac). The system is Java based, and indeed general
Java scripts can be run on the system. Installation instructions are provided at the bottom of the FTP
page.

Once the software is installed, HIPE or JIDE can be started by several means. Under Windows,
Herschel software can be started under the "Start" menu after a standard installation. Alternatively,
HIPE or JIDE can be started from a command line, e.g.,

$ jide

or

$ hipe

If the installation is done by the installer then the user at the end of the installation receives a message
informing her/him where the applications reside on their computer and the links to the applications.

The maximum java size for an application can be set via an option in the expert panel of the installer. the
downside of this implementation is that it can only be set once. A more flexible solution is envisaged
in the future.

Once downloaded, some environmental properties need to be set up. This is now handled automatically
by the DP installer.

For an up-to-date list of installation problems please see

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html#KnownInstallationProblems

1.6. DP Property Initialisation
Standard user properties are set up when the DP system is installed. However, the HCSS environment
that has been set up can be configured to user specifications. This can, for example, change the
database being used for interactions or change the memory allocation to JIDE and HIPE (the prime
interfaces for running the HCSS and DP). For those new to the HCSS it is not necessary to adjust these
properties unless database interactions are to be immediately attempted. Later, with more sophisticated
interactions, users will want to make changes to their properties. Storage of user properties is in
the .hcss/myconfig file. Changes can be made to properties while working within the HCSS - no restart
is required for the updated properties to be made available. This can be useful when, for example, you
are changing the database with which you wish to work.

Properties can be set in the $HOME/.hcss/myconfig (under the Windows systems properties are
held in the file hcss.props within the user's home directory) file with the use of the HCSS tool
"Property Generator". Use the following command to initiate the tool (also see the property generator
user manual).

propgen

For the most part, system default values should be adequate for most users. A list
of these properties is available at ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/
Release.html#A_List_of_user_properties_in_HCSS. Property setting allowing the use of databases is
discussed in Chapter 12

After the initial download, the Property Generator tool is useful to run every time you download and
install a new build, as it will inform you of added properties that are not defined in your property files.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/installer/hcss-new-current/install.htm
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html#KnownInstallationProblems
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/propertygenerator/Propertygenerator_user_guide.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/propertygenerator/Propertygenerator_user_guide.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Release.html#A_List_of_user_properties_in_HCSS
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Release.html#A_List_of_user_properties_in_HCSS

4

Chapter 2. Using JIDE or the JIDE
View in HIPE
2.1. Introduction

A DP session involving scripting is typically initiated within a console window of HIPE or JIDE. This
window includes help and history for the session. Individual commands can be input to the console
using DP/Jython commanding, which is discussed later in this chapter. Alternately, the console and
associated editor window allow for the construction and running of complete algorithms based on
the Jython language or even sections/individual lines of algorithms. Since no separate compilation is
required, individual lines or sections of algorithms can be checked for validity very quickly. DP scripts
that use GUIs can also be started from within the HIPE/JIDE view. Example HIPE/JIDE input code is
provided throughout the text in shaded boxes. Comments on the code and, frequently, example output
are provided within the boxes on lines preceded by the "#" mark.

In this chapter we discuss how to start working in the DP console view of HIPE or JIDE. We provide
some simple DP interactions to illustrate its use. We discuss some more detailed DP capabilities in
Chapter 3.

2.2. DP Scripting Using the Editor View of
HIPE

HIPE has a full set of abilities that is described at the beginning of the "DP HowTo's" manual. A
similar perspective can be obtained by selecting the JIDE perspective from HIPE (see "DP How To's
Manual" introduction to HIPE). In describing the use of the DP system for more advanced, scripting
purposes with HIPE we will concentrate on the Classic(JIDE) perspective available within HIPE.

The user can start the HIPE console can be initiated from the computer "Start" menu after installation
using the HCSS installer.

Alternately, it can be started at a command window prompt.

$ hipe

Note

For Windows users, open a command window and type in the same thing, or execute
hipe.bat from the bin directory of your HCSS build.

Starting HIPE does the following:

• Loads a customised DP environment (imports a set of libraries and defines a set of variables).

• Keeps a history of successful DP statements.

• Implements a set of basic editing functions (copy, paste, find and replace).

On startup, HIPE displays a Welcome window. From the initial HIPE Welcome window the user
should select the "Classic(JIDE)" icon at top right of the screen ().

Alternatively, we can obtain the "Classic(JIDE)" perspective for doing more advanced scripting work
by going to the "Show Perspectives" area of the "Window" pull-down menu at the top of the screen
(see Figure 2.1).

Figure 2.1. Selecting the Classic(JIDE) perspective in HIPE.

Using JIDE or the JIDE View in HIPE

5

This provides a perspective of three windows with an Editor view to the top of the screen, a Console
view towards the bottom left and a History view towards the bottom right (see Figure 2.2).

Figure 2.2. The Classic(JIDE) perspective in HIPE.

The bar at the bottom of the perspective shows the amount of allocated memory used by the session.
As memory usage increases the bar will turn from green to yellow and then to red. Finally, note the
indicator in the right corner which will show a rotating set of emphasized dots during periods when
a DP command is being performed.

An interactive Console view is given to bottom left of the view with a customizable "IA>>" prompt.
Individual DP commands can be run here. Click in the bottom left window with your mouse, then
type in

 print 5 + 3

Followed by Enter. The answer should be provided on the next line, prior to receiving the "IA>>"
prompt back again:

IA>> print 5 + 3
8
IA>>

Note

In a plain Python or Jython console it would be enough to type "5 + 3" followed by
the Enter key to get the result. In DP we have to use the print keyword, otherwise we
would get no output.

The bottom right of the perspective contains a History window that lists the commands (including
those inside algorithms) used in the current session. Any command highlighted by a red cross next
to it caused an error. Some information on the error that occurred can be obtained using the mouse
to click on the command highlighted. A response with the error is shown in the traceback column of
the History window. Try the following

sign 5

After hitting Enter the user will see the history window has a command highlighted by a red cross
next to it. Click on this using the left button of the mouse. This then expands the information on the
error incurred.

The top pane of the perspective is available for the user to develop his/her own scripting algorithm
using the available DP commands.

In order to start scripting in this pane, go to the "File" menu and pull down to "New" -> "Jython script".
This will produce a white screen that allows input of DP commands that can be formulated into scripts
(see Figure 2.3).

Figure 2.3. The Classic(JIDE) with script screen made available.

Click in this window, type in a similar print command to the above example. Hitting return will not
run this simple script. To run the one line, click in the grey margin to the left of the line you have
typed. An arrow should appear beside the line. Now go to the line of icons at top left of the HIPE
screen and click on the single arrow (). This will run your one line algorithm and the result will appear
in the lower left command line window (again). If you want to "print" a string it needs to be in quotes
(e.g., print "Hello World").

Note

The top pane is not meant to be a fully-fledged text editor, nor a sophisticated IDE
(Integrated Development Environment). It offers basic editing and debugging capabilities

Using JIDE or the JIDE View in HIPE

6

for developing simple scripts, but larger projects should be developed in external tools
and then loaded into the window for execution.

Now that we have a brief introduction to the three windows of HIPE Classic(JIDE) perspective we
will consider each of the menu and icon items in turn.

2.2.1. File Menu
Only one of the File menu items has an associated icon (the "Save" capability).

Use New creates a new window for algorithm development ("Jython script") or text ("Text file") in
the top "Editor" view of HIPE (note that a new "Tool" window feature is yet to be developed).

Open File allows a file to be opened in the Editor that is chosen from anywhere within the system
(ASCII - DP script files are typically stored with the suffix .py, in ASCII format). If the suffix is .py
the window is always a Jython script window -- otherwise a text window.

Close closes the current window shown in the Editor view. Close All
closes all the windows showing in the Editor view.

Save and Save As for saving the current algorithm shown in the top window. The "Save" capability
is also available using the icon shown in the line of icons to top left of the HIPE window.

Revert Reverts back to the original version of the file currently being editted.

Refresh this IS NOT FOR USE WITH THE EDITOR. This capability is for the Navigator view
available in HIPE. The Navigator view automatically updates every 5 seconds so that new/changed
files in the computer system (e.g., copied files) are made available in the Navigator view of HIPE.
Hitting F5 or "Refresh" does this instantaneously.

Rename this IS NOT FOR USE WITH THE EDITOR. This capability is for the Navigator view
available in HIPE. It allows the renaming of a highlighted file showing in the Navigator view of HIPE.

Print prints text of HIPE Editor session to a printer (various page types and setups) or postscript file.

Exit exits from the HIPE session. For any unsaved changes to any of the files showing in Editor
windows the user is given the opportunity to accept or reject changes before HIPE is closed down.

2.2.2. Edit Menu
Most of the Edit Menu functions (except Cut, Copy, Paste and Open) have an associated icon at the
top of the HIPE panel. The associated shortcut icons are shown next to the function name in the menu.
Each function also has an (standard) associated CTRL combination (except for Open and Open With).
See Figure 2.4.

Figure 2.4. The Classic(JIDE) with script screen made available.

Undo (CTRL-Z) and Redo (CTRL-Y) and allows edits (cut/paste or deletion from the keyboard)
to be undone or redone.

Cut (CTRL-X), Copy (CTRL-C) and Paste (CTRL-V) These provide the usual cut, copy and paste
facilities, using the mouse to select and position text in the Editor window.

Open (enter key), Open With, and Delete (delete key) these are NOT FOR USE WITH THE
EDITOR. This capability is for the Navigator view available in HIPE. It allows the highlighted file
in the navigator view to be opened in the HIPE Editor view -- as Jython Script, text editor (default
for Open) or File Overview (gives size/type of file info), or delete the highlighted selection from the
system.

Find/replace (CTRL-F) does the usual find and replace of text within the current window of the
HIPE Editor view.

Using JIDE or the JIDE View in HIPE

7

Go to Line (CTRL-L) allows the user to go to a specified line number.

2.2.3. Run Menu
The Run Menu items all have associated icons at the top of the HIPE window.

Stop (ALT-T) - stops a script being executed. Click on this button or choose Stop from the pulldown
menu to stop the execution of a script before it reaches the end. Note that this icon is greyed out when
there is no script in execution.

Run (ALT-U) - runs a single line or logical block of a script. A selected set of lines can be highlighted
using the mouse and these can be executed by then clicking the Run button or selecting Run from the
menu. The lines are iterated to the console window and their status shown in the History window to
bottom right. While running, the red stop button is lit.

Run all using pulldown or icon, this allows all DP commands in the current Editor window of HIPE
to be run in sequence. The lines are iterated to the console window. The stop button turns red while
running.

2.2.4. Exiting HIPE
To exit go to Exit under the File menu of HIPE. For any unsaved changes to any of the files showing
in Editor windows the user is given the opportunity to accept or reject changes before HIPE is closed
down.

2.2.5. Window and Help Menus
The "Window" menu allows access to HIPE perspectives (such as the Classic(JIDE) discussed here)
and views. There are a number of views available which are discussed more extensively in the "DP
HowTo's" document. By selecting one of the offered views an extra panel is added to your HIPE
perspective. For example, in Figure 2.5 the Navigator view showing the available directories and files
on your system is added in a panel to the right on the HIPE screen.

Figure 2.5. Adding the Navigator view to the Classic(JIDE) perspective in HIPE.

The "Help" menu, in addition to providing access to Help inside of HIPE (together with Help search
facilites) also provides "About" information on HIPE and access back to the Welcome page that you
get on starting up HIPE.

2.3. DP Scripting Using JIDE
DP users who wish to do scripting may choose to work within DP JIDE separately from HIPE. After
installing the HCSS (see Chapter 1), the user can start the JIDE console can be initiated from the
"Start" menu after installation using the HCSS installer.

Alternately, it can be started at a command window prompt.

$ jide

Note

For Windows users, open a command window and type in the same thing, or execute
jide.bat from the bin directory of your HCSS build.

Note that some feedback from the DP session is provided to the terminal window from which it
was started. This includes information on the settings used on JIDE startup and information on
database access (basically feedback on where interactions occur with systems outside the immediate
DP session). The JIDE shell performs the following tasks:

Using JIDE or the JIDE View in HIPE

8

• Loads a customised DP environment (imports a set of libraries and defines a set of variables).

• Keeps a history of successful DP statements.

• Implements a set of basic editing functions (copy, paste, find and replace).

It is an extension of the standard Jython shell. Here, we provide some basic startup information.

If entering the JIDE command from a terminal window, information on preloaded elements in the DP
session appear in the terminal window. Startup from the "Start" menu goes directly to the following.
After any feedback, a separate three-paned console window should appear (see Figure 2.6). The bar at
the bottom of the window displays the amount of memory used by the session: in the case of Figure 2.6
we are using just three per cent of the available memory. As memory usage increases the bar will turn
from green to yellow and then to red. Finally, note the clock at the lower right corner.

Figure 2.6. The JIDE window set-up.

The JIDE window has three components. An interactive command line/console window is given to
bottom left of the view with a customizable "IA>>" prompt. Individual DP commands can be run
here. Click in the bottom left window with your mouse, then type in

 print 5 + 3

Followed by Enter. The answer should be provided on the next line, prior to receiving the "IA>>"
prompt back again:

IA>> print 5 + 3
8
IA>>

Note

In a plain Python or Jython console it would be enough to type "5 + 3" followed by
the Enter key to get the result. In JIDE we have to use the print keyword, otherwise
we would get no output.

The bottom right of the console contains a command history window that lists the commands
(including those inside algorithms) used in the current session. Any command highlighted by a red
cross next to it caused an error. Some information on the error that occurred can be obtained using
the mouse to click on the command highlighted. A response with the error is shown in the command
line window to bottom left. Try the following

sign 5

After hitting Enter the user will see the history window has a command highlighted by a red cross
next to it. Click on this using the left button of the mouse. This then expands the information on the
error incurred.

The top pane of the console is available for the user to develop his/her own algorithm using the
available DP commands. Click in this window, type in a similar print command to the above example.
Hitting return will not run this simple script. To run the one line, click in the grey margin to the left
of the line you have typed. An arrow should appear beside the line. Now go to the line of icons and

click on the single arrow (). This will run your one line algorithm and the result will appear in
the lower left command line window (again). If you want to "print" a string it needs to be in quotes
(e.g., print "Hello World").

Note

The top pane is not meant to be a fully-fledged text editor, nor a sophisticated IDE
(Integrated Development Environment). It offers basic editing and debugging capabilities

Using JIDE or the JIDE View in HIPE

9

for developing simple scripts, but larger projects should be developed in external tools
and then loaded into JIDE for execution.

Now that we have a brief introduction to the three windows of JIDE we will consider each of the menu
and icon items in turn.

2.3.1. File Menu
Each of the File menu items has an associated icon except for exit. These are the first 5 icons on the
bar under the menu headings.

New creates a new window for algorithm development. New history and/or command line
windows are not created.

Open allows a file to be opened in the top window (ASCII - DP files are stored in ASCII
format).

Save and Save As for saving the current algorithm shown in the top window.

Close closes the file in the top window pane. Only closes the window showing the current
algorithm.

Print prints text of JIDE session to printer or postscript file.

Screenshot as JPG creates JPG file of screen view.

Screenshot as PNG creates PNG file of screen view.

Exit exits from the JIDE session.

2.3.2. Console Menu
Execute in the console requests the input of a DP script file, loads it and runs it inside of JIDE.

Execute does a similar thing, except it runs the whole script on the system rather than using the JIDE
console

Execute in the background does the same as Execute, but runs the script in the background.

Save history and Save history as ... saves a history of successful JIDE commands from this session.

2.3.3. Edit Menu
Each of the Edit Menu functions (except Goto) has an associated icon at the top of the JIDE panel
(middle section of icons).

Import history allows the import of the history of a saved JIDE session.

Undo and redo and allows edits (cut/paste or deletion from the keyboard) to be
undone or redone.

Using JIDE or the JIDE View in HIPE

10

Cut and paste and the usual cut and paste using the mouse to select and position text.

Find/replace does the usual find and replace of text within the upper window of the JIDE
console.

Goto allows the user to go to a specified line number.

2.3.4. Run Menu

The next four icons at the top of the JIDE window relate to the Run menu.

Script mode This only appears in the Run Menu. The default is that the script mode is disabled, the
Run, Run selection and Run all buttons then work as if on the command line for lines of code written
in the debug window and the commands are reiterated to the console. In script mode, only requested
output (e.g., from a "print" command) will have output sent to the console.

Stop - stops a script being executed. Click on this button or choose Stop from the pulldown
menu to stop the execution of a script before it reaches the end. Note that this icon is greyed out when
there is no script in execution.

Run - runs a single line or logical block of a script. The line is iterated to the console window,
unless in script mode (see under "Run Menu") when only explicit outputs from script commands
appear at the console. In script mode the button turns red.

Run selection select a set of commands by dragging the mouse over them. Pull down
to Run selection (or click the icon) to run these DP commands only. The lines are iterated to the
console window, unless in script mode (see under "Run Menu") when only explicit outputs from script
commands appear at the console. In script mode the button turns red.

Run all using pulldown or icon, this allows all DP commands in the top pane of JIDE to be
run in sequence. The lines are iterated to the console window, unless in script mode (see under "Run
Menu") when only explicit outputs from script commands appear at the console. In script mode the
button turns red.

2.3.5. Help Menu

The last four icons at the top of the JIDE window relate to various forms of help that are also available
under the Help pulldown menu.

Dataset Inspection allows the user to view datasets (notably tables) currently available in the
DP session in a separate Dataset Inspector code window (see Figure 2.7). Since the Dataset
Inspector involves advanced concepts like Products and Table Datasets, a detailed treatment is deferred
until Section 4.14.

Using JIDE or the JIDE View in HIPE

11

Figure 2.7. The Dataset Inspector window

Session Inspection allows the user to view the classes (programs) and functions available in
the current DP session. Also allows the user to inspect all variables used in a session. See Figure 2.8.
Further classes and functions can be made available by importing "packages" (see Chapter 7).

Using JIDE or the JIDE View in HIPE

12

Figure 2.8. The Session Inspector window

Log Window provides a listing of the feedback from running commands in the system,
including error messages. These appear in a separate Log window. The log can be saved when exiting
from JIDE.

Access to On-line Help Documentation clicking this icon allows access to full set of current
(website) documentation in a separate window. See Figure 2.9.

Using JIDE or the JIDE View in HIPE

13

Figure 2.9. The JIDE Help window

For the Help window there are tabs at the top of the left hand column. These provide, from left to right,
a table of contents for help, an index of help documents in alphabetical order, a listing of favourites
and a help search capability.

The main help documentation folders are included on the left hand side of the panel. These include
access to this User's Manual, the User's Reference Manual, and the equivalent for developers. Clicking
on the folders expands these so that individual chapters or sections can be selected.

Note

The main difference between the User's Manual and User's Reference Manual is the fact
that the User's Manual attempts to guide the user through linked DP commands typically
found in a user's data processing session, while the User's Reference Manual mainly
contains the listing of available commands and their usage. For a listing of available DP
commands (including any JTasks the user has imported -- see Chapter 8) go to the DP
Commands section of the User's Reference Manual. Commands are placed in alphabetical
and task type order.

2.4. Quitting JIDE
We already know that the Exit entry in the File menu can be used to quit JIDE. In this case a new
window appears, prompting the user to save the current work (scripts and command history). You will
get a list of all unsaved files, together with entries like

• [New-1]: -no file associated-. This is a script that has not been saved yet (beware that it could be
an empty script).

• [History of Console1]: -no file associated-. This is the history of the commands you have issued,
listed in the lower right panel. Useful if you want to save to a script what you have typed.

Using JIDE or the JIDE View in HIPE

14

To select an item click on it. You can select multiple items by holding Ctrl while clicking on them;
if they are contiguous you can select them in one go by clicking on the first one and then clicking on
the last one while holding Shift.

Below the list of unsaved items there are four buttons: Select all to select all the items, Save Selected
to save the selected items, Cancel to go back to JIDE without quitting, and Close to quit JIDE.

After pressing Close, a second confirmation window is displayed. Click Yes to quit or No to go back
to JIDE.

An alternative way to quit is to type System.exit(1) at the IA>> prompt and press the Enter
key. This command can also be added to a script (for more information about writing scripts, see
Section 3.17).

Warning

The System.exit(1) command causes the current JIDE session to terminate
immediately. All unsaved work will be lost.

2.5. Standard Settings for JIDE and HIPE
JIDE and HIPE come with a memory specification that is dependant on the installer information
supplied by the user when setting up the system initially. The settings are specified in the startup
script for JIDE. This script is located in the $HCSS_DIR/bin directory (named jide.lax. These
settings can be modified by editing this JIDE startup script. The following two lines adjust the initial
and max memory allocations.

 lax.nl.java.option.java.heap.size.initial=134217728

 lax.nl.java.option.java.heap.size.max=536870912

A similar hipe.lax file has the same editable lines. Make sure that the environment variable
HCSS_PROPS is properly defined (see Chapter 1).

Make sure HCSS_PROPS contains the specification of the standard var.hcss.dir property (this
should be the property defined in your $HOME/.hcss/myconfig file IF you have set up your
own environment and are not using a local network installation or an installer). And be sure that
var.hcss.dir points to the HCSS build directory. You can check any property with a command
such as the following in the Console area.

 print Configuration.getProperty("var.hcss.dir")

There are several properties for JIDE and HIPE that are set up during initialisation (for example, see
under Set Up in the JIDE HowTo document). These can be used to determine such things as window
size. However, window size can be adjusted in the usual fashion by clicking and dragging corners and/
or sides of the JIDE or HIPE window.

2.6. DP working directory and file access
The current working directory of DP is the directory from which JIDE/HIPE was started. Jython has
some limitations, inherited from Java, with regard to navigation of the underlying operational system.
However, changing the default directory can be accomplished in two ways.

By changing the underlying system path using sys.path. This can dynamically change the default
directory.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/jconsole/index.html

Using JIDE or the JIDE View in HIPE

15

 # at the console command line type
 import sys # if "sys" not already imported
 sys.path.insert(0, '/dir/path')
 # the '0' puts it to the front of the directory path of the user.

By setting a standard directory in the path by putting the name of a directory in the file ".jython" under
the users home directory. This then means that, from whatever directory JIDE or HIPE is started, this
directory is always in the path.

But the user is advised to start JIDE/HIPE from a directory where he/she is going to read/write files
by default and to use absolute paths for the file names.

When using "Save" under the File menu of JIDE/HIPE the user can specify any directory.

A view of the current directory contents is available through the HIPE navigator view. Such a view
is not possible with JIDE. Opening a file in either HIPE or JIDE under the "File" menu does allow a
view of the available files in any directory on the system.

It is possible to print the file contents of the current working directory using the following in a console
window.

import os

print the working directory
print os.getcwd()
print the names of the files in the working directory
print os.listdir(os.getcwd())
any directory name can be placed in the brackets

This provides an unsorted listing of all files and directories in the working directory. If the user wants
to filter the file list, e.g. to select only the fits files, then a glob module can be used with search pattern
following the UNIX shell rules, i.e. "*", "?", "[]" etc which are interpreted in the same way as in the
UNIX shell.

import glob

ffiles = glob.glob("*.fits")
or even more elaborate example to provide the list of all fits file
in a given directory and perform some action on them
ffiles2 = glob.glob("/home/user/scratch/fitsfiles/*.fits")
fits = FitsArchive(reader = FitsArchive.STANDARD_READER)

for fi in ffiles2:
 product = fits.load(fi)
 # do something on the products, like print the dimensions
 print fi, product.default.data.dimensions

2.7. Getting Command-line Help in JIDE or
HIPE

Further help in JIDE or HIPE is available through command-line interaction. There are two methods.

• help() -- which provides an overview of the help system via a separate popup window (see
Figure 2.10). The window also includes all documentation provided by each of the instruments,
for specific aspects associated with handling instrument information, providing more specialised
documentation.

• In HIPE, selection of help through any button marked provides access to Help that is shown in
a browser. Search and full Help document selection is available through this system.

Using JIDE or the JIDE View in HIPE

16

Figure 2.10. The online help() popup window

2.8. Programming Loops in JIDE and HIPE
Earlier in the chapter we tried some basic commands to illustrate the components of the HIPE and
JIDE windows. One particular capability of JIDE and HIPE is allowing block support for DP coding.
Suppose we want to take a basic print command typed in the command line window.

a = 5 [Enter]
print a [Enter]
5

Now simply input (the [Enter] means you have to press the enter key on your keyboard)

for i in (1,2,3): [Enter]

This will return a response in the command line. Note that the colon at the end of the line is
important for starting the block. The command is incomplete. Input a print i command indented by
at least one space. A further is returned. Hit Enter once more, the command is now complete.

The whole session should look like (again, note the indent prior to the print statement on line 2):

for i in (1,2,3):
.... print i
....
#1
#2
#3

We could have added a number of commands to this for loop. The block statement continues until
a blank line is produced. The history of the window is now available. The up arrow will provide the
previous command, which can then be edited as desired and re-entered

for i in (1,2,3):
 print i

You can edit this block statement in the bottom left panel of JIDE by using the LEFT and RIGHT keys
(not UP and DOWN, these are used to move through the history) and deleting/adding characters.

Blocks within blocks (nested for loops or if statements) are also possible. Basic rules about the use
of blocks follow Jython language syntax.

• Each statement in a block must begin in the same column;

• Each of the DP key statements and clauses (class, def, for/else, if/elsif/else, try/except/else, try/
finally and while/else) denotes the beginning of a new block;

• A new block must be indented at least one space from the enclosing block;

• The end of a block is marked by having the next statement begin in the same column as the enclosing
blocks.

For example

for x in (1,2,3):
 print x # outer block
 for y in (4,5,6):
 if y == 5: # inner block
 print y # inner-inner block
 print x*y # inner block

Using JIDE or the JIDE View in HIPE

17

 # insert inner block statement here
 # insert outer block statement here

As usual, end with a blank line! Note the end of each for loop is determined by where the indentation
ends.

2.8.1. Loop Performance on Arrays
Numeric Arrays are discussed in Chapter 4 of this manual. But we mention here how loops can be
computationally expensive when used with numeric arrays in the system.

In performance checks using the HCSS timing differences for standard operations (e.g., division and
multiplication many times on arrays) are found to be very similar to using similar programming
languages such as Python. However, Jython/HCSS loops can be slow and for large computations this
can become very inefficient for the user.

One means of reducing quite significantly the computation time for simple arithmetic computations
on arrays is to use the ability of the HCSS language to do in-line calculations. For example:

z=Double1d(x.size) # create a 1d numeric array of the same size as an original
 # array called "x"
for i in range(1000):
 z.set(x) # assign, not allocate
 z-=y # inline subtraction
 z/=c # inline division

instead of the following -- which is much slower
for i in range(1000):
 z = (x-y)/c

For large operations this can reduce computation time by nearly an order of magnitude.

Some further advanced tips to improve performance are provided in Section 5.8.

2.8.2. Using the Editor view with loops
The top edit window of JIDE and Editor view of HIPE can be used to keep lines of code in your session.
To run things in this window we have three "arrows" at the top of the JIDE screen (two in HIPE). The
single arrow on the left of these will run things as if you were putting them on the command line. So
if we have a "for" loop a blank line will stop the loop. However the middle arrow (runs a highlighted
section of code -- incorporated into single arrow also for HIPE) and the double arrow (which runs
everything within the currently opened edit window) run commands within the whole group in the
editor window sand ignores blanks. For example, we may consider the following lines of code.

for i in range(4):
 if i > 0:
 print i

 j=i
 print j-i
print "Finished"

If run line-by-line (mouseclick to produce arrow next to the "for i in range(4)" line -- then hit the single
arrow at the top of JIDE or HIPE) then only the first loop is run before a blank line is encountered. If
the double arrow is used then the blank is ignored and the whole thing is run.

Warning

This means that the way blank lines are treated depends on how the DP code is run. Your
code will run differently if you run it line-by-line as compared to running it as a complete
script.

Using JIDE or the JIDE View in HIPE

18

2.9. Multiline Statements in the Console View
of HIPE or JIDE

Another improvement of JIDE/HIPE compared to other Jython interpreters is that it allows multiline
statements. The backslash (\) character at the end prevents execution of the line when hitting Enter
and the statement can be continued.

The following example breaks up a longer definition of a tuple into three lines:

IA>> a = ("meaning", "of", "life", \
.... "shrubbery", "killer rabbit", \
.... "holy hand granade")
IA>> print a
('meaning', 'of', 'life', 'shrubbery', 'killer rabbit', 'holy hand granade')
IA>>

Note that the backslash initiates a continuation mode. The mode is left upon hitting Enter after the
first line without backslash, and the entire line is executed.

2.10. Pausing during script execution and
debugging in JIDE (ONLY)

A script may be paused at any point using the pause() command. This allows values to be changed
while a script is paused in the "Debug window". See the following example script.

from herschel.ia.jconsole.util import * # import pause
def test(arg=1):
 a=12
 for i in range(arg):
 pause() # pause here, change of a within the debugger is allowed !
 a=a+i
 print a
 pause() # and here
 print a

test(10) # run the example

Warning

This feature DOES NOT WORK IN HIPE RIGHT NOW and causes an error.

Once the change has been made in the "Debug window" use the "console" menu in the "Debug
window" to scroll down to "Resume" to continue the script.

Note

Note that this should only be done in JIDE. This capability is not available in HIPE.

2.11. Background script execution in JIDE
and HIPE

There are two ways to run time consuming scripts in background. One is from the drop-down menu
under "Console" -> "Execute in background" which executes, in the background, the script which is
loaded in the JIDE editor window. This is not available in HIPE.

Using JIDE or the JIDE View in HIPE

19

The other method is by using the execfile capability, e.g.,
bg('execfile("script_name.py")') from the JIDE or HIPE command line. Print
statements are redirected to the console and can be used to monitor the state of the execution.

Statements passed as parameters to the function are evaluated in the global namespace therefore the
following example is legal:

IA>> a = 5
IA>> bg('execfile("print a")')
IA>> bg('execfile("a = anExtensiveComputation(12)")')
IA>> bg('execfile("b = aComputation(a)")')

There is no guarantee however that the last statement will be executed after the preceding returns the
value and that uncertainty can easily lead to cases where "aComputation" is run passing the value 5
(the first assigned to a) or the value returned by "anExtensiveComputation(12)". This is unpredictable
and should be carefully avoided.

2.12. Running Scripts from a Shell Command
Line

it is possible to run user-created DP scripts from the command line of a shell window using the
jylaunch command.

The following line at the command prompt can be run from a shell.

> jylaunch myscript.py

where, of course, myscript.py should be replaced with the filename of the script you want to run.

The jylaunch command can also be run from the Start menu for the 'hcss' provided by the HCSS
installer script.

With the use of the HCSS installer, the jylaunch capability is also available under the Program
Files start menu as a stand-alone task.

2.13. Errors and Exceptions in DP
Here we explain how errors are generated within DP and how these are reported back to the user.
Following from this the user should be able to:

• understand error messages that might show up (i) while running an application, or (ii) during a DP
session.

• report the error to the custodian of a HCSS module in case a badly described exception occurred,
i.e., one which cannot be handled by the user.

2.13.1. Overview of the Libraries Used in a DP Session

The base routines for DP are written in JAVA, but DP user development uses the more friendly
Jython. Typical user development is expected to take place in the console panel with plots and images
appearing in separate windows. Within a DP session one can run commands from the JIDE tool that
enables the execution of DP/Jython commands, saves and loads scripts, and provides command history
support. This tool often provides the core of a user's DP session.

http://www.jython.org/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/jconsole/index.html

Using JIDE or the JIDE View in HIPE

20

Figure 2.11. The overall library structure for a DP session

Library usage for a DP session is illustrated in Figure 2.11. Errors, as thrown by Jython and/or JAVA
classes, have the same means by which they follow the error back down the program layers to find the
root of the error -- "traceback mechanism" (although they differ in the way they present error messages
to the user, as shown in the next section).

Interpretation of these error messages allows the user to identify the place where the exception/error
originated from.

2.13.2. The Error Traceback Mechanism
In this section we describe the differences in the way Jython and JAVA libraries present error
messages.

2.13.2.1. The way Jython presents error messages

Errors in the use of Jython are typically returned directly to the user after their attempted
implementation. An example of how Jython presents error messages is given in the following short
code example:

array = [1,2,3,4,5]
print array[5]
IndexError: index out of range: 5

Another typical Jython error form is a syntax error. Consider the following lines of code

x = 2
y = 3
a = x + 2y

An error message using this piece of code has the form

Traceback (innermost last):
(no code object) at line 0

Using JIDE or the JIDE View in HIPE

21

SyntaxError: ('invalid syntax', ('<string>', 1, 10, 'a = x + 2y'))

which indicates the fault happening in line 1 of the block of code (we only have one line in this case)
at the position of character number 10. Note that this information appears in the bottom right panel,
by double clicking on the red line corresponding to the error and selecting the Traceback entry.

2.13.2.2. The way JAVA presents error messages

Most DP packages use JAVA classes. If JAVA classes are run within a DP session and an error occurs,
an exception is thrown which is propagated upwards to the DP level. An example:

dbl = Double("wrong arg")
java.lang.NumberFormatException: For input string: "wrong arg"

In the history window the command line will be indicated by a red cross, showing that there is an error
for this command. Information on the command can be obtained by clisking on the indicator to the
left of the red cross. This provides access to the error message and traceback of the error (again, via
a mouse click on the indicator).

A Log window can be obtained by using a right-click of the mouse on the history line, in JIDE
ONLY, and using the pull-down menu. This provides a separate window with all the information on
the problem command.

INFO:
<COMMAND>
 <STATEMENT>
 dbl = Double("wrong arg")
 </STATEMENT>

 <EXCEPTION>
 <MESSAGE>
 java.lang.NumberFormatException: For input string: "wrong arg"
 </MESSAGE>
 <STACK_TRACE>
 Traceback (innermost last):
 File "<string>", line 1, in ?
 java.lang.NumberFormatException: For input string: "wrong arg"
 java.lang.NumberFormatException: For input string: "wrong arg"
 at java.lang.NumberFormatException.forInputString\
 (NumberFormatException.java:48)
 at java.lang.FloatingDecimal.readJavaFormatString\
 (FloatingDecimal.java:1207)
 at java.lang.Double.valueOf(Double.java:202)
 at java.lang.Double.<init>(Double.java:277)
 at sun.reflect.NativeConstructorAccessorImpl.newInstance0\
 (Native Method)
 at sun.reflect.NativeConstructorAccessorImpl.newInstance\
 (NativeConstructorAccessorImpl.java:39)
 at sun.reflect.DelegatingConstructorAccessorImpl.newInstance
 (DelegatingConstructorAccessorImpl.java:27)\
 at java.lang.reflect.Constructor.newInstance
 (Constructor.java:274)\
 at org.python.core.PyReflectedConstructor.__call__\
 (PyReflectedConstructor.java)
 at org.python.core.PyJavaInstance.__init__(PyJavaInstance.java)
 at org.python.core.PyJavaClass.__call__(PyJavaClass.java)
 at org.python.core.PyObject.__call__(PyObject.java)
 at org.python.pycode._pyx113.f$0(<string>:1)
 at org.python.pycode._pyx113.call_function(<string>)
 at org.python.core.PyTableCode.call(PyTableCode.java)
 at org.python.core.PyCode.call(PyCode.java)
 at org.python.core.Py.runCode(Py.java:1136)
 at org.python.core.Py.exec(Py.java:1158)
 at org.python.util.PythonInterpreter.exec(PythonInterpreter.java)
 </STACK_TRACE>
 </EXCEPTION>
</COMMAND>

Using JIDE or the JIDE View in HIPE

22

The places in JAVA classes where the code breaks down are indicated. Typically, the traceback starts
with the line number of the original program where the problem occurs and follows this with the line
numbers in the classes accessed where the problem propagates from. In the above example we have
simply tried to attach a string, "wrong arg", to a numeric double. So it is of the wrong format -- as
indicated in the first line of the traceback. On other occasions, a more fundamental JAVA error may
be occurring deeper in the system. The traceback allows the user to find where this may be happening.

2.13.3. The HCSS exception and logging mechanism
Next to the standard JAVA exception handling mechanism the HCSS is using, it also has a logging
mechanism which forwards information, error and warning messages to the user.

2.13.3.1. Exceptions Thrown From HCSS Classes

In case an error occurs inside the HCSS, for example due to a missing or incorrectly defined
configuration variable, the information as part of the exception thrown should explain to the user the
cause of the exception. In this way the user should be capable to adjust his/her input arguments and/
or property settings. Property settings can be set using the Property Generation tool ("propgen") -- see
Chapter 1. For example:

Let us assume the user has set the configuration variable "var.database.devel" to a database name that
does not exist:

var.database.devel = "idonotexist@iccdb.sron.rug.nl"

when trying to access this database in a DP-session by:

from herschel.access import *
tm = PacketAccess(1030)
packets = HcssConnection.get(tm)

Here, a query is done on the database as set by the above property and the exception, appearing in
the command line window, reads:

herschel.access.LocationException: Exception in constructor of
 herschel.access.db.LocalConnection:
herschel.access.LocationException: Failed to get store
herschel.store.api.StoreException: Failed to create store for
 idonotexist@iccdb.sron.rug.nl:
herschel.store.api.StoreException: Failed to create
 ObjectStore "idonotexist@iccdb.sron.rug.nl
Cannot open database: idonotexist@iccdb.sron.rug.nl
Error while accessing database: idonotexist@iccdb.sron.rug.nl
{ VException(7001:UT_DB_NOT_FOUND: DB directory not found) }

In cases where the information as passed by the Exception thrown is not sufficient (for example
a NullPointerException without any textual explanation), then there is a problem with the
current system and the user is encouraged to provide feedback to the HSC regarding the lack of
exception handling information (currently, this is best achieved through the SPR/SCR system).

In the above example the "access" package might improve its exception notification by adding
information to the LocationException, including a hint for the user that the database is not
existing and that the user should check whether var.database.devel is properly defined.

2.13.3.2. The HCSS logging mechanism

The logging mechanism allows (HCSS) classes to pass errors, warnings and/or info to the end-user. To

view the error logging mechanism, go to the Help menu or click on the icon (see also Section
2.2.5).

Using JIDE or the JIDE View in HIPE

23

For the HCSS end-user this mechanism, rather than the analysis of exception handling, is likely to
be used more often, especially when HCSS software is fully matured. The difference between the
two is that exception handling is more often used by the developer for debugging purposes, whereas
the logging mechanism is intended to be used by the end-user to get insight into the behaviour of an
(HCSS) application or class. The logging mechanism enables the developer to include messages when
an exception is thrown on how the class internally handles possibly thrown exceptions.

To give an example why, next to the exception mechanism, the logging mechanism was introduced:
suppose we have a layered HCSS component (i.e. within an instance of a class there are calls to
instances of other classes and these will call others on their turn), deep within this component an
exception occurs and at a higher level this exception is caught again. In such a scenario the end-user
of the component will not be aware of the fact that this exception occurred. However, by use of the
logging mechanism the developer of the component can pass a message (an error, warning or info;
depending on how severe this exception was) next to the exception thrown, as well as being able to
pass relevant information to the user when the exception is caught.

More detailed information on the logging mechanism and how it may be used with user-developed
scripts is discussed in herschel.share.log.api.Log (which is a link to HCSS javadoc)

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/share/log/api/Log.html

24

Chapter 3. Some DP Basics &
Beginning Jython

3.1. Basics
The Herschel DP is a development system based on programs written in Java or Jython. Jython is a
Java implementation of the Python language. The syntax is therefore well defined and there is plenty
of documentation freely available.

Remember however that, while the C implementation of Python (what we usually refer to as just
"Python") is already at version 3.0, the version of Jython used for DP is still 2.1. This means that not
all available Python documentation will be applicable to Jython.

Warning

Standard Jython libraries are not automatically imported into HIPE. If you want to try
Python/Jython examples from external sources such as books and tutorials, you will have
to import them manually.

3.2. Comments
Comments on a line can be added after a hash (#) mark.

3.3. Variables
Variables do not have to be declared (integer x, xmax etc. is not required). They appear when
you assign to them and disappear when you do not use them anymore. Assignment is done by the =
operator and equality testing is via the == operator. You can also assign several variables at once.

x, y, z = 1, 2, 3
a = b = 123

If you need to clear some or all variables then the command clear can be used as in the example:

IA>> clear("x,y,z")
to clear all variables, but not the loaded classes and methods
IA>> clear(all=True)

3.4. Numbers and basic arithmetic
The interpreter acts as a simple calculator. Expression syntax is similar to other languages, e.g. the
operators +, -, * and /, and parentheses can be used for grouping. For example, we can type the
following into the Console window of HIPE at the HIPE>:

HIPE> print 2+2
4
HIPE> # This is a comment
HIPE> print 2+2
4
HIPE> print 2+2 # and a comment on the same line as code
4
HIPE> print (50-5*6)/4
5
HIPE> print 7/3 # Integer division returns the floor
2

http://www.jython.org/
http://www.python.org/

Some DP Basics & Beginning Jython

25

HIPE> print 7/-3
-3

A list of Jython operators is provided in Appendix C.

There is full support for floating point; operators with mixed type operands convert the integer operand
to floating point.

print 3 * 3.75 / 1.5
7.5
print 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with a suffix of "j" or "J".
Complex numbers with a nonzero real component are written as "(real + imag j)", or can be
created with the "complex(real, imag)" function.

print 1j * 1J
(-1+0j)
print 1j * complex(0,1)
(-1+0j)
print 3+1j*3
(3+3j)
print (3+1j)*3
(9+3j)
print (1+2j)/(1+1j)
(1.5+0.5j)

To extract these parts from a complex number z, use z.real and z.imag.

a=1.5+0.5j
print a.real
1.5
print a.imag
0.5

3.5. Boolean values
Boolean values are available in the Jython environment.

val = Boolean(0)
print val
false

3.6. Strings
Jython can also manipulate strings. These can be in either single or double quotes.

print 'spam eggs'
spam eggs
print "doesn't"
doesn't

String literals can span multiple lines in several ways. Continuation lines can be used, with a backslash
as the last character on the line indicating that the next line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\
 Note that whitespace at the beginning of the line is \
significant."

print hello

Some DP Basics & Beginning Jython

26

Note that newlines still need to be embedded in the string using \n; the newline following the trailing
backslash is discarded. This example would print the following:

This is a rather long string containing
several lines of text just as you would do in C.
 Note that whitespace at the beginning of the line is significant.

We can access individual characters using

print hello[2]
i
print hello[10:16]
rather

Note that numbering of the characters starts at 0.

Our variable hello essentially contains an array of characters (including blank spaces). We can find
the length of such an array using the len() function.

print len(hello)
157

NOTE: This also illustrates the means by which functions are applied in Jython.

3.7. Type conversions
Conversion functions exist to change numbers into floating point and integer (float(), int() and long()
arrays).

a = 1
print float(a)
1.0

These conversions DO NOT work with complex numbers.

There are also a number of methods to convert string representation of a number to a number. Here
are a couple of examples using java.lang methods:

from java.lang import *
s = "01234.56"
print Double.valueOf(s)
1234.56
print s + 2.22
TypeError: __add__ nor __radd__ defined for these operands
print Double.valueOf(s) + 2.22
1236.78

Note that with this method when you try to convert a string representation of a floating point to integer
you will get an error:

s = "01234.56"
print Integer.valueOf(s)
java.lang.NumberFormatException: For input string: "01234.44"

3.8. Lists and Dictionaries
Lists and dictionaries are important data structures available in Jython.

Lists are simple arrays written in a specific order.

Dictionaries are like lists that can be accessed via a key (or label). To access an element you use a
key or "name". This is what is used to look up the value of an element.

Some DP Basics & Beginning Jython

27

3.8.1. Setting up and Accessing Lists
Lists are formulated within square brackets, which can be nested. E.g.,

name = ["Rolf", "Harris"]

(note - strings of characters need to be placed inside quotation marks)

y = z = 5
x = [[1,2,3],[y,z],[1,[2,[3,4]]]]
print x
print x[0]
print x[2]
print x[2][1]
print x[2][1][1]

In the first line we have set both the variables y and z to the value 5. In the second line, the variable x
is associated with a Jython array which itself contains three arrays, the third of which contains further
nested arrays. The print commands that follow show how the nested arrays can be accessed (counting
of array elements starts from 0). The last line therefore indicates we take the third element of x, take
the second element of that and then the second element of the array we are left with (i.e., [3, 4]).

You can access lists by individual names or groups

print name[0], name[1] # prints "Rolf Harris"
print name[0:2] # gives list in brackets ['Rolf', 'Harris']
print name[:2] # ditto

In the first instance the parts of the name list are picked up individually, in the second part a range of
list components is picked out (0 to 2) and in the last case all components up to name[2] are picked
out. Notice how in the last two cases the command is interpreted as going up to but not including the
number range being given. We can try the same with the list 'x'.

print x[0] # gives the first element in the list "[1,2,3]"

Try printing the other elements of the list (x[1] and x[2]) to see if you get what you expect!

3.8.2. Slicing Lists
The last two examples using the list name (above) are also examples of slicing. Slicing of this type
can also be performed with numerical and string arrays. For instance,

y = ["The", "quick", "brown", "fox", "jumped", "over", "the", "lazy", "dog"]
print y[1:4] # prints the list ['quick', 'brown', 'fox']

Again - the end integer value given for the slice is not included, so the above example only gives the
values for y[1], y[2] and y[3].

• Choosing y[:4] means "take every element from the beginning of the list up to element 4, not
including element 4 ."

• We can also to have y[4:] which means "take every element from number 4 up to the end" - note
that this will include element number 4.

• Lastly, negative numbers mean count from the end of the list y[-3] means take the third element
from the end of the list.

3.8.3. Setting Up and Using Dictionaries
A dictionary has a set of {key: value} pairs. E.g.,

Some DP Basics & Beginning Jython

28

person = {"Alice": 111, "Boris": 112, "Clare": 113, "Doris": 114}
print person.get("Alice")
111
print person["Alice"]
111

We "get" the associated value for "Alice" within the dictionary "person". Alternatively, the key can be
given between square brackets as with the array notation. To see all the "keys" and "values" separately
use the keys() and values() methods of the dictionary "person".

print person.keys()
['Clare', 'Alice', 'Boris', 'Doris']
print person.values()
[113, 111, 112, 114]

The use of the empty brackets at the end indicate that we are not passing a parameter on to "keys" or
"values" in order to get a printout of their current settings. In fact, no parameters are allowed for these
commands, but we still need the brackets.

Also note how the commands keys() and values() are applied/work on the dictionary "person".
We will see this frequently when running DP code in the future.

If we want to change the dictionary then we need to write something like

person['Alice'] = 222

Here, the value associated with Alice in the dictionary called person has been changed to the number
222.

3.8.4. Nested Dictionaries
Dictionaries can hold other dictionaries too. So advanced data structures can be made.

Let us set up a dictionary called abc

abc = {"John": 12345, "Jerry" : 23456, "Joe" : 34567}

We will now put this inside another dictionary called dict

dict = {"Alice" : 111, "Boris" : abc, "Charlie" : "angel"}

Note here that we have NOT got inverted commas around the value abc since we want it to point to
our dictionary abc and not be a string.

So now we can look at the value of "Boris"

print dict.get("Boris")

Which should simply give us the dictionary abc printed on our screen. Whereas,

print dict.get("Charlie")

Simply prints the string we gave as the value (we know it is a string since it has inverted commas
around it).

If we now want to get the value of "John" we would need to do

print dict.get("Boris").get("John")

First we get the dictionary abc which is pointed to by the key "Boris", then we look for the key "John"
inside. This returns the value 12345.

Some DP Basics & Beginning Jython

29

3.9. Augmenting Values and Lists
Jython allows a full range of augmentation assignment operators (including +=, -+, *=, and /=). These
all behave in a similar fashion.

a = 5
a += 2 # Adds 2 to the value of a
a *= 3 # Multiplies a by 3

We can add to lists too.

b = [1]
b += [2] # Now b = [1, 2]. Note that the result is NOT b = [3]!

Note that here we have appended an element to the end of the list. This we could also do with the
append() method.

b.append(3) # Now b = [1, 2, 3]

3.10. Lists and Jython Tuples
A possibly confusing aspect of Jython is the use of brackets in producing what appear to be identical
lists. True Jython lists are mutable - they can be changed/sorted (represented by square brackets, "[]").
Whereas tuples are immutable and represented by curved brackets, "()" and are therefore unalterable,
including ordering. So while we can append new elements to a list, we can not do so to a tuple.

a = [1,2,3,4]
c = ["x","y","z"]
a.append(c)
print a
[1, 2, 3, 4, ['x', 'y', 'z']]

The list ["x","y","z"] has been added as a single fifth element of the list a. Whereas...

a = (1,2,3,4)
c = ("x","y","z")
a.append(c)

...gives an error:

AttributeError: 'tuple' object has no attribute 'append'

"Adding" lists or tuples can be done to form a resultant third list or tuple. For example

a = (1,2,3,4)
c = ("x","y","z")
b = a + c
print b
(1, 2, 3, 4, 'x', 'y', 'z')

If we wish to do arithmetic with one or more arrays of numbers, rather than individual list or tuple
elements, then we need to deal with numeric arrays. These have been developed for use in DP and
are discussed in Chapter 4.

3.11. Basic programming statements
The basic programming statements are the conditional statement if/elif/else, the loop statements for and
while and the loop control statements break and continue. The conditional and loop statements serve
to execute blocks of commands depending on a given condition. Blocks are indicated by indentations

Some DP Basics & Beginning Jython

30

and only through indentations (and can be handled within JIDE - see Chapter 2). No begin/end braces
are required.

3.11.1. if/elif/else
The if/elif/else statement executes blocks of commands depending on given conditions. The
syntax is:

if condition1:
 block1
elif condition2:
 block2
else:
 block3

A few examples to illustrate

x = 13

if x < 5 or (x > 10 and x < 20):
 print "The value is OK"

if x < 5 or 10<x<20:
 print "This value is OK"

if 0<= x <= 10:
 print "The value is in the range [0,10]
elif 10<x<20:
 print "The value is in the range [10,20]"
else:
 print "The value is not in the range [0,20]"

The first two examples are identical.

3.11.2. for
The for loop was briefly discussed in Section 2.8, where its use within the JIDE environment was
illustrated. The syntax of the for loop is the following:

for variable in list:
 block

where list can be an array of values, sequence of dictionary keywords, tuples, strings.

Some examples:

for i in [1,2,3]:
....print i

The above for loop goes through values in an array indicated in the square brackets. A simpler way
- particularly for large numbers of iterations - is to use the inbuilt range function to create an array.

The following example prints the values from 0 to 99 using the range function -- it actually creates a
list of rising integer values that can then be looped through.

for value in range(100):
.... print value

Note how values start from 0 and end one below the value assigned to the range function. Currently,
the print output is going to the Console window of HIPE.

A combined example of using for loop and if/elif/else is given below. Note the indentation
of the different blocks.

Some DP Basics & Beginning Jython

31

person = {"Alice" : 111, "Boris": 112, "Clare": 113, "Doris": 114}
first we get the list of people's names
list = person.keys()
for each name in the list we get the associated value -- this
could be a test score, for example.
for i in list:
 pval=person.get(i)
 # we check if the person is on the cutoff, and print the name
 if pval == 112:
 print i, "is at the cutoff"
 # below the cutoff
 elif pval < 112:
 print i, "is below the cutoff"
 # or else, above the cutoff
 else:
 print i, "is above the cutoff"

3.11.3. while
The while loop executes a block of commands, while a given condition is true. The syntax is:

while condition:
 block

The condition can be any expression which results to a value: the numeric zero is False, as well as
empty string, tuple, list, otherwise the condition is True.

Some examples:

x = 0
while x <= Math.PI:
....y = SIN(x)
....x += 0.1

3.11.4. Loop control: break and continue
The command break can be used to immediately exit from a loop and continue is used to jump
to the next iteration of the loop without executing the rest of the block.

An example for their usage is given below.

x = 0
while 1:
 y = TAN(x)
 if y < 0:
 break
 print x,y
 x += 0.1

The above example shows an infinite while loop (the condition is always true) and inside the loop
block we check for a given condition and jump out of the loop once it is true, so at the first negative
tangent we exit the loop.

for i in range(100):
 if i % 2: continue
 print i

The above example shows how we can skip the printing of the odd numbers (i % 2 is i modulus 2
and it is zero for all even numbers).

3.12. Printing to the screen and files
We have already seen how a print command can produce a result

Some DP Basics & Beginning Jython

32

print 1, 2, 1+2
1 2 3
print a
(1, 2, 3, 4)

(... following on from the above augmentation example).

The printout can be formatted in the same way as with the C sprinf format codes. Some examples:

print "When %s is %i years old then PI will be %8.10f" %("John",23,Math.PI)
When John is 23 years old then PI will be 3.1415926536
print "When %8s is %04i years old then PI will be %016.12f" %("John",23,Math.PI)
When John is 0023 years old then PI will be 003.141592653590

To print lists or arrays it is necessary to make a loop:

a = [1,1,2,3,5,8,13,21,34]
for i in range(len(a)):
 print "Line: %3i" %(a[i])

Another useful usage of formatted printout is with dictionaries as shown in the following example:

record = {"name": "John", "Room": 112, "class": "manager", "age": 27}
print "Extracted record\n Name: %(name)10s Room: %(Room)4i" % record
Extracted record
Name: John Room: 112

We can also print to a file.

file = open("output.txt", 'w') # 'w' allows write access overwriting
 # previous contents.
 # 'a' would append at the end of the file.
print >> file, 2 # Puts the number 2 into output.txt

Or

print >> file, a # Puts the array "a" into output.txt

For printing an array/list to a file.

Note that it is not necessary to close access to a file within your DP session. To overwrite the original
text file, reopen the file. Reopening the file will remove the contents.

3.13. Defining and Using Functions
Here we name a piece of code, call it with some parameters and have it return a result. Functions are
set up with the keyword def. e.g.,

def square (x):
 ... return x*x
 ...
print square(2)
4

The arguments of the functions are passed by value, i.e. the input argument is not changed outside
the function:

def myfunc(a):
 a = a + 1
 return a
#
x = 4.0

Some DP Basics & Beginning Jython

33

print myfunc(x)
5.0
print x
4.0

Note that variables from the main HIPE session have global scope, i.e. they are accessible inside
functions but cannot be changed. The example below will produce an error:

def myfunc(a):
 a = a + 1
 x = x + 5
 return a
#
x = 4.0
print myfunc(x)
UnboundLocalError: local: 'x'

However, the following example shows a dangerous effect:

def myfunc(a):
 b = a*z + 1
 return b
#
x = 4.0
z = 10.0
print myfunc(x) # this one works as z is global and accessible inside the function
41.0

This may have side effects especially when one has plenty of variables in the HIPE session and
seemingly the defined user functions work. There is no guarantee though that next time the same
global variables will be available or they may have different values, in which cause the functions will
throw errors or worse give wrong results. That is why our advice is when it is necessary to use global
variables inside user functions to pass them as arguments.

Some arguments of the functions may have default values. This is illustrated by the following example:

def myfunc(x,y=1.0,verbose=True):
 z = x*x + y
 if (verbose):
 print "The input is %f %f and the output is %f" %(x,y,z)
 return z
#
myfunc(5.0) # using default values for y and verbose
The input is 5.000000 1.000000 and the output is 26.000000
print myfunc(5.0,y=5.0,verbose=False)
30.0
print myfunc(5.0,5.0,False) # the same as the previous
30.0.
print myfunc(5.0,5.0)
The input is 5.000000 5.000000 and the output is 30.000000
30.0

The arguments of a function can be functions themselves, like in the following example:

def func1(x):
 return x*x
def func2(x):
 return x/2.0
def myfunc(f1,f2,x):
 return f1(x) + f2(x)
#
x = 3.0
print myfunc(func1,func2,x)
10.5
Even the user can input any available function of one argument
print myfunc(SIN,func1,x)
1.6411200080598671

Some DP Basics & Beginning Jython

34

In actual fact, DP has a sophisticated numeric functions package that can allow squaring of values and
numeric arrays of various types (double, integer etc.). Numeric functions available in DP are discussed
in Chapter 5.

If you want to call a function without arguments then the () brackets are required.

A useful thing to know is that functions are values in Jython. So taking an example from the previous
section

print person.values()

Could be changed to

pvalue = person.values
print pvalue
which indicates "pvalue" is a Jython values type
print pvalue()
which actually prints out the values

3.14. Importing modules
Most useful classes and functions are put into Jython modules or Java packages. These are then
imported into a given environment or program with the import statement.

Try issuing the following command from within HIPE:

print localtime()

You will get an error:

NameError: localtime

This is because, although the localtime function is part of the software distribution, it has not been
imported into your session. The localtime function is part of the time Jython module, which you
can import by issuing this command:

import time

This imports the entire module, but forces you to use the qualified name of the function (that is,
including the module name):

print time.localtime()
(2009, 5, 17, 10, 41, 18, 6, 137, 1)

The following syntax allows you to use the localtime function without the qualified name:

from time import localtime
print time.asctime(localtime())
Sun May 17 10:44:35 2009

Note that asctime, which converts the time into a human-friendly format, still needs the qualified
name. To import all the names from a module, use the following syntax:

from time import *
print asctime(localtime())

Some DP Basics & Beginning Jython

35

Sun May 17 10:44:35 2009

Use this option with caution, because some of the names imported from the module could overwrite
names you defined locally. To see all the names contained in a module, use the following command
(here for the time module):

print dir(time)

To avoid name clashes, you can define a different name from what you import:

from time import localtime as ltime
print ltime()
(2009, 5, 17, 10, 41, 18, 6, 137, 1)

Importing Java packages works in exactly the same way as importing Jython modules. For more
information about Java packages, see Section 3.15.4.

A basic set of packages most relevant to users is loaded when HIPE is started.

3.15. Object Oriented Programming
HIPE is based on Jython and Java. Java is an object oriented language, and Jython can be
used as an object oriented language, although it is mostly used in its procedural form. Object-
oriented programming, or OOP for short, has been (and still is) the subject of much hype, several
misconceptions and a few urban legends. It is not the remedy to all evils, but in many cases it can help
to write cleaner, more reusable and more maintainable code. Although you will not have to write a
single line of object-oriented code to use HIPE, being familiar with some of its concepts may help to
gain a better understanding of the DP system. We will now briefly explain the basic words of the trade
and describe the advantages of the OOP approach.

3.15.1. Classes and Objects
The traditional, or procedural, way of programming is relatively straightforward. We take program
inputs and store them in variables, which can be of many types (integer, string, float etc.). We process
this input using the set of commands provided by the language we are using. Other variables are
employed to store the outputs and any intermediate values we might need. Finally, the outputs are
given back to the user in some way and the program terminates.

To tidy up our code, we might want to group sets of commands that perform particular tasks into blocks
called functions or subroutines. Such blocks can be called multiple times using loops, thus avoiding
the need to duplicate code. At any point our program can decide to execute one function instead of
another, based on whatever criteria we set: this would be achieved via a control flow statement such
as an if...then block. By organising code into functions/subroutines we just made the leap from
unstructured to proper procedural programming.

Object oriented programming takes it one step further. The old ingredients are still there: variables,
functions (here called methods) and a set of commands such as control flow statements. So, where
is the big difference?

The difference lies in the way all these tools are organised. An object is a bundle of related variables
and methods (functions) acting on these variables. A class, on the other hand, is like a mould from
which objects are created.

The best way to grasp these concepts is to think of a concrete example. Imagine that, for some reason,
we have to code a model of an airplane. We all have a general idea of what an airplane is (it has a
fuselage, wings, one or more engines, landing gears...) and of what it does (it can take off, land, climb
and descend...). Also, we are probably not thinking of a particular aircraft, but of our idea of a plane.

Some DP Basics & Beginning Jython

36

This idea is what in OOP terms is called a class. A class is a general description of an object, of what
it is and what it does. What our Airplane object is, or its status, is described by instance variables
(just so you know, there is a distinction between instance and class or static variables; more on this
later). An instance or class variable could be of a primitive type (e.g. a float called wingspan) or a
full-fledged object (we could think of creating an Engine object). What an object does is described
by functions called methods.

As we said, a class is not the real thing, it is just a mould. When we create an object from a class it
is said that we instantiate, or create an instance of the class. In other words, besides the Airplane
class, which represents no specific plane, we now have the myAirplane object, which is a real plane
we can climb on and fly.

Finally, there can be properties that are specific of each instance of a class, i.e. of each particular object;
these are aptly called instance variables, as we already know. But there could be variables having the
same value for all the objects of a given class, which would then be better defined inside the class itself
and then shared by all its instances. These are called class or static variables. The same distinction also
applies to methods, but let us stop here for now. What we say below referring to instance variables
can also be applied to static ones, unless stated otherwise.

3.15.1.1. A Note about Terminology

You might be confused about the exact meaning of the words method, function and subroutine. All the
three words denote a subprogram, i.e. a separate block of code that may be invoked from elsewhere
in the program. This block of code may take input values and return an output. The term method is
typically used in OOP to indicate a subprogram inside a class (or an object, which is an instance of
a class), while function or (less frequently) subroutine denote a subprogram in procedural code. Thus
we will usually speak of a method in a Java class, but a function in a Jython script.

Just when you think you got it, you may encounter the notion of function object. Why would a function
be mentioned in connection with an object? According to what we just said, we should call it a method,
right?

Not really. Function objects, also known as functors or functionoids, are objects that
can be invoked or called as if they were functions. For example, if you write y =
SORT(x) in HIPE to sort a vector, you are using an object, namely an instance of the
herschel.ia.numeric.toolbox.basic.Sort class. If you do not believe what you are
reading, try issuing this command in HIPE:

print SORT

You will get something like

herschel.ia.numeric.toolbox.basic.Sort@b65e0

The hex number after the '@' will likely be different. What you got is the output of the toString
method, whose aim is to give a string representation of an object. The default output contains the class
name of the object.

3.15.2. Interface, Implementation and Encapsulation
You already know that actions performed by objects are coded in functions called methods. Our
Airplane class will have methods like takeOff, land and so on. Some or all of these methods
will be public, i.e. visible (and callable) from other pieces of code. This is what is called the interface
of a class: a set of methods to operate on the object, make it do stuff and enquire about its internal state.

Going on with our airplane example, the interface is made of all the dials, displays, buttons and levers
in the cockpit. We can operate the plane and read the value of all the relevant variables (speed, fuel,
altitude...). The nice thing is that we do not have to know in detail how the controls work in order to
use them. It may be the latest fly-by-wire technology, or the old mechanical one, but in both cases

Some DP Basics & Beginning Jython

37

we know that pulling on the yoke the plane will climb. In OOP terms, the user just needs to know the
interface of an object, not its implementation, i.e. the gears and cogwheels behind its shiny surface.
The implementation is said to be hidden, with the advantage that it can be modified, tweaked and
patched as much as the developer wishes. As long as the interface remains the same, the user will
not notice anything.

It is good practice to prevent users from directly accessing instance variables. These are part of the
implementation, and could have to be changed (e.g. from int to float) possibly breaking external
code accessing our object. A much better way is to provide methods to get and set the value of a
variable (these methods are usually know as getters and setters). It may seem overkill, but it helps
keeping the code more maintainable. It is said that our instance variables are neatly encapsulated inside
our class. To say it with a metaphor, we want the pilot of our plane to read the fuel level from a dial
(the getFuelLevel method) rather than tampering with the fuel tank to get a look inside (trying to
directly access the fuelLevel instance variable).

3.15.2.1. Interfaces, the Java Way

Interface is a generic programming concept, but it is also a specific Java construct. Without getting
into too much detail, a Java interface is a collection of methods and constants. If a class implements
an interface, you can be sure that all the methods and constants listed by the interface are right there
in the class and in all of its instances, ready to be used.

3.15.3. Inheritance
This is a slightly more advanced concept, which can be safely skipped without trouble. However it
is not very complicated. When you think of all the different kind of airplanes existing today, from
tiny ultralights to huge jets, you may wonder how a single Airplane class could represent them all.
Actually, it cannot: that is why we can define subclasses of Airplane. These subclasses receive, or
inherit, the variables and methods of their parent class, and we can override them, or add new ones,
to suit our needs. We can create the Boeing787 and Airbus380 subclasses of Airplane, with
specialised methods and different values of instance variables (like numberOfEngines). Note that
there are ways to prevent subclasses from inheriting certain variables or methods, but this goes beyond
the scope of this manual.

One more example: suppose we have a class Seat to describe airplane seats. We can subclass
it into FirstClassSeat and EconomySeat. Each of them will have (very) different
values of the seatPitch instance variable. Also, we could add a turnIntoBed method to
FirstClassSeat, which will definitely be absent from EconomySeat.

By creating such hierarchy of classes we can reuse general pieces of code many times, to tackle several
specialised tasks.

3.15.4. Packages and Namespaces
Common problems in programming are name clashes and, as a consequence, running out of
meaningful (or suitably short) names for variables, methods and the like. This is even more serious
when we use several different pieces of code, each developed by several people. Think about the DP
system, for instance: we are putting together Java, Jython and a lot of Herschel-specific code. How
can be sure that nobody thought of the same name for completely unrelated entities? How can we
avoid such confusion?

To answer this question, let us take a look at HCSS Javadoc here:

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Look at the upper left corner of the page. There is a list of names such as herschel.access,
herschel.access.db and so on. Click on any of these item. The box below will change to show a
list of the classes and interfaces contained in that package. Now go back to the list of packages

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Some DP Basics & Beginning Jython

38

and scroll it from top to bottom. As you can notice, everything starts with "herschel". Then there
are subpackages such as herschel.ia and herschel.ccm, and finer subdivisions like herschel.ia.dataset
and herschel.ia.help. You get the picture: packages are used to organise classes, interfaces and other
programming constructs into a meaningful hierarchical structure. To use the functionality of a package
in a Jython script, we can import it with a command such as import herschel.ia.numeric.

That makes a lot of sense, but how can it prevent name clashes? In a way, it does not: it just makes
them harmless. The point is that every package is a separate namespace, i.e. a separate domain where
we can choose names as we please (well, almost), without worrying about names in other packages.
And what happens if we import two packages containing a class with the same name? For example,
herschel.ia.numeric.toolbox.basic and herschel.ia.dataset both have classes named Product (doing
completely different things). In that case we can use the fully qualified class name, i.e. write
herschel.ia.dataset.Product instead of just Product to get rid of any ambiguity.

3.15.5. Advantages of OOP
The most commonly cited advantages of OOP can be summarised as follows:

• Modularity. Organising code into a hierarchy of classes is a natural invitation to build modular
programs. Natural, but not automatic: nobody prevents you from designing few enormous classes
doing several unrelated tasks at once. To reap the most benefits from modularity, classes should
have one well-defined purpose (in object oriented jargon they are said to have high cohesion) and
interact with other classes only through their interfaces, without having to know about their internal
state (low, or loose, coupling). To get a picture of the concept, think of a plumber working with
several specialised tools rather than fumbling with a Swiss Army knife.

• Reuse of previous work. This is probably the most cited benefit. A set of modular classes, following
the guidelines mentioned above, are relatively easy to plug into one another, which allows creation
of new programs. As before, benefits are the result of good planning and design.

• Increased quality. We do not mean here that programmers developing object oriented code are
intrinsically better than their procedural colleagues. Increased quality is largely a result of the
previous point, code reuse. The more existing, tested code can be employed to develop a new
application, the less will have to be built and debugged from scratch.

• Faster development. Again, this is not because of some mysterious power of OOP that leads
developers to type much faster. Like the previous point, it is mainly an advantage of code reuse:
if a large part of a new application consists of existing code, this will automatically translate into
faster development.

• Better mapping to the problem domain. What we mean by this statement is that with OOP it is
easier to model the software on the real-world problem that has to be solved, rather than bending the
problem to the constraints of the programming language. New objects can be created representing
all sorts of things, like customers, machinery, banks or, well, airplanes. When dealing with the Task
framework in Chapter 8 we will discover that OOP works well even for representing more abstract
concepts, like the different stages of a data reduction pipeline.

3.15.6. Concluding Remarks
For people with a long tradition of writing procedural code, switching to the object oriented paradigm
can be painful at first, leading to decreased productivity and a strong desire to give up and keep writing
code the old way. A little perseverance will pay in the end, keeping in mind that the time lost at first
will be more than regained at the end.

As we said at the beginning, it is also important to remember that OOP, despite its advantages, is not
the solution to all problems. It is indeed possible to write excellent and easily maintainable procedural
code and absolutely messy object-oriented code. No coding approach, however ingenious, will avoid
ill-designed algorithms, cryptic variable names and inextricable spaghetti-like loops. Most important
of all, no piece of code, whether object-oriented or not, will spontaneously document itself at night.

Some DP Basics & Beginning Jython

39

Now it is time to put theory into practice. The following section deals with the Basket class, an
example class written in Jython.

3.16. Defining a Class in DP
The following is an example that can be placed in the Editor pane of HIPE. Remember to keep proper/
accurate indentation. Note that program command lines can be extended to the following line by
the use of a backslash, "\", at the end of a line. Although not needed for the example class given
here it appears in several example scripts later on this manual

class Basket:
 # always remember the self argument
 def __init__(self, contents=None):

 self.contents = contents or [] #
 def add(self, element):

 self.contents.append(element) #
 def print_me(self):
 result = ""
 for element in self.contents:

 result = result + " " + `element` #
 print "Basket contains: "+result

this bit does a logical or - if a parameter is passed to it, it becomes the contents, otherwise we
get an empty basket!
this adds the element to the contents (self.contents)
this prints the contents of the Basket. Note the use of upper left keyboard single inverted commas
around element.

We have created a class called Basket and it has two associated methods add() and print_me()
(following def in the above example).

Try placing the above within the Editor pane of HIPE. Here we create an object to work on, called
self - which is customary. This is initiated by the def __init__ command (by the way, that is
two underscores on either side of init).

Leave a blank line at the end of the script when placing it within the Editor pane of HIPE. Now hit
the double arrow icon to load this into your DP session.

Once created, we can run the class by typing Basket() in HIPE via the Console window.

Now try the following in the command line window.

a = Basket() #

a.add("saw") #

a.add("hammer") #

a.print_me() #

this line sets up an empty basket which we have called a
this line adds the item saw to the basket. It runs the add() method on the object a.
this line adds the item hammer to the basket.
this line prints the contents of the basket we called a, which should be 'saw' and 'hammer'. This
runs the print_me() method on the object a.

We could equally have started our basket with one item

 a = Basket(["saw"])

Note

If we had written a = Basket("saw") (without the square brackets) the
print_me() method would have returned this: Basket contains: 's' 'a'
'w'.

Some DP Basics & Beginning Jython

40

Basically we have object.method(arg1, arg2)

In the above case a is the object and we have the methods add() and print_me().

__init__ is a special method that is said to be a constructor setting things up in the first place. The
constructor (initial call to the routine) creates an instance of the object (in the above case it creates
a basket we can put things in).

3.17. Writing Scripts - Programming in DP
Scripts take individual DP statements and combine them to make more complex routines. You can
edit a script directly in the Editor window of HIPE. A series of DP commands/instructions can then
be input and then run in the DP environment.

Following on from our Basket example. If the class Basket has already been created you can create a
script that uses it. For example, you can place the following in the HIPE Editor window.

a = Basket()
a.add("saw")
a.add("hammer")
a.add("chisel")
b = Basket()
b.add("bread")
b.add("cheese")
b.add("milk")
a.print_me()
b.print_me()

Now if we hit the "Run all" button then we create two baskets the contents of which will be printed
to the command window (bottom left).

This script can be saved using the "File" pulldown menu or save icon (default is ".py" extension).

3.18. Some Useful Extra Items on Scripts
• Some arguments can be optional and can be given a default value. E.g.,

def spam(age=32):
 tammy_age = age - 5
 print "Tammy is ",tammy_age
 print "Tammy's brother is ",age

Here, spam can be called with zero or one parameter. If no parameters are given it will be called with
the default parameter of age=32. If a parameter is given with the call then that will be assigned
to age instead.

Our little script can now be run using, for example,

spam()
spam(age=34)

• Backquotes (`) convert an object to its string representation (so the number 1 can be converted to
string "1").

age = 32
message = "Tammy is "+`age`
print message

Here we add (via the plus sign) the string value of age to our message.

• The + sign can be used to append string lists.

Some DP Basics & Beginning Jython

41

• One change to make printing easier. We can change to the special method __str__ so that our
last function starts with the line

def __str__(self):

Instead of

def print_me(self):

We should also change

print "Basket contains: " + result

to

result = "Basket contains: " + result
return result

Now we can use

print a

to show our basket contents rather than

a.print_me()

3.19. Interactivity in Jython Scripts
Sometimes all we need is a script that is launched, performs all its calculations without asking anybody,
and then outputs the result and exits. Other times we would like the user to interact, give input while
the script is running, take decisions that influence what the script will do. This section takes a look
at the tools Jython offers to do just that.

3.19.1. Basic Interactivity
The most common case is for the script to ask the user to input a value. We can use the raw_input
function, as the tiny example that follows demonstrates.

myAnswer = ""
myAnswer = raw_input("Please write something, anything\n")
print "You wrote " + myAnswer + "\nWell done."

Here is an interesting fact. When we run this script in HIPE, a small window pops up (see Figure 3.1)
with the text we passed to raw_input, a box where we can input text and two buttons, OK and
Cancel. Save this script and call it tinyScript.py, then execute it from the command line, outside
HIPE, issuing python tinyScript.py or jython tinyScript.py, or try double-clicking on the file icon.
You will see no fancy windows this time, everything will happen inside a text console. In other words,
the window we got is a feature courtesy of HIPE, not a Jython feature.

Figure 3.1. The window that appears calling the raw_input function from within HIPE.

Some DP Basics & Beginning Jython

42

Warning

Remember that raw_input takes everything the user inputs and turns it into a string,
including numbers. So be careful when comparing this input to other numbers: you might
need to cast your variable to a numerical type.

A fundamental flaw of our little example is that it does not check the input in any way. We could
even get away with writing absolutely nothing in the text box, and HIPE would give the seemingly
sarcastic reply

You wrote
Well done.

Of course if we had initialised myAnswer to anything else than an empty string, we would get
that value in the output. Worse still, if we press the Cancel button, regardless of whether we wrote
something or not, the myAnswer variable will be set to None and the following line will give an error.

One way to have the user input something sensible is to embed the request into a while loop, as the
following example demonstrates.

myAnswer = ""
while myAnswer == "":
 myAnswer = raw_input("Write something, anything\n")
if myAnswer == None:
 myAnswer = ""
print "You wrote " + myAnswer + "\nWell done."

This way the window will not go away until we write something and press OK, and if we try to bypass
the check by pressing Cancel the following if clause will at least prevent an error on the last line.

More complicated checks can be put in place, for example to make sure that a numerical value stays
within the allowed range, and more sophisticated loops may be needed, but the principle is the same.

The above example can also be useful when we want to stop the execution of a script, for whatever
reason, and wait before resuming it until the user lets us know that he is in front of the computer
and is paying attention. In this case the input does not matter at all, since we just want the user to
acknowledge a request by pressing a button.

Well, it works but it is far from optimal. Why having a box for entering text if the text itself does not
matter? Wouldn't it be much better to have a window with Press OK to continue written on it, the OK
button, and nothing else? This is the subject of the next section.

3.19.2. A Little Bit of Swing
To put it simply, Swing is the name given to that part of Java that deals with creating graphical user
interfaces (or GUIs). Yes, you read correctly: Java, not Jython. Please do not let this scare you. We
have used Java bits before, almost without realising it (after all, it is what makes Jython so powerful)
and this case will not be different. As a matter of fact, using Swing within Jython is easier than doing
so within Java.

This section will teach you enough about Swing to get you started, but if you want to become a GUI
guru you may want to look elsewhere. The first chapter of the Jython Essentials book has something
more to say about Swing. You can find it here:

http://www.oreilly.com/catalog/jythoness/chapter/ch01.html

3.19.2.1. showMessageDialog

The first thing we will do is to invoke a Swing method to display a message in a window, together
with an OK button:

from javax.swing import *

http://www.oreilly.com/catalog/jythoness/chapter/ch01.html

Some DP Basics & Beginning Jython

43

print "Let's stop for a while"
JOptionPane.showMessageDialog(None, "Press OK to continue")
print "Well done."

The first line imports the swing package (note that it is javax rather than java). Then we have the
line creating the window, embedded between two lines printing text messages to demonstrate that the
script will not advance until we press the OK button.

Figure 3.2. The window that appears calling the Swing showMessageDialog method.

You have probably noticed that the showMessageDialog method takes two parameters, and we
have set the first one to None. It is used to indicate the "parent" element of the dialogue box we are
creating. In this case (and in everything that follows) we are just creating a single window and nothing
else, so we will not worry about this parameter anymore.

Actually the showMessageDialog can take more than two parameters. Notice that the text in the
title bar of our window was just "Message". In order to customise it we have to add another parameter,
like this:

JOptionPane.showMessageDialog(None, "Press OK to continue", "Title bar text")

Try this and you will get... an error. This is because this third argument must go with a fourth one,
telling what kind of window we are creating. Let us try again:

JOptionPane.showMessageDialog(None, "Press OK to continue", "Title bar text", \
JOptionPane.ERROR_MESSAGE)

Figure 3.3. Customising the icon and the window title.

Now it works, and it even allows us to change the icon to a nice "error" one. There
are a number of possibilities for this fourth parameter, all of which are self-explanatory:
ERROR_MESSAGE, INFORMATION_MESSAGE, WARNING_MESSAGE, QUESTION_MESSAGE
and PLAIN_MESSAGE. Feel free to try them at your leisure.

If you are sharp-eyed you might have noticed that the previous error message said "expected 2 or
4-5 args; got 3". This mysterious fifth argument is used to add a custom icon to the window, in case
you are not satisfied with the predefined ones. Since this is pure eye candy and adds nothing to the
functionality of the window, we will not cover it here.

3.19.2.2. showInputDialog

Now we would like to take it a step further and create a window for entering text, just like we did with
the raw_input function. We just have to use a different method, like this:

Some DP Basics & Beginning Jython

44

myAnswer = JOptionPane.showInputDialog(None, "Please write something, anything")

Figure 3.4. The window that appears calling the Swing \showInputDialog method.

You can put this line in the scripts we used to describe the raw_input function and you will obtain
the same behaviour, quirks included (even the two windows look exactly the same). The big difference
is that, even if you are launching the script from a command line interface outside HIPE, a window
will still pop up.

Granted, a wealth of additional options is available for this method as well. The ones we saw before
are still valid:

myAnswer = JOptionPane.showInputDialog(None, "Please write something, anything", \
"Big question", JOptionPane.QUESTION_MESSAGE)

But there is more. We can put a default string of text in the box like this:

myAnswer = JOptionPane.showInputDialog(None, "Please write something, anything", \
"Default text")

If we want the user to choose from a predefined set of options, we can use the showInputDialog
with a whopping seven parameters, as the following script demonstrates:

from javax.swing import *
myAnswer = ""
possibleAnswers = ["HIFI", "PACS", "SPIRE", "No clue", "All three"]
while myAnswer == "":
 myAnswer = JOptionPane.showInputDialog(None, "Favourite Herschel instrument?", \
 "Test", JOptionPane.QUESTION_MESSAGE, None, possibleAnswers, possibleAnswers[4])
if myAnswer == None:
 myAnswer = ""
print "Your answer is: " + myAnswer

Figure 3.5. A more complex window with a combo box.

Let us go through the parameters one by one:

1. None: the "parent" element.

2. "Favourite Herschel instrument?": the window text.

3. "Test": the window title text.

4. JOptionPane.QUESTION_MESSAGE: the type of window.

5. None: the custom icon. We choose to provide no one and stick with the default one.

Some DP Basics & Beginning Jython

45

6. possibleAnswers: the array of possible answers.

7. possibleAnswers[4]: the default answer.

3.19.2.3. showConfirmDialog

Next we take a look at the showConfirmDialog method, which can be used to display a window
asking the user to confirm or block a certain action. One example will clarify what we mean:

from javax.swing import *
myAnswer = JOptionPane.showConfirmDialog(None, "Yes or no?")
if myAnswer == 0: # Now myAnswer is an integer variable
 print "You agree"
elif myAnswer == 1:
 print "You disagree"
else:
 print "You have no opinion on this"

Figure 3.6. Using the Swing showConfirmDialog method.

Note that we can use predefined constants to make the code easier to understand, if a little more
verbose, as the following, slightly expanded example shows:

from javax.swing import *
myAnswer = JOptionPane.showConfirmDialog(None, "Yes or no?")
if myAnswer == JOptionPane.YES_OPTION:
 print "You agree"
elif myAnswer == JOptionPane.NO_OPTION:
 print "You disagree"
elif myAnswer == JOptionPane.CANCEL_OPTION:
 print "You have no opinion on this"
elif myAnswer == JOptionPane.CLOSED_OPTION:
 print "You closed the window. How rude!"

As always we are free to make things more complicated than that. We can add another two parameters
to provide a title for the window and the type of buttons we want:

myAnswer = JOptionPane.showConfirmDialog(None, "Yes or no?", "Question", \
 JOptionPane.YES_NO_OPTION)

Here we decided to drop the Cancel button. Other possible options are YES_NO_CANCEL_OPTION,
OK_CANCEL_OPTION, both self-explanatory, and DEFAULT_OPTION, which will just display an
OK button.

3.20. Useful Java bits
The Jython language is an implementation of Python written in Java, which means that it is as good-
natured yet powerful as Python, but with the added benefit of thousands of packages and classes
developed for Java. We will be using some of these classes in the next chapters, and here is a brief
description of what they do.

• The java.awt package. As you already know a package is a collection of related classes, like a
binder on your desk keeping related documents together. The java.awt package contains all of

Some DP Basics & Beginning Jython

46

the classes for painting graphics and images. It will be particularly useful in Chapter 6 for plotting
and Chapter 7 for viewing images.

• The java.awt.Color class. With this class you can specify a colour for an object. There
are thirteen predefined colours available: BLACK, BLUE, CYAN, DARK_GRAY, GRAY, GREEN,
LIGHT_GRAY, MAGENTA, ORANGE, PINK, RED, WHITE and YELLOW. If you feel you need a
fancier shade you can provide the red, green and blue values individually, as three ints between
0 and 255 or floats between 0.0 and 1.0, like this: java.awt.Color(0.3, 0.2, 0.5).
You can also add the alpha (transparency) value as a fourth parameter: 0.0 means completely
transparent and 1.0 completely opaque.

• The java.awt.Font class. This class allows you to select fonts for annotations on your
graphical objects, together with their style and size. The syntax of the constructor (i.e. the special
method called to instantiate an object from a class) is like this: Font("SansSerif", 0,
64), where we have the font name, its style code (0 for plain, 1 for bold, 2 for italic) and its
size in points.

• The java.awt.Window class. This class deals with the drawable area of a window on
your desktop (not with borders or menu bars). One useful method, especially for plotting, is
setLocation, inherited from java.awt.Component. It accepts two int parameters, the
x and y position of the top left corner of the object you want to move.

For more information on these and other classes of the standard Java API you should browse the
official Javadoc. If you are looking for a less traumatic introduction to the Java language, the Java
Tutorial is an excellent resource.

3.21. Jython and DP Quirks
Every programming language or software system has its quirks. Jython and DP are no exception, and
this section deals with some of the features you might find confusing.

3.21.1. Two functions for one goal
There are some mathematical function in DP existing in two forms, one in the usual
FirstLetterCapitalised form (the so-called CamelCase convention), the other in UPPERCASE. The
first form is the recommended way to go, since it is consistent with the rest of the system; the alternative
syntax (technically known as Jython wrapper) is being kept for backward compatibility, but is not
recommended for use in new code and is no longer described in this manual. Examples of Jython
wrappers are MATMUL and SOLVE instead of the classes MatrixMultiply and MatrixSolve,
or RESHAPE instead of Reshape to change the shape of arrays. You might still bump into them
when browsing legacy code.

Unfortunately Jython wrappers are not the only names in uppercase letters, so this is not a good way
to identify them, since also e.g. static instances (see Section 3.21.3) such as SIN and COS use the
same convention.

3.21.2. Long Names versus Short Names
The general rule used in developing the classes used in the DP system is to use long descriptive
names, e.g., TableDataset rather than TDset. An exception to the rule is, e.g., IOException rather than
InputOutputException

The general rule is that a class name must be self descriptive (easier to remember) which
sometimes conflicts with the requirement "I should do every thing by typing three-six letters".
The latter was a restriction in F77, and language developers fortunately diverted from that (as
it introduced names like CCDF12, CCEFLT, EMPXFF), which are indeed less typing but make
the code less (if not completely un-) readable. Exceptions are usually dealing with "well-known"

http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/index.html

Some DP Basics & Beginning Jython

47

abbreviations. Acronyms such as "IBM Type Writer" is taken to become "IbmTypeWriter" rather than
"IndustrialBusinessMachinesTypeWriter."

Any Jython user can create aliases by do things like:

TDS=TableDataset
t1=TDS(description="Hello world, this is still a tabledataset!")
print TDS
herschel.ia.dataset.TableDataset
print t1
{description="Hello world, this is still a tabledataset!", meta=[], columns=[]}
print t1.__class__
herschel.ia.dataset.TableDataset

Here, in effect, we have created a shortened version of the command we can use to set up a
TableDataset called "TDS". We then create a TableDataset, called "t1", which initially contains only
a description in the second line. This is equivalent to writing

t1=TableDataset(description="Hello world, this is still a tabledataset!")

The last two lines indicate the contents of "t1" and the class that created it.

3.21.3. Naming conventions
A potentially confusing aspect to the naming of DP classes is the mix of upper- and lower-case letters.
A comprehensive description of the naming convention used in the HCSS is given in Appendix E and
here we just shortly describe the most important aspects.The upper-case/lower-case scheme used in
predefined DP classes has the following conventions.

• Classes

Class definitions have names that consist of words of which each first letter is capitalised:

MyOwnClass
TableDataset
HifiProduct

• Class instances -- objects

Objects (variables) of a particular class have names that should start with the first letter in lower
case. In general, this translates to

myOwnClass=MyOwnClass(....)
table=TableDataset
a=2

• Class instances as constants

Certain class instances (or simple variables) are used as constants. The convention is to use names
with all their letters capitalised and words separated by an underscore '_'. These are sometimes
referred to as static instances. An example is SIN: it is the only (allowed) instance of class Sin, as
it does not make sense to have multiple instances of these. Examples are:

VARIANCE
IS_FINITE
ALL_PRESENT

3.21.4. Miscellaneous quirks
• Working directories. Restrictions are placed on dealing with working directories due to the use of

Java. This is discussed in Section 2.6.

Some DP Basics & Beginning Jython

48

• Loops, indentation and blank line usage. Indentation in loops is very strict within HIPE. Blank
lines can have particular significance, particularly with respect to setting up loops. These quirks are
described in Section 2.8.

• Logical operators. The presence of Jython original features together with DP specific ones can
result in counter-intuitive behaviour and unexpected results Section 5.7 in Chapter 5 deals with
these quirks.

Warning

Each jython script is compiled by the Java virtual machine into one single non-native, non-
abstract method and such Java methods cannot exceed certain limit, usually 65536 bytes.
If your jython script is very long (more than few thousands of lines) then it is advisable
to split it into separate scripts.

49

Chapter 4. Handling Array Data
Objects, Datasets and Products
4.1. Introduction

This chapter aims to familiarize the user with the DP Array data objects, Datasets and Algorithms
concepts. This is not an exhaustive reference to all the functionality provided, the full set of available
array object and dataset capabilities are discussed in the herschel.ia.numeric and herschel.ia.dataset
packages Javadoc.

There are three types of basic datasets:

• array datasets (datasets containing single ArrayData objects, holding numbers, strings, etc. in
1D, 2D, 3D, 4D or 5D)

• table datasets (x rows by y columns of numeric or string arrays). Table datasets can have columns of
various data types mixed in the same dataset and can also contain unit and descriptive information
for individual columns.

• composite datasets (combines multiple connected arrays/tables in a single dataset).

One of the major advantages of DP numeric array objects (as opposed to Jython lists) is the ability to
do array arithmetic in single line commands rather than having to loop through arrays.

In this chapter, we discuss how to formulate and use each array object and dataset type.

4.2. Getting started
All classes and methods associated with handling datasets and numeric functions are automatically
loaded when the DP session is started in this manner.

The DP numeric package currently contains many functions and is discussed in more detail in
Chapter 5. Here we include the use of portions of it to help illustrate how datasets may be handled.

4.3. Types of Array Data Objects
DP numeric array data objects can have up to 5 dimensions and have the types shown in the following
table.

Table 4.1. Numeric types available in DP (N = 1...5)

Name Type Dimensions

 1 2 3+

BoolNd boolean yes yes yes

ByteNd byte yes yes yes

ShortNd short yes yes yes

IntNd integer yes yes yes

LongNd long yes yes yes

FloatNd float yes yes yes

DoubleNd double yes yes yes

ComplexNd complex yes yes yes

String1d string yes NO NO

Handling Array Data Objects, Datasets and Products

50

The String1d array type is not strictly numeric.

4.3.1. DP Numeric Array Access and Slicing

The numeric package introduces the following square brackets notation:

[i_0,...,i_n-1]

where each element is separated by a comma, and the number of elements must be equal to the rank
of the array. Arrays are zero-based which means the first element of an array has index 0 (zero) and
the index of the last element of an array is array.length()-1.

In addition the package supports the colon (:) notation to designate a slice. A slice is a range of indices
defined as i:j, where i is the starting index and inclusive, and it is zero if not specified. The ending
index j is exclusive and it is equal to array.length() if not specified and array.length()-
j if negative.

The following example illustrates the access to elements in a multi-dimensional array and the use of
slices. More examples can be found in the section on Multi-Dimensional Arrays.

define something that is like a rectangular 2x3 array:
1 2 3
4 5 6
x=Int2d([[1,2,3],[4,5,6]])# Int1d can swallow the jython sequence.
print x # [[1,2,3],[4,5,6]]
print x[1] # 2 (second element of the first row)
print x[1,:] # access a row i.e. [4,5,6]
print x[1,1] # access an individual element i.e. 5
print x[:,:] # [[1,2,3],[4,5,6]]
print x[:,1] # access a column i.e. [2,5]

4.4. Creating a Simple 1D DP Numeric Array
In order to create an array data object we only need to do something like the following:

a = Int1d()

This provides us with an empty integer array. We can now add elements to this by

a.append(2)

Or

a.append(Int1d([1,2,3,4,5]))

to append a whole 1D integer array.

Alternately, we could have created the array in one go, like this:

a = Int1d([1,2,3,4,5])

The following show various ways in which numeric 1D arrays can be created in the DP environment.

y = Double1d([1.0,2.0,3.0,4.0]) # Create from a Jython array
y = Double1d(4) # [0.0,0.0,0.0,0.0]
y = Double1d(4, 42.0) # [42.0,42.0,42.0,42.0]
y = Double1d.range(4) # [0.0,1.0,2.0,3.0]

Handling Array Data Objects, Datasets and Products

51

4.5. Creating and Handling Complex Array
Data Objects

The numeric library has a Complex class and a ComplexNd class for N-dimensional arrays of
complex numbers (N = 1, 2, 3, 4 or 5).

z = Complex1d([1,2,3,4],[4,3,2,1]) # Set up complex array
print z # [(1.0+4.0j),(2.0+3.0j),(3.0+2.0j),(4.0+1.0j)]
print z.getReal() # Print real part
print z.getImag() # Print imaginary part
print z.conjugate() # [(1.0-4.0j),(2.0-3.0j),(3.0-2.0j),(4.0-1.0j)]

Complex numbers in the numeric package are constructed using the Complex constructor (with an
upper-case 'C'):

z1 = 2 + 3j # Jython complex (2+3j)
z2 = Complex(2,3) # Numeric Complex (2.0+3.0j)

In other respects, Complex arrays are used in much the same way as Double arrays. Their main
use, at present, is for discrete Fourier transforms.

4.6. Creating and Accessing Multi-
Dimensional Array Data Objects

Creating and manipulating multi-dimensional arrays occurs in a similar way to the 1D case. The DP
numeric library supports arrays of up to 5 dimensions. For example, to create a Double2d array:

x = Double2d([[2,4,6],[1,3,5]])

Multi-dimensional arrays are conceptually arrays of lower-dimensional arrays. For a two-dimensional
array, the first subscript selects a row and the second subscript selects an element within that row (the
column).

Note

This is the opposite order to some other computer languages, but it is the same behaviour
as in the Java programming language.

For example:

print x[1,:] # Get row 1 i.e. [1.0,3.0,5.0]
print x[1,2] # 5.0, the element in row 1, column 2

Note: indexing multi-dimensional arrays is done differently in DP numeric arrays as compared to
Jython arrays. The following code examples show the syntax for Jython and DP numeric arrays. The
reason for this is to allow slicing on multi-dimensional arrays in DP which is technically not possible
using the Jython syntax.

Jython array:
x = [[1,2,3,4],[5,6,7,8]]
print x[1][2] # 7
print x[1][1:3] # 6, 7

DP numeric array:
y = Int2d([[1,2,3,4],[5,6,7,8]])
print y[1,2] # 7
print y[1,1:3] # 6, 7

Handling Array Data Objects, Datasets and Products

52

Individual elements or slices can be set as follows:

x[1,2] = 22 # Set an element in place
x[0,1:3] = 42
print x # [
 # [2.0,42.0,42.0],
 # [1.0,3.0,22.0]
 #]

It is possible to set a row to a copy of a 1d array of the same length:

x[0,:] = [5,6,7,8] # Set a row to (a copy of) a Jython array
y[1,:] = Int1d([9,7,6,5]) # Set a row to a Double1d array

4.6.1. A note on array ordering

Look again at the first example of Section 4.6:

x = Double2d([[2,4,6],[1,3,5]])

This line of code creates an array of two rows and three columns. The element corresponding to the
i-th row and j-th column can be accessed like this:

x[i, j]

The values are stored sequentially in memory as follows:

[2 4 6 1 3 5]

This means that, if we go through the array elements as they are stored in memory, their indices would
vary as follows:

x[0,0] x[0,1] x[0,2] x[1,0] x[1,1] x[1,2]

That is, index j varies more rapidly than index i. We can generalise to more than two dimensions
by saying that the rightmost index varies most rapidly. This is called row-major ordering, and is the
convention followed by languages such as Java and C, but not Fortran.

This has an implication on performance. When looping through a multidimensional array, it is more
efficient to read its elements in the order they are stored in memory.

Confusion may also arise when dealing with images, which are stored as two-dimensional arrays. If we
visualize the array with horizontal rows and vertical columns, then the number of rows and columns
represents the size of the vertical (y) and horizontal (x) side of the image, respectively. When accessing
a particular pixel (array element), you have to specify the y coordinate before the x coordinate:

myImage(y, x)

4.7. Adding Attributes to Create an Array
Dataset

Let's start by creating a simple dataset. Let's assume that we want to create a dataset containing one
component: a 1D array of double precision numbers (doubles in an array we will call 'x').

Type in the following steps (without the comments preceded by '#'):

x = Double1d.range(10) #

Handling Array Data Objects, Datasets and Products

53

s = ArrayDataset(data=x,description="range of double values") #

The range() function creates a 1D array of integers with the values 0, 1, 2...9. Putting
Double1d in the front converts the array values to doubles.
This actually creates the array dataset with data being the array x of values 0.0, 1.0, 2.0...9.0 and
some associated information, a description.

This creates an object x, corresponding to a 1D array of 10 doubles from 0 to 9, and writes that to a
dataset object, s, which also contains a description of the dataset. The range command produces ten
integer numbers from 0 to 9. This is placed in a 1D array of doubles by the first line.

Now let's look at the contents of the dataset s:

print s

If you want to be specific and print individual components of the dataset, you may do so using the
special description and data attributes:

print s.description # Just print the description that is attached to the dataset
print s.data # Print only the data contained in the dataset

And even individual elements of the data component:

print s.data[2] # View the value of the third element of the array
 # contained in the dataset

4.7.1. Dataset Attributes and Metadata
In the previous section, we have seen that the ArrayDataset s possesses at least 2 attributes:
description and data. They have in addition a third attribute not so far illustrated, meta. The
description and meta attributes are common across all dataset types.

The description attribute is used to store a human-readable text that helps the user to understand
the role of the dataset.

The meta attribute stores a map of keyword-value pairs of data that can be used to identify that data
in a database (for example) - the so-called meta-data. Examples of metadata for an observation include
the date of the current observation; the name of the source; the coordinates of the source, etc. These
are basically the DP equivalent of FITS keywords. The allowed data types for meta-data elements
are String, Double, Boolean, Long, and Date (e.g., StringParameter, DoubleParameter
etc.). See the JavaDoc on the class MetaData for more information on the allowed types.

The following code snippet shows how to add parameter information (in the form of strings or doubles)
to the meta attribute:

s.meta["observation"] = StringParameter("NGC 4151")
s.meta["principal investigator"] = StringParameter("Anthony Marston")
s.meta["ra"] = DoubleParameter(182.836)
s.meta["dec"] = DoubleParameter(39.405)

These are actually shortcuts to Java usage. For example, the first line could also have been written as

s.getMeta().set("observation", StringParameter("NGC4151"))

4.8. Creating and Viewing a TableDataset
What is often required is to store data in a tabular format with N columns. The TableDataset
provides such a means. A TableDataset is made up of a number of columns. Each column contains

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/ia/dataset/MetaData.html

Handling Array Data Objects, Datasets and Products

54

an ArrayDataset (data), a description and a quantity (unit -- require the Unit package import,
see below) value associated with the ArrayDataset. Each ArrayDataset can have up to 5
dimensions and can be of varying types. In the following example, a TableDataset is created with
3 columns each containing a 1D dataset, one being a sequence of numbers from 1 to 100, the second
being the sine value of each of the numbers in the first column, and the final column containing the
values in the first column multiplied by 100. The column names are x, sin and y respectively.

Note

For reasons of flexibility, memory consumption and performance, this class is not
checking whether all columns are of the same length: this is the responsibility of the user.

from herschel.share.unit import * # to allow the use of the Unit package

x = Double1d.range(100)

t = TableDataset(description="This is a table") #

t["x"] = Column(data=x, unit=Duration.SECONDS) #

t["sin"] = Column(data=SIN(x),description="sin(x)") #
t["y"] = Column(data=x*100,description="x*100")

This sets up the table dataset with an associated description
This creates our first column which has the data, x and its associated units, which in this case
is a time duration of SECONDS.
Here we have applied the SIN function from the numeric package, and we have also added a
description for the second column.

Tabledatasets can be viewed using the DatasetInspector GUI button. Values can also be obtained using
the following steps which show how the data can be listed (plotting the data graphically is discussed
in Chapter 6):

print t # Print a TableDataset called t (see above)
print t.meta # Print the metadata (empty in this case)
print t["x"] # Print a column by name
print t[2] # Print a column by index
print t[2].data # Print the data inside the column
a = t[2].data # Assign data in column to a list variable, "a".
print t[2].data[4] # Print element with index=4 in the last (third!) column
b = t[2].data[4] # Assign the data value to variable "b".
print t[2].description # Prints column description only
print t["x"].unit # print the associated unit values for the column

Alternately, we can access columns via the getColumn method

print t.getColumn("y") # Print a column by name
print t.getColumn(2) # Print a column by index
print t.getColumn(2).data # Print the data inside the column
print t.getColumn(2).data[4] # Print element with index=4 in the third column
print t.getColumn(2).description # Prints column description only

We can also get row values

print t.getRow(1) # Gets a list of the values in the second row.

And here is how data can be modified:

print t["y"].data[0]
t["y"].data[0]=999.
print t["y"].data[0]

We may also get and set values at a position in a TableDataset.

t.getValueAt(0,1) # gets the value contained in row=0, column=1

Handling Array Data Objects, Datasets and Products

55

t.setValueAt(30.5, 0, 1) # sets the value 30.5 at row=0, column=1

4.8.1. Row-wise appending of TableDatasets

It is possible to append the data from one table dataset to data in another, provided that they have
the same number of columns and each column in either dataset is of the same type. The following
example adds t2 as a row to table t1.

t1 = TableDataset()
t1["x"] = Column(data=Int1d.range(5))
t1["y"] = Column(data=Double1d.range(5))
t2 = TableDataset()
t2["a"] = Column(data=Int1d.range(10))
t2["b"] = Column(data=Double1d.range(10))

The following will append the data in t2 to the data in t1
t1.rowCount will then report 15 rows:
t1.addRow(t2)

If we now use print t1["x"].data we can see that the "x" column has the values
[0,1,2,3,4,0,1,2,3,4,5,6,7,8,9].

4.8.2. Assigning Units

This section exaplins what units can be assigned and how they may be manipulated. As we have noted
above, we can assign units to the columns in our dataset. in order to use the Unit package we have
to import it:

from herschel.share.unit import *

Note that the Unit package are used in the whole HCSS and not only in the interactive analysis, that
is why it is part of the herschel.share library.

The units fall into several category types, as they are shown in alphabetical order in Table 4.2. To
assign a unit the type and value s required to be given. For example -- the variable "a" can be assigned
to be a unit of angle in degrees with

a = Angle.DEGREES # Type.VALUE

This can be associated with a column's unit in a table using

t["x"].unit = Angle.DEGREES

Handling Array Data Objects, Datasets and Products

56

Table 4.2. All available basic units types

Type VALUES

Acceleration METERS_PER_SECOND_SQUARED

Angle RADIANS, DEGREES, MINUTES_ARC, SECONDS_ARC

AngularMomentum JOULE_SECOND

AngularSpeed RADIANS_PER_SECOND, DEGREES_PER_SECOND

Area SQUARE_METERS, SQUARE_KILOMETERS

Constant H_PLANCK, K_BOLTZMANN, ELECTRON_CHARGE,
SPEED_OF_LIGHT

Duration SECONDS, MINUTES, HOURS, DAYS

ElectricCapacitance FARADS, MILLIFARADS, MICROFARADS, NANOFARADS,
PICOFARADS

ElectricCharge COULOMBS

ElectricConductance SIEMENS

ElectricCurrent AMPERES, MILLIAMPERES

ElectricInductance HENRIES

ElectricPotential VOLTS, MILLIVOLTS

ElectricResistance OHMS

Energy JOULES, ERGS, ELECTRON_VOLTS

Entropy JOULES_PER_KELVIN

Flux density JOULES_PER_SQUARE_METER, JANSKYS, MILLIJANSKYS,
MICROJANSKYS

Force NEWTONS, DYNES

Frequency HERTZ, KILOHERTZ, MEGAHERTZ, GIGAHERTZ, TERAHERTZ

Length METERS, ANGSTROMS, KILOMETERS, CENTIMETERS,
MILLIMETERS, MICROMETERS

Mass GRAMS, KILOGRAMS

NEP (Noise Equivalent
Power)

WATTS_PER_SQRT_HERTZ

Power WATTS, KILOWATTS, MEGAWATTS

Pressure PASCALS, BARS, MILLIBARS

Scalar This class represents scalar units and provides some constants:ONE,
PERCENT,DECIBELS

SolidAngle STERADIANS, SQUARE_MINUTES_ARC,
SQUARE_SECONDS_ARC

Speed KILOMETERS_PER_SECOND, METERS_PER_SECOND

Temperature CELSIUS, KELVIN

ThermalConductivity WATTS_PER_METER_KELVIN

TimeInstant TAI, UTC

WaveNumber RECIPROCAL_METERS, RECIPROCAL_CENTIMETERS

4.8.2.1. Manipulating Units

We may manipulate units to obtain derived units. Examples are the following

N = Force.NEWTONS

Handling Array Data Objects, Datasets and Products

57

m = Length.METERS
m2 = m**2 # Square meters
Pa = N / m2 # Pascals
J = N * m # Joules

4.8.2.2. Converting Units to Strings and Back Again

We can convert a unit variable to a string in several ways:

A = Length.ANGSTROMS
print A # angstrom [1.0E-10 m], no conversion
print A.name # angstrom. This is a string quantity.
print A.dialogName # Angstrom symbol. This is a string quantity.
um = Length.MICROMETERS
print um # micrometer [1.0E-6 m], no conversion, includes factor
 # with respect to SI unit
print um.name # micrometer, only ASCII characters. This is a string.
print um.dialogName # µm. This is a string quantity.

We can also convert a string to a unit

print Unit.parse("km s-1")
or print (Unit.parse("km") / Unit.parse("s"))
print Unit.parse("km s-1") # Speed.KILOMETERS_PER_SECOND
print Unit.parse("arcsec") # Angle.SECONDS_ARC)
print Unit.parse("eV") # Energy.ELECTRON_VOLTS)
print Unit.parse("cm") # Length.CENTIMETERS)
print Unit.parse("mm") # Length.MILLIMETERS)
print Unit.parse("microm") # Length.MICROMETERS)

4.8.2.3. Derived Units

We can also provide derived units by application of .milli, .micro and .nano methods.

s = Duration.SECONDS
us = s.micro # micro seconds
ns = s.nano # nano seconds

4.8.2.4. Conversion to SI and Other Units

If the SI unit is needed rather than the unit used then SI unit and the factor between the two can be
provided.

print Angle.DEGREES.asSI # gives unit as Angle.RADIANS
print Energy.ERGS.asSI # gives unit as Energy.JOULES
print Speed.KILOMETERS_PER_HOUR.asSI # gives unit as Speed.METERS_PER_SECOND
print Unit.parse("g cm s-2").asSI # gives unit as Unit.parse("kg m s-2")
#
print Length.ANGSTROMS.toSI # 1.0E-10
print Duration.HOURS.toSI # 3600.0
print FluxDensity.MILLIJANSKYS.toSI # 1.0E-29
print Unit.parse("g cm s-2").toSI # 1.0E-5
or factor compared to other units
min = Duration.MINUTES
ms = Duration.MILLISECONDS
print min.to(ms) # 60000.0
mV = Unit.parse("mV") # millivolts
print mV.to(mV.asSI) # 0.001; same as mV.toSI

4.8.2.5. Physical Constants

Physical constants can also be provided to the system with their correct units, e.g.

h = Constant.H_PLANCK

Handling Array Data Objects, Datasets and Products

58

print h.value # 6.62606896E-34
print h.unit # J s
print h # 6.62606896E-34 J s
k = Constant.K_BOLTZMANN
print k.value # 1.3806505E-23
print k.unit # J K-1
print k # 1.3806505E-23 J K-1

4.8.2.6. Unit Compatibility

We can compare units to see if they are of compatible types.

kg = Mass.KILOGRAMS
g = Mass.GRAMS
m = Length.METERS
print kg.isCompatible(g) # true
print kg.isCompatible(m) # false
print kg.isCompatible(Mass) # true
print kg.isCompatible(Area) # false
print Unit.parse("g cm s-2").isCompatible(Force) # true
print Unit.parse("g cm s-2").isCompatible(Power) # false

4.8.2.7. Unit Equivalence

We can use the .isEquivalent method to determine if two unit types are the same.

kg = Mass.KILOGRAMS
s = Duration.SECONDS
m = Length.METERS
N = Force.NEWTONS
dyn = Force.DYNES
print N.isEquivalent(dyn) # false
print N.isEquivalent(kg * m / s**2) # true

4.9. Creating and Accessing a Composite
Dataset

The ArrayDataset and TableDataset types enable the user to encapsulate arrays and tables
of primitive data types easily. However, they do not allow arbitrary structures of data, or data within
data, to be constructed. Examples of complex datasets are grouped observations (making a map
with an offset reference position, for instance), which could have 1D and 2D array data together
with a table which might contain (for example) calibration data. Such complex structures can be
built using the CompositeDataset. Example 4.1 creates a CompositeDataset containing in
turn an ArrayDataset, a TableDataset, a few StringParameters, and another nested
CompositeDataset. It also illustrates how we can access the components of the composite dataset.

Handling Array Data Objects, Datasets and Products

59

First we set up a one-dimensional array of doubles (0.0, 1.0 ... 9.0)
x = Double1d.range(10)
Then we create an array dataset with an added description
s = ArrayDataset(data=x,description="Range of doubles")
This sets up an empty table with a description
t = TableDataset(description="This is a table")
The array 'x' is then added to the table and given a
column heading "x"
t["x"]=Column(x)
Each of the array elements of 'x' is multiplied by 4
and becomes the data in the table column labeled "y".
The table column also has a description added to it.
t["y"]=Column(data=x*4,description="x*4")
c is an empty composite dataset.
c=CompositeDataset()
We add a description to c
c.description="This is a composite dataset. It contains three datasets!"
We add the author's name as a string parameter
c.meta["author"]=StringParameter("Jorgo Bakker")
We input a version number as a string parameter
c.meta["version"]=StringParameter("2.0")
We put the array dataset s into the composite dataset c
and give it the name mySimple so that we can refer to it
c["mySimple"] = s
We do the same for the table
c["myTable"] = t
This just shows you can add a composite dataset into another
composite dataset (nesting)
c["myNest"] = CompositeDataset("Empty nested composite dataset")

print c # View contents of the complex dataset.
tab = c["myTable"] # Gets our TableDataset back. Now called "tab".
print tab # We see that it has two columns called "x" and "y"
print tab["x"] # Prints out what is in the "x" column.
print tab["x"].data # To just print out the data values.

Example 4.1. Example of how to create a composite dataset

4.10. Spectrum Datasets
Spectra are contained within datasets that also contain raw data counts together with metadata that
allows for the correct handling of combinations of spectra (e.g., spectral arithmetic) and display of
spectra. Basic spectral types are SpectralSegment, Spectrum1d and Spectrum2d.

4.10.1. Spectrum1d and SpectralSegments
A one-dimensional representation of a spectrum. Container has a TableDataset() that has columns for
flux, flag, weights and numbered segments (components of the 1d spectrum). It contains

• A flux column (Double1d). This can be obtained from a SpectralSegment using the getFlux()
method. For example; a = %spectrum1d_name%.getFlux().

• A wavelength/frequency column (Double1d). The wavelength column can be obtained using the
getWave() method.

• A weight column (Double1d). The weight column can be obtained using the getWeight() method.

• A segments column (Double1d). The segments column can be obtained using the getSegment()
method.

• A flag column (Int1d). The flags can be obtained using the getFlag() method.

A Spectrum1d can also have metadata (header information) added. The following illustrates how a
Spectrum1d dataset can be built from scratch.

Handling Array Data Objects, Datasets and Products

60

flux = Double1d([12.2,12.5,13.0,11.8,11.9,12.6,14.2,15.8,12.2,15.2])
segs = Int1d([0,0,0,0,0,1,1,1,1,1]) # segment id for each point
wave = Double1d([1000.0,1000.2,1000.4,1000.6,1000.78,
 \ 1100.0,1100.2,1100.4,1100.6,1100.78])
flag = Int1d(10) + 1
weight = Int1d(10) + 1.0
a = Spectrum1d(flux,weight,flag,segs) #indicate the fluxes and segments.
a.set("wave", wave) # add the wavelengths column
a.setMeta("name","Arp220") # sets keyword name in metadata of Spectrum
other metadata can be added, as needed.
print a.getWave() # shows the "wave" column
Using the Dataset viewer, the full information can be viewed (see
Section 4.14)

The spectrum can be made of several segments. A SpectralSegment is the smallest spectrum
component dealt with by the DP system. This can be a piece of a spectrum extracted from a larger
one-dimensional spectrum to be used for fitting purposes (for example). It can be extracted from a
Spectrum1d using the following.

b=a.getSpectralSegment(1) # get second spectral segment (numbering starts at 0)
print b.getWave() # provides the wavelengths associated with this segment

Many of the spectral tools (arithmetic, fitters) work with the basic unit of a spectral segment.

4.10.2. Spectrum2d
For multiple spectra taken in an observation, a 2D structure is required. The components of a
Spectrum2d dataset is similar to that of a Spectrum1d dataset, except for having a second dimension.
An additional component is the ability to contain subbands. A clear example of the usefulness of this
comes in the output from the HIFI spectrometers where several CCD or autocorrelator readouts lead
to several "chunks" (subbands) of spectra in one data frame. Having subbands is an option for the
Specrum2d. It contains

• A flux column (Double2d). This can be obtained from a SpectralSegment using the getFlux()
method. For example; a = %spectrum1d_name%.getFlux().

• A wavelength/frequency column (Double2d). The wavelength column can be obtained using the
getWave() method.

• A weight column (Double2d). The weight column can be obtained using the getWeight() method.

• A flag column (Int2d). The flags can be obtained using the getFlag() method.

• (optional) a subbandstart column (Int1d). Indicates where in the arrays that a subband starts.

• (optional) a subbandlength column (Int1d). Indicates the length of array section that a subband takes
up.

The number of channels is automatically generated in the metadata when setting up a Spectrum2d. An
example of setting up a Spectrum2d from scratch is given below.

flux2 = Double2d([[12.2,12.5,13.6,12.8],[12.8,12.2,13.3,12.9],
\ [10.2,14.5,12.5,11.4],[12.2,12.5,13.6,12.8]])
flag2 = Int2d([[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1]])
weight2 = Double2d([[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1]])
a2 = Spectrum2d(flux2,weight2,flag2) # sets up 4 channels each with 4 pixels
wave2 = Double2d([[1000.0,1000.2,1000.4,1000.6],[1000.0,1000.2,1000.4,1000.6],
 \ [1000.0,1000.2,1000.4,1000.6],[1000.0,1000.2,1000.4,1000.6]])
a2.set("wave", wave2) # add the wavelengths
print a2.getWave() # to print out the wavelengths
print a2.getFlux() # to print out the fluxes.

Handling Array Data Objects, Datasets and Products

61

We can also set up a Spectrum2d with associated subbands. This basically allows us to set up, in one
dataset, a container which holds many individual spectra which as many subbands each covering a
different wavelength range, if necessary (e.g., with the individual subbands of the HRS spectrometer
of HIFI). This forms the basis of how spectral observations, which typically are made up of many
frames, are stored in the Herschel DP environment.

Now deal with subbands.
Create the container for the spectra
a3 = Spectrum2d()
indicate the number of subbands it will have
a3.setSubbands(2)
a3.setSubbandStart(Int1d([0,2]))
a3.setSubbandLength(Int1d([2,2]))
flux3 = Double2d([[12.2,12.5,13.6,12.8],[12.8,12.2,13.3,12.9]])
flux4 = Double2d([[10.2,14.5,12.5,11.4],[12.2,12.5,13.6,12.8]])
a3.set("flux_1",flux3)
a3.set("flux_2",flux4)
print a3.getFlux(1)
wave3 = Double2d([[1000.0,1000.2,1000.4,1000.6],[1000.0,1000.2,1000.4,1000.6]])
a3.set("wave_1",wave3)
a3.set("wave_2",wave3)
#get wavelengths for second subband
note that there are two sets of measurements
print a3.getWave(2)
#get fluxes for first set of measurements
of subband number 1.
print a3.getFlux(1).get(0)
or second set
print a3.getFlux(1).get(1)
this way you can go through multiple
measurements using the same subband that are
stored in the same dataset.
We can do the same for wavelengths, e.g.,
print a3.getWave(1).get(0)
instrument pipelines producing spectra store the data in Spectrum2d
or a variant (see next section).

4.10.3. Expanding Spectrum1d and Spectrum2d
Datasets

Extensions to the basic Spectrum1d and Spectrum2d datasets have been created that allow for more
convenient access to specific instrument data types. Typically, the full spectral information, including
metadata, is created from the original instrument dataframes and housekeeping information coming
from the spacecraft. However, it can be instructive to formulate things from their basic components.

4.10.3.1. HIFI Extensions

Examples of HIFI extensions to the Spectrum1d and Spectrum2d datasets are the
WbsSpectrumDataset and HrsSpectrumDataset available for the two types of spectrometer
data from HIFI. These can be created by obtaining HIFI dataframes and housekeeping telemetry source
packets (these are not generally available to most users).

creating a WBS spectrum dataset
from herschel.hifi.pipeline.product import *
w = WbsSpectrumDataset(array of WBS dataframes, array of HK telemetry)

Such a spectrum dataset automatically includes more metadata such as observation identification and
data creation date. It can also contain the information for the wavelength as a model -- typically
polynomial fit information.

Displaying the table of dataset, for each spectrum not only is flux and wavelength listed but other,
HIFI-specific, information such as chopper position and on-board buffer storing the data (see Fig.***).

Handling Array Data Objects, Datasets and Products

62

Typical observations actually contain groupings of such datasets. For example, internal flux calibrator
dataframes, science dataframes and frequency calibrator data frames. These are typically grouped
together in a HIFI timeline product. So a typical HIFI observation with all four spectrometers used
would have four HIFI timeline products.

Creating a HIFI timeline product
from herschel.hifi.pipeline.product import *
htp = HifiTimelineProduct(array of WBS dataframes, array of HK telemetry)

For the most part users will not need to create the datasets/products but will need to access the data
in them. We can use the getFlux() and getWave() methods as before. For HIFI spectra, the
getWave() method provides the IF frequency values. The lower or upper sideband frequencies can
also be obtained using the getLsbFrequency() or getUsbFrequency() methods. So we can
crudely plot -- with labels to be attached later -- the spectrum (upper or lower sideband) using the
following.

Continuing from above.
Get the first dataset in the product
wbs = htp.get(1)
Plot of flux against IF frequency
p = PlotXY(wbs.getWave().get(1),wbs.getFlux().get(1))
This provides a plot of the second frame, called frame number 1.
Similar but now will plot the LSB frequency which takes
the local oscillator frequency information into account
p = PlotXY(wbs.getLsbFrequency().get(1),wbs.getFlux().get(1))

4.10.3.2. SPIRE extensions to Spectrum1d

The SPIRE instrument also uses an extension of Spectrum1d. The basic component dataset
for the spectrum obtained by a single SPIRE pixel is the SpireSpectrum1d. As opposed to
Spectrum1d, complex data are possible (stores Numeric1d inputs as Complex1d). The data is
composed of complex values of flux and flux error with associated units. A mask can also be added
(type Int1d).

Individual spectra from separate pixels can be grouped together to formulate a single SPIRE scan
dataset. This in turn can be grouped into a set of scans that would be more typical of a single SPIRE
observation.

from herschel.share.unit import *
from herschel.spire.ia.dataset import *
c = Complex1d([2+3j, 3+2.1j,3.6 +2.4j,0.9+2.1j])
err = Complex1d([0.2+0.2j, 0.8+0.3j,0.4+0.3j,0.15+0.1j])
flu = FluxDensity.JANSKYS
wu = WaveNumber.RECIPROCAL_METER
wn = Double1d([0.3,0.4,0.5,0.6])
mask = Int1d([1,1,1,1])
sps = SpireSpectrum1d("Pixel name")
sps.setComplexFlux(c,flu)
sps.setComplexFluxError(err,flu)
sps.setWavenumber(wn,wu)
sps.setMask(mask)
Now we can get the data by replacing set by get,
and removing the arguments, e.g.,
sps.getComplexFlux() # returns the flux data
and we can get the units separately, e.g.,
sps.getComplexFluxUnits()
Now we can place a number of pixels in a single unit
a SpireSpectrumCompositeDataset.
Create sps, sps1, sps2, sps3 etc.
spire_cds = SpireSpectrumCompositeDataset("Scan number")
Scan number can be a string name (as above) or a long numeric value.
add pixels of data.....
spire_cds.setPixel(sps)

Handling Array Data Objects, Datasets and Products

63

spire_cds.setPixel(sps1)
spire_cds.setPixel(sps2)
spire_cds.setPixel(sps3)
pixel names are as set up in the original SpireSpectrum1d
we can get a pixel using
wanted_sps = spire_cds.getPixel("Pixel name")
Most SPIRE spectrometer observations are composed of many scans
which we can then place several composite datasets in a single dataset.
spire_sds =SpectrometerDetectorSpectrum() # create empty dataset
spire_sds.setScan(spire_cds) # add in scan, given next scan number available = 0.
spire_sds.setScan(spire_cds1) # add in scan, given next scan number available = 1.
Now access a scan.
wanted_cds = spire_sds.getScan(0) # for the first scan

4.10.3.3. PACS Spectrum1d and Spectrum2d extensions

PACS spectral is based on handling the Frames and Ramps based on the readout of the PACS
spectrometer. The handling of these data is currently discussed in the PCSS User's Manual.

4.11. Image and Cube Datasets
Image and cube datasets are composed of Double2d and Double3d components that represent intensity,
masks and errors. They also contain metadata information that provide for coordinate information.

SimpleImage contains a standard two-dimensional image which contains the following.

• Image made of a Numeric2d (e.g., Double2d or Int2d) component.

• Error made of a Numeric2d (e.g., Double2d or Int2d) component can be added.

• Exposure made of a Numeric2d (e.g., Double2d or Int2d) component can be added.

• Flag made of a Short2d (e.g., Double2d or Int2d) component can be added. is created.

Units can be added/set to the image contained and World Coordinate System information.

An example of creating a SimpleImage from an imported JPG image is given below.

from herschel.ia.gui.image import *
from herschel.ia.dataset.image.wcs import Wcs
from herschel.share.unit import *
choose units
myQuant = FluxDensity.MILLIJANSKYS
create WCS to assign
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = -22.5)
create the simple image with an assigned WCS and a description
myImage2 = SimpleImage(description="Veil nebula",unit = myQuant, wcs = myWcs)
import an image -- converted into Double2d/Int2d for inclusion
Note: to import the image with the following command, the JPG file
needs to be in the same directory as the the HCSS interface (JIDE or HIPE)
was started from.
myImage2.importFile("ngc6992.jpg")
Assign a reference wavelength to the image
myImage2.setWavelength(12.0,Length.MICROMETERS)
print reference wavelength in millimetres.
print myImage2.getWavelength(Length.MILLIMETERS)
print the units being used
print myImage2.getUnit()
#print intensity at pixel position 30, 35
print myImage2.getIntensity(30, 35)
We can add exposure and error maps.....
Use myImage2.setExposure(<a Double/Int2d image>) or
myImage2.setError(<a Double/Int2d image>) to include
exposure maps or error maps with the image.
Using the .getError and .getExposure methods extracts these images from
the SimpleImage dataset.
To display we can use

Handling Array Data Objects, Datasets and Products

64

Display(myImage2)
Some display edit functions are available using right button mouse click on
the image.

In a similar vein to the above, we can also create a SimpleCube which allows us to store three-
dimensional images (or multiple stacked 2D images). The SimpleCube currently can also include
error, flag and/or exposure maps, which must also be 3D arrays. A single WCS only can be applied
to the SimpleCube. For example, it is not possible to provide different WCS's for each image in
an image stack.

To create a SimpleCube we need to import a Double/Int3d object. For simplicity, we can create
this from myImage2.

l1 = myImage2.getImage()
l2 = myImage2.getImage()
d3 = Double3d()
d3.append(l1,0) # which appends the image along the 0 axis (stacking)
d3.append(l2,0) # append the same image.
Now we create the SimpleCube.
myImage3 = SimpleCube(description="Veil nebula in 3D",
 \unit=MyQuant, image=d3, wcs = myWcs)
We can obtain the units.
print the units being used
print myImage3.getUnit()
#print intensity at pixel position 30, 35 in layer (depth) 0 -- the first layer
print myImage3.getIntensity(0,30, 35)
We can create an array of SimpleImages from the cube.
sa = myImage3.decomposeToSimpleImages()

4.12. Assigning a World Coordinate System
(WCS) to SimpleImage and SimpleCube

We are able to assign WCS information to images and cubes. The World Coordinates System
(wcs) describes the coordinates of a SimpleImage or SimpleCube. It makes it possible to convert
imageCoordinates to worldCoordinates and the other way around. The WCS can have a lot of
parameters, as defined in the FITS standard :

• naxis : the number of axes

• crval1 : First coordinate of the centre

• crval2 : Second coordinate of the centre

• crpix1 : Reference pixel X coordinate

• crpix2 : Reference pixel Y coordinate

• cdelt1 : Pixel scale axis 1. Step per pixel or number of degrees per pixel along x-axis when
converting to Sky Coordinates. These parameters are no longer used in modern Wcs definition, but
are included in the CDi_j matrix.

• cdelt2 : Pixel scale axis 2. Step per pixel or number of degrees per pixel along y-axis when
converting to Sky Coordinates. These parameters are no longer used in modern Wcs definition, but
are included in the CDi_j matrix

• ctype1, ctype2 : Projection type name. This can be "LINEAR", "PIXEL" or the FITSconvention.
The default value for ctype1 and ctype2 is "LINEAR". When using the FITSconvention, first 4
characters are:

o RA-- and DEC- for equatorial coordinates

o GLON and GLAT for galactic coordinates

Handling Array Data Objects, Datasets and Products

65

o ELON and ELAT for ecliptic coordinates

The next 4 characters describe the projection. Possibilities are:

o -AZP: Zenithal (Azimuthal) Perspective

o -SZP: Slant Zenithal Perspective

o -TAN: Gnomonic = Tangent Plane

o -SIN: Orthographic/synthesis

o -STG: Stereographic

o -ARC: Zenithal/azimuthal equidistant

o -ZPN: Zenithal/azimuthal PolyNomial

o -ZEA: Zenithal/azimuthal Equal Area

o -AIR: Airy

o -CYP: CYlindrical Perspective

o -CAR: Cartesian

o -MER: Mercator

o -CEA: Cylindrical Equal Area

o -COP: COnic Perspective

o -COD: COnic equiDistant

o -COE: COnic Equal area

o -COO: COnic Orthomorphic

o -BON: Bonne

o -PCO: Polyconic

o -SFL: Sanson-Flamsteed

o -PAR: Parabolic

o -AIT: Hammer-Aitoff equal area all-sky

o -MOL: Mollweide

o -CSC: COBE quadrilateralized Spherical Cube

o -QSC: Quadrilateralized Spherical Cube

o -TSC: Tangential Spherical Cube

o -NCP: North celestial pole (special case of SIN)

o -GLS: GLobal Sinusoidal (Similar to SFL)

• Other types are also possible (for example TEMP for temperature.)

Handling Array Data Objects, Datasets and Products

66

o cunit1 : The Unit of Axis 1.

o cunit2 : The Unit of Axis 2.

o epoch : Epoch of coordinates

o Radesys : The reference frame, default value is "ICRS"

o pc1_1 : Element (1,1) of the linear transformation matrix. The pc1 and pc2 parameters are no
longer used in modern Wcs definition, but are together with CDELT1 and CDELT2 included in
the CDi_j matrix

o pc1_2 : Element (1,2) of the linear transformation matrix.

o pc2_1 : Element (2,1) of the linear transformation matrix.

o pc2_2 : Element (2,2) of the linear transformation matrix.

o cd1_1 : Element (1,1) of the corrected linear transformation matrix

o cd1_2 : Element (1,2) of the corrected linear transformation matrix

o cd2_1 : Element (2,1) of the corrected linear transformation matrix

o cd2_2 : Element (2,2) of the corrected linear transformation matrix

For the situation where there is a third dimension the following also apply.

• ctype3 : Description of what the 3rd axis represents, e.g. Wavelength, Time, M1 Temperature, ...

• cunit3 : The Unit of Axis 3.

• crval3 : [Optional - in case of equidistant 3rd dimension]. Wavelength, time, ... of reference layer;
unit : length, time, ...

• crpix3 : [Optional - in case of equidistant 3rd dimension] Reference layer index

• cdelt3 : [Optional - in case of equidistant 3rd dimension] Scale in 3rd dimension - unit : length,
time, ...

• PC elements

o pc1_3 : Element (1,3) of the linear transformation matrix

o pc2_3 : Element (2,3) of the linear transformation matrix

o pc3_1 : Element (3,1) of the linear transformation matrix

o pc3_2 : Element (3,2) of the linear transformation matrix

o pc3_3 : Element (3,3) of the linear transformation matrix

To create a WCS object that can be assigned to an image we can use something like the following.

from herschel.ia.dataset.image.wcs import Wcs
create WCS object, units in degrees by default
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = -22.5,
 \ cdelt1=0.0004, cdelt2 = 0.0004, cunit1="DEGREES",
 \ cunit2="DEGREES", ctype1 = "RA---TAN", ctype2= "DEC--TAN")
we can assign the world coordinates to the an image
myImage2 = SimpleImage(description="Veil nebula", wcs = myWcs)
and can obtain the world coordinates at any pixel on the image.

Handling Array Data Objects, Datasets and Products

67

print myImage2.getWcs().getWorldCoordinates(31,31)
This provides an array of sky coordinates in degrees.
We can get the intensity at a given WCS position.
First put an image in....
myImage2.importFile("ngc6992.jpg")
Get the intensity at a given WCS position.
print myImage2.getIntensityWorldCoordinates(30.0012,-22.498)

For the SimpleCube we can do this almost identically.

from herschel.ia.dataset.image.wcs import Wcs
create WCS object, units in degrees by default
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = -22.5,
 \ cdelt1=0.0004, cdelt2 = 0.0004, cunit1="DEGREES",
 \ cunit2="DEGREES", ctype1 = "RA---TAN", ctype2= "DEC--TAN")
We need to have a Double/Int3d image to put in our cube (call it "d3").
we can assign the world coordinates to the an image
myImage3 = SimpleCube(description="Veil nebula", image=d3, wcs = myWcs)
and can obtain the world coordinates at any pixel on the image.
print myImage3.getWcs().getWorldCoordinates(31,31)
Get the intensity at a given WCS position. We need three
arguments now, with the first argument being the layer number (depth)
from which we want the intensity measure. Count starts from 0.
print myImage3.getIntensityWorldCoordinates(0,30.0012,-22.498)

4.13. Wrapping it all up: Products
Let us briefly run through what we have covered so far. We started with simple arrays in Section 4.3,
went on with multidimensional arrays in Section 4.6 and introduced array datasets in Section 4.7.
Then it was time for table datasets in Section 4.8 and composite datasets in Section 4.9. As you can
see, every object we have examined acted as a container for the previous ones. Now we complete the
journey by introducing the highest level of them all, the Product.

A Product is an object containing a set of metadata entries (some of which are mandatory) and one
or more datasets. The mandatory metadata values are description, creator, creationDate,
instrument, startDate, endDate, modelName and type. They will be automatically added
whenever you create a new product. Let us check:

myProduct = Product() # Creating a new, empty Product
print myProduct.meta # Printing its metadata
print myProduct.getMeta() # Same thing, "Java style"

4.13.1. Mandatory Parameters in Products
As you can see some entries are already set to meaningful values, others are set to Unknown. You can
now modify the mandatory metadata and add as many new entries as you wish. There are so-called
"setter" methods for setting values of the mandatory metadata, which currently includes a description,
the creator, an instrument, model name of the instrument in use and type, as shown below:

myProduct.setDescription("My SPIRE product")
myProduct.setCreator("Myself")
myProduct.setInstrument("SPIRE")
myProduct.setModelName("PFM")
myProduct.setType("UM")

Alternately, these can be set using

myProduct.creator = "Myself"
myProduct.instrument = "SPIRE"
etc...

Finally, we can include many of these settings on a single line

Handling Array Data Objects, Datasets and Products

68

myProduct=Product(creator="Myself", instrument="SPIRE", \
 description="My SPIRE product", modelName="PFM", type="UM")

4.13.2. Setting Date Information
The creation, start and end dates for a Product need to be expressed in terms of a FineTime. If all of
these are the current date then we can convert a Java date to a FineTime and include it as metadata
in our product. For example:

from herschel.share.util.fltdyn.time import FineTime

myProduct.setCreationDate(FineTime(java.util.Date()))
myProduct.setStartDate(FineTime(java.util.Date()))
myProduct.setEndDate(FineTime(java.util.Date()))

Because the startDate, the endDate and the creationDate are mandatory metadata
parameters, they are set to the current date and time at the moment when the product is created. If
those dates are not the current date then it is possible to set it up using UTC or TAI representation of
a calendar day (see e.g. Section 11.2), like it is shown in the following example:

from herschel.share.fltdyn.time import *

formatter = SimpleTimeFormat(TimeScale.UTC)
timeUtc = formatter.parse("2008-01-31T12:35:00.0Z") # Z at the end is mandatory
 for UTC

formatter = SimpleTimeFormat(TimeScale.TAI) # or just SimpleTimeFormat()
timeTai = formatter.parse("2008-01-31T12:35:00.0TAI") # TAI at the end is mandatory
 for TAI

myProduct.setCreationDate(timeUtc) # or
myProduct.setCreationDate(timeTai)

Note that the two previous dates, represented as FineTime, are different:

print timeUtc # 2008-01-31T12:35:33.000000 TAI (1580474133000000)
print timeTai # 2008-01-31T12:35:00.000000 TAI (1580474100000000)

4.13.3. Additional Metadata
Now, to add, modify and read additional metadata:

myProduct.getMeta().set("Here goes a name", StringParameter("Here goes a value"))
print myProduct.meta["Here goes a name"]
{description="", string="Here goes a value"}

In the example above we set a name and a value for the metadata. In this case the value was
represented by a String object, but as you already now you can also assign other types of values
with LongParameter, DoubleParameter, BooleanParameter and DateParameter.

4.13.4. Inserting and Getting Datasets from a Product
But how do you insert and get the contents of the datasets in a product? You can use the
getDefault() method to get the first dataset stored in the product, or the get() method to get
any stored dataset, whose name you have to provide as argument. The name is a string assigned when
the dataset is first inserted into the product. Here is an example:

myTable = TableDataset()
myTable.setDescription("This is a Table Dataset")
myComposite = CompositeDataset()
myComposite.setDescription("This is a Composite Dataset")
myProduct.set("oneDataset", myTable) # We have to give a name to every
 # dataset we insert

Handling Array Data Objects, Datasets and Products

69

myProduct["anotherDataset"] = myComposite # Jython style to add a dataset
myProduct.set("anotherDataset", myComposite) # Java style
print myProduct.getDefault() # As you will see from the description,
 # this is the Table Dataset
print myProduct["anotherDataset"] # Getting the Composite Dataset,
 # Jython style...
print myProduct.get("anotherDataset") # ...and Java style

Instead of just printing out the datasets you get, you can assign them to variables and execute other
operations on them. To see how to explore the contents of datasets please refer to the previous sections
of this chapter.

If you are not a fan of the command line you can use the handy Dataset Inspector tool to view and
manipulate datasets and products. This tool is described below, in Section 4.14.

Products are also treated in Appendix A, Section A.3.

4.14. The Dataset Inspector
As we have seen above, inspecting Datasets and Products using the command line can quickly become
cumbersome, especially when dealing with several large instances. Luckily there is a quick and
efficient way to carry out these tasks via a graphical tool, the Dataset Inspector, already briefly
introduced in Chapter 2 (see Section 2.3.5 and Figure 2.7).

Using it is very simple. Once invoked via its icon on the toolbar or the DatasetInspector
command, it will display its main window, divided in two panes. The left pane shows a tree-like
folder structure whose root is called Datasets and Products, with two main branches called
Datasets and Products. The former will contain any datasets not included in products, while
the latter will list the products themselves. Whenever the icon of a folder appears, clicking on it will
display its contents. A similar tree-like structure will appear in the right panel, which is also used to
display the objects' contents, like metadata and table data.

Figure 4.1 shows Dataset Inspector displaying the metadata of a product. The table is divided in three
columns showing the name, value and unit (if any) of each keyword. When the value of a keyword is
undefined this is signalled with a red undefined label.

Figure 4.1. The Dataset Inspector showing product metadata.

Handling Array Data Objects, Datasets and Products

70

Additional features are available for parameters such as obsid and bbid (the identification numbers
of observations and of their building blocks). By right-clicking on the value of these parameters we
can switch between decimal and hexadecimal representations.

Dates and times are shown by default in UTC (Coordinated Universal Time), with their FineTime
representation in brackets (for more information on time in DP see Chapter 11). By right-clicking on
the parameter values we can switch between UTC and TAI (International Atomic Time).

The Dataset Inspector can do much more than displaying products and datasets. It also contains a
number of plugin viewers that allow more advanced data manipulation. Three of them are described
below.

4.14.1. The TablePlotter

4.14.1.1. Introduction

The TablePlotter utility is a GUI tool to graphically view and analyze table datasets which are
organized in columns with an equal number of rows, for instance, time ordered detector signals. In
addition the tool provides advanced means of interactively selecting subsets of this data and create
new table datasets from these selections. After its integration into HIPE the TablePlotter appears as
a tab in the Editor view.

4.14.1.2. Invoke TablePlotter

• Invoke TablePlotter as a Viewer in HIPE

The TablePlotter works with Table Datasets and products that contain TableDatasets. Double
clicking on a FITS binary table file in the Navigator view of HIPE will load the file into a product
containing a table dataset and automatically bring up the product viewer. Right clicking on the table
dataset within the product and selecting "Open With" leads to a choice of viewers and tools that
can be applied (see Figure 4.2).

Figure 4.2. Options for different viewers appearing upon right click on a table dataset in the product
viewer, among them TablePlotter and OverPlotter.

Selecting "TablePlotter" opens the table dataset and brings up a view with the main TablePlotter
screen (seeFigure 4.3).

• Invoke TablePlotter from the Command Line or from a Script

TablePlotter can also be invoked from the command line. First we need to import TablePlotter and
the window manager with:

from herschel.ia.gui.explorer.table import TablePlotter

Handling Array Data Objects, Datasets and Products

71

from herschel.share.component import WindowManager

Assuming tbs is a Table Dataset, then the TablePlotter would be invoked by the following
commands in a Jython script:

wm = WindowManager.getDefault()
wm.addWindow('test', TablePlotter(tbs).component, 1)

or by the single command:

WindowManager.getDefault().addWindow("test", TablePlotter(tbs).component, 1)

If you have a product created by reading in a FITS file containing a binary table, the first table dataset
can be easily extracted with the default method. For instance, if a FITS file was read by double
clicking on it in the navigator view, a product will appear as a variable. Assuming the variable name
is "Myfile", the following command lines send it to TablePlotter.

wm = WindowManager.getDefault()
wm.addWindow("test", TablePlotter(Myfile.default).component, 1)

wm.addWindow('test', TablePlotter(TablePlotterExerciseFile["HDU_1"]).component, 1)

If the product contains more than one dataset, the desired table dataset can be retrieved by its name.
If you don't know the name of the dataset, a list of datasets can be obtained with the keySet method.
In the following example the list of dataset names is obtained and printed, then the first dataset is
chosen and displayed in TablePlotter.

wm = WindowManager.getDefault()
datasets = Myfile.keySet() #Get the names of the datasets
print datasets #Here you see the names of the datasets
 within the product
datasetName = datasets[0] #Choose your dataset, in this case the
 first with index 0
wm.addWindow("test", TablePlotter(Myfile[datasetName]).component, 1)

If invoked from the command line, the TablePlotter will appear in its own window, instead of a
HIPE view.

If the name of the dataset is unknown, but its sequence number is known, the following shortcut
can be used, in this case for the first dataset with index 0:

wm = WindowManager.getDefault()
wm.addWindow("test", TablePlotter(Myfile[Myfile.keySet()[0]]).component, 1)

• Limitation on Datasets

Among the three generic datasets, TablePlotter supports only the TableDataset.

4.14.1.3. Layout of the TablePlotter

When TablePlotter is invoked, a GUI appears, displaying an X/Y-plot of the first two columns of the
selected Table Dataset (See Figure 4.3). The TablePlotter GUI contains three major components, a plot
display area, the plot control panel on the right, and axis selection boxes on the bottom. Sometimes it
is necessary to adjust the window size and the sizes of the sections to see all components.

Handling Array Data Objects, Datasets and Products

72

Figure 4.3. Layout of the TablePlotter GUI in a HIPE editor view.

4.14.1.4. Controls and Functions

The TablePlotter provides the following control buttons to view and analyze data.

• X and Y- Axis Selection:

Under the graphics display area, two selector arrangements allow to assign columns in the table to
the X and Y-axis of the plot. The elements of each selector are a Combo Box and a Spinner.

By default the first column of the TableDataset is associated with the X-axis. The second coumn
is initially associated with the Y-axis.

Clicking the arrow on the right of the Combo Box invokes a drop down menu with the displayable
columns of the table dataset. Holding down the left mouse button and moving the mouse up or
down scrolls through the columns if more than 8 columns are present. The colum is selected by left
clicking on the respective name. This list can be quite large. To help with the selection, a substring
can be entered after clicking into the white name field of the Combo Box. Only columns whith
names containing this substring will be shown in the drop down menu. No distinction is made for
upper or lower-case characters in this selection.

Columns can also be selected by index using the Spinner, either by entering the index number
directly after clicking into the index field, or by clicking on the up or down arrow buttons of the
Spinner. Fast forward/backward selection of columns in the spinner can be achieved by holding the
left mouse button down and moving the mouse up or down.

The axis selector provide an additional "virtual" index column that allows to plot columns against
the order in which they appear in the table dataset. This column only exists for convenience and is
for instance not part of the extracted dataset, as shown further below.

Handling Array Data Objects, Datasets and Products

73

• Display Style:

The control buttons in this section change the type of scaling of the X- and Y-axes, as well as the
syles of lines and symbols used in the plot.

 This button signifies that the linear scale is selected for the X-axis. Clicking on the button
will switch to logarithmic scale.

 This button signifies that the linear scale is selected for the X-axis. Clicking on the button
will switch to logarithmic scale.

 This button signifies that the linear scale is selected for the Y-axis. Clicking on the button
will switch to logarithmic scale.

 This button signifies that the linear scale is selected for the Y-axis. Clicking on the button
will switch to logarithmic scale.

The two pull-down menus select line- and symbol-styles. The selection of symbol styles is only
available when the line styles are either MARKED, MARK_DASHED or NONE.

 This button increases symbol sizes.

 This button decreases symbol sizes.

• Navigation:

The navigation field contains several buttons to zoom and pan within a plot. In addition the
view can be controlled with the mouse pointer. Left clicking into the field, and pulling across
an area with the left mouse button held down selects this area. This is called furtheron a hold-
and-drag operation. When the mouse button is released, this area will be scaled so that it now
fits the plot window (zoom-in).

 This button zooms out simultaneously in X- and Y-axis.

 This button zooms in simultaneously in X- and Y-direction.

 This button zooms out along the X-axis only.

 This button zooms out along the Y-axis only.

 This button pans the view towards the left.

 This button pans the view towards the right.

Handling Array Data Objects, Datasets and Products

74

 This button pans the view up.

 This button pans the view down.

The size of each zooming or panning step is controlled by a toggle button at the center of the
Navigation field as follows:

 This button signifies that the fast mode is selected. Clicking on it toggles to slow mode.

 This button signifies that the slow mode is selected. Clicking on it toggles to the fast mode.

 This button opens the Preferences menu. The first entry in this drop-down menu
opens a Properties window, where the factors can be changed that control fast and slow zooming
and panning (for details see the Preferences section below).

 This button switches into free-scale mode. It is one of the most frequently used buttons.
The displayed ranges on X- and Y-axis are selected automatically to show all visible datapoints of
the currently selected columns with optimal zoom parameters.

 This button switches the X-axis into free-scale mode.

 This button switches the Y-axis into free scale mode.

• Selections:

Table Plotter is not only a display tool for table datasets, but also a data selection tool. The selection
feature can be used to hide or select a particular portion of the data points, to make use of the fast
automatic scaling when scanning through many columns of data.

The data selection feature, is also very useful for unplanned, ad-hoc, interactive data analysis tasks.
Subsets of data in a table can be selected and extracted into new table datasets, that can then be
sujected to other tools or tasks like the power spectrum tool. Typical applications would be for
instance to manually remove glitches from a signal time stream, or to extract a specific period of a
signal time stream out of a sequence of instrument configurations.

The following buttons are relevant in this respect:

 This button signifies that all data points are being displayed. De-selected data
points are replaced by a small red cross. The automatic scaling takes also de-selected data into
account. Clicking on this button switches to "Selected Only" display mode.

Handling Array Data Objects, Datasets and Products

75

 This button signifies that only selected data points are being displayed. De-selected
data points are not shown. The automatic scaling takes only selected data into account. Clicking on
this button switches to "Show All" display mode.

 Clicking this button first, and then performing a drag-and-hold operation within
the plot hides all selected data points within the selected rectangle. In "All Columns" mode only
the X-axis range is taken into account (see below).

 Clicking this button first, and then performing a drag-and-hold operation within
the plot selects all hidden data points within the selected rectangle. In "All Columns" mode only
the X-axis range is taken into account (see below).

 Clicking this button first, and then performing a drag-and-hold operation within
the plot selects all data points within the selected rectangle and de-selects everything outside. In
"All Columns" mode only the X-axis range is taken into account (see below).

 This button will re-select all hidden data points.

 This button signifies that selections and de-selections only affect the two columns
used for the plot. Clicking on this button will switch Table Plotter into "All Colum" mode.

 This button signifies that selections and de-selections affect all columns of the
table. The selection is based on the range on the X-axis, while the selected Y-axis range is ignored.
Clicking on this button will switch Table Plotter into "Current Colum" mode.

Figure 4.4. The plot with selected (blue) and hidden (red crosses) data points.

Handling Array Data Objects, Datasets and Products

76

• Printing and Saving the Plot:

Right click into the plot area of Table Plotter brings up a small window with the options "Save as"
and "Print". The first one brings up a file selection dialog, that allows to save the current display
as PDF, PNG, JPEG. or EPS image file. The second choice brings up a printer dialog including
general selection of print service, page setup, and print appearance.

• Dataset Extraction:

Besides visualization, the Table Plotter can be handy for creating new datasets out of existing ones.
Typically this is done in data analysis where a specific portion of interest is selected and saved into
another dataset for subsequent analysis. The result becomes another table dataset. The extracted
columns are the two being displayed while in "Current Columns" mode, or an arbitrary user selection
of columns in "All Columns" mode. As a general rule, any row, where at least two columns represent
a valid datapoint (X,Y), will appear in the result. Data that were "hidden" in such a row are replaced
by NaNs. All other rows will be purged from the resulting table dataset.

The selection of datapoints is internally done with flags that exist for each datum. Making selections
while choosing different columns for the X-axis can have sometimes results that first appear
confusing, but make perfect sense in a logical way. Especially the Exclusive Select button and the
Unhide button should be used with due consideration of the side effects.

 This button extracts a subset of the data that remains selected after all prior
selection operations. The selected data will be extracted into a new table dataset that will be fed back
into the session. A name can be assigned to the new variable, which will appear in the Variables
view.

If is selected, only the selected data points in the currently displayed column will
be extracted.

If is selected, the selected data points in all the columns become available for

extraction. After clicking , a column selection window (see Figure 4.5) will pop
up, allowing to Add individual columns or Add All columns to a list. Individual columns can be
also Remove again from the selection. The Remove All button allows to start over. Up and Down
buttons are available to change the order of columns in the new dataset (see Figure 4.5).

Handling Array Data Objects, Datasets and Products

77

Figure 4.5. Extract Selected Data from Multi Columns to a New DataSet.

Hitting the Close button will complete the extraction and an option is provided to change the default
name of the new dataset. A default name is given too (see Figure 4.6).

Figure 4.6. Rename panel for new extracted table dataset. A default name is present that will be taken
with the OK button.

After OK in the rename panel, the newly created table dataset appears as a new variable in the
Variables view of HIPE and can be worked with in the same way as any other table dataset in the
session. In particular it can be displayed again with the Table Plotter. Other tools like the Over
Plotter (see below), the Power spectrum tool, and the simple Dataset Viewer are available as well
and can be applied.

Handling Array Data Objects, Datasets and Products

78

Figure 4.7. The newly created table dataset appears as a new entry in the Variable view of HIPE. Double
clicking opens it in its default application, right clicking opens a menu with all available applications
for this type of dataset.

• Overlay Plots:

Even though the TablePlotter was primarily designed for single X-Y scattergram display, there is
limited overlay capability available, simply because it was easy to do from a technical point of
view. For any more complex overlay plotting, the Over Plotter was created that is described in
detail further down.

Simple overlay plots are created by marking Overlay in the Overlay plots panel on the lower right,
and selecting another column for the Y-axis. The old plot stays on display and the new X/Y-plot is
overlaid with a different color. If different symbols, symbol sizes or line styles are required, they
must be selected now. They can not be selected at a later stage. While Overlay is on, the Y-axis will
have the same scale for all overlays and it is not possible to select another column for it. The only
way to change a plot that was done earlier, is to remove the overlay in question with the Remove
a layer drop-down menu, and selecting the column for the Y-axis again. Activating the Legend
button shows the relation between color and name of the overlay in a legend (see Figure 4.8).

Handling Array Data Objects, Datasets and Products

79

Figure 4.8. Simple overlay plots of different columns plotted against the same X-axis are created by
marking the Overlay field.

• Preferences:

There are several parameters in Table Plotter, that control behavior of certain functions. These are
accessible with the Preferences button.

 This button provides a drop-down menu, giving access to the zoom- and pan-
properties, the display rules for complex data, and the control over time offset subtraction on the
X-axis of the plots (see Figure 4.9).

Figure 4.9. Preferences: This drop-down menu gives access to the zoom- and pan-properties, the display
rules for complex data, and the control over time offest subtraction on the X-axis.

Choosing the Set properties entry brings up the respective panel, where individual percentages for
panning and zooming in fast and slow mode can be set. Reset and cancel buttons are available for
convenience (see Figure 4.10).

Handling Array Data Objects, Datasets and Products

80

Figure 4.10. Preferences: The properties panel allows for selection of zoom- and pan-factors individually
for fast and slow modes.

The Table Plotter is able to show complex data in 4 different representations, the modulus, the
real part, the imaginary part, or the phase. This is individually controlled for each axis through the
preferences manu.

Figure 4.11. Preferences: Complex data can be displayed in 4 different ways as shown in this properties
menu.

The last entry in the Preferences menu is a flag for subtracting time offsets from the data chosen
for the X-axis. This is useful for absolute times like TAI that start at an Epoch some time ago and
bear a large offset compared to the time period covered by the data. If this flag is activcated, and if
the column bears a time unit, the first time in the X-axis column is subtracted from all other values
in this column for display only. The subracted value is displayed below the selector for the X-axis
and also converted to a start date date in UTC.

The selected preferences are stored in a properties file and will be "remembered" in the next call
to Table Plotter.

• Advanced Command Line Control of TablePlotter

After invoking Table Plotter from the command line or a script, its display can be further controlled,
allowing for integration of this tool into other applications that require interactive X/Y display and/
or data selection. As stated before, the following imports must be performed first.

Handling Array Data Objects, Datasets and Products

81

from herschel.ia.gui.explorer.table import TablePlotter
from herschel.share.component import WindowManager

A Table Dataset tbs would be plotted as follows in a Jython script or from the command line. Note
that in this case we retain the object tpl inbetween. This link enables us to access the Table Plotter
and its components from the command line.

wm = WindowManager.getDefault()
tpl = TablePlotter(tbs)
wm.addWindow('test', tpl.component, 1)

Now we should see a Table Plotter window as before, coming up detached of the HIPE window.
We can now go about our business in HIPE. In case we make selections, we can get the result back
into the session with the following commands.

extbl = tpl.activeLayerStruct.extractedTableDataset
flags = tpl.activeLayerStruct.flags

The variable extbl now contains the resulting TableDataset after selection. It contains only rows
with at least two valid entries. Deselected entries are replaced by NaNs. Sometimes however it is
more convenient to just return the flags that were actually set for the original table dataset. This is
done by the second line, where the flag array is saved in the variable flags. The dimensions of this
flag array match those of the original table dataset tbs, but the type is a 2 dimensional Boolean array.

The Table Plotter can also be pre-loaded with a flag array, which can be convenient in programmed
applications.

4.14.2. The Over Plotter

4.14.2.1. Introduction

The Over Plotter is a consequential evolution out of the Table Plotter. It can be thought of as a stack of
individual Table Plotters with the same individual functionalities so that several graphs can be overlaid
on top of each other with their individual scaling, panning, and data point selections. In addition, the
OverPlotter provides capabilities to navigate the stack of layers in a coordinated fashion, i.e. like a
stack of glued together transparencies. It further allows for synchronization of axis scales of different
layers and synchronous selection of data across layers. As the basic Table Plotter functionalities apply
to the single layers of Over Plotter as well, they will not be repeated here. Please refer to the applicable
Table Plotter sections instead. This section will focus on all the functionalities that are specific to
Over Plotter.

4.14.2.2. Invoke Over Plotter

A table dataset can be opened also in Over Plotter. Right clicking of the table dataset within a product
in the product viewer and selecting "Open With" leads to a choice of viewers and tools that can be
applied (see Figure 4.2). To bring a table dataset into Over Plotter, just choose the respective option.
Note that at any time there can exist only one instance of Over Plotter in a session, while Table Plotter
can exist in many instances. In other words, selecting the option Table Plotter will always create a
new view in HIPE, while selecting Over Plotter will create a new view for Over Plotter only once and
after that send any further dataset to the same Over Plotter view as new layer.

4.14.2.3. Layout of Over Plotter

The Over Plotter main view looks very similar to the Table Plotter, but also shows a few important
differences.(seeFigure 4.12). The main differences are the "Layer Controls" panel, which replaces the
"Overlay Plots" panel, and the addition of four synchronization buttons. The plot area now contains
obviously more graphs and a second pair of axes to the top and right sides.

Handling Array Data Objects, Datasets and Products

82

Figure 4.12. The main panel of Over Plotter is very similar to that of the Table PLotter. New features
include the Layer Controls panel and the synchronization buttons. This Over Plotter is in "All Layers"
mode.

The Over Plotter works in two main modes that can be chosen through the selection of layers: 1) a
"Single Layer" mode and 2) an "All Layer" mode. The "Layer" drop down menu shows all the available
layers, i.e. all the table datasets that have been sent to the Over Plotter so far. In addition, it contains
an "All" entry. If selected the Over Plotter is switched to "All Layers" mode.

Please note that the same dataset can be sent to Over Plotter more than once. This makes sense as one
may want to overlay diagrams of different pairs of columns of the same table dataset. A limitation
of the Over Plotter is that a pair of columns of two different datasets can not be combined into one
diagram,as the equal number of rows of both datasets is not guaranteed. However, columns of two
different datasets can easily be combined on the command line into two one table and then plotted
into one diagram, provided the tables have the same length. For instance, if tbl1 and tbl2 were two
related table datasets of equal length and we wanted to plot the column RA from one dataset against
the column DEC from the other dataset, then we would execute 3 simple command lines like the
following and then display the newly created table dataset in Table-Plotter.

tbl1 and tbl2 are table datasets
tbl = TableDataset() #create new empty table dataset
tbl['RA'] = tbl1['RA'] #add column RA
tbl['DEC'] = tbl2['DEC'] #add column DEC
#now open tbl in Table- or Over-Plotter.

In Figure 4.12 the Over Plotter is in "All Layers" mode and the graphs are shown in their selected
colors. Only for two graphs the axes can be shown. These are called the primary and the secondary
layers. The axes of the primary layer are the ones on the bottom (X-axis) and to the left (Y-axis), while
the axes of the secondary layer are the ones on the top (X-axis) and to the right (Y-axis). The axes are
shown in the color of the respective layers.

Handling Array Data Objects, Datasets and Products

83

Figure 4.13. This Over Plotter is in "Single Layer" mode. The primary layer is displayed in its selected
color and the secondary layer is displayed in green. All other layers are displayed in grey color.

In Figure 4.13 the Over Plotter is in "Single Layer" mode. In this case only the primary layer is shown
in its selected color. The secondary layer is always green and all other layers are all displayed in gray.

The assignment of primary and secondary layer is dynamic and changes when another layer is selected.
Then the layer that was prime before becomes the secondary layer and will be displayed in green. The
previously secondary layer changes to grey color, unless it has been selected to be prime again, and
the new prime layer is shown in its selected color. An example is shown in Figure 4.13, where the
third layer that was gray in the previous example is now chosen to be prime, and the colors change
accordingly.

Handling Array Data Objects, Datasets and Products

84

Figure 4.14. This Over Plotter is in "Single Layer" mode. The primary layer is displayed in its selected
color and the secondary layer is displayed in green. All other layers are displayed in grey color. These are
the same layers as in the previous figure, but after selecting Layer 1 to become prime.

4.14.2.4. Controls and Functions

 This drop down menu button shows the currently selected layer.
If a single layer is selected, all actions apply to the selected layer only. Individual zooming, panning
etc. is performed in this mode. ALL indicates that all layers are selected and actions are performed on
all layers simultaneously. A number of buttons are not applicable in this mode and are grayed out.

 This drop down menu button shows the currently selected color.
This menu is only available in single layer mode and selects the color of the currently active layer. In
this mode by default the secondary layer appears in green, while the primary layer appears in blue or
another color manually selected by this menu. In All Layer mode all datasets appear in their selected
colors.

 This drop down menu button allows to remove specific layers.
This menu is available in any mode.

 This button synchronizes the scale of the X-axis of the primary layer to the scale of that of
the secondary layer, i.e. the distances between equal intervals on the X-axis display on the same scale.

 This button synchronizes the scale of the Y-axis of the primary layer to the scale of that of
the secondary layer, i.e. the distances between equal intervals on the Y-axis display on the same scale.

Handling Array Data Objects, Datasets and Products

85

 This button synchronizes the offset of the X-axis of the primary layer to the offset of the
secondary layer, i.e. the primary layer is shifted in X-direction such that the values where the left Y-
axis cuts the primary and secondary X-axes become the same.

 This button synchronizes the offset of the Y-axis of the primary layer to the offset of the
secondary layer, i.e. the primary layer is shifted in Y-direction such that the values where the bottom
X-axis cuts the primary and secondary Y-axes become the same.

With all the possibilities of Table Plotter, except for the overlay function, available for each layer,
many combinations are possible. In Figure 4.15 an overlay of 3 layers with different scaling and
panning is shown. These are the same layers as in the previous plots, just with several display
parameters changed to illustrate the possibilities. In addition the first layer (Layer 0) has a Y-log axis,
and the blue circles are connected by solid lines. The second layer (Layer 1) has selected enlarged
magenta filled diamonds, which are shown in green, because this is the secondary layer at this time and
we are in single layer mode. The third layer (Layer 2) has selected blue enlarged triangles connected
with a dashed line, which in this case is shown in gray color, because this layer is neither primary nor
secondary layer right now.

Figure 4.15. A complex example for illustration. The Over Potter is in "Single Layer" mode. The primary
layer is displayed in blue with large symbols and connected by a line. The Y-axis is set to logarithmic mode.
The secondary layer is displayed in green with large filled diamonds. The third layer is displayed in grey
color.

Due to the many logical combinations that are possible, mastering the Over Plotter can be a challenge
at times, especially when it comes to synchronizations of plots. Some serious training with the tool is
recommended. It should also be mentioned that at the time of writing (HIPE V1.1) there are still known
issues with overplots involving log scales, or log/lin overplots, that will have to be fixed in the future.

Handling Array Data Objects, Datasets and Products

86

4.14.3. The Power Spectrum Viewer

4.14.3.1. Introduction

The Power Spectrum Viewer, which can be accessed under the right-click menu item Power Spectrum,
will generate a power spectrum for each column of the table dataset. A time column must be selected
in the main menu. The result is another table dataset, that can be displayed graphically with the
TablePlotter.

4.14.3.2. Power Spectrum Generator

Table dataset that are suitable for power spectrum conversion typically contain a column bearing
units of time, and several other columns of quantities that the power spectra are to be determined of.
Since real signals sometimes contain unwanted strong excursions, called glitches or spikes, that will
dominate the power spectrum, a simple de-glitcher is provided, that detects and removes such events
from the data stream, and replaces the datum with an average of the surrounding data. An example of
a signal timeline is shown in (Figure 4.16, below).

Figure 4.16. A signal timeline displayed in Table Plotter that the Power Spectrum generator can be applied
to.

When the Power Spectrum generator is invoked, only a menu will appear. It consists of selectors
for the time column in the dataset and its unit, in case that is not available or incorrect. There are 2
text boxes labeled flimit and sigma, controlling the deglitcher, which can be de-activated in another
selector below. The button Start FFT initiates the processing, which results in a new table datatset
(see Figure 4.17, below).

Handling Array Data Objects, Datasets and Products

87

Figure 4.17. Main view of the Power Spectrum Generator.

Two text boxes are pre-filled with default values for the cut off frequency (flimit) and the deglitcher
threshold (sigma). The inverse cut off frequency determines the length of the intervals, that the data
timeline is subdivided into before performing the FFT. Each of these datasets is Fourier transformed
individually, and the resulting power spectra are quadratically co-added to yield a power spectrum with
a better S/N, i.e. a higher cut off frequency will yield a better S/N for the resulting power spectrum.

The sigma value controls a simple sigma/kappa deglitcher, that eliminates all datapoints that are more
than sigma (default = 4) times the standard deviation away from the mean. After eliminating those
data points the procedure is repeated iteratively until no more data can be discarded. Both flimit and
sigma can be changed in the menu.

After clicking the Start FFT button, and a short processing time, a widget appears that allows naming
of the newly created table dataset. After pressing the OK button, the dataset is fed back into the session
and appears in the Variables view of HIPE. The TablePlotter can be used to display the dataset as
shown in Figure 4.18.

Handling Array Data Objects, Datasets and Products

88

Figure 4.18. Displaying the newly created power spectra in the Table Plotter.

89

Chapter 5. DP Numeric: Basic
Functions for Herschel DP
5.1. Introduction

This chapter describes how to use the DP numeric library from the interactive Jython environment
(JIDE). For further details of the functions provided, or use of the library from Java programs, please
see the API documentation for herschel.ia.numeric.

The purpose of the numeric library is to provide an easy-to-use set of numerical array classes
(programs) and common numerical functions. The library also supports arrays of booleans and strings.

5.2. Getting Started
The DP numeric packages are loaded and available to the user on starting an DP/JIDE session. Basic
setup and arithmetic manipulation of array datasets of various types are discussed in Chapter 4.

5.3. Basic Numeric Array Arithmetic
DP numeric arrays support arithmetic operations that are applied element-by-element. For example:

y = Double1d.range(5) # [0.0,1.0,2.0,3.0,4.0]
print y * y * 2 + 1 # [1.0,3.0,9.0,19.0,33.0]

This is much simpler (and runs much faster) than writing an explicit loop in Jython. It is important
to appreciate that the '+' operator does not concatenate arrays, as it does with Jython arrays.
For example:

Adding Jython arrays
print [0,1,2,3] + [4,5,6,7] # [0, 1, 2, 3, 4, 5, 6, 7]

Adding DP numeric arrays
print Double1d([0,1,2,3]) + Double1d([4,5,6,7]) # [4.0,6.0,8.0,10.0]

Concatenate two DP numeric arrays
print Double1d([0,1,2,3]).append(Double1d([4,5,6,7]))
[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0]

Adding Jython arrays to DP numeric arrays
print [0,1,2,3] + Double1d([4,5,6,7]) # [4.0,6.0,8.0,10.0]
print Double1d([0,1,2,3]) + [4,5,6,7] # [4.0,6.0,8.0,10.0]

All arrays currently support the following arithmetic operators:

+, -, *, /, %, **

Note that the 'modulo' operator '%' provides the normal Jython semantics for this operation, which
is not the same as that of the Java '%' operator. The Jython definition is more consistent with the
mathematical notion of congruence for negative values.

The following relational operators are also provided, which return a Bool1d array:

<, >, <=, >=, ==, !=

For example:

y = Double1d([0,1,2,3,4])
print y > 2 # [false,false,false,true,true]

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/numeric/package-summary.html

DP Numeric: Basic Functions for Herschel DP

90

5.4. Numeric Functions and Lambda
Expressions

In DP, functions can be applied very simply as follows:

print SQRT(16) # 4.0 (applied to a scalar)
y = Double1d([1,4,9,16])
print SQRT(y) # [1.0,2.0,3.0,4.0] (applied to a DP numeric array)

As shown by this example, functions on scalars (such as SQRT) are implicitly mapped over each
element of an array. Functions may be combined with arithmetic operators to perform complex
operations on each element of an array:

t = Double1d([1,2,3,4])
print SIN(1000 * t * (1 + .0003 * COS(3 * t)))
[0.6260976237441638,0.5797470124743422,0.8629107307631398,
#-0.9811675382238753]

The names of functions in the numeric library have ALL LETTERS capitalised. This is to avoid
ambiguity, as Jython already defines certain functions, such as 'abs', which are not applicable to our
DP numeric arrays.

There are various types of functions in the numeric library:

y = Double1d([1,2,3,4])

print SQRT(4) # double->double
print SQRT(y) # double->double (mapped)
print REVERSE(y) # Double1d->Double1d
print MEAN(y) # Double1d->double

It is possible to define new functions as lambda expressions in Jython and apply them to DP numeric
arrays. For example:

y = Double1d([1,2,3,4])

f = lambda x: x*x + 1 #take the given array, call it 'x' and
#return the value x^2 +1 to an array called f.

print f(y) #[2.0,5.0,10.0,17.0]. Each element of y was
#taken -> x then each element was squared
#plus 1 added.

However, in this case, it's much easier and faster to do this with array operations.

print y * y + 1

Lambda expressions are not as fast as the standard Java functions provided by the numeric library, but
this is often not a problem. Where performance is an issue, new functions can be defined in Java (see
the JavaDoc of the herschel.ia.numeric library).

More complex functions (equivalent to subroutines) can be created using the def command, which
is discussed in Section 3.13.

5.5. Selection, Data Filtering and Masking
Methods

The numeric library provides operations, such as 'filter', which allows the selection of array
elements based on a given criterion (e.g., element with values between 3 and 6). There is no 'map'
operation because mapping is implicit with the array style of processing.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

DP Numeric: Basic Functions for Herschel DP

91

The 'filter' method returns a Double1d array. The selection criterion for the filter method MUST
be declared using a lambda function:

u = Double1d.range(10)
print u.filter(lambda x: x>3 and x<6)

Note: The Jython filter operation can be used but returns a Jython array:

print filter(lambda x: x>3 and x<6, u)
__class__ returns org.python.core.PyList
print filter(lambda x: x%2==1, u)

Jython list comprehensions can be used but also return Jython arrays:

print [x for x in u if x>3]
print [x*x for x in u if x>3 and x<6]
print Double1d([x*x for x in u if x>3 and x<6])
#this last now provides us with a numerical array as we have also
#translated into a Double1d array.

The SQUARE function could equally have been applied:

print u.filter(lambda x: x>3)
print SQUARE(u.filter(lambda x: x>3 and x<6))

Warning

If a lambda expression is applied to an array, remember that it is applied to the entire
array and not mapped over the elements. This can lead to unexpected behaviour as in the
following example:

u = Double1d.range(10)
print (lambda x: x>2 and x<4)(u)
[true,true,true,true,false,false,false,false,false,false]

This is equivalent to the following:

u > 2 and u < 4

The expression 'u>2' results in a Bool1d array. The Jython 'and' treats this as 'true', as it is a non-empty
list, and returns the result of the second expression 'u<4', which is not the intended result.

One way of overcoming this problem is to use the '&' operator instead of 'and' to give the intended
result:

print (lambda x: (x>2) & (x<4))(u)
[false,false,false,true,false,false,false,false,false,false]

Warning

This shows how the '&' operator and the 'and' operator are not identical operators.

If you wish to select elements of an array based on a given criterion then we can find out 'where' in a
sequence of data a certain type resides (e.g., at what position the maximum value of an array occurs)
and how to get the data that fits your selection.

For example, the 'where' method returns the array indices of elements that satisfy a predicate often
given as a lambda function. The input to the 'where' method is a Boolean array. This differs from the
'filter' where the actual elements themselves are obtained. Using the modulo function (%) we can
find where within an array odd values occur.

y = Double1d([2,6,3,8,1,9])

DP Numeric: Basic Functions for Herschel DP

92

print y.where(y%2==1) # [2,4,5] indices of odd elements

Now return the actual elements, which can be done in three ways

print y[y.where(y%2==1)] # [3.0,1.0,9.0]
print y.filter(lambda y: y%2==1) # [3.0,1.0,9.0]
print y.get(y%2==1) # [3.0,1.0,9.0]

Predicates support standard jython operators such as not, and and or:

y = Double1d([1,2,3,4])
print y.where(lambda x: x<3 and x>1) # [1]

Java/C-style logical operators '!', '&&', and '||' are not allowed.

It can be useful to have the indices, rather than the values, when there are two or more arrays with a
predicate applied to one of them. For example:

x = Double1d([5,6,7,8])
s = y.where(y%2==1)
print x[s] + y[s] # [6.0,10.0]

The 'where' function can also be used to set values:

s = y.where(y%2==1)
y[s] = 0 # Set all matching elements to 0
print y # [0.0,2.0,0.0,4.0]
y[s] = [9,8] # Set matching elements using an array of values
print y # [9.0,2.0,8.0,4.0]

Note

You can't use the where function like this:

a=Double1d.range(10)
b=a.where(a < 3)
print b[0]
print b[0:2]
print a[b[0]]

The last three lines will give an error. Technically, this is because b is a Selection
object rather than a Jython or Numeric array. For the above to work you need to convert
it to Int1d:

c = b.toInt1d()
print c[0] # Now these three lines will work
print c[0:2]
print a[c[0]]

The 'get' method enables you to grab individual elements or a subset of element values from an
array. It requires the input of a Boolean array (e.g., a mask). Along with getting individual elements,
there are three other forms. One enables you to select element values based on a Bool1d mask:

y = Double1d([5,7,8,9])
mask = Bool1d([0,0,1,0])
x = y.get(mask) # x == [8.0]

The second form enables you to select on a set of indices, contained in a Selection object:

indices = Selection(Int1d([2,3]))
x = y.get(indices) # x == [8.0,9.0]

The third form enables you to select elements from a range, specified by a Range object:

range = Range(2,4)

DP Numeric: Basic Functions for Herschel DP

93

x = y.get(range) # x == [8.0,9.0]

It is possible to combine 'get' calls to perform the same operation as a compound IDL WHERE
execution. Let's set up a few arrays first:

a = Double1d([1, 2, 3, 4, 5, 6])
b = Double1d([2, 3, 4, 5, 6, 7])
c = Double1d([3, 4, 5, 6, 7, 8])

The following operations on the three arrays are the equivalent of the IDL WHERE statement 'where(a
ge 2 and b lt 6 and c gt 5)':

q = (a >= 2) & (b < 6) & (c > 5)
x = a.get(q),b.get(q),c.get(q) # x == ([4.0], [5.0], [6.0])

5.6. Array Access and Slicing
The numeric package introduces the following square brackets notation:

[i_0,...,i_n-1]

where each element is separated by a comma, and the number of elements must be equal to the rank
of the array. Arrays are zero-based which means the first element of an array has index 0 (zero) and
the index of the last element of an array is array.length()-1.

In addition the package supports the colon (:) notation to designate a slice. A slice is a range of indices
defined as i:j, where i is the starting index and inclusive, and it is zero if not specified. The ending
index j is exclusive and it is equal to array.length() if not specified and array.length()-
j if negative.

The following example illustrates the access to elements in a multi-dimensional array and the use of
slices. More examples can be found in the section on Multi-Dimensional Arrays.

define something that is like a rectangular 2x3 array:
1 2 3
4 5 6
x=Int2d([[1,2,3],[4,5,6]])# Int1d can swallow the jython sequence.
print x # [[1,2,3],[4,5,6]]
print x[1] # 2 (second element of the first row)
print x[1,:] # access a row i.e. [4,5,6]
print x[1,1] # access an individual element i.e. 5
print x[:,:] # [[1,2,3],[4,5,6]]
print x[:,1] # access a column i.e. [2,5]

5.7. Making sense of logical operators
Here we try to guide you through the jungle of logical operators you are likely to encounter when
using DP.

First of all, since Jython is embedded in DP, it won't surprise anyone that the Jython logical operators
and, or and not are available. These work like normal Boolean operators (see Appendix C for more
details), but using them with arrays (both the native Jython ones and those from the DP Numeric
package) can give unexpected and seemingly inexplicable results. See below and also Section 5.5 for
an example. The important thing to keep in mind is that these operators do not work on an element-
by-element basis when applied to arrays, but they evaluate the entire array at once.

Another tool coming straight from the Jython language are the bitwise operators, represented by the
symbols &, | and ^. See again Appendix C for more details. The possible source of confusion here
is that these symbols can be used with Numeric arrays (e.g. Int1d, Bool3d etc.), but what you get

DP Numeric: Basic Functions for Herschel DP

94

is not a bitwise comparison. Instead, these operators perform the usual boolean comparisons, but this
time working element by element. Precisely what and, or and not do not do.

Finally, Numeric array classes have the and, or and xor methods acting like boolean operators
working element by element. An example will hopefully clarify the differences among all the operators
described here:

jythonOne = [1, 0, 0, 1]
jythonTwo = [0, 0, 1, 1]
numericOne = Bool1d(jythonOne)
numericTwo = Bool1d(jythonTwo)
print jythonOne and jythonTwo
[0, 0, 1, 1] # jythonOne is not empty so it is treated as true, which means that
 # jythonTwo is evaluated and returned
print numericOne and numericTwo
[false,false,true,true] # Same thing as with the Jython native arrays
print jythonOne & jythonTwo
Here an error is returned
print numericOne & numericTwo
[false,false,false,true] # Here the operator works element by element
print numericOne.and(numericTwo)
[false,false,false,true] # Same thing as the & operator

5.8. Advanced Tips for Improved
Performance

The underlying array operations and functions are very fast, as they are implemented in Java. The
overhead of invoking them from Jython is relatively small for large arrays. However, the advanced
user may find the following tips useful to improve performance in cases where it becomes a problem.

The arithmetic operations, such as '+', have versions that allow in-place modification of an array
without copying. For example:

y = Double1d.range(10000)
y = y + 1 # The array is copied
y += 1 # The array is modified in place

Copying an array is slow as it involves allocating memory (and subsequently garbage collecting it).
For simple operations, such as addition, the copying can take longer than the actual addition.

Function application also involves copying the array. This can be avoided by using the Java API
instead of the simple prefix function notation. For example:

x = Double1d.range(10000)
x = SIN(x) * COS(x) # This operation involves three copies
x = x.apply(SIN).multiply(x.apply(COS)) # Only one copy

When writing array expressions, it is better to group scalar operations together to avoid unnecessary
array operations. For example:

y = Double1d([1,2,3,4])
print y * 2 * 3 # 2 array multiplications
print y * (2 * 3) # 1 array multiplication
print 2 * 3 * y # 1 array multiplication

It is better to avoid explicit loops in the HCSS DP system over the elements of an array. It is often
possible to achieve the same effect using existing array operations and functions. For example:

sum = 0.0
for i in y:
 sum = sum + i * i # Explicit iteration

DP Numeric: Basic Functions for Herschel DP

95

sum = SUM(y * y) # Array operations

5.9. Type Conversions
Since the numeric library supports different types it would be very convenient to be able to convert
an array from one type to another. The numeric library supports both implicit conversion from within
jython for all supported dimensions and explicit conversion from one data type to another.

5.9.1. Explicit conversion
Explicit conversion is supported for all data types by constructing a numeric array from another DP
numeric array of the same or a different type. Note however that some explicit conversions may result
in rounding and/or truncation of the values e.g. an explicit conversion from Long1d to Double1d will
reduce the number of significant digits.

i = Int1d([1,2,3]) # [1,2,3]
r = Double1d(i) # [1.0,2.0,3.0]
c = Complex1d(r) # [(1.0+0.0j),(2.0+0.0j),(3.0+0.0j)]
b = Byte1d(r) # [1,2,3]

5.9.2. Implicit conversion
Implicit conversions are conversions that can be done by the DP package automatically, provided that
such a conversion is a widening operation e.g. from Int1d to Double1d. Implicit narrowing conversions
are not allowed and result in an error message as shown below:

TypeError: Conversion of class org.python.core.PyFloat to class java.lang.Long implies narrowing.

The library supports implicit conversions in the following cases:

• access: [...]

• operators: +, -, *, /, ^ and %

• in-line operators: +, -, *, /, ^ and %

The few examples below show allowed implicit conversions.

d = Double1d(5) # [0.0,0.0,0.0,0.0,0.0]
d[1] = 3 # [0.0,3.0,0.0,0.0,0.0]
d[1:4] = [-5, 0, 5] # [0.0,-5.0,0.0,5.0,0.0]

Please note that the DP package considers the conversion from int to float and from long to float/
double as an automatic widening operation, but some of the least significant digits of the value may
be lost during the conversion. You will not be notified of this loss of significant digits.

Another thing to notice is that floating point operations will never throw an exception or error. As
shown in the following example, a division by zero results in NaN or Infinity.

d = Double1d.range(5)
l = Long1d.range(5)
print d/l # [NaN,1.0,1.0,1.0,1.0]
print d/SHIFT(l, 1) # [0.0,Infinity,2.0,1.5,1.3333333333333333]

5.10. Function Library
The numeric package includes a library of basic numeric processing functions, which will continue
to grow as development of the library progresses.

DP Numeric: Basic Functions for Herschel DP

96

The functions that are currently available are outlined below. For further details, reference should be
made to the Javadoc documentation and demo programs .

5.10.1. Basic Functions

Basic double->double functions applicable to double, Double1d, Double2d and
Double3d arrays:

ABS, ARCCOS, ARCSIN, ARCTAN, CEIL, COS, EXP, FLOOR, LOG,
LOG10, ROUND, SIN, SQRT, SQUARE, TAN

These are applied in the form

 b = SIN(a)

b will be an array of the same dimension as a or a single value if a is single valued.

Array functions on Double<n>d returning a double:

MIN, MAX, MEAN, MEDIAN, RMS, SUM

b = MIN(a) #'b' has the minimum value of the array 'a'.

Double1d->Double1d functions:

REVERSE

Warning

Many of these functions have lower case equivalents built-in in Jython. Be aware of which
one you are using, because their behaviour could differ in some cases, as shown by the
example below which creates a table with Not-a-Number's (NANs) in it.

tt=Double1d.range(10)
tt[0]=Double.NaN
print max(tt)
NaN
print min(tt)
NaN
tt[1]=Double.NaN
tt[0]=1.0
print max(tt) # By using the built-in Jython functions
9.0
print min(tt)
1.0
print MAX(tt) # By using the DP Numeric functions
NaN
print MIN(tt)
NaN

5.10.2. Integral Transforms

A Discrete Fourier Transform is provided for Complex1d arrays. This uses a radix-2 FFT algorithm
for array lengths that are powers of 2 and a Chirp-Z transform for other lengths. Future releases might
support multi-dimensional arrays, if required, and optimised transforms of real data.

Window functions are provided for reducing 'leakage' effects using the Hamming or Hanning window.

Example 5.1 shows the generation of a frequency modulated signal, followed by a FFT both with and
without windowing:

DP Numeric: Basic Functions for Herschel DP

97

ts = 1E-6 # Sampling period (sec)
fc = 200000 # Carrier frequency (Hz)
fm = 2000 # Modulation frequency (Hz)
beta = 0.0003 # Modulation index (Hz)
n = 5000 # Number of samples

pi = java.lang.Math.PI # define pi

t = Double1d.range(n) * ts
t is a 5000 element array holding time values

signal = SIN(2 * pi * fc * t * (1 + beta * COS(2 * pi * fm * t)))
#create the modulated signal with modulation frequency fm and carrier
#frequency fc, t is the array we created above for the time elements.

spectrum = ABS(FFT(Complex1d(signal)))
#spectrum holds the absolute value (ABS) of the FFT of the signal.
#We need to handle these arrays as Complex1d rather than Double1d.

freq = Double1d.range(n) / (n * ts)
#The frequency values for the spectrum.

Repeat with apodizing
spectrum2 = ABS(FFT(Complex1d(HAMMING(signal))))

Example 5.1. FFT of a modulated signal , with and without HAMMING smoothing

The Inverse Fourier Transform of a Complex1d array (only) "x" can be obtained using, e.g., inverse
= IFFT(x).

5.10.3. Convolution
Convolution is currently supported for Double1d arrays. A direct convolution algorithm is used,
although a future release might implement Fourier convolution to improve the speed for large arrays
and large kernels. An example of its use is given in Example 5.2.

from herschel.ia.numeric.toolbox.filter.Convolution import *
x = Double1d.range(100)
Create array [0.0, 1.0, 2.0 ... 99.0]
kernel = Double1d([1,1,1])
#provide kernel for the convolution
f = Convolution(kernel)
#create the convolution
y = f(x)
#apply it to the array x. The result is in array y

Example 5.2. Example of the use of the convolution algorithm

This illustrates a general approach with the numeric library i.e. general function objects may be
instantiated using parameters to create a customised function which can then be applied to one or more
sets of data.

The constructor of the Convolution class allows optional keyword arguments to be specified, to
further customise the function:

• The 'center' parameter allow selection of a causal asymmetric filter for time domain filtering or
a symmetric filter for spatial domain filtering.

• The 'edge' parameter controls the handling of edge effects, as well as allowing a choice between
periodic (circular) and aperiodic convolution.

The following examples show construction of filters using these options:

Note

Make sure you have input the following import line before trying these out.

DP Numeric: Basic Functions for Herschel DP

98

from herschel.ia.numeric.toolbox.filter.Convolution import *

Use zeroes for data beyond edges, causal

f = Convolution(kernel, center=0, edge=ZEROES)

Circular convolution, causal

f = Convolution(kernel, center=0, edge=CIRCULAR)

Repeat edge values, causal

f = Convolution(kernel, center=0, edge=REPEAT)

Use zeroes for data beyond edges with centred kernel

f = Convolution(kernel, center=1, edge=ZEROES)

Circular convolution with centred kernel

f = Convolution(kernel, center=1, edge=CIRCULAR)

Repeat edge values with centred kernel

f = Convolution(kernel, center=1, edge=REPEAT)

5.10.4. Boxcar and Gaussian Filters

Finite Impulse Response (FIR) filters and symmetric spatial domain filters can be defined by
instantiating the Convolution class with appropriate parameters. In addition, special filter
functions are provided for Gaussian filters and box-car filters :

from herschel.ia.numeric.toolbox.filter.Convolution import *

f = GaussianFilter(5, center=1, edge=ZEROES)
f = BoxCarFilter(5, center=0, edge=ZEROES)

These filters are subclasses of Convolution and hence inherit the use of similar keyword
arguments.

5.10.5. Interpolation Functions

Interpolation functions are provided for a variety of common interpolation algorithms.

Example 5.3 illustrates the use of the currently available interpolation functions. The plotting package
available for displaying the different interpolation forms (PlotXY) is discussed more fully in
Chapter 6.

DP Numeric: Basic Functions for Herschel DP

99

from herschel.ia.numeric.toolbox.interp import *
Create the array x [0.0, 1.0, 2.0, ..., 9.0]
x = Double1d.range(10)
print x # [0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]
Create an array y which contains the sine of each element in x
y = SIN(x)
u contains the values at which to interpolate
u = Double1d.range(80) / 10 + 1
print u #[1.0,1.1,1.2,1.3....8.6,8.7,8.8,8.9]
Linear interpolation
This sets up the interpolation, linear x-y fit
Interpolate at specified values
interp = LinearInterpolator(x,y)
Prints out the values interpolated at each position noted in array u
print interp(u) #[0.8414709848,0.848253629....0.5275664375,0.4698424613]

NearestNeighbour and CubicSpline interpolation may be performed
in the same way:

Cubic-spline interpolation
interp = CubicSplineInterpolator(x,y)

Nearest-neighbour interpolation
interp = NearestNeighborInterpolator(x,y)

Example 5.3. Interpolation functions in DP

The result of the interpolations used in the above example is illustrated in Figure 5.1.

DP Numeric: Basic Functions for Herschel DP

100

Figure 5.1. Illustration of various forms of interpolation functions.

5.10.6. Basic Fitter Routines
A complete package of advanced data-fitting routines is available and will be more fully discussed in
future versions of the User Manual. Here, we provide information on the basic linear and non-linear
fitting routines available within DP.

5.10.6.1. General Approach

Input Data: The fitter package expects your data to be in two datasets that are related to each other.
Typically, these are Double1d arrays, e.g.,

Data points: each element in x and y define a data point
x = Double1d.range(12) # Make x vector (the data positions/channels)
y = Double1d([1.0,1.2,0.9,2.2,3.3,\
 4.5,3.6,2.7,1.8,1.2,1.0,1.1]) # Make y vector (the data values)

Model Selection: Fitting means adjusting the parameters of a known function, called model, so that
it best matches the input data. This toolbox provides some pre-defined linear models as well as non-
linear models. Viewing your data will hopefully give you some hints about what function model would
reflect your input data. For example, if it seems to be polynomial of a certain degree, you would choose
a PolynomialModel.

DP Numeric: Basic Functions for Herschel DP

101

Note

For the case of non-linear fitters (e.g., used with Gaussians) it is also necessary to provide
initial guesses in the form of a parameter set to the model before invoking a fitter. The
closer the initial guess for the parameter set to the true values the higher the likelihood
that the minimisation will not find a local minimum with wrong/unrealistic parameter
estimation.

An example of the use of a linear fitter:

Choose a model: 4th degree polynomial
myModel = PolynomialModel(4)
Create a fitter and feed it your positions/channels along the array
(x, a Double1d array) and your model
myFitter = Fitter(x, myModel)

Or for a non-linear fitter applied to our array 'x':

myModel = GaussModel()
peak = 4.5
channel = 5.5
width=1.0
initialvalues = Double1d([peak, channel, width])
Apply the initial estimates: peak height, channel position and
width of gaussian
myModel.setParameters(initialvalues)
Choose non-linear fitter to use
myFitter = AmoebaFitter(x, myModel) # see later section on available fitters

Fit Execution (with and without weights)

Now actually fit the data values at each x position (the y array) to the model
fitresults = myFitter.fit(y)
Or with associated weights array
fitresults = myFitter.fit(y, yWeights)

Results Now the fitter has done its job. We can print the results (fitresults) to see the parameters
fitted.

 print fitresults # from using the polynomial fitter
[1.0993589743591299,-1.1096331908843398,0.8923489704745665,
-0.14688390313399513,0.006825466200470528]
provides coefficients of the polynomial fit
print fitresults # from using the Gaussian fitter
[3.751009700481534,5.353351564022887,2.5098951536394383]
#peak of fit, channel of Gaussian peak, width of Gaussian

The fit parameters model are computed and we can start using that model to e.g. re-sample your model
fit data:

Re-sample with equally spaced x data points and a finer grid:
xs = Double1d.range(1200) / 100 # Re-sampled x positions
ys = myModel(xs) # Computed y data points
#a plot of xs versus ys plots out 1200 points with the fit.

Statistical Information The above procedure demonstrates how to use the fit package to fit your data
against a certain model. However, it does not tell you how good the fit actually is. The fitters provide
ways to extract such information from the fit.

After fitting
print myFitter.getChiSquared() # Goodness of the fit
e.g., 2.5765684980727577 for Gaussian fit
print myFitter.autoScale() # How well does the data fit the model.

DP Numeric: Basic Functions for Herschel DP

102

e.g., 0.5350564350372312 for Gaussian fit
print myFitter.getStandardDeviation() # Standard deviations for the parameters.
e.g., [0.30907540430060004,0.24531121048289006,0.2525757390634412]
for Gaussian fit parameters
print myFitter.getHessian() # Retrieve the Hessian matrix
es = myFitter.monteCarloError(xs) # Errors on the resampled datapoints
es is now an error array with a length the same as "xs" -- 1200 samples

5.10.6.2. Available Linear Models

There are several models that can be used for linear fitting.

In the descriptions below, the models provide parameter fit values p0, p1 ... pk.

Note

In the following examples the parameter subscripts match the position of the parameter in
the output array (fitsresult in the previous section). So p0 will be the first element
of the fitsresult array, p1 the second one, and so on.

BinomialModel, which allows for the fitting of a binomial model with two variables -- f(x,y:p) = Σ
pk x

k y(d-k) , where d is the degree. Usage: BinomialModel(4) -- provides a binomial model of degree 4.

PolynomialModel, which allows for the least squares fitting of a polynomial to the data -- f(x:p) = Σ
pk x

k . Usage: PolynomialModel(3) -- provides a third order polynomial fitting of the data.

SineAmpModel, which allows for the fitting of cosine and sine waves of a given frequency to get

amplitudes -- f(x:p) = p0 cos(2 π f x) + p1 sin(2 π f x) , where x is the data. Usage: SineAmpModel(f)
-- which provides cosine/sine fits with a frequency, f.

PowerModel, which allows for the fitting of a power law of order k -- f(x:p) = p0 xk . Usage:
PowerModel(3) -- provides a third-order power-law fit

CubicSplinesModel, which allows for the fitting of a cubic splines with arbitrary knots settings.
Usage: CubicSplinesModel(5) -- provides a cubic splines fit with 5 knots.

5.10.6.3. Available Non-Linear Models

There are a number of models that can be used for non-linear fitting. For fitting of these models we
need initial values (guesses) for parameters labelled p0, p1 and p2 (see example given in the "General
Approach" section).

ArctanModel, which allows for the fitting of a general arctan function -- f(x:p) = p0 arctan(p1 (x -
p2)). Usage: ArctanModel()

ExpModel, which allows for the fitting of a general exponential function -- f(x:p) = p0 exp(p1 x).
Usage: ExpModel()

LorentzModel, which allows for the fitting of a Lorentz function -- f(x:p) = p0 (p2/((x - p1)2 + p2
2)).

Usage: LorentzModel()

PowerLawModel, which allows for the fitting of a general power-law function -- f(x:p) = p0 (x - p1)p2.
Usage: PowerLawModel()

SincModel, which allows for the fitting of a sinc function -- f(x:p) = p0 sin ((x - p1)/p2)/(x - p1)/p2.
Usage: SincModel()

SineModel, which allows for the fitting of a general cosine/sine wave -- f(x:p) = p1 cos(2 π p0 x) +

p2 sin(2 π p0 x). Usage: SineModel()

DP Numeric: Basic Functions for Herschel DP

103

GaussModel, which allows for the fitting of a 1-D gaussian -- f(x:p) = p0 exp(-0.5 ((x - p1) / p2)2, where
p0 is the amplitude, p1 the x-shift (from zero) and p2 the sigma of the fit, with initial values of 1.0, 0.0
and 1.0 respectively. Note that Gauss2DModel produces a fit to 2D data. Usage: GaussModel()

User supplied non-linear function, which allows for fitting a function (linear or non-linear)
constructed by the user. This function must be put in a jython class and optionally the user could
provide an analytical calculation of the partial derivatives with respect to the parameters (otherwise
they are calculated numerically). This is shown in the following example for the following function
of four parameters: f(x:p) = p0/(1+(x/p1)2)p2 + p3 (the so called beta-profile):

from herschel.ia.numeric.toolbox.fit import NonLinearPyModel

class BetaModel(NonLinearPyModel):
the full 4-parameter beta-model with partial derivatives
f(x:p) = p0/(1+(x/p1)**2)**p2 + p3
#
 npar = 4
 def __init__(self):
 # Constructor
 NonLinearPyModel.__init__(self, self.npar)
 self.setParameters(Double1d([1,1,-1,1]))
 #
 def pyResult(self,x,p):
 model = p[0]/(1.0 + (x/p[1])**2)**p[2] + p[3]
 return model
 #
 def pyPartial(self,x,p):
 # the partial derivatives
 arg1 = 1.0 + (x/p[1])**2
 dp = Double1d(self.npar)
 #
 dp[0] = 1.0/arg1**p[2] # df/dp0
 dp[1] = 2.0*p[0]*p[2]*x*x/((p[1]**3)*arg1**(p[2]+1.0)) # df/dp1
 dp[2] = -p[0]*Math.log(arg1)/arg1**p[2] # df/dp2
 dp[3] = 1.0 # df/dp3
 return dp
 def myName(self):
 # Return an explicatory name (String). Optional.
 return "beta-profile: f(x:p) = p[0]*{1 + (x/p[1])2}^p[2] + p[3]"

Once we define the function as shown in the example then we can proceed as before and create a
model and then perform the fitting using either the Lavenberg-Marquardt or Amoeba fitters:

bm = BetaModel()
bm.setParameters(Double1d([10.0,1.0,-2.0,5.0]))
myfit = LevenbergMarquardtFitter(x, bm) # see section on available fitters below
or myfit = AmoebaFitter(x, bm)
result = myfit.fit(y)
print result

5.10.6.4. Compound and Mixed Models

It is possible to add two models, e.g. if one wants to fit a spectral line (a Gaussian) on a background
(a Polynomial). The resulting model is non-linear.

myModel = GaussModel() # Define a Gaussian
myModel += PolynomialModel(1) # Add a Polynomial to it of order 1. Only with +=
print myModel.toString() # Information about the model

More models can be added if wished.

5.10.6.5. Available Fitters

Fitter. Fitter for linear models. You create a fitter by providing the model assumption and the x points
of the data. With that information you compute the parameters within the model by fitting the y data

DP Numeric: Basic Functions for Herschel DP

104

points. Once the computation of those parameters is done, you can extract statistical information from
the fitter. Syntax: myFitter=Fitter(xDataPoints, model)

LevenbergMarquardtFitter. Fitter for non-linear models. The LMFitter is a gradient fitter, which
means that it goes downhill from the starting location until it cannot go down anymore. There is
no guarantee that the minimum found is an absolute or global minimum. If the chisq-landscape is
multimodal it ends in the first minimum it finds. See also Numerical Recipes, Ch 15.5. Syntax:
myFitter = LevenbergMarquardtFitter(xDataPoints, model)

AmoebaFitter. Fitter for non-linear models. The AmoebaFitter implements the Nelder-Mead simplex
method. It comes in 2 varieties, one where the simplex simply goes downhill (temperature = 0) and
one which implements an annealing scheme. Depending on the temperature, the simplex sometimes
takes an uphill step, while a downhill steps always is taken. This way it is able to escape from
local minima and it has a better chance of finding the global minimum. No guarantee, however.
AmoebaFitter is also able to handle limits on the parameter range. Parameters stay within the
limits when they are set. See also Numerical Recipes, Ch. 10.4 and 10.9. Syntax: myFitter =
LevenbergMarquardtFitter(xDataPoints, model)

5.10.6.6. Obtaining a Model Fit to 1D and 2D Data

1D Fit Example

Example 5.4 shows how a polynomial can be fitted to a set of 1D data.

DP Numeric: Basic Functions for Herschel DP

105

Create some data
x = Double1d([3,4,6,7,8,10,11,13]) # These are the positions of the 1D data
y = Double1d([2,4,5,6,5,6,7,9]) # These are the data values at each position
The created arrays are:
print x # [3.0,4.0,6.0,7.0,8.0,10.0,11.0,13.0]
print y # [2.0,4.0,5.0,6.0,5.0,6.0,7.0,9.0]

Decide that we will fit it with a polynomial

model = PolynomialModel(3)

The Fitter class expects the 'x' data point positions and the model.
In the binomial case, a Double2d array of x,y values is required.
The Fitter class deals with non-iterative models only.
[Note: For non-linear models the fitter toolbox provides
the AmoebaFitter and the LevenbergMarquardtFitter]

fitter = Fitter(x, model)

Now we fit the data values(y); the returned array contains the parameters
that make up a 3rd degree polynomial.
Note: the model that we fed into the fitter is modified along the
way, such that it contains the computed parameters of the polynomial.

poly = fitter.fit(y)

Printing the fit results (truncate to 3 decimal places to fit in line)

print poly # [-6.921,4.463,-0.543,0.022]

..and also getting the Chi-squared. The fitter has already been applied
and we can use the getChiSquared() method to determine the fit

print "Chi-Squared = ", fitter.getChiSquared()
Chi-Squared = 0.9933079890409999

The fitted polynomial can then be applied as a function to interpolate
between fitted points. Interpolate at 'n' uniformly spaced x values

n = 100
u = MIN(x) + Double1d.range(n + 1) * ((MAX(x) - MIN(x)) / n)

Apply the model
umodel = model(u)

Now we can plot the data (x vs y) and the polynomial fit (u vs umodel)
Set up the plot space
plot = PlotXY()
Plot x against y in blue.
plot[0] = LayerXY(x, y, name = "Data")
Overlay a second plot showing the polynomial fit in green.
plot[1] = LayerXY(u, umodel, name = "Fit", color = java.awt.Color.green)

Example 5.4. A 1D polynomial fit.

The final plotted display should look like Figure 5.2

DP Numeric: Basic Functions for Herschel DP

106

Figure 5.2. Illustration of polynomial fit.

2D Fit Example

For 2D data we express the positions at which we have data by a Double2d array -- this is basically
a list of x, y positions at which we have known data values that we will fit a 2D Gaussian to. So the
x array in our previous example is now replaced by a 2D array of data positions. The y array has the
data values at those positions.

In Example 5.5, an array with values that provide a Gaussian with random noise added is fitted by
the Gauss2D model.

DP Numeric: Basic Functions for Herschel DP

107

We start by making a little routine that creates the data for us.
The output contains the 'xy' positions as a Double2d array and the data
values are held in in the Double1d array 'y2'.
def makeData():
Define some constants
 N = 9 # We will create an array that is NxN
 a0 = 10.0 # Amplitude of gaussian
 x0 = 0.7 # x position of gaussian
 y0 = -0.3 # y position of gaussian
 s0 = 0.4 # Width
Make data with an underlying gaussian model.
 x = Double1d.range(N) / 2.0 - 2 # create x values
 NN = N * N # the number of x and y positions (NxN)
 xy = Double2d(NN, 2) # Create empty array of xy positions
 ym = Double1d(NN) # Create empty array for amplitude of pure Gaussian
 y2 = Double1d(NN) # Create empty array for Gaussian with noise (our
 data).
These have amplitude values only.
 rng = java.util.Random(12345) #provide a random amplitude (noise)
To add to our model Gaussian with a seed value.
 si = 1.0 / s0 #just inverse of Gaussian width to be used
 for i in Int1d.range(NN):
 xy[i,0] = x[i / N] # Fills x positions for our data array
 xy[i,1] = x[i % N] # Fills y positions for our data array
 xx = (xy[i,0] - x0) * si
 yy = (xy[i,1] - y0) * si
 ym[i] = a0 * EXP(-0.5 * xx * xx) * EXP(-0.5 * yy * yy)
 # Fills 1d array with amplitude values...
 y2[i] = ym[i] + 0.2 * rng.nextGaussian() # ...and adds noise to it
 return xy,y2

Create the array with a 2D gaussian in it using the above routine.
a = makeData()
The first item in "a" has the xy positions in it
xy=a[0]
The second item has the data values
y2=a[1]

Define the model to be used in the fit
gaus2d = Gauss2DModel()

Define the fitter: LevenbergMarquardt, a non-linear fitter is needed for
a gaussian fit. We could use an AmoebaFitter here also -- user preference.
fitter = LevenbergMarquardtFitter(xy, gaus2d)

A useful way to make data formats prettier for the printout of our results
F = DataFormatter()
Find the parameters
param = fitter.fit(y2)
print "Parameters %s" % F.p(param)
Parameters [9.645 0.694 -0.300 0.413]
print "Parameters are: gaussian height, x position, y position, width"
#Parameters are: gaussian height, x position, y position, width
Find the standard deviations of the all four parameters...
stdev = fitter.getStandardDeviation();
print "Stand Devs %s" % F.p(stdev)
#Stand Devs [0.218 0.009 0.009 0.007]

...and the chi-squared for the fit
print "ChiSq %s" % F.p(fitter.getChiSquared())
#ChiSq 3.552

Example 5.5. A 2D Gaussian fit

5.10.7. Spectral Fitting.

This section describes how to use the spectrum fitting toolbox in HCSS to fit a spectrum. To access the
toolbox it will need to be loaded from the into the session. This can be done by typing in the following
in the JIDE command line interface.

DP Numeric: Basic Functions for Herschel DP

108

from herschel.ia.toolbox.spectrum.fit import *

The toolbox is continuing to be developed and it is expected that new features will be added to what
is described here. Features that are certain to be added are listed in the 'To Be Added' section below.

5.10.7.1. Data format

The data that is used by the classes can be any Java or Jython object, as long as it implements the
SpectralSegment interface (e.g., extracted from a Spectrum1d object).

You can create a SpectralSegment using a little helper class, FitData. This class takes
two Double1d's (representing wavelength/frequency and flux/values) and wraps them into a
SpectralSegment.

If you have two Double1d arrays, x and y, then the statement:

data = FitData(x,y)

creates a SpectralSegment.

5.10.7.2. General Usage

In general, data to be fitted contains three kinds of features:

• a background/continuum level

• >one or more spectral lines

• noise

These can be fitted using the SpectrumFitter tool.

The purpose of the SpectrumFitter is to fit models to the background and the spectral lines in
such a way that when the models are subtracted from the data, the residual only contains the noise.

Although fitting spectral lines and the background does not differ mathematically, the two cases must
be handled separately. That is, you better first fit the background, subtract that from the data, and only
then fit the lines.

5.10.7.3. Fitting your data

As the user you interact with the SpectrumFitter tool. To have more control over the models (see
below) you can also interact with the class SpectrumModel.

Note that you normally must know where (approximately) you expect a spectral feature in your data
to be, plus its expected shape, and rough shape parameters. So, an initial guess is required - if this
guess is completely wrong you may end-up fitting noise rather than your spectral lines.

The SpectrumFitter tool provides graphical information on the fitted data to assess the fits that
are made.

5.10.7.4. A Simple Fit Case

The simplest spectral fitting case involves data with one spectral line and with no background/
continuum.

The basics are, a) create a SpectrumFitter; b) add models to it.

DP Numeric: Basic Functions for Herschel DP

109

We assume you know that you have a SpectralSegment which contains the spectral line has a
Gaussian shape that is located near x0, has an amplitude of about a0, and a width of about s0 (the exact
values of a0 and s0 are not so important). The following is an example:

x = Double1d.range(15)
y = Double1d([0.0,0.1,-0.1,0.05,0.1,0.2,1.0,3.6, \
 2.5,1.5,0.7,0.0,0.1,-0.13,-0.01])
data=FitData(x,y)
This has a peak near value number 7 with an
amplitude of 3.6 and a width close to 1.
x0 = 7.0
a0 = 3.6
s0 = 1.0
These are our initial guesses.

We can fit this using the SpectrumFitter:

sf = SpectrumFitter(data) # note that a plot of the data is
 # automatically drawn in a separate window
see Figure 5.3
sf.addModel('gauss', [a0, x0, s0]) # note the square brackets
 # and the order of the parameters
print sf # this prints out the fitted Gaussian parameters
 # and their standard deviations.
Fit results:
 # p0 = 3.3890821693817763, stddev= 0.2568383201833762
 # p1 = 7.444866152807009, stddev= 0.09308190130219554
 # p2 = 1.0796490360796016, stddev= 0.09333220808910589
for the amplitude, position and width respectively.

Figure 5.3. Spectrum fit data setup.

The result of adding the model is the production of two further plots. One plot contains:

• the data (blue line)

• the input model as given by you (green line)

• the resulting fit (red line)

The second plot displays the residuals. See Figure 5.4 and Figure 5.5.

Figure 5.4. Data fit - data in blue, input model in green, fit in red

Figure 5.5. Residuals on the fitted data

5.10.7.5. Available Models For Fitting

There are a number of models available for fitting. In order to see the available models in the system
at any time you can use the following.

 print SpectrumFitter().info()

This command provides a listing of available models that can be fit. If we pick one of these models
we can get more information on it. For example we can look to fit a polynomial -- the 'poly' model.

DP Numeric: Basic Functions for Herschel DP

110

 print SpectrumFitter().info('poly')

This indicates there is one constructor (only one way of calling it). The order needs to be given in one
array and initial parameter guesses in a second array.

from herschel.ia.toolbox.spectrum.fit import *
from herschel.ia.toolbox.spectrum.fit.testdata import *
#There are 7 inbuilt datasets for spectrum fit checking and illustration
m = MakeData(3) # integer value represents different models
m.addNoise(10) # add some noise to the data
now do fit -- the guess and final model fit are displayed overlayed on the data
sf = SpectrumFitter(m) # setup spectrumfitter
mod=sf.addModel('poly',[3],[1.0,0.0,0.0,0.0])
3rd order poly model and guess for fit parameters
sf.doFit() # fit displayed.
print sf # provides fitted parameters with their standard deviations

The models currently available and an illustration of their use is given in Table 5.1.

Table 5.1. Spectrum fit model types and their use.

Name Example use -- names in brackets should be
replaced by numerical values representing

the initial guess for the parameter(s)

'atan' mod=sf.addModel('atan',[amplitude,slope,offset])

'exp' mod=sf.addModel('exp',[amplitude,exponent])

'gauss' mod=sf.addModel('gauss',[amplitude, position, width])

'gaussmix' mod=sf.addModel('gaussmix',[amplitude, position, width])

'harmonic' mod=sf.addModel('harmonic',[Order,Period],[params]).

Number of parameters provided = 2*order + 1

'lorentz' mod=sf.addModel('lorentz',[amplitude, shift, gamma])

'pade' mod=sf.addModel('pade',[Num,Denom],[params]).

Number of parameters provided = Num + Denom + 1

'poly' mod=sf.addModel('poly',[Order],[params]).

Number of parameters provided = Order + 1

'power' mod=sf.addModel('power',[Degree],[param]).

Number of parameters provided = 1

'sinc' mod=sf.addModel('sinc',[amplitude, position, width])

'sine' mod=sf.addModel('sine',[frequency, cosine amp, sine amp])

'sineamp' mod=sf.addModel('sineamp',[frequency], [two params])

'sinemixed' mod=sf.addModel('sinemixed',
[frequency, cosine amp, sine amp])

5.10.7.6. Multiple Line Fitting

If, in the simple line case above, the residual is only noise, you have completed your fit. If not, then
there may be another spectral line in your data. From the original data or from the residual you can
often determine the initial parameters of a second line: a1, x1, s1. In order to include a fit to this second
line also we can simply add another model to the fitter by using the 'addModel' method:

DP Numeric: Basic Functions for Herschel DP

111

sf.addModel('gauss', [a1, x1, s1])

This will update the fit and plots automatically. In the first plot you will now also see the two models
separately using the fitted parameters as black lines.

5.10.7.7. Background/continuum Fitting

Background/continuum fitting is not treated differently from the above. The only difference is the
model used to fit the background.

When being combined with spectral line fits, it is best to fit the background first then add the spectral
line model fit. If you don't, the fit of your spectral lines will initially be quite poor.

One model to use for a background is a polynomial. For a first order Polynomial (y = c0 + c1*x):

sf.addModel('poly', 1, [c0, c1]) # the second value is the polynomial order

For a higher order (n):

sf.addModel('poly', n, [c0, c1, ..., cn])

5.10.7.8. Fit of Line and Continuum

We can fit a line and continuum simultaneously by adding more than one model before doing the fit
(e.g., a polynomial and gaussian model). We can then do a global fit. An example is given below.

#import the appropriate packages
from herschel.ia.toolbox.spectrum.fit import *
from herschel.ia.toolbox.spectrum.fit.testdata import *
m = MakeData(5) # values represent different models
m.addNoise(10) # add noise to the model
sf = SpectrumFitter(m)
mod=sf.addModel('gauss',[4.0,30.0,1.0]) #also plots initial guess
mod=sf.addModel('gauss',[1.2,10.0,2.0]) #second line
mod=sf.addModel('poly',[3.0],[0.0,0.0,0.0,0.0]) # polynomial for continuum
sf.doGlobalFit() #fits all models at the same time -- residual plot also shown

The results of this are a plot of the data, initial guess and fit (in red) plus a separate plot of the fit
residuals (see Figure 5.6 and Figure 5.7).

DP Numeric: Basic Functions for Herschel DP

112

Figure 5.6. Fit using multiple models. In black are the individual guesses, in green the total initial guess
and in red the final fit.

DP Numeric: Basic Functions for Herschel DP

113

Figure 5.7. Residuals on the multiple model fit data shown in Figure 5.6.

5.10.7.9. Changing Parameters

If you wish to change the initial parameters of any of the models, you can use the setParameters
method of the models. To use them you must have a reference (label) to the model. This is in fact the
return value of the addModel operation. In the example below, the label is simply 'm':

m = sf.addModel(...) # m is now a reference we can do things with

To change the initial parameters of the model

m.setParameters([...])

A new fit will be made on the fly and your plot display updated.

5.10.7.10. Removing Fitted Models

Removing models can only be done when you have a reference to the Model (as above). There are
two ways to remove models:

sf.removeModel(m)

Or:

m.remove()

DP Numeric: Basic Functions for Herschel DP

114

5.10.7.11. Using Fit Parameters

Once you are satisfied with a fit, you can set the fitted parameters as the default for the models:

m.useResults()

This may be useful when using the same models for a following dataset.

5.10.7.12. Subtracting a Fit

You can subtract the model from the dataset:

sf.subtractModel(m)

This also removes the model from the fitter tool.

5.10.7.13. New Data

Once you are satisfied with your models, you may want to apply them to a different dataset as well.
This can be done with the operation:

sf.setData(otherData) # this replaces the data held in the
 # SpectrumFitter with the SpectralSegment
 # held in the variable 'otherData'

Once again, the fit will be redone on the fly.

5.10.7.14. Functions To Be Added in the Future

>The following features are likely to be added to the system:

• add more model types

• subtract a model from the data, continue with the residuals;

• fix any of the given parameters in a model;

• select parts of the X-axis to include/exclude in the fit;

• make an initial guess for the model parameters.

5.10.8. Matrix Manipulations
Most of the utilities for dealing with matrices are provided by the numeric.toolbox.matrix package.
However, we must not forget that simple vectors are just matrices with just one row (or one column),
so even vector classes like Double1d provides tools like a dotProduct method for scalar
multiplication of vectors:

x = Double1d([1,2,3,4])
y = Double1d([1,3,5,7])
print x.dotProduct(y) # 50.0

Now let us take a closer look to the numeric.toolbox.matrix package and its special classes and function
objects for matrix multiplication and transposition. We will start right away with a short example:

x = Double2d([[2,4,6],[1,3,5]])
y = TRANSPOSE(x)
z = MatrixMultiply(y)(x)
print z

Hence, it is important not to use the Jython '*' operator for matrix multiplication. However, the '+'
operator performs element-wise addition as required.

DP Numeric: Basic Functions for Herschel DP

115

It is also possible to multiply a matrix by a vector as follows (since, as we already pointed out, a vector
is nothing more than a matrix with just one row or column):

a = Double2d([[1,2,3],[7,5,4],[7,4,9]])
b = Double1d([4,1,7])
print MatrixMultiply(b)(a) # [27.0,61.0,95.0]

Warning

The correct syntax to multiply matrix a by matrix b is MatrixMultiply(b)(a).

Another matrix class can be used to solve matrix equations. For example, if we wanted to solve the
matrix equation: A.X = B

x = MatrixSolve(b)(a)
print x # [-0.9838709677419352,0.5322580645161287,1.3064516129032258]

Other useful tools for matrix manipulation are listed below.

DETERMINANT Yields the determinant of a square matrix given by a Double2d array.

A=Double2d([[1,2],[3,4]])
print DETERMINANT(A) # -2.0

Note: This currently does not work for complex matrices.

INVERSE Returns the inverse of a square matrix.

A=Float2d([[1,2],[3,4]])
print INVERSE(A) # [[-2.0,1.0],[1.5,-0.5]]

Note: This currently does not work for complex matrices.

TRANSPOSE Gives the transposed matrix.

A=Int2d([[1,2],[3,4],[5,6]])
print TRANSPOSE(A) # [[1,3,5],[2,4,6]]

You might find a bit confusing that some names, like dotProduct, start with a lowercase letter and
have all the other initials capitalised, while other names, like MatrixMultiply, have all initials
capitalised, and there is a fair share of names like TRANSPOSE with all uppercase letters. You can
find more about these quirks in the appropriately named Section 3.21.

5.10.9. Random numbers generation
Note

For simplicity we will speak of random numbers throughout this section, even if we
know very well that a computer can only create pseudorandom numbers. Discussing the
subtleties of generating (pseudo-)random numbers on a computer is beyond the scope of
this section.

To create random numbers with DP we first have to instantiate a generator. There are three generators
currently available:

• RandomUniform: generates random numbers in the range 0 <= x < 1 if invoked without
parameters, like this:

myGenerator = RandomUniform()

It is also possible to give a maximum value different from 1 to have random numbers created in
the range 0 <= x < max:

DP Numeric: Basic Functions for Herschel DP

116

myGenerator = RandomUniform(max)

• RandomGauss: generates random numbers following a Gaussian distribution.

• RandomPoisson: generates random numbers following a Poisson distribution of specified mean
value greater than zero. It is instantiated like this:

myGenerator = RandomPoisson(mean)

It can only produce integer-type random numbers (int, short and long).

In all cases what is being used under the hood is the Donald Knuth generator (see The Art of Computer
Programming, Volume 2, Section 3.2.1) as implemented in the java.util.Random class.

Once we have a generator in place, how do we create random numbers? The handy feature is that we
can create a single scalar random number or an array of any size and dimension we like (as long as it
fits in memory). Just put the type of numeric value you want as input, and the output will be the same
thing, but populated with random numbers. A few examples:

myGenerator = RandomUniform() # Generating random numbers between 0 and 1
print myGenerator(0.0) # We want a floating point random number...
0.8754230073094597 # ...and there it is (don't expect to get the
 # same number)
x = Double1d(10) # Now for an array of ten doubles...
print myGenerator(x) # We leave it to you to see the result
print myGenerator(Double1d(10)) # Of course you can create the input on the fly
print myGenerator(Int1d(100)) # What's the result of this one? Does it make sense?

You might have been puzzled to see a hundred zeroes scroll on your screen after executing the last
command of the example. It's not so surprising if we think that we asked the computer to produce
integer random numbers between zero and one, excluding one. The choice of possible values was
pretty limited.

If we want to change the seed of the random number generator we can do so by the setSeed method,
which takes a long parameter as an input:

myGenerator.setSeed(54653856L)

5.10.10. Numeric Integration
Numeric integration in DP is implemented via an Integrator interface. The function to be integrated
has to be declared as a class of a RealFunction containing a method called calc which takes one
argument, the independent variable.

The following Integrators for a standard integration interval [a,b] are available:

• RectangularIntegrator

• RombergIntegrator

• SimpsonIntegrator

• TrapezoidalIntegrator

• GaussianQuad4Integrator

• GaussianQuad5Integrator

• GaussLegendreIntegrator

All these integrators have two arguments for initialisation: the lower limit of integration (a) and the
upper limit (b). Once the integrator is initialised and the user function is defined then to perform the

DP Numeric: Basic Functions for Herschel DP

117

integration a method called integrate() is executed with an argument the user function. This is shown
in the following example:

from herschel.ia.numeric.toolbox import RealFunction

class MyFunction(RealFunction):
 def calc(self,x):
 return x*x

f = MyFunction()
a = -3.0
b = 3.0
i = RombergIntegrator(a, b)
print i.integrate(f) # 18.0
print "Analytical answer: ",(b**3 - a**3)/3.0

The following special cases of numeric integration are also implemented:

• GaussHermiteIntegrator: for integration with limits (-Inf,+Inf) of a special class of functions

• GaussLaguerreIntegrator: for integration with limits [0,+Inf) of a special class of functions

The input for the integrator initialisation is α.

• GaussJacobiIntegrator: for integration with limits [-1,1] for a special class of functions

The input for the integrator initialisation are α and β.

If a tabular data of x,y is to be integrated then it is necessary to interpolate first and then apply a
suitable integrator. This is shown in the following example:

from herschel.ia.numeric.toolbox import RealFunction

x = 0.1 + 1.9*Double1d.range(11)/10.0 # 11 points between 0.1 and 2.0
y = 1.0/x

f = CubicSplineInterpolator(x,y) # interpolate first.
a = 0.1
b = 2.0
integrator = SimpsonIntegrator(a, b) # use Simpson's rule

res = integrator.integrate(f) #
print "Result: ",res
print "Analytical result: ",LOG(b) - LOG(a)

5.10.11. Interpolating Discrete Data
If the objective is to integrate discrete data, this can be done by means of a FitterFunction, which
is a function that interpolates the given data, with a specific model. For example:

DP Numeric: Basic Functions for Herschel DP

118

from herschel.ia.toolbox.fit import FitterFunction

x, y are Double1d that represent the abscissas and values of our data
f = FitterFunction(x, y, PolynomialModel(3)) # Uses a Fitter
g = FitterFunction(x, y, PolynomialModel(2), FitterFunction.AMOEBA)
Uses an AmoebaFitter

If more precise fitting is needed, you can do it by yourself, and then pass the already built fitter (or
the model) to the FitterFunction:

x, y are Double1d that represent the abscissas and values of the data
model = CubicSplinesModel(x)
fitter = AmoebaFitter(x, model)
fitter.setSimplex(params, range) # customize the fitter as you want
fitter.fit(y)
f = FitterFunction(fitter) # or f = FitterFunction(model)

If one of the defined interpolators suites your needs, it can be used directly, instead of a
FitterFunction. For example:

x, y are Double1d that represent the abscissas and values of the data
f = CubicSplineInterpolator(x, y)

5.11. Example Programs
The HCSS distribution includes a number of Jython example programs that demonstrate not only basic
arrays functions but also use of filters, fitters, Fourier transforms, etc. They are currently kept at ftp://
ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts. These are:

numeric_whatisnew.py
Example of the newest components

of the numeric package.

numeric_demo.py Example of how to use the 1D functionality.

numeric_2D_demo.py Example of how to use the 2D functionality

convolution_demo.py
Example of how to use the
convolution functionality

polyfitter_demo.py Example of how to perform polynomial fitting

5.12. Mathematical Operations on Spectra

5.12.1. Introduction
The spectrum arithmetic toolbox allows to combine Herschel spectrum data. Operations are
performed either on subclasses of spectrum datasets (Spectrum1d, Spectrum2d), on
cubes (SimpleCube, SlicedCube), or on products containing such data structures (e.g.,
HifiTimelineProduct).

Operations on Spectra include Selection and Arithmetic Operations.

• Selection: Provide means of selecting those spectra that can be combined. For instance HIFI cold-
load spectra, ON spectra, etc. Selection can be applied to datasets, such as rows of a Spectrum2d,
or to tables within a product, such as datasets included in a HifiTimelineProduct.

• Arithmetic Operations: Provide means of combining the selected spectra. This includes:

• Basic arithmetic operations such as addition, subtraction, multiplication, or applications of scalar
functions.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_whatisnew.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_2D_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/convolution_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/polyfitter_demo.py

DP Numeric: Basic Functions for Herschel DP

119

• Statistical operations such as mean, median, variance, standard deviation or percentiles for
samples / selections of spectra.

• Data transformations such as smoothing or frequency re-sampling.

It is planned that the arithmetic toolbox will provide generic functionality for all instruments (HIFI,
PACS and SPIRE). Instrument-specific behaviour will be pre-configured by defaults in the system
but can also be overwritten by the user.

5.12.2. Toolbox Primer: Selection
We present the power of the toolbox with a few code examples. Assume we have started a jide session
and loaded a Spectrum2d dataset with name 'data' from a local pool or a database.

We might want to work only with a sub-set of the spectra included in our data. For a Spectrum2d
this means we have to (1) select specific rows from the data and (2) combine them into a new
dataset by applying some arithmetic operations on the selection. Task (1) is performed with the
SelectSpectrum task,

from herschel.ia.toolbox.spectrum import SelectSpectrum

The SelectSpectrum-task can be configured and used in many different ways. A frequent usage is to
identify all the rows of the dataset that have a specific value in a particular column:

ds1 = SelectSpectrum()(ds=data, selection_lookup={"bbtype":[3260]})

The example above selects all the rows with a value=3260 in the column named 'bbtype'. Hence, the
selection is performed by using the keyword selection_lookup in the call of the task, using what is
called a python dictionary. This py-dictionary contains the name of the attribute to look up as key
(column name) and the attribute value as value. All the rows in the resulting dataset ds1 have values
3514 in the bbtype column.

Using py-dictionaries suggests that we may combine several selections by adding further lookup
properties to the dictionary. Indeed, all the rows in the dataset resulting from

ds1 = select(ds=data, selection_lookup={"bbtype":[3260],"buffer":[1]})

ds2 = select(ds=data, selection_lookup={"bbtype":[3260],"buffer":[2]})

have values 3260 in the bbtype column and values 1 in the buffer column (hence ds2 is a subset of
ds1). Note that the lookup values are specified as py-lists. By specifying a list of admissible values
those spectra are selected that match one of values found in the list. As will be explained below, there
are other selection models better suited for floating point values.

5.12.2.1. More on selection methods

• Lookup specific attribute value(s):
For one (or several) discrete criteria use the keyword selection_lookup:

ds1 = select(ds=data, selection_lookup={"bbtype":[3413]})

Spectra with bbtype=3413 are selected and included in the result container.

ds2 = select(ds=data, selection_lookup={"bbtype":[3412, 3413]})

Spectra with bbtype=3412 or bbtype=3413 are selected and included in the result container.

DP Numeric: Basic Functions for Herschel DP

120

ds3 = select(ds=data, selection_lookup={"bbtype":[3413],"buffer":[1]})

Spectra with bbtype=3413 and buffer=1 are selected and included in the result container.

• Index selection:
If you want to select specific spectra included in the container by its index, use the keyword
selection_index:

ds1 = select(ds=data, selection_index=[1,5,12])

The spectra with indices 1, 5, 12 are selected and included in the result container.

• More general selection model:
Use the keyword selection and use one of the selection models found in the package

herschel.ia.toolbox.spectrum.selections.models
chopperSelection = RangesSelectionModel("Chopper", [-4.4, 5.9], 0.1)

The first parameter specifies the name of the attribute, the second parameter gives an array of centers
of the ranges and with the third parameter you specify the radius of the ranges to be considered. In
summary, this ranges selection model will identify all spectra for which the attribute "Chopper" has
values located within a distance r = 0.1 around one of the centers [z1=-4.4,z2=5.9].

ds4 = select(ds=data, selection=chopperSelection)

For further selection models see further down in the documentation.

5.12.3. Toolbox Primer: Average Spectra
After selecting the data, we can move to task (2), the application of some arithmetic operations
to the selected spectra. For example, if we now want to average the selection, we can invoke the
AverageSpectrum task:

from herschel.ia.toolbox.spectrum import AverageSpectrum

avg21 = AverageSpectrum()(ds=ds2)

The selection explained in task (1) can also be included in the average spectrum task, thus allowing
to perform selection and averaging in one step:

avg22 = AverageSpectrum()(ds=data, selection_lookup={"bbtype":[3260],"buffer":[2]})

This result is identical to the separate operations. It includes a single row with the average flux. The
resulting dataset contains exactly the same columns as the input dataset. Thus, what values should we
fill in the columns not affected by the operation? This is determined by a default action that depends
on the input data type (sub-class of Spectrum2d in our example). For the Spectrum2d, the default
action consists of copying the values found in the input spectrum.

This way of processing the data is general: we always try to keep as much information as possible.
All columns and also the meta data are set in a type specific, instrument specific, or user specific way.
The output data type is the same as the input data type.

The toolbox operations are not restricted to operations on Spectrum2d as our example may suggest.
In all the operations in the herschel.ia.toolbox.spectrum no reference is made to Spectrum2d. The
operations only refer to a specific contract (a java-interface), the SpectrumContainer-interface.
Spectrum2d also fulfills this contract. All the datastructures that obey this contract can be processed
by the arithmetic tools. The efforts to have this contract implemented for other data types is relatively
small.

DP Numeric: Basic Functions for Herschel DP

121

5.12.4. Toolbox Primer: Subtract Spectra
Other arithmetic operations are available such as pair operations (subtract, divide, pair-wise add/
multiply) and scalar operations (add/subtract or multiply/divide by a scalar quantity). Here is an
example that shows how to use the subtraction:

from herschel.ia.toolbox.spectrum import SubtractSpectrum

diff12 = SubtractSpectrum()(ds1=ds1, ds2=ds2)

Here, the datasets ds1 and ds2 either must have the same number of rows, or one of them must have
only a single row. If they have the same number of rows, the subtraction is carried through for the flux
data on a row-by-row basis. If the second contains only one row, this row is subtracted from all the
rows in the first dataset (or the other way around).

The same task can also be used for subtracting a scalar:

ds_m2= SubtractSpectrum()(ds=data, param=2.0)

Here the number two is subtracted from all the flux columns in our data.

5.12.5. Toolbox Primer: Divide Spectra
The use of the DivideSpectrum -task is identical:

from herschel.ia.toolbox.spectrum import DivideSpectrum

ratio12 = DivideSpectrum()(ds1=ds1, ds2=ds2)
ds_d2 = DivideSpectrum()(ds=data,param=2)

5.12.6. Toolbox Primer: Add and Muliply Spectra
Similarly, for multiplication and addition we can import tasks that can be used in a similar fashion.

from herschel.ia.toolbox.spectrum import MultiplySpectrum
from herschel.ia.toolbox.spectrum import AddSpectrum

These tasks work in exactly the same way.

5.12.7. Toolbox Primer: Resample and Smooth Spectra
Additional tasks included in the toolbox include smoothing, frequency resampling or extracting/
cutting the spectra. The system again provides the instance

from herschel.ia.toolbox.spectrum import ReamplingFrequency

resample = ReamplingFrequency()

which allows for resampling non-equidistant grids to linear grids and the other way around.
Resampling to a linear grid with given resolution (width) would look like

data_resampled = resample(ds=data, density=true, resolution=1.0)

where the resolution is given in the same units as the frequencies in the data. The density parameter
indicates whether the flux is specified as a per channel (true) or as a per frequency unit quantity (false).

DP Numeric: Basic Functions for Herschel DP

122

For the smoothing, the instance

from herschel.ia.toolbox.spectrum import SmoothSpectrum

smooth = SmoothSpectrum()

is again loaded automatically by the system and it can be used by

data_smoothed = smooth(ds=data, filter="box", width=10)

5.12.8. Toolbox Primer: Statistics on Spectra
Finally, the toolbox also allows to compute the statistics for the spectra included in a spectrum
container.

from herschel.ia.toolbox.spectrum import SpectrumStatistics

statistics = SpectrumStatistics()

There are two alternative ways to compute the statistics for the spectra included in a spectrum
container, the statistics computed on a per channel basis over all the spectra included in the container,
or the statistics computed for each spectrum included in the container across the channels, possibly
restricted to a range.

stats = statistics(ds=data)

The result of this operation stats is a product which contains the per channel statistics in Spectrum1d
and the across channel statistics in a suitable TableDataset.

5.12.9. Summary of Toolbox Operations
Operations are available both at the task level and at the java level. The tasks are most suited for
being used from the command line. The java classes which are wrapped by the tasks might be more
helpful when developers want to integrate the functionality into other modules. The java classes will
be discussed in the developer's sections.

• SelectSpectrum (use select): Select spectra from a container and create a new spectrum container
of the same runtime type.

• AverageSpectrum (use avg): Average the spectra included in the container on a channel by channel
basis. Restrict the average to specific selections or define groups and apply the average on a per
group basis.

• AddSpectrum (use add): Pairwise or scalar add.

• SubtractSpectrum (use subtract): Pairwise or scalar subtract.

• DivideSpectrum (use divide). Pairwise or scalar divide.

• MultiplySpectrum (use multiply): Pairwise or scalar multiply.

• ResampleFrequency (use resample): Resample each spectrum included in the container to a new,
not necessarily linear grid.

• SmoothSpectrum (use smooth): Smooth each spectrum included in the container.

• ExtractFreqRanges (use extract): Cut the spectra included in the container to given frequency
intervals.

DP Numeric: Basic Functions for Herschel DP

123

• ReplaceFreqRanges (use replace): Replace spectrum information in one container by information
from another.

• SpectrumStatistics (use statistics): Compute statistics of the spectra in the container - either on a
per channel basis or across the channels.

5.12.9.1. Remarks

1. Fitting: There is a separate documentation on fitting: see the module ...

2. Datastructures: As indicate in the primer, all the data structures that fulfill the contract a spectrum
container must have can be processed by the toolbox modules. Currently:

• Spectrum1d: implements contract.

• Spectrum2d: implements contract.

• Cubes: under consideration.

• Other instrument-specific data structures (such as HifiTimelineProduct or
SpectrometerDetectorSpectrum): under consideration.

124

Chapter 6. DP Plot: Basic Plotting of
Data

Important

This chapter is about the "new" plotting package (herschel.ia.gui.plot) that is automatically
loaded by default in a DP;session; an "old" plotting package (herschel.ia.plot) is no longer
available.

6.1. Introduction
This chapter describes how to do basic 2D plots in DP. It is primarily conceived as a step-by-step guide
to support you while getting familiar with the visualisation of two-dimensional data. In addition, it is
being enlarged with the final aim of documenting the complete set of functionalities of the PlotXY
package. Not all the available commands have been introduced yet; for a complete list please refer to
the related API documentation for the herschel.ia.gui.plot package.

Four main classes are described in this chapter: the PlotXY class, which is the representation of a
two-dimensional plot, and its related classes Axis, LayerXY and Annotation which represent
the different building blocks from which the plot is constructed. We will also cover some features of
Style, handling the style of a plot (e.g. type, size and colour of plot symbols).

Pages containing more than a single plot component are created by placement of plot "layers" (created
by the LayerXY class).

The following image shows the place of four of these classes within the general plot architecture, using
as an example a page of four plots (the yellow rectangles).

Figure 6.1. Classes involved in plot operations.

Depending on how you work with plots, either writing scripts or designing your plots interactively,
we recommend different approaches. For writing scripts you need to use the command line interface.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/gui/plot/package-summary.html

DP Plot: Basic Plotting of Data

125

This way the plot is completely defined by written commands. If you design your plots interactively it
will be easier to use the graphical interface to manipulate plot properties which allows for button and
pulldown menu selection of plot properties such as fonts, labels, line types and colours.

6.2. What do I need to make a simple XY plot?
The 2D plotting package currently works on Numeric1d data which is a one-dimensional array of
numbers of any type (Int1d, Float1d or Double1d). Two numeric arrays are input, one as x-data and
the other as y-data.

6.2.1. Introducing PlotXY

The class used for 2D plotting is called PlotXY. This produces a plot whose properties can be changed
via command line input or through a properties GUI. Multiple plots can be added in "layers" to an
initial base plot and the default scales for a given plot will automatically adjust to allow all points in
all layers of a plot to be visible, although the x and y ranges for a plot can also be set by the user.

6.2.1.1. Using PlotXY to plot one Numeric1d array against another

Plotting numeric 1D arrays against each other can be done in a simple call such as

a = Double1d([1,2,3,4,5])
b = Double1d([0.3,0.8,1.5,2.3,2.0])
PlotXY(a, b, titleText="A plot")

Where a and b are two numeric 1D arrays and we give it a title ("A plot"). If we want a way of labelling
the plot so we can do something to it later, we can do the following

p=PlotXY(a, b, titleText="A plot")
p.title.text="Better title for plot"

Here we have given the plot a label, p, and put a new title on it with the second line.

PlotXY has a number of other variables that can be set when initiating a plot. In the above examples we
get no labels on the axes, a default line style and colour is used and the window size is a default setting.

The following, Example 6.1, illustrates some key points in the use of PlotXY for plotting 1D arrays
against each other.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/numeric/Numeric1d.html

DP Plot: Basic Plotting of Data

126

n = Double1d.range(20) / 10. # (1)
e = EXP(n) # (2)
plot = PlotXY(n, e) # (3)
p = PlotXY(layers=[LayerXY(n, e)], titleText = "Plot example", \
style=Style(line=Style.MARKED, symbol=Style.TRIANGLE, \
color=java.awt.Color.green), visible=Boolean.TRUE) # (4)
layer0 = p.getLayer(0) # (5)
layer0.style=Style(line=Style.MARK_DASHED, symbol=Style.CIRCLE, \
color=java.awt.Color.red) # (6)
layer0.style=Style(line=Style.NONE, symbol=Style.FSQUARE, \
color=java.awt.Color.red, symbolSize=7) # (7)
plot.close() # (8)

1. n is set up to be an array with the range of numbers = 0...19 divided by 10. Placing the Double1d
element in front turns the integers created by the range command into a numeric array of doubles.
So we have an array of 20 numbers going from 0 to 1.9

2. e is an array which contains the exponent of all the n array elements

3. this line will make a "default" plot of the exponent. It also identifies the plot window with the
variable plot.

4. here we define more plot variables in a single line call. After creating a layer explicitly (it was done
automatically in the previous PlotXY call) we define some properties of the line style and set the
plot as visible (you might wish to set a plot as invisible e.g. when you only want to print it or save
it to file, without displaying it on screen).

5. here we get the first layer (the only one in this case) identified by its index 0 inside the plot p. A
second layer would have index 1, and so on.

6. here we change the layer style: dashed line and red circles.

7. another change to the layer style, plus a change to the size of the symbols to 7 point.

8. closes the plot window

Example 6.1. A simple PlotXY example

The result of running this example is shown in Figure 6.2.

Note

PlotXY does NOT store the data values. This makes it more memory efficient but can lead
to perhaps unexpected behaviour. For example, it the user changes the arrays "n" or "e" in
the previous example, the plot will automatically update to the new values of "n" or "e".

 n += 2 # adds 2 to every value in the array "n"

If the above line is executed at the end of the sequence in the example then values along
the plotted x-axis will be shifted by 2 and automatically updated in the plots displayed.

DP Plot: Basic Plotting of Data

127

Figure 6.2. A simple plot of an exponential array.

6.3. How to setup your PlotXY properties
Plot properties allow the definition of items such as colours, linetypes etc. with your personal
preferences. To setup your personal properties try the following:

• Construct a plot object p in JIDE,

p = PlotXY(n, e)

n and e being the Double1d arrays defined in Example Example 6.1.

• Open the plot properties window with the following command

p.props()

• Define your properties in this window and save them as default. The description how to save
properties as default is given in Section 6.3.1.

or

• Open the Property Generator (command propgen) and select the Plot tab. Here you can change
all the properties related to the plot interface and set them to default by pressing the Set to default
button.

Note

Properties for PlotXY are saved under the user's home directory in .hcss/user.props. The
HCSS properties path needs to have this file in it so that plot properties are restored

DP Plot: Basic Plotting of Data

128

correctly in the next session. To use the saved properties immediately, right-click on the
plot and go to "Reload Default Properties" on the menu.

6.3.1. How to modify properties
Properties can be manipulated with a graphical interface.

Do the following:

• construct a plot object with any constructor, for example

p=PlotXY(n, e)

n and e being the Double1d arrays defined in Example Example 6.1

• type the command

p.props()

Now the graphical interface for manipulation of the plot properties appears (see Figure 6.3). It consists
of a tree-like structure on the left with all the objects composing the plot (like layers and axes). The
properties of the highlighted object appear in the right panel.

The buttons at the bottom have the following functions:

Apply applies any changes to the plot, without closing the properties window.

Refresh reads in the properties of the visible register card (plot, layer or axis).
This button is useful if you have the plot property GUI visible and change
properties from the command line. Refresh updates the GUI afterwards.

Save as default saves the properties as default and thus updates the PlotXY.props file in
the ~/.hcss directory in the file user.props.

Warning

The global variable HCSS_PROPS should include this file for
the default properties to be written and reused.

Note that if you set a property for a layer or an axis as default, the property set
will be used for all layers and axis and not only for the one you have chosen
in the moment of pressing the button.

6.3.2. Plot properties
The plot properties available for a "PlotXY" object are shown in Figure 6.3. There are four sections.

Plot This allows the size of the plot window to be determined (in terms of physical size
or pixels).

Title The plot title can be typed in here and the result will appear at one of seven positions
available in the pulldown menu (left, right or centre at either top or bottom or
customised positioning). The title appears after the Apply window button is clicked.
Note that a mouse click on the title will allow click-and-drag of the title to any
position on the plot. The font type and size can be customised using the Change...
button below the title box in the properties window.

Subtitle Subtitles work in a similar way to titles except that the default positioning is below
the title and with a smaller font. Again, the subtitle can be dragged to anywhere on
the plot surface and font changed.

DP Plot: Basic Plotting of Data

129

Boxed Plot If this is ticked, then the plot is a box (otherwise only the left and bottom axes are
plotted). This is applied when the initial plot -- base layer -- is created.

Legend The checkbox indicates whether a legend is shown or not, while the pulldown menu
provides eight different positions at which the legend can be placed. Again, the
legend position can be changed by a simple click-and-drag.

All changes are applied by clicking the Apply button.

Figure 6.3. The Plot section of the PlotXY properties dialog.

6.3.3. Layer properties
The layer properties are used to define default layer properties or to manipulate the properties of
already constructed layers. This includes the layer name and style properties. In order to work on a
given layer, the user needs to click on the appropriate layer on the left hand side of the properties
panel. This brings up the layer properties dialog. See Figure 6.4).

The layer id number is automatically assigned, in numerical order starting from zero. Layers added
to the same plot are numbered from 1 upwards. Applying a new name will update the name given in
the legend of the plot for the layer.

The Style properties are applied to a particular layer of a plot. Here is where we can change the colour
and form of a plot.

Chart Type The pulldown allows for either a LINECHART or a HISTOGRAM plot.

Symbol The symbol type to be used for points on a plot can be chosen from 25 possibilities
in the pulldown menu. The symbol type number is also given (SQUARE = "8").

DP Plot: Basic Plotting of Data

130

Color The colour can be changed by clicking on the coloured square and choosing from
the colour menu in the popup window.

Size Provides a scaling for the symbol size (in font points) used for plotting points on a
scatter plot.

Stroke Provides a scaling for the width of lines used for line plots.

Line Style Provides the options of no line (NONE), a solid line (SOLID), a line with each point
marked (MARKED), a dashed line (DASHED) or a dashed line plot with points
marked (MARK_DASHED).

Dash Array The two values that are typed in here indicate the size of the dashes and the distance
between dashes. If a dashed plot is requested.

The layer itself can be removed using the Remove button.

Finally, an annotation to the plot can be made using the Add Annotation button. This brings up the
an annotations properties window (see Figure 6.5).

Annotation The actual annotation and font type can be selected here.

Position Placement in the plot area (x and y) and the angle (in an anti-clockwise direction)
at which the annotation is displayed.

Alignment Indicates where relative to the position that the annotation is to be made. Essentially,
above it, below it or centred on it (vertical) and to left, to right or centred on it
(horizontal).

Figure 6.4. The Layer section of the PlotXY properties dialog.

DP Plot: Basic Plotting of Data

131

Figure 6.5. Dialog for adding an annotation to a Layer.

6.3.4. Axis properties.
The Axis properties dialog (see Figure 6.6) is used in the same way as for the layer properties. In
order to work on a given axis the appropriate "X-axis" or "Y-axis" label in the left column display of
the properties window (as in Figure 6.6). This then brings up the Axis properties dialog.

There are two elements that can be changed in this dialog:

Axis The user has options for where the axis is, on top/bottom (the POSITION pulldown menu),
left/right; whether it is linear or log; whether it is inverted or even invisible. Colour of the
axis can be selected by clicking on the coloured box (black is the default) and choosing from
the colour selection popup.

The range can be set or left to be generated automatically.

The title/label for the axis can chosen to be displayed either side of the axis and the font type
and size is selectable by clicking the "Change..." button.

Ticks The tick position is with reference to the axis. Choices are for either side of the axis, crossing
the axis (MIDDLE) or having no tick marks.

Grid lines for each axis can be chosen individually.

The tick mark intervals can be chosen or done automatically. The size of major and minor
tick marks can be typed in and the number of minor tick marks per major tick mark interval
also typed in (0 means there are no minor interval tick marks). Tick labels can be vertical or
horizontal on either axis. The number of decimal places for label values can also be explicitly
given (e.g., "%.2f" gives values to 2 decimal places) or left be calculated automatically.

DP Plot: Basic Plotting of Data

132

Figure 6.6. The Axis section of the PlotXY properties dialog.

6.3.5. How to use properties.
The result of a property setup procedure (with a defined set of properties) is given in Example 6.2
which follows on from Example 6.1. This can be used to set up properties from the command line
window of JIDE or for generating plots from within scripts.

p.props() # (1)
p[0] = None # (2)
p[0] = LayerXY(n, n*n, name="anotherLayer") # (3)
p[0].style.stroke = 5 # (4)
p[1] = LayerXY(n, 2*n*n, name="yetAnotherLayer") # (5)
p[1].style.stroke = 7 # (6)

1. this command allows graphical interface property setup, it fires the Plot Property GUI.

2. removes the first (and only) layer of the plot. Press the Refresh button in the Properties window
to see the change

3. overlays on the graph a plot of n versus n-squared and calls it "anotherLayer". p[0] can be used
to refer to this layer, like you would do with an element of an array.

4. sets the line stroke for overlay plot anotherLayer

5. adds yet another layer to the plot "p"...

6. ...and changes the line stroke on this plot too!

Example 6.2. Command line control of properties

DP Plot: Basic Plotting of Data

133

The result of running above example is shown below.

Figure 6.7. This plot is the result of Example 6.2.

Note that if a new layer is added without defining either colour or line type, the current set of default
properties are used.

If colour and line type are specified in the constructor, they are used as specified.

p[2] = LayerXY(n, 8*n*n, name="moreLayers", symbol = Style.TRIANGLE, \
 color = java.awt.Color(250,100,0))

Note

the backslash (\) symbol provides continuation of the command onto the next line and
should be immediately followed by a CARRIAGE RETURN.

The result of the above command line is shown below. In this case we have also illustrated how you
can create your own colour through a mixture of red, green and blue hues (values up to 256). In
this case, the result is an orange colour for our third plot layer.

DP Plot: Basic Plotting of Data

134

Figure 6.8. Adding in another layer gives the orange curve (see text).

6.3.6. Resizing a plot

The width and height properties are available to set the size of a plot in pixels. However, using
these properties on their own could cause unwanted side effects, like in the following example:

x = Int1d([0, 1, 2, 3]) # Setting up sample data
y = x
plot = PlotXY(width = 600, height = 400)
layer = LayerXY(x, y)
plot.addLayer(layer)

Adding the layer causes the plot window to grow to a very large size. This can be avoided by setting
the autoAdjustWindowSize property to 0:

x = Int1d([0, 1, 2, 3]) # Setting up sample data
y = x
plot = PlotXY(width=600, height=400, autoAdjustWindowSize=0)
layer = LayerXY(x, y)
plot.addLayer(layer)

Adding the layer in this case does not cause problems.

Another solution is to set the plot size after all the layers have been added, using the setSize method:

x = Int1d([0, 1, 2, 3]) # Setting up sample data
y = x
plot = PlotXY()

DP Plot: Basic Plotting of Data

135

layer = LayerXY(x, y)
plot.addLayer(layer)
plot.setSize(600, 400)

6.4. Manipulating Layers, Axes, and
Annotations in DP Scripts

In this section we show how to manipulate plots from the command line. Such manipulations can be
placed in scripts to make plots appear the way the user requires.

In DP scripts it is necessary to access all the properties from the command line (either bottom left of
JIDE for interactive work or in the upper pane of JIDE when doing script development).

There is one general rule to do so.

1. get the object:

layer = p.getLayer(layer index) or axis = layer.getXaxis()

2. use the methods provided by the object:

layer.setColor(color)

color is a java.awt.Color,e.g., java.awt.Color.red

6.4.1. What about these Layers?

Any plot is built up from layers. Even a simple 2D plot as we've created above has one layer that
contains the data from the two one-dimensional arrays we have used to build it. If you need to plot
multiple sets of data you add one layer for each additional set.

As stated before the manipulation that you need to do on layers should be done through the layer
object. One such command is the setColor(color) that we have used above.

Let's create a simple plot again with two layers and do some basic manipulations on the individual
layers. Example 6.3 plots two curves, one is the analytical function exp, the other curve has added
noise.

In the first three lines we generate some noise on top of the exponential function.

DP Plot: Basic Plotting of Data

136

r = RandomUniform() # (1)
rn = Double1d(20).apply(r) - 0.5 # (2)

n = Double1d.range(20)/10
e = EXP(n) # (3)
en = e+rn # (4)

p = PlotXY(layers=[LayerXY(n, e, name="e", color=java.awt.Color.red)], \
 titleText="Exponential plot") # (5)
p[0].setStyle(Style(line = Style.NONE, symbol = Style.FSQUARE, symbolSize = 3.5, \
 color = java.awt.Color.blue))

p[1] = LayerXY(n, en, name="en") # (6)

layer_en = p.getLayer(1) # (7)
layer_en.setLine(Style.NONE)
layer_en.setSymbol(Style.FCIRCLE)
layer_en.setColor(java.awt.Color.red)

layer_en.setLine(1) # (8)

1. DP utility to produce random numbers between 0 and 1.

2. generates a set of 20 random double (real) numbers between -0.5 and 0.5.

3. The array e was defined in a previous example, but lets recreate it...e is an array of 20 numbers
which are e0.5, e1.0, e1.5 etc.

4. adds the random numbers to the array e i.e. add noise to the data.

5. Plot the array e, give the layer a name and in the following line change some of the layer's properties
to make it a scatter plot.

6. Add the noise data to the plot as a layer with name en

7. In these four lines it is demonstrated how to make this layer a scattered layer with red circles as
symbols. Code 0 means "no line", while 14 is "filled circle".

8. reset the layer back to a line plot. Note how setting the line to "solid" (code 1) the symbols
automatically

Example 6.3. Working with layers from the command line.

Note

Please do not take the above as an example of the proper way to add noise to a function,
the 'noise' here is just to illustrate the layer concept.

Some of the more useful methods that work on layers are listed in the tables below. Please read
carefully the following note in order to interpret the tables correctly.

Note

In order to save space we do not explicitly list all the available methods, as the Javadoc
does, but adopt the shortcuts described below.

• When a method with "X" in its name is listed, there is also a method with "Y", doing
the same thing for the Y axis, unless specified otherwise. For example, there is a
setYtitle method in addition to setXtitle.

• Methods whose name begins with " set " are called setters and, you guessed it, are
used to set a value. For every setter there is usually a getter , a method whose name
begins with " get " and whose work is to retrieve a value. The tables only list setters,
adding Get method available when the corresponding getter exists. A getter is called
without input parameters and its return value is of the same type as the input parameter

DP Plot: Basic Plotting of Data

137

of the corresponding setter. For example, the setXaxis(Axis axis) setter has a
corresponding getXaxis() getter returning an object of class Axis .

• This is not a shortcut but is worth mentioning anyway. The name of a method can
offer useful clues about its behaviour. For example, the method setSomething
will replace the preexisting Something, while appendSomething will add
SomethingElse to the existing Something.

Table 6.1. Methods for handling Annotations in layers.

addAnnotation(Annotation
annotation)

Adds an Annotation object to the layer.

addAnnotations(Annotation[]
annotations)

Adds several Annotation objects to the layer.
The input Annotations are passed as an array.

setAnnotation(int id,
Annotation annotation)

Sets an annotation to a given id,
replacing what was there before.

setAnnotations(Annotation[]
annotations)

Replaces all the annotations with
the ones provided in the array.

getAnnotation(int i) Retrieves one annotation from the layer.

getAnnotations()
Retrieves all the annotations from the layer.

The annotations are returned as an array.

removeAnnotation(int id) Removes the annotation with the specified id.

clearAnnotations() Removes all the annotations.

Table 6.2. Methods for handling error bars in layers.

appendErrorX(double
low, double high)

Appends a low and high error value of x.

appendErrorX(Ordered1dData
low, Ordered1dData high)

Appends a set of low and high error values of x.

setErrorX(Ordered1dData[] error) Sets low and high error values of x.

setErrorX(Ordered1dData
low, Ordered1dData high)

Sets the low and high error values of x.

getErrorX()
Returns an array of Ordered1dData

with length equal to 2.

DP Plot: Basic Plotting of Data

138

Table 6.3. Axis-related methods of the Layer class. All can equally be applied to the y-axis by replacing
"X" with "Y".

setXaxis(Axis axis)

Sets the x axis to the specified Axis instance.

Note: the x axis will be reinstantiated
with its default settings plus whatever is
indicated in the Axis instance. So any
prior manipulations of the axis are lost.

setXrange(double[] range)
Sets the range of the x

axis. Get method available.

setXtitle(String title) Sets the title of the x axis. Get method available.

setXtype(Axis.Type type)
Sets the type of the x axis based on the
axis types available. LINEAR is type 0,
LOG is type 1. Get method available.

setXy(Ordered1dData[] xy)
Sets the x and y values, passed as elements of
an "array of arrays" of size two. Get method

available. Note that there is no setYx method!

setXy(Ordered1dData
x, Ordered1dData y)

Sets the x and y values, passed as two separate
arrays. Note there is no setYx method!

setY(Ordered1dData y)
Sets the ordinate values. Get method

available. Note there is a getX
method but not a setX method.

shareXaxis(Axis axis)
Removes the x axis and uses

the given axis as a shared one.

Table 6.4. Miscellaneous setters of the Layer class.

setName(text)
Changes the name (and thus the legend)

of the layer. Get method available.

setLine(line code)
Changes the plot to a line plot for the
specified layer. Get method available.

setSymbol(symbol code)
Changes the plot to a scatter plot for the
specified layer. Get method available.

setSymbolSize(int size)
Sets the size of a the symbol. Get

method available (note that it returns
a double rather than an int.

setSymbolShape(SymbolShape
shape)

Sets the shape of the symbol. The input
parameter is an instance of the class

SymbolShape. Get method available.

setColor(colour)
Sets the colour of the symbols and lines for
the specified layer. Get method available.

setStroke(stroke)
Sets the stroke of the line for the specified layer

(only for line plots). Get method available.

setStyle(Style style)
Sets the style of the layer. The input

parameter is an instance of the
Style class. Get method available.

DP Plot: Basic Plotting of Data

139

Table 6.5. Other methods of the Layer class.

addPoint(double x, double y) Adds a point to the layer.

addPoint(Ordered1dData
x, Ordered1dData y)

Adds a set of points to the layer.

getCoords()
Waits for mouse click and

returns the coordinates of the
pointer. Returns a double[].

getCoords(int n)
Like the previous method, but this
one does the job for n successive
clicks. Returns a double[][]

getDataCoords()

The difference with respect to the previous
two methods is that this time the coordinates

of the layer point closer to the mouse
pointer are returned. Returns a double[].

getDataCoords(int n)
Like the previous method, but this
one does the job for n successive
clicks. Returns a double[][].

getId()
Returns an int representing the index
of the current layer inside the PlotXY.

setInLegend(boolean) True if the layer is shown in the legend.

isInLegend()
Returns True if the layer

is shown in the legend.

setNotifyWarningAsExceptional(boolean)
True if exceptional values like NaN

and infinity are notified as errors,
False if they are only logged.

isNotifyWarningAsExceptional()
Returns True if exceptional values
like NaN and infinity are notified as

errors, False if they are only logged.

DP Plot: Basic Plotting of Data

140

Figure 6.9. Plot showing the result of manipulation of layers from the command line.

The LayerXY class provides a much larger number of methods to specify the appearance of data
points in layers. Next to simple line and scatter plots, lines and symbols can be combined and symbols
can be circles, rectangles, triangles, squares etc. which can be filled or not with a specified colour.
Lines can be solid or dashed with their own colour. Find the possible predefined symbols in the Style
class and access them for example by line = Style.SOLID.

We are not going into detail for all these methods but you should try them out with the API
documentation for LayerXY lying next to you.

6.4.2. What can I do with Axis?

As with Layers most manipulations of both X and Y axes can be done through the Axis class.

6.4.2.1. Log Axes, Labels and Gridlines

Let's continue with our previous example and make some changes to the axes illustrating how we can
adjust labels, grid lines and change axes to a logarithmic scale.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/gui/plot/LayerXY.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/gui/plot/LayerXY.html

DP Plot: Basic Plotting of Data

141

Set up our overlay plot again
r = RandomUniform() #
rn = Double1d(20).apply(r) - 0.5
n = Double1d.range(20)/10
e = EXP(n) #
en = e+rn
p = PlotXY(layers=[LayerXY(n, e, name="e", color=java.awt.Color.red)], \
 titleText="Exponential plot")
p[0].setStyle(Style(line = Style.NONE, symbol = Style.FSQUARE, symbolSize = 3.5, \
 color = java.awt.Color.blue))
p[1] = LayerXY(n, en, name="en")
The y axis is a bit cluttered, but a couple of commands will tidy up the mess
First of all we change the format of the tick labels...
p.yaxis.tick.label.format="%3.1f"
...then we display a label every two ticks
p.yaxis.tick.label.interval=2
Now we change the axis label
p.yaxis.title.text="log(exp(x/10))"
This shows the y axis gridlines, TRUE = 1
p.yaxis.tick.gridLines=1
Change x axis label
p.xaxis.title.text="index"
...and finally we adjust the range of y values that we
want the plot to have.
p.yaxis.setRange([0.5, 10])

Example 6.4. Axes, labels and grid lines

It is also possible to use TEX-like labelling for subscripts and superscripts. For example:

p.xaxis.title.text="x_1^{2a}"

Figure 6.10. Changing Axes, labels and added grid lines.

DP Plot: Basic Plotting of Data

142

6.4.2.2. Multiple Axis Labels

Each layer can have at most two axes (the first layer of a plot has two axes by default). If we have
more than one layer in the plot, we can add and visualise new axes. This is illustrated in the following
example.

Set up our overlay plot again
r = RandomUniform() #
rn = Double1d(20).apply(r) - 0.5
n = Double1d.range(20)/10
e = EXP(n) #
en = e+rn
p = PlotXY(layers=[LayerXY(n, e, name="e", color=java.awt.Color.red)], \
 titleText="Exponential plot")
p[0].setStyle(Style(line = Style.NONE, symbol = Style.FSQUARE, symbolSize = 3.5, \
 color = java.awt.Color.blue))
p[1] = LayerXY(n, en, name="en")
Get the layer we want to change
layer=p.getLayer(1)
Add a new x axis
layer.setXaxis(Axis())
NOTE: when using Axis() to create a new axis or recreate an axis the default
axis scaling/range values are taken and overwrite any axis manipulations
that may have been done before.
Release the lock on the new x axis
layer.xaxis.setLock(0)
Restrict the range of the plot to x values between 0.5 and 1.5
layer.xaxis.setRange([0.5, 1.5])
Add a label to this new axis
layer.xaxis.title.text="New X axis"
Update the en layer so that it is half the value it was
before and replot
layer.setXy(n, en/2)
Now put the plot in a situation where the new y axis value range
is automatically calculated.
layer.xaxis.setAutoRange(1)

Example 6.5. Putting multiple axes on the same plot.

Note

If after the second instruction (layer.setXaxis(Axis())) you get the error
TypeError: no public constructors for herschel.ia.image.Axis
it means that JIDE thinks you are referring to the Axis class in the image rather than the
plot package. Issuing the command from herschel.ia.gui.plot import *
should fix the problem.

The result of running this example is shown in Figure 6.11.

DP Plot: Basic Plotting of Data

143

Figure 6.11. Example of a second X-axis label relevant to the red line plot.

Some of the more useful methods that work on axes are listed in the tables below. For a complete
reference of the methods that can be used to manipulate and tune the appearance of the axes please
consult the API documentation of Axis.

Table 6.6. Useful ways of manipulating axes from the command line

axis = layer.getXaxis()
or getYaxis()

Gets the X or Y Axis object to do direct
manipulations on the corresponding axis

setAutoRange(flag)
If flag is true, adjusts the range of the specified

axis so that all datapoints will be shown

setRange([lower, upper])

Set the range of the specified axis to
values between lower and upper. Note
that we no longer have two arguments
for the lower and upper limits, but one
array argument containing both values.

setGridlines(flag)
Show grid lines for the specified axis if flag

is true, hide the grid lines if flag is false.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/gui/plot/Axis.html

DP Plot: Basic Plotting of Data

144

Table 6.7. Methods for handling labels on axes.

getTick().getLabel().setColor(java.awt.Color
colour)

Sets the colour of labels. Get method available.

getTick().getLabel().setFont(java.awt.Font
font)

Sets the font of labels. Get method available.

getTick().getLabel().setFontSize(double
size)

Sets the physical size of
labels. Get method available.

getTick().getLabel().setInterval(int
n)

Sets the interval (in ticks) between
successive labels. Get method available.

getTick().getLabel().setOrientation(int
n)

Sets the orientation of the labels (0 for
horizontal, 1 for vertical). Get method available.

getTick().getLabel().setStrings(String[]
labels)

Replaces the current labels with the values in an
array of String objects. Get method available.

getTick().getLabel().setPosition(AxisConstants.Position
position

Sets the position of the labels with respect
to the axis. Possible values are TOP or

BOTTOM for abscissa axis and LEFT or RIGHT
for ordinate axis. Get method available.

Table 6.8. Methods for handling ticks on axes.

getTick().setColor(java.awt.Color
colour)

Sets the colour of ticks. Get method available.

getTick().setHeight(double size)
Sets the physical height of the

major ticks. Get method available.

getTick().setInterval(double
interval)

Sets the interval (in axis units)
between ticks. Get method available.

getTick().setPosition(AxisConstants.Position
position

Sets the position of the ticks with respect to
the axis. Possible values are TOP or BOTTOM

for the abscissa axis and LEFT or RIGHT
for ordinate axis. Get method available.

getTick().setNumber(int ticks)
Sets the number of major ticks displayed

on the axis. Get method available.

getTick().setMinorNumber(int
minors)

Sets the number of minor ticks displayed
between two major ticks. Get method available.

getTick().setValues(Double1d
values)

Sets the values where ticks are to
be placed. Get method available.

getTick().setAutoAdjustNumber(boolean)
True if the number of ticks on

the axis is set automatically.

getTick().isAutoAdjustNumber()
Returns true if the number of ticks

on the axis is set automatically.

getTick().setAutoValues(boolean)
True if the positions of the ticks on

the axis are chosen automatically.

getTick().isAutoValues()
Returns true if the positions of the ticks

on the axis are chosen automatically.

DP Plot: Basic Plotting of Data

145

Table 6.9. Miscellaneous setters/getters of the Axis class.

setType(Axis.Type type)

Sets whether the axis is linear (0)
or logarithmic (1). You can also use
Axis.LINEAR and Axis.LOG as

input parameters. Get method available.

setLinear()
Sets the axis to a linear scale. Equivalent

to setType(Axis.LINEAR).

setLog()
Sets the axis to a logarithmic scale.

Equivalent to setType(Axis.LOG).

setColor(java.awt.Color colour) Sets the colour of the axis. Get method available.

setAutoRange(boolean
isAutoRange)

Sets whether the range is
automatically determined. Get

method isAutoRange available.

getTick().setGridLines(boolean)
Sets whether grid lines are displayed.

Get method isGridLines available.

setInverted(boolean)
Sets whether values on the axis are displayed

in inverted order (e.g. right to left for abscissa).
Get method isInverted available.

setPosition(AxisConstants.Position
position

Sets the position of the axis with respect to
the plot. Possible values are TOP or BOTTOM

for abscissa axis and LEFT or RIGHT
for ordinate axis. Get method available.

setRange(double[] range)
Sets the range of the axis. The lower

and upper limit are passed inside
an array. Get method available.

setRange(double
low, double high)

Sets the range of the axis. The lower and upper
limit are passed as separate double parameters.

getTitle().setPosition(AxisConstants.Position
position

Sets the position of the axis title with respect
to the axis. Possible values are TOP or

BOTTOM for abscissa axis and LEFT or RIGHT
for ordinate axis. Get method available.

setVisible(boolean isVisible)
Sets whether the axis is visible. Get

method isVisible available.

It is also possible to set the Axis in one go using GUI plot' Axis class. An example of this is:

x = Double1d.range(10)
y = x*x
plt = PlotXY()
plt[1] = LayerXY(x,y)
plt[1].xaxis = Axis(text="My x-axis")

Warning

Users should beware that use of the Axis class in this way will take a set of axis defaults,
such as axis ranges. If instead of the last line above the following two lines are used in
the given order

plt[1].xrange=[-1.0,15.0]
plt[1].xaxis = Axis(text="My x-axis")

The Axis command defaults will override the previously set plot axis range.

If only the axis label requires changing it is better to use the following

plt[1].xaxis.text = "New text"

DP Plot: Basic Plotting of Data

146

6.5. Adding Error Bars to a Plot
Error bars can be added to any layer of a plot. In order to add errors to points in a layer we use the
"setErrorX and "setErrorY" methods on a layer. For example:

layer.setErrorX(xerror_up, xerror_down)

and

layer.setErrorY(yerror_up, yerror_down)

Where "up" and "down" indicate the extent of the errors with increasing and decreasing values of x
or y.

The following example indicates how we can apply error bars to the default, first layer of a plot.

x = 1.0 + Double1d.range(10) # create x and y data arrays
y = x+5.0
yerr = SQRT(x) # associate errors with them
xerr = SQRT(x)/x

p = PlotXY(x,y) # create the plot
p.style = Style(line=Style.MARKED,symbol=6,color=java.awt.Color.red) # set style
p.xaxis = Axis(titleText="x-axis (cm)",type=Axis.LOG) # make it a log-log plot
p.yaxis = Axis(titleText="y-axis (cm)",type=Axis.LOG)
p.xrange=[1.0,11.0] #set how large the plot will be in the x/y directions
p.yrange=[5.0,16.0]
p.setErrorY(yerr,yerr) #apply error bars
p.setErrorX(xerr,xerr)
p.getLegend().setVisible(0) # remove the legend
p.setTitleText("Error bar example plot") # give the plot a title

Example 6.6. Adding error bars to plots

The above example produces the plot shown in Figure 6.12.

It is also possible to access non default layers. For example, carrying on from the previous example
above we could add a second layer and apply error bars to that too.

x2 = 3.0 + Double1d.range(10) # create new x and y values to plot
y2 = x+ 4.0
y2err = SQRT(x)/4 # create new error bars for plotting
x2err = SQRT(x)/(2*x)
p[1] = LayerXY(x2,y2)
p[1].style = Style(line=Style.MARKED,symbol=6,color=java.awt.Color.blue)
p[1].setErrorX(x2err,x2err) # apply different error bars
p[1].setErrorY(y2err,y2err)

The final plot is shown in Figure 6.13.

DP Plot: Basic Plotting of Data

147

Figure 6.12. Setting errors in a plot

DP Plot: Basic Plotting of Data

148

Figure 6.13. Applying errors to a specific layer of a plot

6.6. How can I annotate, decorate and save
my plot?

There are quite a number of methods that we can use to make our plot more appealing and informative.
A number of these methods were already mentioned in the sections on layers and axes, but we are
going to put them into practice here. We continue with our example and add proper names for layers,
annotate some datapoints and put a title on top of the figure (see Figure 6.14). The example below
also shows how to extract the Layer objects from the plot in order to manipulate them directly.

DP Plot: Basic Plotting of Data

149

Set up our overlay plot again
r = RandomUniform() #
rn = Double1d(20).apply(r) - 0.5
n = Double1d.range(20)/10
e = EXP(n) #
en = e+rn
p = PlotXY(layers=[LayerXY(n, e, name="e", color=java.awt.Color.red)], \
 titleText="Exponential plot")
p[0].setStyle(Style(line = Style.NONE, symbol = Style.FSQUARE, symbolSize=3.5, \
 color = java.awt.Color.blue))
p[1] = LayerXY(n, en, name="en")
Get the layer we want to change
layer = p.getLayer(1)
Change the name (and the legend) for this layer to say what we want
layer.setName("exp+noise")
Place some annotation at position 1, 2
layer[0] = Annotation(3, 6, "Noise on top of exp()", color=java.awt.Color.blue)
Get the first layer of the plot...
layer = p.getLayer(0)
...and change its name
layer.setName("exp")
Set a new style
layer.setStyle(Style(line = Style.MARKED, symbol = Style.FTRIANGLE, \
 color = java.awt.Color.green, symbolSize=7))
Give the plot a title
p.title.text = "Example of a layered plot"
Save it as a PNG file for importing as a picture into documents etc.
p.saveAsPNG("myPlot.png")
Alternatively, save it as a JPEG file...
p.saveAsJPG("myPlot.jpg")
...or an EPS file
p.saveAsEPS("myPlot.eps")

Example 6.7. Decorating a plot.

Note that we changed the name of both layers in the second and fifth line of the script. Changing the
name also changes the legend displayed on the plot.

For the exp+noise layer we put an annotation at a specific point (layer coordinates) in the plot.
Please check the detailed package documentation of the Annotation class for methods to change
the font, the size and other properties of an annotation.

For the exp layer we have changed the appearance of the datapoints to a line with triangles on top of
it. Please refer to Section 6.4.1 for information on basic manipulation methods for layers.

DP Plot: Basic Plotting of Data

150

Figure 6.14. The plot has been annotated and decorated.

6.7. How can I make my plots more colourful?
Colours can be set for a number of parts within a plot. Methods can normally take a colour at creation
time e.g. when adding a layer to the plot you can specify the colour to be used for its datapoints or for
individual layers, labels etc. the colour can be specified with dedicated commands.

To specify a colour as an argument you have to pass a java.awt.Color object. The easiest way to
do this is to use their default names as e.g. java.awt.Color.blue. If you don't want to write the
java.awt. bit every time you will need to import the awt package as illustrated in the ???. Once
imported colours can be changed as follows:

layer.setColor(Color.green)

The default names for colours are: black, blue, cyan, darkGray, gray, lightGray, green, magenta,
orange, pink, red, white and yellow (all preceded by Color.). Another easy way to use a custom colour
is to specify the red, green, blue value in ranges from 0 to 255: Color(red, green, blue). So
we could also do the following to get a similar green colour.

layer.setColor(Color(0,250,20))

6.8. Creating file output and printing a plot
without displaying

Sometimes you do not want to plot to the screen, but would rather write your plots directly to files.

DP Plot: Basic Plotting of Data

151

• We can generate a plot using the basic constructor (p=PlotXY()), setting it to invisible
(p.setVisible(0)) which can later be filled by plot information such as x and y data. This
works, but will cause window flashes on the computer screen. Better is to completely render the
plot. The last value of "0" in the second form of the plot construction, below, indicates that the plot
will not be made visible when it is created but can be made visible at a point of the user's choosing.

Create an array with 100 doubles in it
data = Double1d(range(100))/10.0
Hide an unfilled plot... but still showing the window!
p = PlotXY(visible=0)
Hide a completed plot of data versus data squared. Causes window flashes
p2 = PlotXY(data, data.copy().power(2), titleText = "Title", visible = 0)

Our plot can now be made visible using

Now make the plot visible
p.setVisible(1)

• To save the plot directly to file you can then use the following two methods:

p.saveAsJPG("filename") # for a JPG file
p.saveAsPNG("/home/mypath/filename") # for a PNG file
p.saveAsEPS("filename") # for an EPS file

6.8.1. Using batch mode

Imagine you have written a script for drawing a plot made of several layers. Normally, when you
execute the script, the plot will first be created and then redrawn each time a new layer is added. You
may want the plot to be drawn just once with all the layers already in place, rather than being updated
at each intermediate step. You can do that by invoking the setBatch method on your plot object.
For example, here is a script snippet where the batch mode is turned on right after creating a plot:

...previous script commands...
myPlot = PlotXY()
myPlot.setBatch(True) # We could also write myPlot.setBatch(1)
...the script goes on...

After the last plot commands you may set the batch mode back to false with
myPlot.setBatch(False) or myPlot.setBatch(0), and all the layers will be drawn at
once.

6.9. Windows containing more than one plot
More than one PlotXY plot can be placed within a single window using the setLayer method. Each
layer that a user creates can be placed in a grid which is x units long by y units in height. The layer is
given an integer identifier that indicates where in the grid it should be put.

plot.setLayer(int id, LayerXY layer, int gridx, int gridy)

Following this we can place previously created PlotXY components into each of the window positions.
We indicate their position along the width (starting from 0) then the height (starting from 0). So we
might place the 4 plots (plot1, plot2, plot3, plot4) into our composite window using
code such as in Example 6.8.

DP Plot: Basic Plotting of Data

152

Create the data
data = Double1d.range(100)/10.0
data2 = data.copy().power(2)
data3 = data.copy().power(3)
data4 = data.copy().power(4)
Create individual plots to
add to our composite plot
plot1 = LayerXY(data, data)
plot1.setName("linear")
plot1.setColor(java.awt.Color.red)
plot2 = LayerXY(data, data2)
plot2.setName("Square")
plot2.setColor(java.awt.Color.green)
plot3 = LayerXY(data, data3)
plot3.setName("Cubic")
plot3.setColor(java.awt.Color.blue)
plot4 = LayerXY(data, data4)
plot4.setName("4th power")
plot4.setColor(java.awt.Color.orange)
start adding in the layers in grid
positions 0,0 to 1,1
p = PlotXY()
p.setLayer(0,plot1,0,0)
p.setLayer(1,plot2,0,1)
p.setLayer(2,plot3,1,1)
p.setLayer(3,plot4,1,0)
Let's change the colour of plot1
we use it's id number '0'
p[0].setColor(java.awt.Color.black)
We can also change other things such
as the axis labels for just one plot
within the grid.
p[0].xaxis.title.text = "Unit"
p[0].yaxis.title.text = "Linear"

Example 6.8. Multiple plotting

The above code produces the multiple plot window shown in Figure 6.15. Alternately, layers can
simply be added to plots -- no id number is then required.

pp = PlotXY()
pp.addLayer(plot1,0,0)
pp.addLayer(plot2,0,1)
pp.addLayer(plot3,1,1)
pp.addLayer(plot4,1,0)

DP Plot: Basic Plotting of Data

153

Figure 6.15. Example of multiple plots in a window from Example 6.8.

The properties of any one of the layers in the PlotXY window can be adjusted, e.g.,

p.props()

6.10. Mouse Interactions with Plots
We can get information from plots using a mouse command. Two basic mouse commands allow point
values to be obtained from plots and nearest data points values to be found.

In order to find mouse coordinates within a given layer of a plot we can use the "getCoords" method.
This allows multiple points to be obtained and stored in an array.

#Mouse Coordinates:
#get mouse coordinates from the first of our
#multiple plots (click on plot layer 3 times)
points=plot1.getCoords(3) #
print points

This produces x and y coordinates in two arrays of doubles.

x positions in a Double1d array
xarray = Double1d(points[0])
y positions in a Double1d array
yarray = Double1d(points[1])

Similarly we can get nearest data points

DP Plot: Basic Plotting of Data

154

#Data coordinates:
#get 5 Data points (click on plot layer 5 times)
dataxy=plot1.getDataCoords(5) #
print dataxy

Once again, the output is in two arrays of x and y coordinates.

6.11. What about a complete PlotXY
example?

You can find some demo scripts packed in a ZIP file at this address:

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/ia/ia-8.3/plot_demo.zip.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/ia/ia-8.3/plot_demo.zip

155

Chapter 7. Display - Handling
Images and Cubes

7.1. Introduction
This chapter describes how you can use Images and Cubes to store image and cube data,
how you can visualise/display them and which basic types of analysis and/or manipulation are
applicable on them. Additional information can be found in the developer (API) documentation of
herschel.ia.dataset.image, herschel.ia.gui.image and herschel.ia.toolbox.image packages.

Note

A number of classes must be imported manually in order to avoid a the occurence of a
strange NameError message. This can easily be done using the following statements :

from java.awt import Font
from herschel.share.unit import *

Note

The herschel image packages (herschel.ia.dataset.image, herschel.ia.dataset.image.wcs,
herschel.ia.gui.image and herschel.ia.toolbox.image) are automatically loaded when
starting up the default version of Herschel DP. However, these might have to be imported
by hand, in a similar way.

Throughout the chapter, a JPEG image of NGC 6992 is used as example. This image can be fetched
from the doc/ia/document/um/images folder of your HCSS installation (click here for a local
link: ngc6992.jpg).

7.2. Images and Cubes
An image is a specific kind of product, which is composed of

• the image, described by a Numeric2d (i.e. a 2D numeric array : this can be a Double2d, a
Float2d, a Long2d, an Int2d, a Short2d or a Byte2d)

• the errors on the image, also described by a Numeric2d, but optional

• the exposure of the image (idem)

• a flag, described by a Flag (also optional)

Other information, stored in the Image can be e.g. a Wcs (World Coordinate System) to do coordinate
conversions, and the wavelength at which the image was taken.

When constructing an Image, the user usually starts by making the Wcs and the Numeric2d that
will be used as image data. This is held in a SimpleImage, which is the image format used within
the HCSS.

The following example shows how you can construct a SimpleImage with a valid Wcs, without
errors and exposure, and with one pixel (55, 35) flagged out. It has 60 rows and 40 columns.

../images/ngc6992.jpg

Display - Handling Images and Cubes

156

Note

The reference pixel is at position (crpix1, crpix2), with the pixels starting to count at (1,1).
This corresponds to row = column = 0.

Note

The crval keywords for the pixel scaling, are given in decimal degrees in RA en Dec.

Imports
from herschel.share.unit import *

Construction of the image data
 (1)
myImageData = Float2d(60,40) #

for row in Int1d.range(60):
 for column in Int1d.range(40):
 myImageData.set(row, column, row + column)

Construction of the flag (2)
myFlag = Flag(60,40) #
flaggedOut = Bool2d(60,40)
flaggedOut.set(55,35, True)
myFlag.setFlag("UNVALID", flaggedOut)

Construction of the unit (3)
myUnit = FluxDensity.MILLIJANSKYS #

Construction of the Wcs (4)
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = -22.5, \
 cdelt1 = 0.00028, cdelt2 = 0.00028, ctype1 = "RA---TAN", ctype2 = "DEC--TAN")
Construction of the SimpleImage (5)
myImage1 = SimpleImage(description = "test image", image = myImageData, \
 flag = myFlag, unit = myUnit, wcs = myWcs)
Or using the ImportImageTask (6)
myImage2 = SimpleImage(wcs = myWcs)
importImage(image = myImage2, filename = "ngc6992.jpg")
where we now import our JPG image into the SimpleImage

1. The construction of a Float2d : at position (row, column) the pixel value is set to row + column

2. Pixel (55,35) is flagged out, using the UNVALID flag. Other flag types are possible (look in the
subsection on flags).

3. Setting the unit for the pixel values. The flux associated with one count in the image (equivalent
to BUNIT in a FITS image).

4. The construction of a Wcs object. The center pixel is set tot (29,29) and corresponds to the sky
coordinate with right ascension 2h00m00s and declination -22d30'00". For more information, look
into the subsection on Wcs.

5. Construction of a SimpleImage with the given image data and Wcs, but without errors and
exposure.

6. Construction of another SimpleImage with the same Wcs applied to it. The
ImportImageTask is used to load a JPEG image. There is no flag, no error, nor exposure in
this case.

Example 7.1. Constructing a SimpleImage

Note

Using the ImportImageTask, data from *.jpeg, *.jpg, *.tiff, *.png, *.fits, *.fts or *.fit
files can be loaded into an Image. When a FITS file is imported, the information in the
header of the file is also included.

Display - Handling Images and Cubes

157

A Cube works in a very similar way to an Image. The only difference is that 3D datatypes should be
given as parameters, instead of 2D. This holds for the cube data, as well as for the errors, exposures
and flag. In the Wcs the parameters for the 3rd axis should also be specified.

7.2.1. Flagging out Pixels : the Flag Class
A Flag can be used to flag out pixels and specifying the reason for doing so. In the example below
it is explained how you can do this.

myFlag = Flag(60,40) # (1)
myFlag.addFlagType("SATURATED", "Saturated pixels") # (2)

flaggedOut1 = Bool2d(60,40)
flaggedOut1.set(55,35, True)
myFlag.setFlag("UNVALID", flaggedOut1) # (3)

flaggedOut2 = Bool2d(60,40)
flaggedOut2.set(50,35, True)
myFlag.setFlag("SATURATED", flaggedOut2) # (4)

print myFlag.getFlagTypes() # (5)
print myFlag.getFlag() # (6)
print myFlag.getFlag("UNVALID") # (7)

1. The Flag you create must be of the same dimensions as the Image to which you're going to attach
it. In this case, it is a 60*40 Flag.

2. You can create up to 15 different flag types. Here, you create a new flag type with the name
SATURATED. One flag type is standard available : UNVALID.

3. In these three lines is described how you can flag out the pixel with coordinate (55,35) with the
UNLVALID flag type. Note that you have to construct a Bool2d for this and that this must be set
to True at the appropriate position.

4. The saturated pixels are flagged out in a similar way. Note that you had to add the SATURATED
flag type yourself.

5. Here you print the existing flag types for this Flag. In this case, these are SATURATED and
UNVALID.

6. Here you print a Bool2d with the same dimensions as the Flag. All flagged pixels are marked
as True. In this case, pixels (55,35) and (50,35) are marked as True, all the others as False.

7. Here you print a Bool2d with the same dimensions as the Flag. All pixels flagged as UNVALID
are marked as true, all others as false.

Example 7.2. Constructing a SimpleImage

Note

We are well aware of the fact that "unvalid" in not a true English word. In the future this
flag type should be changed to INVALID.

7.2.2. Coordinate Conversions: the Wcs Class
A Wcs makes sure you have all the information to do coordinate conversions. This only holds if the
Wcs is valid. In the following example is shown how you can construct such a Wcs.

Display - Handling Images and Cubes

158

myImage = SimpleImage()
myImage.setImage(RESHAPE(Double1d.range(200*300), [200,300]))

myWcs = Wcs()

myWcs.setCtype1("LINEAR")
myWcs.setCdelt1(5)
myWcs.setCrval1(200)
myWcs.setCunit1("K")
myWcs.setCrpix1(0)

myWcs.setCtype2("LINEAR")
myWcs.setCdelt2(0.05)
myWcs.setCrval2(2.0)
myWcs.setCunit2("V")
myWcs.setCrpix2(0)

myImage.setWcs(myWcs)

print myImage.getWcs() # To see the Wcs of the image
print myImage.getWcs().isValid() # To see whether the Wcs is valid

Warning

The above code will generate an image with the value 200 assigned to the NAXIS2
keyword and 300 assigned to NAXIS1. In other words, the image size will be 200 pixels
along the y axis and 300 pixels along the x axis. The coordinate values will be displayed
in this order (y, x) in the Image Viewer. For an explanation of why the y size comes before
the x size, see Section 4.6.1 in Chapter 4.

The above example creates a coordinate system, where temperature and current are set for the axes.
The x-axis is linear (ctype1), has the reference pixel in pixel 0 (crpix1), which corresponds to column
= -1, has a value of 200 in the reference pixel (crval1), uses steps of 5 degrees (cdelt1) and has Kelvin
as unit. The y-axis on the other hand, is also linear (ctype2), has the reference pixel in row 0 (crpix2),
which corresponds to row = -1, has value 2 in the reference pixel (crval2), uses steps of 0.05 degrees
(cdelt2) and has Volts as unit.

Note

Rows and columns start counting from (0,0), pixels from (1,1).

To ensure the possibilty to convert pixel coordinates to sky coordinates and vice versa, you can make
use of the Wcs class. This can be done using the standard Wcs parameters, as shown in the example
below.

myWcs = Wcs() # (1)
myWcs.setCrpix1(128)
myWcs.setCrpix2(128) # (2)
myWcs.setCrval1(101.676612741936)
myWcs.setCrval2(0.829427624677429) # (3)
myWcs.setCtype1("RA---TAN")
myWcs.setCtype2("DEC--TAN") # (4)
myWcs.setRadesys("ICRS")
myWcs.setEquinox(2000.0) # (5)
myWcs.setCd1_1(-1.9064468150235E-6)
myWcs.setCd1_2(3.39797311269006E-4)
myWcs.setCd2_1(3.39811958581193E-4)
myWcs.setCd2_2(1.580446989748E-6) # (6)

1. The creation of a Wcs.

2. The reference pixel pixel is set to pixel (128,128).

Display - Handling Images and Cubes

159

3. The reference is set at the position with right ascension 6h45'42.387" and declination 0d49'45.94".

4. The projection is set. The first axis defines the right ascension, the second axis the declination.
Both use the gnomonic projection.

5. We use the standard ICRS type and set the equinox to 2000.0.

6. The linear transformation matrix is set. This defines the pixel scaling and the rotation of the Image.

7.3. Display vs. Image Explorer
When only JIDE is being used, you need to use an object of the Display class to view Images
and Cubes. In HIPE, you can explore your image just by double-clicking on it in the Variables view.
Display remains very important though, so in this section you get an overview of the functionality
of Display as well as of the image explorer in HIPE.

7.3.1. Display

Let's display the Images we produced in the previous sections of this chapter. This can easily be
done using the following:

myDisplay1 = Display(myImage1)
myDisplay2 = Display(myImage2)

The variables myDisplay1 and Display2 allow you to refer to the Displays and their contents
separately. The results of these commands are shown below.

Note

When you create a Double2d(height, width), you create an array of pixels where height is
the number of rows and width is the number of columns.

Display - Handling Images and Cubes

160

Figure 7.1. Display of "myImage1".

Display - Handling Images and Cubes

161

Figure 7.2. Display of "myImage2".

In both cases, the image is shown in the window. Flagged pixels are shown as black pixels. On the
right hand side, you see two smaller frames. The upper one gives an overview of the image together
with the x- and y-axes, and the north- and east-axes. The lower one zooms in on the image at the
current mouse position. At the bottom of the window you see the colour bar (on which you can click
and move the mouse to change its slope) and the status bar. The numbers in the status bar are the
pixel coordinates (y,x), the intensity value and the sky coordinates (if available) at the current mouse
position. The button allow you to zoom in, zoom out, zoom to fit, return to normal zoom, and to flip
the image (along the y-axis). Also the current zoom factor is shown.

Note

The pixel position is currently displayed as (y, x).

You can add an extra parameter when initialising the Display, which decides whether the window
should be shown or not. This can be very useful in scripts, where you don't want all images to be

Display - Handling Images and Cubes

162

shown on the screen, but where you want to look ate some images after the execution of the script.
This can be done like this :

myDisplay = Display(myImage, False)

You can make the window visible, typing

myDisplay.setVisible(True)

7.3.1.1. Display in more Detail

From now on we will work with myDisplay2. In this section we will describe some, but not all,
methods that are applicable on Display objects. For an exhaustive list of all methods, have a look
in the Display javadoc. To apply a certain method, you must type myDisplay2.<method>.

Table 7.1. Useful methods on Display

getIntensity(int row, int column) -> double Returns the intensity at the given pixel
coordinates (row, column)

getIntensityFromWorldCoordinates(double ra,
double dec) -> double

Returns the intensity at the given sky coordinates
(ra, dec)

getUnit() -> Unit Returns the unit of the shown image

setUnit(Unit<?> unit) Sets the unit of the shown image

getZoomFactor() -> float Returns the zoom factor of the shown image

setZoomFactor(float zoomFactor) Sets the zoom factor

zoom(double row, double column, float
zoomFactor)

Zooms on the given pixel coordinates (row,
column) with the given zoom factor

zoomWorldCoordinates(double ra, double dec,
float zoomFactor)

Zooms on the given sky coordinates (ra, dec) with
the given zoom factor

zoomIn() Zooms in

zoomOut() Zooms out

getCutLevels() -> double[] Returns the cut levels of the shown image

setCutLevels(double percent) Sets the cut levels according to the given
percentage

setCutLevels(double[] minmax) Sets the cut levels

setCutLevels(double min, double max) Sets the cut levels

flipYAxis() Flips the y-axis

isFlipped() -> boolean Returns whether the y-axis is flipped

getDepthAxis() -> int Returns the depth axis

setDepthAxis(int depthAxis) Sets the depth axis

7.3.1.2. How to use different Layers?

It is possible to display several layers in one Display. This can be done by adding a layers to the
existing Image, or by displaying a Cube or a Numeric3d datatype (Double3d, Float3d,...).
Adding a layer can be done like this :

myDisplay2.addLayer(myImage1)

Display - Handling Images and Cubes

163

This way we add myImage1 to myDisplay2, as shown on the screenshot. You also see that a slider
appears in the status bar, which you can use to switch between the different layers.

Figure 7.3. Adding layers to a Display.

Note

When you change the zoom factor of the displayed Image, it is important to know what
will happen to other Layers. If the current Image was added to the Display separately
(as an Image), then no other Layers will be affected. However, if the displayed Image
is part of a Cube, all other layers in this Cube will be affected.

7.3.1.3. How to place Annotations on an Image?

It is possible to draw figures and put text, so called annotations, on an Image, using Display. This
can be done in two different ways ;

Display - Handling Images and Cubes

164

1. Using the command line from your DP session

2. Using the annotation toolbox

These are explained in the following two subsections.

Annotations from the Command Line in your DP session

You can place these kinds of annotations on an Image in Display, via the command line :

• Regular text annotations, using the addAnnotation(...), setAnnotationFont(...) and
setAnnotationFontColor(...) methods

• Greek text annotations, using the addGreekAnnotation(...), setAnnotationFont(...) and
setAnnotationFontColor(...) methods

Note

The addGreekAnnotation(...) method converts normal characters to Greek characters
('a' becomes 'alpha', 'b' becomes 'beta',...)

• Figures as annotations, using the addEllipse(...), addLine(...), addPolygon(...), addPolyline(...)
and addRectangle(...) methods

Note

The addPolygon(...) and addPolyline(...) methods need an array of doubles as
parameter. In such an array, the coordinates should be added as polygon(([x1, y1, x2,
y2,...]),...).

The following example shows how you can do this on the command line. Also the resulting Display
is shown.

Imports
from java.awt import Font
from java.awt import Color

myDisplay2 = Display(myImage2)

Placing a text annotation at position (321, 224)
myDisplay2.addAnnotation("Veil nebula", 321, 224)
Changing the font type and size of the annotations
myDisplay2.setAnnotationFont(321, 224, Font("Dialog", 0, 32))
Changing the annotation colour
myDisplay2.setAnnotationFontColor(321, 224, Color(0,0,255))
Adding an ellipse with center at (268.5,500.0), width = 38 and height = 37,
linewidth = 3.0 and black colour
myDisplay2.addEllipse(268.5, 500.0, 38.0, 37.0, 3.0, Color.green)
Adding a Greek text annotation at position (100,500)
myDisplay2.addGreekAnnotation("a = 12.34, d = +30.30", 100, 500)
Changing the font and colour of the annotation
myDisplay2.setAnnotationFont(100, 500, Font("Dialog", 0, 20))
myDisplay2.setAnnotationFontColor(100, 500, Color(0,0,0))
But white is more visible
myDisplay2.setAnnotationFontColor(100, 500, Color.white)

Display - Handling Images and Cubes

165

Figure 7.4. Adding annotations to a Display.

Annotations from the Annotation Toolbox

Instead of typing all these commands, it is easier to use the annotation toolbox. This can be opened by
clicking right on the Display and choosing Annotation toolbox from the menu, or by typing

myDisplay2.annotationToolbox()

Display - Handling Images and Cubes

166

Figure 7.5. The Display annotation toolbox.

The icons, appearing in the annotation toolbox, have the following usage (from left to right and from
top to bottom) :

• select annotation

• select all annotations in a (rectangular) region

• draw a line

• draw a rectangle

• draw an ellipse

• draw a polyline

• draw a polygon

• draw with the free hand

Display - Handling Images and Cubes

167

• add a text annotation

• remove the selected annotation(s)

• remove all annotations

Letting the mouse linger over an icon also displays its function in a tooltip.

If you indicate you want to draw a polyline or a polygon, you must select the points which should be
used as corner, by clicking the mouse on the image. Double clicking will end the selection procedure.

The three buttons below the buttons already described, change the view of the annotations :

• change the thinckness of the line

• change the colour of the annotation

• change the font of the text annotation

The jython code needed to get the same effect via the command line, is generated in the lower part
of the annotation toolbox. If you change the size of a text annotation, this will not be reflected in the
jython code.

Note

The lower part, concerning the jython code, will only be availaible if you open the
annotation toolbox via the command line, and not if you open it by choosing the annotation
toolbox via the menu, which appears when right clicking on the image.

7.3.1.4. Other Functionalities available via the Menu

If you right-click on the image, you will see the a popup menu appears from which various possibilities
can be chosen. These are :

• editing the colours

• editing the cut levels

• zooming in/out

• opening an annotation toolbox

• creating a screenshot

• printing the image

• flipping the y-axis

Editing the Colours

When you choose Edit colors, you will see a popup window appearing, where you can change

• the colour algorithm

• the colour map

Display - Handling Images and Cubes

168

• the intensity scale

The popup window is shown below.

Figure 7.6. Colour editting of image displays.

The same popup window will appear when typing

myDisplay.editColors()

Editing the Cut Levels

When you choose Edit cut levels, a window appears showing a histogram with the current cut levels
and various possibilities to change the cut levels :

• you can play with the slider bar using the mouse

• you can cut away the outer parts of the histogram by specifying the percentage you want to keep

• you can apply a median filter

Either which possibility you choose, the histogram as well as the image will be adapted.

The popup window is shown below.

Display - Handling Images and Cubes

169

Figure 7.7. Editting cut levels in displayed images.

The same popup window can be opened, typing

myDisplay.editCutLevels()

Zooming in/out

Instead of using the buttons in the status bar to zoom in/out, you can choose Zoom in or Zoom out in
the menu that appears when right clicking on the image.

Annotation Toolbox

This was already explained earlier in this chapter.

Printing and creating a Screenshot

When you choose Create screenshot, the current view or the image can be saved as *.JPG, *.PNG
or *.BMP. By current view we mean the image as you see it displayed, including the annotations.
When saving the image you save the whole image, but without the annotations. When you choose
Print image, you can print the image (without the annotations) on paper, or print it to a file.

Flipping the y-axis

Instead of pressing the button with the arrow in the status bar, you can choose Flip y-axis from the
menu that appears when right clicking on the image.

7.3.2. Image explorer

The image explorer is a HIPE-integrated version of Display. It can be opened by double-clicking
on an Image or a Cube in the Variables view. If no data is loaded however, only a popup window

Display - Handling Images and Cubes

170

appears, warning you about the situation. In that case, no explorer will be opened. Otherwise, the
explorer will open in the Editor. You will notice that it looks very similar to Display, including the
image panner, image zoom, color bar and status bar. The same popup menu will appear when right
clicking on the image, as for Display.

Unlike for Display, you do not have direct access to the explorer. This means that you cannot use
the explorer on the command line.

7.4. Visualisation, Analysis and Manipulation
of Images

A large set of functionalities is available on the command line in HIPE and most of them
are also available in a GUI-driven environment. In the past, this environment used to be the
ImageAnalysisToolbox, but now we're making efforts to integrate everything into HIPE. Thus,
in this section, you will find how you can do everything, as integrated into HIPE (if available). Here
is a list with all available functionalities :

1. Profile plotting

2. Aperture photometry

3. Histograms

4. Contour plotting

5. Mosaicking

6. Smoothing

7. Clamping/clipping

8. Cropping

9. Rotating

10.Scaling

11.Translating

12.Transposing

13.Flagging saturated pixels

14.Getting the cut levels

15.Image arithmetics

In the following subsections, we will elaborate on all of these functionalities.

7.4.1. Profile Plotting

ProfileTask allows you to determine the intensity of the pixels along a straight line on a given
Image. This can be convenient to see whether there is a gradient in intensity in your image. You can
do this on the command line in HIPE, or via a HIPE-integrated GUI.

Display - Handling Images and Cubes

171

On the command line

The only input parameters are

• the image (Image image)

• the begin and end of the straight line either in pixel (Doubles beginX, beginY, endX and
endY) or in sky coordinates (Strings beginRA, beginDec, endRA and endDec)

To make a profile plot, simply type

profilePixel = profile(image = myImage2, beginX = 236.0, beginY = 378.0, \
 endX = 557.0, endY = 232.0)
profileSky = profile(image = myImage2, beginRA = "02:00:15.119", \
 beginDec = "-22:24:07.16", endRA = "02:00:38.462", endDec = "-22:26:34.08")

Both output products (profilePixel and profileSky) will appear in the Variables view in
HIPE.

Via the HIPE-integrated GUI

If you select myImage2 from the Variables view and then click on profile in the Tasks view, a task
dialog opens in the Editor in HIPE. In the upper part, the Image (myImage2) is shown. Here you
must click a first time to fix the begin of the straight line. As you move the mouse over the image,
you will see a straight line being updated, as well as the corresponding profile plot in the lower part of
the task dialog. If you click a second time on the image, the straight line is fixed, and a new variable
profile appears in the Variables view and the corresponding command is echoed to the Console.

When you press the clear button, the straight line will be removed from the image and the intensity
plot in the lower part of the task dialog will be cleared.

You can also drag the straight line across the image and manipulate it from the moment you have
fixed it (by clicking a second time). You will see that the profile plot in the lower part of the task
dialog will be updated. To get the adapted output product in the Variables view however, you must
press the Accept button again. If you hit this button accidentaly, before finishing drawing the straight
line, a popup window will appear to warn you about this. If you click OK, you can continue drawing
the straight line.

Display - Handling Images and Cubes

172

Figure 7.8. Using the profile task on an image.

Inspecting the result

The resulting product, profile, can be inspected by double-clicking on it in the Variables view.
An explorer will be opened in the Editor, showing a table with the parameters (begin and end of the
straight line in pixel and - if available - sky coordinates) and an intensity plot of the pixels along the
corresponding straight line. The data in this product can also be inspected on the command line:

Returns a Double1d with the pixel coordinates of begin and
end of the straight line
profile.getBeginPixelCoordinates()
profile.getEndSPixelCoordinates()

Returns a String1d with the sky coordinates of begin and
end of the straight line
profile.getBeginSkyCoordinates()
profile.getEndSkyCoordinates()

Returns the intensity plot as a Double1d

Display - Handling Images and Cubes

173

profile.getProfile()

Returns the unit of the intensity
profile.getIntensity()

This is what the profile explorer looks like :

Figure 7.9. Profile explorer appearance.

7.4.2. Aperture Photometry
Another kind of analysis you might want to do on an Image is aperture photometry. This can be done
in several ways :

• with a circular target aperture and an annular or a rectangular sky aperture

• with a circular target aperture and a fixed value for the sky intensity

Display - Handling Images and Cubes

174

In all cases, you can perform the calculations on the command line in HIPE or via a HIPE-integrated
GUI.

7.4.2.1. Aperture Photometry with a circular Target Aperture and
an annular Sky Aperture

If you want to do aperture photometry for a circular target, you can choose to estimate the
sky using an annular sky aperture, centered around the target. This can be done using the
AnnularSkyAperturePhotometryTask.

On the command line

The input parameters you need are :

• the image (Image image)

• the target center either in pixel (Doubles centerX and centerY) or sky coordinates
(Strings centerRA and centerDec)

• the target radius either in pixels (Double radiusPixels) or in arcsec (Double
radiusArcsec)

• the inner and outer radii of the annular sky aperture either in pixels (Doubles innerPixels
and outerPixels) or arcsec (Doubles innerArcsec and outerArcsec)

• the kind of pixels (entire/fractional) used (Boolean fractional (optional - per default : True))

• the sky estimation algorithm (Integer algorithm)

To perform aperture photometry, just type

The target center specified in pixel coordinates, the radii in pixels
and using fractional pixels
photPixels = annularSkyAperturePhotometry(image = myImage2, centerX = 430.0, \
 centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
 fractional = 1, algorithm = 4)

The target center specified in sky coordinates, the radii in arcsec
and using entire pixels
photSky = annularSkyAperturePhotometry(image = myImage2, \
 centerRA = "02:00:29.214", centerDec = "-22:33:37.32", radiusArcsec = 5.04, \
 innerArcsec = 20.16, outerArcsec = 40.32, fractional = 0, algorithm = 4)

Note

You can only specify distances in arcsec (here radiusArcsec, innerArcsec
and outerArcsec, if the pixel scaling is the same in both directions
(myImage2.getCdelt1() = myImage2.getCdelt2()). Moreover, the Image must have a
valid Wcs.

Note

All distances must be specified in the same unit, so either pixels or arcsec.

You have the possibility to choose between five sky estimation algorithms : average, median, mean-
median, synthetic mode and the algorithm used by Daophot. Here is how you can choose between
these options on the command line :

Display - Handling Images and Cubes

175

Using the average sky estimation algoritm
photAverage = annularSkyAperturePhotometry(image = myImage2, centerX = 430.0, \
 centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
 algorithm = 0)

Using the median sky estimation algorithm
photMedian = annularSkyAperturePhotometry(image = myImage2, centerX = 430.0, \
 centerY = 467.1, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
 algorithm = 1)

Using the mean-median sky estimation algorithm
photMeanMedian = annularSkyAperturePhotometry(image = myImage2, centerX = 430.0,\
 centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, \
 outerPixels = 40.0, algorithm = 2)

Using the synthetic mode sky estimation algorithm
photSyntheticMode = annularSkyAperturePhotometry(image = myImage2, \
 centerX = 430.0, centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, \
 outerPixels = 40.0, algorithm = 3)

Using the Daophot sky estimation algorithm
photDaophot = annularSkyAperturePhotometry(image = myImage2, centerX = 430.0, \
 centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
 algorithm = 4)

All these output products will appear in the Variables view in HIPE.

Via the HIPE-integrated GUI

If you select myImage2 from the Variables view and then click on annularSkyAperturePhotometry
in the Tasks view, a task dialog opens in the Editor in HIPE. In the upper part you see the image on
which you can mark the target center, if the Coordinates combo box is set to Mouse interaction. If you
click on the Image, a circle (with a radius of five pixels) will indicate where you have marked the
target. You can drag this circle over the image if you want it to be elsewhere. If you set this combo box
to Pixel coordinates or Sky coordinates, you must specify the appropriate coordinates in the foreseen
fields that will appear.

The next thing you should do, is specifying the target radius and the inner and outer radius of the
annular sky aperture in the Apertures part of the task dialog. But first you must indicate - using the
Radius combo box - which unit you're going to use (pixels or arcsec).

In the Sky estimation part of the task dialog you can choose either to use fractional or entire pixels to
do the calculations, and indicate which sky estimation algorithm you want to use.

If you are happy with all filled out parameters, you must press the Accept button in order to start
the calculations. If something goes wrong, you are warned with an appropriate error message. For
example, if you choose to mark the target center via mouse interaction but forget to click on the image,
a popup window will appear.

At this point the apertures will be drawn on the image, the result will appear in the Variables view and
the corresponding command will be echoed to the Console.

Clicking the Clear button will make the apertures disappear from the Image.

Figure 7.10. Sky aperture photometry task.

Inspecting the result

Display - Handling Images and Cubes

176

The resulting product, phot, can be inspected by double-clicking on it in the Variables view. An
explorer will be opened in the Editor, showing a table with all parameters, and a results table with
all calculated values (total flux, number of pixels, intensity per pixel and error on the flux for the sky
and the target, with and without the sky). This is the normal output, all other software packages yield
for aperture photometry.

Besides that, you also have two plots as output :

• a curve of growth

• a sky intensity plot

The curve of growth shows the target flux (without the sky) for a varying target radius, while the sky
intensity remains the same. The sky intensity plot shows how the calculated sky intensity changes
if the outer radius is fixed and the inner radius varies. Both plots can be used as diagnostics to see
whether you have chosen decent values for the radii.

You can also inspect this output product on the command line :

Returns target center in pixel (as Double1d) and sky coordinates (as String1d)
phot.getTargetCenterPixelCoordinates()
phot.getTargetCenterSkyCoordinates()

Returns the radii in pixels as Doubles
phot.getTargetRadiusPixels()
phot.getInnerRadiusPixels()
phot.getOuterRadiusPixels()

Returns the radii in arcsec as Doubles
phot.getTargetRadiusArcsec()
phot.getInnerRadiusArcsec()
phot.getOuterRadiusArcsec()

Returns the sky estimation algorithm
phot.getAlgorithm()

Returns the kind of pixels used as a String
phot.getPixels()

Returns the results table as a TableDataset and as a Double2d
phot.getTable()
phot.getDouble2dTable()

Returns the total flux (Double1d), number of pixels (Double),
intensity per pixel (Double) and error on the flux (Double) for the target,
including the sky
phot.getTargetPlusSkyTotal()
phot.getTargetPluxSkyPixels()
phot.getIntensityPerTargetPlusSkyPixel()

To return the same for the sky and the target without the sky, simply replace
"TargetPlusSky" with "Sky" or "Target"

Returns the curve of growth as a TableDataset and the corresponding radius
and flux as Double1ds
phot.getCurveOfGrowth()
phot.getGrowthRadius()
phot.getGrowthFlux()

Returns the sky intensity plot as a TableDataset and the corresponding radius
and intensity as Double1ds
phot.getSkyIntensityPlot()
phot.getSkyIntensityRadius()
phot.getSkyIntensity()

Display - Handling Images and Cubes

177

This is how the explorer looks like :

Figure 7.11. Annular sky aperture measurement.

7.4.2.2. Aperture Photometry with a circular Target Aperture and a
rectangular Sky Aperture

The immediate neighbourhood of the target is not always the best location to estimate the sky. Then
you better take a rectangular region a bit further away from the target. This can be done with the
RectangularSkyAperturePhotometryTask.

On the command line

The input parameters are :

• the image (Image image)

• the target center either in pixel (Doubles centerX and centerY) or sky coordinates
(Strings centerRA and centerDec)

Display - Handling Images and Cubes

178

• the target radius either in pixels (Double radiusPixels) or arcsec (Double
radiusArcsec)

• the position of the corner of the rectangle with minimal row and column, either in pixel (Doubles
minX and minY) or in sky coordinates (Strings minRA and minDec

• the dimensions of the rectangle either in pixels (Doubles widthPixels and heightPixels)
or arcsec (Doubles widthArcsec and heightArcsec)

• the kind of pixels (entire/fractional) used (Boolean fractional (optional - per default : True))

• the sky estimation algorithm (Integer algorithm)

To perform aperture photometry, just type

The target center is specified in pixel coordinates, the target radius in pixels
photPixel = rectangularSkyAperturePhotometry(image = myImage2, centerX = 501.0,\
 centerY = 266.0, radiusPixels = 5.0, minX = 553.0, minY = 132.0, \
 widthPixels = 120.0, heightPixels = 47.0, algorithm = 4)

The target center is specified in sky coordinates, the target radius in arcsec
photSky = rectangularSkyAperturePhotometry(image = myImages2, \
 centerRA = "02:00:34.388", centerDec = "-22:25:59.87", radiusArcsec = 5.04, \
 minRA = "02:00:38.179", minDec = "-22:28:14.89", widthArcsec = 120.96, \
 heightArcsec = 47.376)

Note

The same remarks hold as for AnnularSkyAperturePhotometryTask.

Note

The target center and the corner of the rectangle with minimal row and column must be
specified in the same coordinates (pixel/sky).

Note

Choosing the kind of pixels and the sky estimation algorithm can be done as for the
AnnularSkyAperturePhotometryTask.

All these output products will appear in the Variables view in HIPE.

Via the HIPE-integrated GUI

You can do the calculations via a HIPE-integrated GUI, just like for the
AnnularSkyAperturePhotometryTask (select rectangularSkyAperture instead of
annularSkyAperture in the Tasks view). Specifying the target center, the target radius, the kind of
pixels and the sky estimation algorithm is done exactly the same way. To draw the rectangle on the
Image, just press the mouse, drag it across the Image and release it when it satisfies you. Afterwards
you can move or manipulate this rectangle.

Starting the calculations and clearing the image is done as for the
AnnularSkyAperturePhotometryTask.

Display - Handling Images and Cubes

179

Figure 7.12. Rectangular aperture photometry task.

Inspecting the result

The resulting product, phot, can be inspected by double-clicking on it in the Variables view.
An explorer will be opened with great resemblance to the explorer for the result of the
AnnularSkyAperturePhotometryTask. Only the sky intensity plot is missing, of course.

To inspect this output product via the command line, you can use the same commands as for the
AnnularSkyAperturePhotometryTask, except for those referring to the annular sky aperture.
To obtain information about the rectangular sky aperture, you can use these commands :

Returns the dimensions of the rectangle in pixels
phot.getWidthPixels()
phot.getHeightPixels()

Returns the dimensions of the rectangle in arcsec
phot.getWidthArcsec()
phot.getHeightArcsec()

Display - Handling Images and Cubes

180

Returns the corner of the rectangle with minimal row and
column in pixel and sky coordinates
phot.getUpperLeftCornerPixelCoordinates()
phot.getUpperLeftCornerSkyCoordinates()

This is what the explorer looks like :

Figure 7.13. Results of using the rectangular sky aperture photometry task.

7.4.2.3. Aperture Photometry with a circular Target Aperture and a
fixed Sky Value

Sometimes you might have already determined a good value for the sky, so you want to use that. This
can be done with the FixedSkyAperturePhotometryTask.

On the command line

Display - Handling Images and Cubes

181

The input parameters are :

• the image (Image image)

• the target center in pixel (Doubles centerX and centerY) or sky coordinates (Strings
centerRA and centerDec)

• the target radius in pixels (Double radiusPixels) or arcsec (Double radiusArcsec)

• the sky intensity value (Double sky)

• the kind of pixels (entire/fractional) used (Boolean fractional (optional - per default : True))

To perform aperture photometry, just type

The target center is specified in pixel coordinates, the target
radius in pixels
photPixels = fixedSkyAperturePhotometry(image = myImage2, centerX = 499.0, \
 centerY = 566.0, radiusPixels = 5.0, sky = 48.0)
The target center is specified in sky coordinates, the target radius in arcsec
photSky = fixedSkyAperturePhotometry(image = myImage2, centerRA = "02:00:34.242",\
 centerDec = "-22:25:59.87", radiusArcsec = 5.04, sky = 48.0)

Note

The target radius can only be specified if the Image has a valid Wcs and the pixel scaling
is the same in both directions.

In the HIPE-integrated GUI

Also for this task, a HIPE-integrated GUI can be used to do the calculations. Simply select
fixedSkyAperturePhotometry in the Tasks view. In the task dialog that will open in the Editor, you can
specify the target center and target radius just like for the other aperture photometry tasks. Finally,
you also need to enter the value you wish to use for the sky intensity. This is to be specified in the
same unit as the one for the Image.

When pressing the Accept button, the calculations will be done : the result will appear in the Variables
view and the corresponding command will be echoed to the Console.

Display - Handling Images and Cubes

182

Figure 7.14. Fixed sky aperture photometry task.

Inspecting the result

The resulting product, phot, can be explored by double clicking on it in the Variables view. The
explorer that will be opened in the Editor looks again very similar to the ones for the other aperture
photometry products, as you can see here :

Display - Handling Images and Cubes

183

Figure 7.15. Results of using the fixed sky aperture photometry task.

You can also inspect phot via the command line. You can use the same commands as for the other
aperture photometry tasks, except for those referring to the sky aperture. To obtain the sky intensity
value, type

phot.getSkyValue()
phot.getIntensityPerSkyPixel()

7.4.3. Histograms
Several tasks have been written to make a histogram of an Image, or of a region you are interested
in. Such a region of interest can be bounded by a circle, an ellipse, a rectangle or a polygon.

On the command line

For all these tasks, the following input parameters must be specified :

Display - Handling Images and Cubes

184

• the image (Image image)

• the cut levels (Doubles lowCut and highCut)

• the number of bins (Integer bins)

For the tasks with a region of interest, the appropriate parameters must be specified :

• bounded by a circle :

• the center of the circle in pixel (Doubles centerX and centerY) or sky coordinates
(Strings centerRA and centerDec)

• the radius of the circle in pixels (Double radiusPixels) or arcsec (Double
radiusArcsec)

• bounded by an ellipse :

• the center of the ellipse in pixel (Doubles centerX and centerY) or sky coordinates
(Strings centerRA and centerDec)

• the dimensions of the ellipse in pixels (Doubles widthPixels and heightPixels) or
arcsec (Doubles widthArcsec and heightArcsec)

• bounded by a rectangle :

• the position of the corner of the rectangle with the minimal row and column in pixel (Doubles
minX and minY) or sky coordinates (Strings minRA and minDec)

• the dimensions of the rectangle in pixels (Doubles widthPixels and heightPixels) or
arcsec (Doubles widthArcsec and heightArcsec)

• bounded by a polygon :

• the vertices of the polygon in pixel (Double1d edgesPixel, stored as x1, y1, x2, y2,...) or
sky coordinates (String1d edgesSky, stored as RA1, Dec1, RA2, Dec2,...)

To make a histogram, just type

Making a histogram of an image
imageHistogram = imageHistogram(image = myImage2, lowCut = 0.0, \
 highCut = 255.0, bins = 10)

Making a histogram of a region bounded by a circle
circleHistogramPixel = circleHistogram(image = myImage2, centerX = 417.5, \
 centerY = 240.0, radiusPixels = 217.6, lowCut = 9.0, highCut = 255.0, bins = 10)
circleHistogramSky = circleHistogram(image = myImage2, centerRA = "02:00:28.319", \
 centerDec = "-22:26:26.15", radiusArcsec = 219.3, lowCut = 9.0, \
 highCut = 255.0, bins = 10)

Making a histogram of a region bounded by an ellipse
ellipseHistogramPixel = ellipseHistogram(image = myImage2, centerX = 360.0, \
 centerY = 237.0, widthPixels = 642.0, heightPixels = 229.1, lowCut = 9.0, \
 highCut = 255.0, bins = 10)
ellipseHistogramSky = ellipseHistogram(image = myImage2, centerRA = "02:00:24.138",
 \
 centerDec = "-22:26:29.22", widthArcsec = 647.136, heightArcsec = 230.9, \
 lowCut = 9.0, highCut = 255.0, bins = 10)

Making a histogram of a region bounded by a rectangle
rectangleHistogramPixel = rectangleHistogram(image = myImage2, minX = 211.0, \

Display - Handling Images and Cubes

185

 minY = 127.0, widthPixels = 471.0, heightPixels = 175.0, lowCut = 9.0, \
 highCut = 255.0, bins = 10)
rectangleHistogramSky = rectangleHistogram(image = myImage2, minRA = "02:00:13.308",
 \
 minDec = "-22:28:20.17", heightArcsec = 474.8, widthArcsec = 176.4, \
 lowCut = 9.0, highCut = 255.0, bins = 10)

Making a histogram of a region bounded by a polygon
pyEdgesPixel = Double1d([133.0, 206.0, 247.0, 333.0, 620.0, 233.0, 487.0, 112.01])
polygonHistogramPixel = polygonHistogram(image = myImage2, \
 edgesPixel = pyEdgesPixel, lowCut = 9.0, highCut = 255.0, bins = 10)
pyEdgesSky = String1d([])
polygonHistogramSky = polygonHistogram(image = myImage2, \
 edgesSky = pyEdgesSky, lowCut = 9.0, highCut = 255.0, bins = 10)

Note

For each task, all dimensions must be specified in the same unit.

Note

The dimensions can only be specified in arcsec if the Image has a valid Wcs and the pixel
scaling is the same in both directions.

In the HIPE-integrated GUI

To run a histogram task from a HIPE-integrated GUI, you must open its task dialog (in the Editor) by
selecting the appropriate task in the Tasks view. In all task dialogs, filling out the parameters it quite
straightforward. Only the drawing of the figures needs more explanation.

To draw a circle, an ellipse or a rectangle you must press the mouse, drag it, and release it when you're
satisfied with the result. Drawing the polygon can be done by clicking on the image. Double clicking
means fixing the last vertex of the polygon. Afterwards you can always move/manipulate this figure.

You also notice that the cut levels are already filled out for you. These values are the cut levels of your
Image and only serve as initial guess, in order to avoid empty histograms.

When you press the Accept button, the histogram will be made. You will see it at the bottom of the
task dialog, a new variable will appear in the Variables view and the corresponding command will be
echoed to the Console. If you now adapt your figure, only the histogram at the bottom of the task dialog
will be updated. To transfer this to the Variables view, you need to press the Accept button again.

This is how the task dialog for the ImageHistogramTask looks like :

Display - Handling Images and Cubes

186

Figure 7.16. Image histogram task.

The task dialogs for the other histogram tasks look very similar :

Display - Handling Images and Cubes

187

Figure 7.17. Circle histogram task.

Inspecting the result

The resulting product, histogram, can be explored by double-clicking on it in the Variables view.
You will see a table with the number of bins and the cut levels, and - if "drawing" a figure was required
- the parameters specifying this figure. Also the histogram itself it shown.

This is how a histogram explorer will look like :

Display - Handling Images and Cubes

188

Figure 7.18. Circle histogram task output.

You can also explore histogram via the command line, using the following commands :

Returns the number of bins as an integer (int)
histogram.getNbOfBins()

Returns the cut levels as a double
histogram.getLowCut()
histogram.getHighCut()

Returns the histogram as a TableDataset
histogram.getHistogram()
Returns the values and frequencies of the histogram as a Double1d
histogram.getValues()
histogram.getFrequencies()
Returns the unit for the intensity
histogram.getUnit()

For the CircleHistogramTask you can also use

Display - Handling Images and Cubes

189

Returns the center of the circle in pixel (Double1d) and
sky coordinates (String1d)
histogram.getCenterPixelCoordinates()
histogram.getCenterSkyCoordinates()

Returns the radius of the circle in pixels and arcsec as double
histogram.getRadiusPixels()
histogram.getRadiusArcsec()

For the EllipseHistogramTask you can use

Returns the center of the ellipse in pixel (Double1d)
and sky coordinates (String1d)
histogram.getCenterPixelCoordinates()
histogram.getCenterSkyCoordinates()

Returns the dimensions of the ellipse in pixels as double
histogram.getWidthPixels()
histogram.getHeightPixels()

Returns the dimensions of the ellipse in arcsec as double
histogram.getWidthArcsec()
histogram.getHeightArcsec()

For the RectangleHistogramTask you can use

Returns the corner of the rectangle with minimal row and column in
pixel (Double1d) or sky coordinates (String1d)
histogram.getUpperLeftCornerPixelCoordinates()
histogram.getUpperLeftCornerSkyCoordinates()

Returns the dimensions in pixels
histogram.getWidthPixels()
histogram.getHeightPixels()

Returns the dimensions in arcsec
histogram.getWidthArcsec()
histogram.getHeightArcsec()

For the PolygonHistogramTask you can use

Returns the vertices of the polygon as a TableDataset
histogram.getEdges()

Returns the vertices of the polygon in pixel coordinates
as a TableDatset and Double2d
histogram.getEdgesPixelCoordinates()
histogram.getEdgesPixelCoordinatesDouble2d()

Returns the vertices of the polygon in sky coordinates as a TableDataset
histogram.getEdgesSkyCoordinates()

7.4.4. Contour Plotting

Yet another way to inspect Images, is to make contour plots. This can be done by specifying one
(ContourTask), or several (ManualContourTask) contour values, or to let them be calculated
automatically (AutomaticContourTask).

Display - Handling Images and Cubes

190

On the command line

If you know in advance, you want to plot only one contour value, you can use the ContourTask.
The only input parameters are :

• the image (Image image)

• the contour value (Double value)

To run this task, simply type

contours = contour(image = myImage2, value = 100.0)

If you want to specify multiple contour values yourself, use the ManualContourTask. This task
takes the following parameters as input :

• the image (Image image)

• a list of contour values (Double1d values)

The commands you need, are

Construction of the list of contour values
values = Double1d()
values.append(100.0)
values.append(120.0)

Calculating the contours
contours = manualContourTask(image = myImage2, values = values)

Another option is to specify the minimum and maximum contour value, the number of contour levels
and the distribution (linear, logarithmic or ln), using the AutomaticContourTask. The task will
then determine the corresponding contour values and calculate the contours. The input parameters are :

• the image (Image image)

• the extreme contour values (Doubles min and max)

• the number of contour levels (Integer levels)

• the distribution of the contour levels (Integer distribution)

The command is

For a linear distribution of the contour levels
contoursLin = automaticContour(image = myImage2, levels = 2, min = 0.0, \
 max = 255.0, distribution = 0)

For a logarithmic distribution of the contour levels
contoursLog = automaticContour(image = myImage2, levels = 2, min = 0.0, \
 max = 255.0, distribution = 1)

For a ln distribution of the contour levels
contourLn = automaticContour(image = myImage2, levels = 2, min = 0.0, \
 max = 255.0, distribution = 2)

Display - Handling Images and Cubes

191

All these results will appear in the Variables view.

In the HIPE-integrated GUI

Plotting contours for one or several value is fully integrated into HIPE, as well as the the
AutomaticContourTask.

If you want to plot only one contour value, you can open the task dialog for the ContourTask by
double clicking on contour in the Tasks view. In this task dialog you must only fill out the contour
value you are interested in. Here is a screenshot of the task dialog :

Figure 7.19. Image contour task.

Another option is to specify multiple contour values, by double-clicking on manualContour in the
Tasks view. In the task dialog that opens in the Editor, you can add the contour values you are interested
in, to a list. It is also possible to remove values from the list (by selecting the value in the less and
press the Remove button) or to clear the whole list (by pressing the Clear button). This is how the
task dialog looks like :

Display - Handling Images and Cubes

192

Figure 7.20. Manual setting of contour levels with the image contour task.

To let the contour values be automatically calculated, just double-click on automaticContour in the
Tasks view. In the task dialog that will open by doing this, you must specify all input parameters. The
cut levels of the Image are used as initial guess for the extreme contour values. A combo box allows
you to use the distribution of the contour values. The task dialog is shown here :

Display - Handling Images and Cubes

193

Figure 7.21. Automatic contour level setting with the image contour task.

If you press the Accept button, the contours will be calculated and appear in Variables view and the
corresponding command will be echoed to the Console.

Inspecting the result

The resulting product, contours, can be explored - as all Products - with the product viewer, but
this is not of much use. You want to plot your contours on your image. This can be done by opening
your Image (by double-clicking on it in the Variables view) and then dragging contours from the
Variables view to the image explorer. The contours will be plotted instantaneously on the Image.
This will all be done in green for the moment. The idea is to use different colours for different contour
levels in the future.

If the the contours are calculated for an Image with a valid Wcs and you drag it on an Image
with a valid Wcs, the plotting will be done based on the sky coordinates. In all other cases, the pixel
coordinates will be used.

You are not obliged to drag your contours over the Image for which they were calculated. This can
be convenient if you want to compare Images at different wavelengths.

Display - Handling Images and Cubes

194

Figure 7.22. Output of the contour task.

7.4.5. Mosaicking
This task is not yet integrated in HIPE, so it is only available from the command line. The only input
parameters you need, are :

• a list with images you want to combine (ArrayList<Image> images)

• oversampling (Boolean oversampling) - optional (per default : True)

On the command line

To combine n Images, say image_1,..., image_n, to a mosaic, you must type

Imports
from java.util import ArrayList
from herschel.ia.toolbox.image import MosaicTask

Display - Handling Images and Cubes

195

Making an ArrayList with the Images
images = ArrayList()
images.add(image_1)
...
images.add(image_n)

Making an oversampled mosaic
mosaicOversampled1 = MosaicTask()(images = images, oversample = 1)
mosaicOversampled2 = MosaicTask()(images = images)

Making a non-oversampled mosaic
mosaicNonOversampled = MosaicTask()(images = images, oversample = 0)

Inspecting the result

The result, mosaic, is a SimpleImage and can be treated like any other Image.

7.4.6. Smoothing
Four different smoothing algorithms are available :

• average smoothing

• median smoothing

• boxcar smoothing

• gaussian smoothing

These can be executed on the command line or via a HIPE-integrated GUI. They all take the following
parameters as input :

• the image (Image image)

• the width of the filtering window/boxcar/gaussian (width)

The parameters width must be an odd positive Integer for mean and median smoothing, a positive
Integer for boxcar smoothing and a positive Double for gaussian smoothing.

On the command line

The commands for the four different tasks are very alike :

Mean smoothing
smoothedMean = meanSmoothing(image = myImage, width = 3)

Median smoothing
smoothedMedian = meanSmoothing(image = myImage, width = 3)

Boxcar smoothing
boxcarSmoothed = boxcarSmoothing(image = myImage, width = 4)

Gaussian smoothing
gaussianSmoothed = gaussianSmoothing(image = myImage, width = 2.5)

Via the HIPE-integrated GUI

In all tasks dialogs (to be opened by double clicking on meanSmoothing, medianSmoothing,
boxcarSmoothing or gaussianSmoothing in the Variables view) have an empty field where you should
enter the value for the parameter width.

Display - Handling Images and Cubes

196

Figure 7.23. Application of the image smoothing task.

Inspecting the result

All these tasks have an Image as output. This has the same settings (Wcs, errors, flag, exposure) as
the input image. You can explore it using Display, or by double-clicking on it and thus opening
an image explorer.

7.4.7. Clamping/Clipping
Clamping or clipping an Image means that all intensities below a certain value low are set to this
value, and that all values above another value high are set to that value. This means that you need
only these parameters for clamping :

• the image (Image image)

• the lower value (Double low)

• the upper value (Double high)

Display - Handling Images and Cubes

197

On the command line

To clamp an Image between 20.0 and 100.0, simply type

clamped = clamp(image = myImage2, low = 20.0, high = 100.0)

By running this task, the clamped Image will appear in the Variables view.

In the HIPE-integrated GUI

Opening the task dialog in the Editor by double clicking on clamp in the Tasks view, will show you that
you must fill out the lower and upper intensity between which the Image must be clamped. Pressing
the Accept button, will start the clamping, after which the resulting clamped Image will appear in the
Variables view and the corresponding command will be echoed to the Console.

In the future the cut levels of the Image will be used as initial guess for the lower and upper intensities.

Figure 7.24. Application of the image clamping task.

Display - Handling Images and Cubes

198

Inspecting the result

The result, clamped, is a new Image, with the same settings as the input Image.

7.4.8. Cropping

The size of an Image can be reduced through cropping. The user must only specify these parameters :

• the image (Image image)

• from which row (Integer row1) to which row (Integer row2) the image should be cropped

• from which column (Integer column1) to which column (Integer column2) the image
should be cropped

On the command line

To crop an Image for row = 40,..., 120 and column = 30,..., 150 simply type

cropped = crop(image = myImage2, row1 = 40, row2 = 120, column1 = 30, \
 column2 = 150)

In the Variables view cropped will appear as new variable.

In the HIPE-integrated GUI

For the moment you can use the cropping task with the default task dialog. This can be opened by
double-clicking on crop in the Tasks view. You have to specify the bounding rows and columns in the
foreseen fields. In the future, this task dialog will be reworked, such that you can draw the bounding
rectangle on the Image.

When you press the Accept button, the cropped Image will appear in the Variables view and the
corresponding command will be echoed to the Console.

Display - Handling Images and Cubes

199

Figure 7.25. Application of the image cropping task.

Inspecting the result

The resulting Image, cropped, is an Image with the same settings (errors, Flag, exposure), cut
out of the input Image between the specified rows and columns. The Wcs is adapted, in order to have
the same sky coordinates for the same position in the Images.

7.4.9. Rotating
An Image can also be rotated over a given angle. If the y-axis points down (up), a positive rotation
angle means a clockwise (counterclockwise) rotation. You have to specify three parameters :

• the image (Image image)

• the rotation angle in degrees (Double angle)

• the type of interpolation (Integer interpolation) - optional (per default : linear)

Display - Handling Images and Cubes

200

You can choose between four types of interpolation :

• RotateTask.INTERP_BILINEAR = 0 : interpolates one pixel to the right and one down
(default)

• RotateTask.INTERP_NEAREST = 1 : direct pixel copying

• RotateTask.INTERP_BICUBIC = 2 : interpolation via a piecewise cubic polynomial

• RotateTask.INTERP_BICUBIC_2 = 3 : variant of bicubic interpolation that can produce
sharper result than bicubic interpolation

In the case you use one of the bicubic interpolation algorithms, you must also specify the number of
bits to use for the interpolation (Integer subsampleBits - optional (per default : 16)).

On the command line

To rotate an image via the command line, just type

Use the default interpolation (linear)
rotatedDefault = rotate(image = myImage2, angle = 30.0)

Use direct pixel copying
rotatedNearest1 = rotate(image = myImage2, angle = 30.0, \
 interpolation = RotateTask.INTERP_NEAREST)
rotatedNearest2 = rotate(image = myImage2, angle = 30.0, interpolation = 1)

Use bicubic interpolation
rotatedBicubic1 = rotate(image = myImage2, angle = 30.0, \
 interpolation = RotateTask.INTERP_BICUBIC)
rotatedBicubic2 = rotate(image = myImage2, angle = 30.0, interpolation = 2)
rotatedBicubic3 = rotate(image = myImage2, angle = 30.0, \
 interpolation = RotateTask.INTERP_BICUBIC, subsampleBits = 18)
rotatedBicubic4 = rotate(image = myImage2, angle = 30.0, interpolation = 2, \
 subsampleBits = 18)

The result will appear as a variable in the Variables view.

In the HIPE-integrated GUI

If you double-click on rotate in the Tasks view, a task dialog will open in the Editor. There you must
fill out the rotation angle (in degrees) and via a combo box, you can choose the type of interpolation
to be used for rotating. If you select one of the bicubic interpolation types (Bi-cubic or Bi-cubic2), the
Sub-sampling Bits field becomes editable, so you can enter the number of subsampling bits.

When you press the Accept button, the result appears in the Variables view and the corresponding
command is echoed to the Console.

Inspecting the result

The result, rotated, is an Image with the same settings as the input Image, but rotated over the
given angle. The result is shown here :

Display - Handling Images and Cubes

201

Figure 7.26. Image rotation task.

7.4.10. Scaling
An Image can be magnified in the x- and y-directions independently using the ScaleTask. Also
here interpolation is necessary, just like for rotating, so the input parameters for this task are :

• the image (Image image)

• the magification factor along the x- and y-axes (Doubles x and y)

• the type of interpolation (Integer interpolation) - optional (per default : linear)

The interpolation types are the same as for rotating : ScaleTask.INTERP_BILINEAR,
Scale.INTERP_NEAREST, ScaleTask.INTERP_BICUBIC and
ScaleTask.INTERP_BICUBIC_2. Also here, the number of subsampling bits (Integer
subsampleBits) must be specified if you choose to use bicubic interpolation.

Display - Handling Images and Cubes

202

On the command line

To perform scaling, you must type

scaled = scale(image = myImage2, x = 0.5, y = 2.0, \
 interpolation = ScaleTask.INTERP_BILINEAR)

Note

The parameters interpolation and subsampleBits are to be used exactly the
same way as for rotating.

In the HIPE-integrated GUI

If you double-click on scale in the Tasks view, a task dialog opens in the Editor, where you have
to specify the magnification factors in the x- and y-direction. Parameters for the interpolation can be
specified as the same parameters for rotating.

If the Accept button is pressed, the scaled Image will appear in the Variables view and the
corresponding command is echoed to the Console.

Inspecting the result

The result, scaled, is an Image with the same settings as the input Image, but stretched
independently along both axes. The Wcs is adapted in a way that each source has the same sky
coordinates in both Images. An example is shown here :

Display - Handling Images and Cubes

203

Figure 7.27. Application of the image scaling task.

7.4.11. Translating
You can translate an Image based on pixel or sky coordinates, so the required input parameters are :

• the image (Image image)

• the translation vector in pixel (Doubles x and y) or sky coordinates (Strings ra and dec)

On the command line

To do the translation via the command line, simply type

Translation based on pixel coordinates
translatedPixel = translate(image = myImage2, x = 50.4, y = -5.3)

Translation based on sky coordinates
translatedSky = translate(image = myImage2, ra = "00:01:00", dec = "00:20:00")

Display - Handling Images and Cubes

204

The result will appear in the Variables view.

Note

For the moment you can specify the pixel and sky coordinates at the same time. This
should be prohibited in the future.

In the HIPE-integrated GUI

For the moment, the default task dialog is opened when double clicking on translate in the Tasks view.

When the Accept button is pressed, that Image is translated and appears in the Variables view and
the corresponding command is echoed to the Console.

Inspecting the result

The result, translated, is an Image that looks the same as the input Image, but has as different
Wcs, which takes the translation into account.

7.4.12. Transposing
Transposing an Image can be done in several ways : flipping horizontally/vertically/(anti)diagonally
and rotating over 90, 180 or 270 degrees. This can be done on the command line, or in a GUI in HIPE.
The only parameters that need to be specified are :

• the image (Image image)

• the transposition type (Integer type - per default : 0)

The possible transposition types are

• TransposeTask.FLIP_VERTICAL (0) : flips top and bottom

• TransposeTask.FLIP_HORIZONTAL (1) : flips from side to side

• TransposeTask.FLIP_DIAGONAL (2) : flips bottom left to top right

• TransposeTask.FLIP_ANTIDIAGONAL (3) : flips top left to bottom right

• TransposeTask.ROTATE_90 (4) : rotates over 90 degrees

• TransposeTask.ROTATE_180 (5) : rotates over 180 degrees

• TransposeTask.ROTATE_270 (6) : rotates over 270 degrees

On the command line

To transpose an Image, type

Flip vertically
flippedVertically1 = transpose(image = myImage2, type = TransposeTask.FLIP_VERTICAL)
flippedVertically2 = transpose(image = myImage2, type = 0)

The transposed Image appears in the Variables view.

In the HIPE-integrated GUI

If you double-click on transpose in the Tasks view, a task dialog is opened in the Editor. Here you
can choose via a combo box which tranposition type you want to use.

Display - Handling Images and Cubes

205

Figure 7.28. Application of the image transposing task.

Inspecting the result

The output, transposed, looks exactly the same as the input Image, but differently oriented, or
flipped. The Wcs is adapted, in order to make sure that corresponding points have the same sky
coordinates both in the input and the output Image.

7.4.13. Flagging saturated Pixels
You can flag out pixels with their intensity above a certain value, with the SATURATED flag type.
This can be done with the FlagSaturatedPixelsTask, by specifying these parameters :

• the image (Image image)

• the cut off value (Double value)

On the command line

To flag the saturated pixels, type

Display - Handling Images and Cubes

206

 flagged = flagSaturatedPixels(image = myImage2, value = 100.0)

The resulting Image will appear in the Variables view.

In the HIPE-integrated GUI

By double-clicking on flagSaturatedPixels in the Tasks view, a task dialog is opened in the Editor.
There you need to enter the cut off value, above which pixels are said to be saturated.

After having pressed the Accept button, the flagged Image appears in the Variables view and the
corresponding command is echoed to the Console.

Inspecting the result

The result, flagged, looks like a copy of the input Image, except that pixels whose value lies above
the given cut off value, are flagged out with the SATURATED flag type, as shown here :

Figure 7.29. Application of the image flagging task.

Display - Handling Images and Cubes

207

7.4.14. Getting the Cut Levels

Using the CutLevelsTask, you can determine the cut levels of an Image, either using the
percentage method or applying a median filter. You have to specify the following parameters

• the image (Image image)

• the method used for determining the cut levels (Integer method)

The method can be

• CutLevelsTask.PERCENT = 0 : percentage method

• CutLevelsTask.MEDIAN_FILTER = 1 : median filter

If you choose the percentage method, an extra parameter must be given a value :

• the percentage (Double percent) - per default : 99.5

On the command line

To calculate the cut levels of an Image, you must type

Percentage method
percentCutLevels1 = cutLevels(image = myImage2, method = CutLevelsTask.PERCENT)
percentCutLevels2 = cutLevels(image = myImage2, method = 0, percent = 98.0)

Median filter
median1 = cutLevels(image = myImage2, method = CutLevelsTask.MEDIAN_FILTER)
median2 = cutLevels(image = myImage2, method = 1)

The result appears in the Variables view.

In the HIPE-integrated GUI

When double-clicking on cutLevels in the Tasks view, a task dialog will be opened in the Editor. There
you can indicate via the Method combo box which method you want to use to determine the cut levels.
When selecting Percent, the Percent field will become editable, so you can change the default value
for the percentage.

After pressing the Accept button, the cut levels will be calculated and they will appear as one variable
in the Variables view. The corresponding command will be echoed to the Console.

Display - Handling Images and Cubes

208

Figure 7.30. Application of the image cut levels task.

Inspecting the result

The result, cutLevels, is a double array. To gain access to the low and high cut, type

The low cut
low = cutLevels[0]

The high cut
high = cutLevels[1]

7.4.15. Image Arithmetics
The last functionality on Images we describe in this chapter, is image arithmetics. These options are
available :

• addition/subtraction/multiplication/division of two Images pixel-to-pixel, or based on their Wcs

• addition/subtraction/multiplication/division of an Image and a scalar

Display - Handling Images and Cubes

209

• taking the modulus of an Image w.r.t. another Image, pixel-to-pixel, or based on their Wcs

• taking the modulus of an Image w.r.t. a scalar

• taking the absolute values of all intensity values

• rounding/flooring/ceiling all intensity values

• changing all intensity values in an Image according to a power/logarithmic/exponential scaling

All these tasks return an Image as output.

7.4.15.1. Addition/Substraction/Multiplication/Division/Modulo

Addition, subtraction, multiplication, division and modulus calculation of two Image can be done
pixel-to-pixel, or based on their Wcs. In that case, you need to specify the following parameters :

• the images (Images image1 and Image2)

• the reference frame for the calculation (Integer ref)

The possible values for the ref parameter are

• ImageArithmeticsTask.PIXEL = 0 : pixel-to-pixel calculation

• ImageArithmeticsTask.WCS = 1 : Wcs-based calculation

If you want to use a pixel instead of a second Image, omit the image2 and ref parameters and add

• the scalar (Double scalar)

On the command line

To do the calculations for two Images, myIm1 and myIm2, the commands are

Adding (pixel-to-pixel)
sum = imageAdd(image1 = myIm1, image2 = myIm2, ref = ImageArithmeticsTask.PIXEL)

Subtracting (pixel-to-pixel)
difference = imageSubtract(image1 = myIm1, image2 = myIm2, ref = 0)

Multiplying (based on Wcs)
product = imageMultiply(image1 = myIm1, image2 = myIm2, \
 ref = ImageArithmeticsTask.WCS)

Dividing (based on Wcs)
quotient = imageDivide(image1 = myIm1, image2 = myIm2, ref = 1)

Modulo
remainder = imageModulo(image1 = myIm1, image2 = myIm2, ref = 0)

Note

If added or subtracted Images have the same unit, the sum/difference will use that same
unit, otherwise the calculation will be done in counts.

Note

The product, quotient and remainder will have the composed unit as unit.

Display - Handling Images and Cubes

210

To do the calculations for an Image and a scalar, the commands are

Adding
sum = imageAdd(image1 = myImage2, scalar = 200.0)

Subtracting
difference = imageSubtract(image1 = myImage2, scalar = 200.0)

Multiplying
product = imageMultiply(image1 = myImage2, scalar = 1.2)

Dividing
product = imageDivide(image1 = myImage2, scalar = 0.5)

Modulo
remainder = imageModulo(image1 = myImage2, scalar = 200.0)

Note

The result has the same unit as the input Image.

In the HIPE-integrated GUI

If you double click on imageAdd, imageSubtract, imageMultiply, imageDivide or imageModulo in
the Tasks view, the corresponding task dialog opens in the Editor. In the modifier for 1st addend,
minuend, multiplier or dividend, parameter image1 is given as value. The combo box for 2nd addend,
subtrahend, multiplicand or divisor allows you to choose whether to use a second Image or a scalar
as input.

If you choose for a second Image, a second combo box (Reference) appears, allowing you to choose to
do the calculation either pixel-to-pixel or based on the Wcs. Also the second Image must be dragged
from the Variables view to the task dialog.

If you choose to use a scalar, the second combo box disappears and a field appears where you can
give the value for the scalar.

When you press the Accept button, the resulting Image is constructed and will appear in the Variables
view. The corresponding command is echoed to the Console.

7.4.15.2. Absolute values

The only parameter that needs to be specified is

• the image (Image image)

On the command line

To take the absolute value of all intensity values in an Image, simply type

abs = imageAbs(image = myImage)

In the HIPE-integrated GUI

Double-clicking on imageAbs in the Tasks view, will open the default task dialog. You only need to
drag the Image you want to use as input to the foreseen modifier. If you press the Accept button, the

Display - Handling Images and Cubes

211

resulting Image will appear in the Variables view and the corresponding command will be echoed
to the Console.

7.4.15.3. Rounding/Flooring/Ceiling

If you want to round, floor of ceil all intensity values, you only have to specify

• the image (Image image)

On the command line

The commands are

Rounding
rounded = imageRound(image = myImage2)

Flooring
floored = imageFloor(image = myImage2)

Ceiling
ceiled = imageCeil(image = myImage2)

In the HIPE-integrated GUI

The corresponding default task dialogs can be opened in the Editor by double-clicking on imageRound,
imageFloor or imageCeil in the Tasks view. It looks exactly the same as the task dialog for the
ImageAbsTask.

7.4.15.4. Power/Square/Sqrt

You can also change all intensity values according to a power scale. For all three available tasks, you
must specify

• the image (Image image)

For the ImagePowerTask, you also have to give

• the power (Double n)

On the command line

To run the tasks on the command line, you have to type

Power
powered = imagePower(image = myImage2, power = 1.5)

Square
squared = imageSquared(image = myImage2)

Sqrt
sqrt = imageSqrt(image = myImage2)

In the HIPE-integrated GUI

You can also run these tasks in a GUI in HIPE. Then you must double-click on imagePower,
imageSquare or imageSqrt in the Tasks view. This will open the default task dialog in the Editor,
to which you can drag the Image you want to use as input. For the ImagePowerTask, a field is
foreseen where you can give the power.

Display - Handling Images and Cubes

212

7.4.15.5. Logarithmic/Exponential

Instead of using a power scaling to adapt the intensity value, you can also use a logarithmic or
exponential scaling. For all these tasks (ImageLogTask, ImageLog10Task, ImageLogNTask,
ImageExpTask, ImageExp10Task and ImageExpNTask), you must give

• the image (Image image)

For the ImageLogNTask and ImageExpNTask, you also have to give

• n (Double n)

On the command line

The commands are

Log
log = imageLog(image = myImage2)
Log10
log10 = imageLog10(image = myImage2)
LogN
logN = imageLogN(image = myImage2, n = 8.0)

Exp
exp = imageExp(image = myImage2)
Exp10
exp10 = imageExp10(image = myImage2)
ExpN
expN = imageExpN(image = myImage2, n = 8.0)

In the HIPE-integrated GUI

To open the task dialog in the Editor, you must double-click on imageLog, imageLog10, imageLogN,
imageExp, imageExp10 or imageExpN in the Tasks view. An Image can be dragged from
the Variables view to be used as input. In the task dialogs for the ImageLogNTask and
ImageExpNTask a field is foreseen to enter the value for parameter n.

7.5. Visualisation, Analysis and Manipulation
of Cubes

A SimpleCube contains one or more 3d images and works in a very similar way to SimpleImage.
A 3-dimensional datatypes should be given as inputs. For example:

s = SimpleCube()
d = Double3d(3,4,5,20.5) # produces a cube of 3x4x5 all with values 20.5
s.setImage(d) # include cube of information into our SimpleCube
the depth of this cube is given by the first integer, 3.
The cube can be displayed using
show = Display(s)
The depth axis can be changed by the setDepthAxis method, e.g.
show.setDepthAxis(2)
where the depth would now be the third dimension
of the image available , or 5.
In each case the cube is shown as
image layers. The current layer viewed is determined by a slider
to the bottom right of the display screen. Moving the slider left or right
shows the image stored in each of the layers along the depth axis.
See Figure 7.31.

Display - Handling Images and Cubes

213

Figure 7.31. Display of a cube. Note the slider to bottom right allowing the various images at different
depths to be viewed.

214

Chapter 8. Introduction to Tasks
This chapter aims to be an introduction for users to the Task framework. Writing Tasks allows us to
create modular and reusable code for data reduction and analysis, easier to distribute and to be used
by people other than the author.

8.1. The Task framework
When we were talking about OOP in Chapter 3, we used as example a very real and tangible object like
an airplane. However, we mentioned that objects can also represent more abstract concepts. Dealing
with astronomical data presents us with such a situation. When reducing or otherwise treating our data
we go through a succession of self-contained operations. Data enter each of these "boxes" in a certain
state and exit in a modified state. We might want to have a general template to represent such boxes,
with a way to specify input and output parameters and check for their consistency. It would also be
great to have some form of history to track what we have been doing to a given set of data, without
the need to write it in a separate place or try and squeeze the information in the file name. Another
handy tool would be a command to get help on that particular "box", to know at a glance what it does
and what kind of parameter it expects.

The Task framework provides it all. Here we can see many concepts of OOP in action: reusable code
(that of the Task class) to create modular pieces of software (our tasks) easy to plug together into
more complex structures. In the following sections we will learn how to write a Task in Jython.

8.2. My first Task

8.2.1. Before the Task

Before writing a Task we should have something to turn into a Task. Paste the following code into
your HIPE Editor view and then execute it with the double arrow button in the HIPE toolbar.

Introduction to Tasks

215

#--
Average function
Takes a TableDataset as input
Returns a Double1d (1D array of real numbers)
in which each row is the average of the values
in the input table columns
#--
Routine for calculating the average
def average(table):
 columns = table.columnCount
 divider = 1.0 / columns
 result = Double1d(table.rowCount)
 for column in Int1d.range(columns):
 result.add(table.getColumn(column).data)
 return result.multiply(divider)

Routine for creating the initial table
def createTable():
 # Create array x (0.0, 1.0, 2.0, 3.0, 4.0)
 x = Double1d.range(5)
 columns = 5
 # Create an empty table with a name
 table = TableDataset(description = "A test table")
 # Iterate for the the number of columns to fill up the table
 # Using " "%i" % column " creates a string name for the
 # table-column which contains the integer value contained in
 # the variable name that appears after "%". In this case
 # column labels are just 0 1 2 3 4.
 for column in Int1d.range(columns):
 table["%i" % column] = Column(x)
 x = x + 1
 # Return the result, a table called 'table'
 return table

Routine for checking it out!!
def testAverage():
 # Create the table
 table = createTable()
 # Get the average and put it into an array called 'result'
 result = average(table)
 # Print the result (a 1D array)
 print 'Result:', result

Example 8.1. Before the Task

The above code has three functions in it. The important one is average, which does the "useful"
bit of computation, giving the average of each column of a TableDataset. The createTable
function simply creates the input TableDataset for average, while testAverage just calls the
two functions above and prints out the result.

You can see how the above works by the following. The brackets indicate it is a function.

testAverage() # Result: [2.0,3.0,4.0,5.0,6.0]

8.2.2. What makes a Task?
In the current implementation, a task has two components:

• Signature. Someone's signature is something by which we can unambiguously identify that person
(leaving forgery aside). In the same way a Task's signature, consisting of its name and the number
and type of input parameters, is a way to identify the Task with no ambiguity.

• Execution. This component is made of three methods, i.e. object member functions. First we have
the preamble, which checks the actual input parameter values. The execute method, as its name
suggests, contains the algorithm performing the useful stuff. Finally, the postamble checks the
output parameter values. The preamble, execute and postamble are empty by default (no input or

Introduction to Tasks

216

output parameters) and the developer usually writes only the execute method to perform a given
algorithm.

Note

Once parameters (input or output) receive a value, they are automatically reset to their
default values after the Task has been executed. Note in particular that also output
parameters are reset, so to keep a Task output for further inspection it has to be assigned
to a variable upon execution, like this:

result = myTask()

One more thing to note is the possibility to define new default values for Task parameters. If we have
a myInput integer parameter for our myTask Task, we can set its new default value to 42 like this:

myTask.setAsDefault("myInput", 42)

Now equipped with this knowledge we can turn our average algorithm into a Task.

8.2.3. An Example of a Task: Average
To turn our average algorithm into a Task we need to wrap the algorithm into a suitable piece of code.

We will name the task itself Average (a Task is a class, it is callable from the command line, and
generally class names are capitalised nouns). In our Average class we have no needs other than
setting up a signature and calling the average function as part of its execution.

One change from our function to our class is that we will explicitly have two parameters in the class
definition. One (in a similar way as the function) is our input table, but for the class we declare a
second parameter to hold the result of computing the average. As a requirement, we would like to
change our original average function as little as possible.

In the next paragraphs we explain (with code and comments) what packages are necessary to import,
how to define the Task (creation code), the method to perform a function (execute) and how we use
and test the Task (with different parameter access methods).

8.2.3.1. Importing definitions

For our given code we need to import definitions that are used by our task:

Import task framework classes.

from herschel.ia.task.all import * #

Some explanation about the import:

Here we import all the task framework classes we need. Task and TaskParameter classes will be
automatically imported with the all import statement.

Note that the preferred way to import the needed classes from the task framework is the so called 'all'
import statement:

from herschel.ia.task.all import *

8.2.3.2. Creation

First the code for the creation method called __init__ in python:

class Average(JTask): #
Creation method

 def __init__(self,name = "averageTable"): #

 p = TaskParameter("table",valueType = TableDataset, mandatory = 1) #

Introduction to Tasks

217

 self.addTaskParameter(p) #

 p = TaskParameter("result",valueType = Double1d, type = OUT) #
 self.addTaskParameter(p)

And some explanations about the code...

Here we define a class Average which has JTask as a parent class. In other words, Average
inherits from JTask. Note that Jtask is a python file and has no JavaDoc therefore.
This line declares the creation method used by any instance of the Average class. self as the
first argument represents the instance that we are currently working on. The name argument is
the default value indicated (which the user can of course overwrite).

The rest of the code is the definition of the signature for the task Average and is as follows:

This line creates a parameter whose name is table, data type is TableDataset. This is a
mandatory parameter, i.e. an input parameter which must have a value before the algorithm is
performed. The preamble will verify that the user has set a value for this parameter and will
eventually warn the user that the execution of the task cannot take place.
Here we add the parameter to the signature of this task.
We proceed in a similar way for our second parameter (as mentioned above) which will hold the
result of our computation. The only difference for the second parameter is the type = OUT
statement which means that this parameter will hold an output value. As a side note the mode of
parameters can be IN, OUT or IO (both input and output), the default being IN.

8.2.3.3. Execution

First we examine the code for the execution method called execute as predefined in the JTask
base class. This simply follows on from the previous set of code that initiated the task and should be
added to the end of it:

Execute method itself

 def execute(self): #

 self.result = average(self.table) #

This is a declaration stating that we define the method execute. Actually we redefine the empty
execute method of JTask. This method has a parameter self which refers to the task we
are currently working with, rather than to any other parts of the current IA session.
This line means 'take this instance table value, perform the average operation on it and deliver
the result to this instance result'. So in one line we perform the whole operation using our own
actual parameters.

Together with the signature defined in the previous section we have set up our Task. The complete
script should look like the Task Average (below). We now load this into our session.

File: Average.py
#==
Import task framework classes.
from herschel.ia.task.all import *
from herschel.ia.task.JTask import JTask

class Average(JTask):
 #Creation method
 def __init__(self,name = "averageTable"):
 #
 p = TaskParameter("table",valueType = TableDataset, mandatory = 1)
 self.addTaskParameter(p)
 p = TaskParameter("result",valueType = Double1d, type = OUT)
 self.addTaskParameter(p)
 # Execute method itself does the running of 'average'
 def execute(self):
 self.result = average(self.table)

Example 8.2. The Average Task

Introduction to Tasks

218

8.2.3.4. Usage

Below is the command line code to input into the HIPE Console view for testing our Average task.
First we instantiate the Average class creating an object called avg:

avg = Average()

We are using the default name of averageTable for our Task. To change the name we would have
written for instance avg = Average("Simple average of table data set") or avg
= Average(name = "Mine").

We can now formulate a table using the createTable routine in the set of three functions we created
at the outset.

table = createTable()

The interesting part comes when we use the following:

print avg(table)

We have executed the Task and printed its result. To make sure that it indeed executed successfully,
we can look at the statusMessage:

print avg.statusMessage

A more direct way to execute our Task would be

print avg(createTable())

On the other hand, we could do everything in a long-hand fashion, doing one little step at a time:

avg.table = table
avg()
result = avg.result
print result

Here we tell our average task that its input is called 'table'. The second line runs the task itself and we
assign the result from this to a variable called 'result' in the third line. Finally, this result is printed.

8.2.3.5. Getting help on Tasks

If you stumble upon a task you have never used before you will probably want some way of finding
out about is parameters, whether they are mandatory or not, and so on. Taking our Average task as
example, if you type

info('Average') # Note it's 'Average' with single quotes

you will be greeted by the following window:

Introduction to Tasks

219

Figure 8.1. Getting help on a Task.

It may appear fairly intimidating, but it provides a lot of useful information to users once they get past
the initial shock. In particular, look at the sections called Inputs: and Outputs:. They list the
input and output parameters, which are most of what is needed in order to use a Task. In particular,
here we see that we have one input parameter called table, that it's a TableDataset and is
mandatory (Optional: false). Similarly, we see that the Task will output a single Double1d.
The information about status, statusMessage, progress and views, found in the lower part
of the help window (not shown in the picture) is of limited interest to users.

What appears in the help window also depends on what developers originally put into the Task. For
example, in our case we have the hardly reassuring Task: null and Name: null messages at
the very top of the window. But if we give a name to our Task like this

avg.setName("My first Task")

we will see that after a short while the new information will appear in the help window.

8.2.3.6. Adaptations in the Preamble to a Script

The adaptation to the input of our Average script can be made in a preamble to the task, such as in
the following script. Note that here we import the task classes one by one, just to show in detail
what is needed.

Introduction to Tasks

220

Importing JTask classes
from herschel.ia.task.all import *
Other needed imports
from org.python.core import PyList
And here is our AdaptAverage class
class AdaptAverage(JTask):
 # Creation method
 def __init__(self,name = "Running Average"):
 p = TaskParameter("vector1",valueType = PyList, mandatory = 1)
 self.addTaskParameter(p)
 p = TaskParameter("vector2",valueType = PyList, mandatory = 1)
 self.addTaskParameter(p)
 p = TaskParameter("result",valueType = Double1d,type \
 = OUT)
 self.addTaskParameter(p)
 # Create an internal JTask variable 'table' which is our table data set
 self.__dict__['table'] = TableDataset()
 # In the preamble we do the adaptation from 2 vectors to one table
 def preamble(self):
 JTask.preamble(self)
 self.table["0"] = Column(Double1d(self.vector1))
 self.table["1"] = Column(Double1d(self.vector2))
 # Execute method itself
 def execute(self):
 self.result = average(self.table)

Example 8.3. The Adapt Average Task

In this example, the from org.python.core import PyList statement allows us to work
with Python array lists (vectors). The task now takes two Python arrays and produces a table from the
arrays with each array forming a column of the table. We then can run our average script on the
table created in the preamble.

An internal instance variable is declared in the creation method with the statement:
self.__dict__['table'] = TableDataset().

Rewriting the preamble method. One should note that we first invoke the preamble from our parent
task (JTask) to guarantee that our needed parameters do have a suitable value before putting them
into the table.

The following short script can be used to test this adapted version of our averaging routine.

def test():
 sample1 = [1.0, 2.0, 3.0, 4.0]
 sample2 = [3.0, 4.0, 5.0, 6.0]
 avg = AdaptAverage()
 # Invocation using positional parameter
 print 'Result:', avg(sample1,sample2)

Input of the following command

test()

provides the following printed result

Result: [2.0,3.0,4.0,5.0]

8.2.3.7. Positional and Keyword Arguments in Tasks

Note

It should be noted that positional or keyword arguments can be used with tasks but NOT
a mix of the two.

For example, the last line of our 'test' script effectively runs the following (try replacing the last line
of the test() routine):

Introduction to Tasks

221

Positional arguments
print 'Result:', AdaptAverage()(sample1, sample2)
Keyword arguments
print 'Result:', AdaptAverage()(vector1=sample1, vector2=sample2)
Since 'vector1' and 'vector2' are the two arguments for the
AdaptAverage task.

Mixing of the two modes is ONLY allowed following all positional arguments. For example:

print 'Result:', AdaptAverage()(sample1, vector2=sample2)

But once keyword arguments start to be used then they must continue to be used. For example the
following code snippet will result in a compiling error when added to the 'test' program and recompiled.

print 'Result:', AdaptAverage()(vector1 = sample1, sample2)
If this is added to 'test' and "test' is then recompiled we get the
following syntax error.
SyntaxError: ('non-keyword argument following keyword',
('<string>', 6, 49, ''))

A similar syntax error occurs if the AdaptAverage() task was run on a single line outside of the 'test'
routine.

8.2.3.8. The Transformer example

Yet another JTask example. This one takes an array and transforms it into the first column of a
TableDataset. As before, the code comes with a testTran() function to check what the Task does.

from herschel.ia.task.all import *
from org.python.core import PyList

class Transformer(JTask):
 # Creation method
 def __init__(self, name = 'Vector Transformer'):
 p = TaskParameter(name = "input", valueType = array(Integer), mandatory = 1)
 self.addTaskParameter(p)
 p = TaskParameter(name = "result", valueType = TableDataset)
 p.type = OUT
 self.addTaskParameter(p)
 # Execute method
 def execute(self):
 self.result = TableDataset(description = 'Integrated vector as column zero')
 r = Double1d(len(self.input))
 index = 0
 for data in (self.input):
 r[index] = data
 index = index + 1
 self.result['0'] = Column(r)

def testTran():
 sample = [10, 20, 30, 40]
 # Turn it into a table data set
 transform = Transformer()
 table = transform(sample)
 print "Printing the table"
 print table
 print "Printing the first column of the table"
 print table['0']
 print "Printing just the data in the first column"
 print table['0'].data

Example 8.4. The Transformer Task

Introduction to Tasks

222

8.3. Guideline on How to Work With GUIs
Within Tasks

This section describes how to handle GUI's and/or a dialog related to a task, how to check whether a
certain task supports the use of a dialog and/or GUI, as well as describing how to apply them.It should
be emphasised that the developer of a task needs to implement a dialog or GUI in the task. This section
simply provides guidance to the user for using tasks that have dialog or GUIs included within them.

8.3.1. The use of task parameters handled via a dialog
In the case where a task includes a long or complex set of parameters a dedicated dialog can be provided
by the original developer of the task. Such a component is handled by a boolean parameter called
"dialog" which the user can invoke using

result = Task()(dialog=1)

Such a call results in a pop-up window which can be completed by selecting for example the "accept"
button, which will close the GUI.

Note that all tasks in the future will include a boolean-parameter called "dialog". In cases where all
the available input parameters are of the type String or Number (i.e. those the framework can handle
for setting up a dialog) a dialog-popup will be provided, otherwise an exception is thrown.

8.3.2. The use of more enhanced GUIs
In case you have a more complex task or you want to re-execute a task several times using different
inputs, a GUI might be introduced. Such a component is handled by a boolean parameter called "gui":

task = MyTask()
task.gui = 1 # gui interaction might include an task.execute()
result = task.result # another gui interaction
result2 = task.result

Such a command sequence is very useful as it increases transparency. For example, the GUI might
show the state of the parameters by including a field for each parameter and a plot or image representing
the quality of the resulting output.

To summarise: the user of a task applies its views by the use of related the booleans (task parameters).
In case of a one-time user interaction such a boolean is called "dialog" and otherwise it is called "gui".
Note that in case more GUI components are involved additional booleans could be introduced, the
task specific documentation should include this info.

8.3.3. Example Task Handled by a Dialog
The following provides an example interaction between a user (USR) and the system (HCSS) for the
use of a task "dialog".

USR: Asks to set up parameters of a task via dialog: result = MyTask()(dialog=1)

HCSS: looks for the default dialog provided by the task developer

a) dialog is found and displayed

b) dialog is not found in which case the framework (ia.task) tries to provide the user with an automatic
dialog for the task signature

HCSS: display the dialog

Introduction to Tasks

223

USR: set/adjust parameter values AND approve those (for example, by selecting an "accept" button)

HCSS: close the dialog, run the task, return to the command line

Justification:

The user is given the possibility to setup the tasks signature via a GUI which is launched on his request.

Note: in case b) fails it will notify the user that a dialog cannot be provided by the framework and was
not previously defined by the task developer

8.3.4. Example Task Controlled by a GUI
In this case we have a task that can be controlled via a GUI. The following shows a typical use case
for a user (USR) interaction with the system (HCSS).

USR: Asks to run a tasks via a GUI:

mytask = MyTask()

mytask.gui = 1

HCSS: display the GUI interface provided by the task developer

USR: (possibly) insert parameter values

USR: execute the task (for example by selecting the "execute" button)

HCSS: run the task, update GUI to (possibly) show result in a plot of image or text field

USR: retrieve data within HIPE by calling:

result = task.result

USR: possible further analysis of result in HIPE session

USR: repeat steps 3 to 7 to compare results using diff. parameter settings, or close the GUI

Justification:

The GUI can provide more functionality: setup signature, allow task to execute, see results in a image/
plot. The user is able to retrieve the task output -- for further analysis in DP -- as described above, i.e.
the result can be fed back into HIPE by requesting "res1 = mytask.result". In this scenario the GUI
lives next to HIPE.

224

Chapter 9. Other DP Packages: What
is Available?
9.1. Introduction

To use the various packages within HCSS the user needs to import them into the HCSS session. This
can be done automatically using the import.py file (see ???), editable by the user, for packages that
are used frequently. Whether in the import.py or via a JIDE command line, all packages are imported
via command lines of the type

from herschel.ia.numeric import *

There are several packages available within the HCSS. In this chapter we provide an overview of
the main DP packages only. There are also a number of external library sets that are imported into
DP when it is initiated (these will be described in a later update to the manual.) A full listing of
classes (programs) available in the HCSS system is given in ftp://ftp.rssd.esa.int/pub/HERSCHEL/
csdt/releases/doc/api/index.html.

A number of DP packages have already been discussed in some detail. The DP numeric package was
discussed in Chapter 4 , the DP plot package in Chapter 6 and the DP display package is described in
Chapter 7. Illustrations of how to use parts of several other HCSS packages are also shown in earlier
chapters.

The contents of these sub-packages are also briefly described in this chapter.

9.2. Overview of JavaDocs Documentation for
DP Packages

The javadoc is normally started up as three frames in a web browser as illustrated in Figure 9.1 The
upper left frame contains the packages index which is a clickable list of all packages in the system.
The title in that frame represents the HCSS build number for which this documentation is valid. The
lower left frame contains the classes index which is a clickable list of all classes. The selection of
classes shown in this frame depends on the package that was selected in the packages index frame.
The Main frame contains overview information on the system and packages or shows the javadoc for
a selected class.

Figure 9.1. Web browser page of JavaDocs top level frame.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Other DP Packages: What is Available?

225

Click in the Packages index frame to select a package and update the Classes index frame to show
those classes for the selected package. Click the Classes index frame to show the javadoc of a particular
class in the Main frame.

The Main frame contains a kind of navigation bar at the top where the view in this frame can be
selected. The figure above shows the overview of all the packages. Other views are: Package, Class,
Tree, Deprecated, Index, and Help. These views will be explained in more detail below. In the
overview the Package and Class views are disabled, they become available when a package or class
is selected. Figure 9.2 shows the slightly expanded navigation bar for the Class view.

Figure 9.2. Navigation bar on the class view of JavaDocs.

Note that the navigation bar provides the possibility to browse through packages and classes with
NEXT and PREVIOUS and provides direct access to the specific parts of the class documentation e.g.
constructors (start class/program) or methods (which can be thought of as sub-routine components of
programs that can be applied). It is also possible to switch between FRAMES and NO FRAMES. With
NO FRAMES only the Main frame of the javadoc will be shown and index frames become unavailable.

9.3. Package view
Each package has a page that contains a list of its classes and interfaces, with a summary for each.
This page can contain four categories: Interfaces summary, Classes summary, Exceptions and Error
summary. Not all categories are always present. At the end there is the package description and possible
links to specific and/or related documentation.

Figure 9.3 shows the herschel.ia.dataset package which contains a number of interface and
classes e.g. Dataset and TableDataset. You can see that the Classes index frame provides a clear
separation of interfaces and classes and the Main frame shows the interface and class summaries and
provides a brief package description with links to package specific info at the bottom (The image of
the Main frame has been manipulated to shows the categories available without too much cluttering
the picture). You can navigate to the interface and class detailed documentation by clicking the names
in the summary tables or in the Classes index frame.

Other DP Packages: What is Available?

226

Figure 9.3. Package description page in JavaDocs.

Other DP Packages: What is Available?

227

9.4. Class view
Each class and interface has its own separate page in the Main frame. Each of these pages has three
sections consisting of a class/interface description, summary tables for constructors and methods, and
detailed descriptions of constructors, methods and attributes. The information shown in the class view
is restricted to the public API (Application Programming Interface).

Each summary entry contains the first sentence from the detailed description for that item. The
summary entries are alphabetical, while the detailed descriptions are in the order they appear in the
source code. This preserves the logical groupings established by the programmer.

Figure 9.4 is taken from the Main frame of the TableDataset class and shows the class description
together with its hierarchy. You can see that the TableDataset implements a number of interfaces
and also has one known sub-class i.e. SpectrumDataset. The second part of the figure shows a more
detailed description of the class usage. This description is provided by the programmer in the source
code.

Figure 9.4. The class view of TableDataset showing a brief description and a short example of its usage.

Scrolling down in the Main frame brings you to the summary section which is shown in Figure 9.5.
The constructor summary shows all public constructors for this class with their specific argument
list. To see detailed information on the constructor click the name of the constructor that you need.
Constructors are methods that create objects of a particular type. The code example in the description
section above shows you how to create a TableDataset on the jython command line.

Other DP Packages: What is Available?

228

Figure 9.5. Page showing the constructor mechanism (how to create a TableDataset) and the associated set
of methods (what you can do with the TableDataset you created).

The method summary shows all public methods for this class in alphabetical order. For detailed
information on a specific method, click its name. In this method summary there are a number of things
to note. The return values of the methods are in the left column while the method signature and a
summary line is in the right column. The summary line can be preceded with a deprecation note.
Deprecation means that this method should not be used anymore because it is marked to be removed
from future releases. The deprecation comment normally provides the alternate or new method to
be used instead. An overview of all deprecated methods in the whole system is available from the
navigation bar at the top of the Main frame.

Other DP Packages: What is Available?

229

Sometimes method names can start and end with two underscore characters like in __getitem__
above. These methods are special constructs which allow you to use the specific jython syntax to
access and manipulate objects from this class.

9.5. Tree view
There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each hierarchy
page contains a list of classes and a list of interfaces. The classes are organised by inheritance structure
starting with java.lang.Object. The interfaces do not inherit from java.lang.Object. When viewing the
Overview page, clicking on "Tree" displays the hierarchy for all packages. When viewing a particular
package, class or interface page, clicking "Tree" displays the hierarchy for only that package.

9.6. Deprecated view
The Deprecated API page lists all of the API that have been deprecated. A deprecated API is not
recommended for use, generally due to improvements, and a replacement API is usually suggested.

Warning

Be warned that deprecated APIs may be removed in future implementations.

9.7. Index view
The Index contains an alphabetic list of all classes, interfaces, constructors, methods, and fields.

9.8. DP Packages And Documentation
The following short paragraphs outline the packages currently available within the Herschel DP
system. A full listing of the classes (programs) available in these packages is provided in Javadoc form
at ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html.

9.8.1. herschel.ia.dataflow
herschel.ia.dataflow - a package for handling processing threads. Particularly useful for Quick Look
Analysis (QLA) and Standard Product Generation (SPG). It can be used in interactive sessions too.
Allows the user to connect scripts from process modules as is typically required for a set of data
reduction steps. Dataflow also supports event-based processing as well as threads.

Sub-packages:

herschel.ia.dataflow.data.process ...classes for handling the processes used in a dataflow session.

herschel.ia.dataflow.example.indicator_control.monothread ...classes used to illustrate the control of
a dataflow.

herschel.ia.dataflow.example.indicator_control.multithread ...ditto but for multiple threads.

herschel.ia.dataflow.template ...class to allow template dataflow to be created.

herschel.ia.dataflow.util ...contains a class for identifying dataflows.

9.8.2. herschel.ia.dataset
herschel.ia.dataset - a package for dealing with TableDataset , ArrayDatasets and
CompositeDatasets . These datasets contain information to which an algorithm can be applied. The

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Other DP Packages: What is Available?

230

package contains classes that deal with the set and handling of these datasets and also the handling of
products (which can contain multiple datasets). An example product may be one that contains several
tables plus metadata that describes the table contents which might have similarities to FITS header
information.

Sub-packages:

herschel.ia.dataset.demo - contains classes that demonstrate the use of datasets and construct a user-
defined SpectrumDataset.

9.8.3. herschel.ia.demo
herschel.ia.demo - package containing classes for use in a DP demo of end-to-end processing. See
sub-package herschel.ia.demo.endtoend and demo script.

9.8.4. herschel.ia.doc
herschel.ia.doc - currently a place holder for a documentation package.

9.8.5. herschel.ia.document
herschel.ia.document - tools to generate documentation of dynamic as well as static DocBook
documents in different formats: PDF, HTML, JHelp.

9.8.6. herschel.ia.help
This package contains the utilities and classes needed for providing the help facilities in an DP/JIDE
session. Access to the on-line help is discussed in Chapter 3 of this manual.

9.8.7. herschel.ia.image
herschel.ia.image - package containing classes for handling images. The Display capabilities from
this package were discussed in Chapter 8. The following classes exist in the package.

• Display - an image display implementation based on JSKY. User gets 800x600 window for image.
Can handle, 1D, 2D and 3D image representations. Allows standard display capabilities such as
annotation, rescaling, coordinate display.

• Histogram - currently a basic histogram capability. The histogram is based on the values taken from
an imageDataset.

• ImageDataset - a special form of a composite dataset that presents an image. Has layers which are
image data, mask data, error data. World Coordinate System (WCS) information is held as metadata
in the ImageDataset.

• Layer - constructs a layer of an ImageDataset.

• Rotate - allows rotation of an ImageDataset. Four different types of interpolation are possible. The
WCS coordinates of the image are also rotated with the image.

• Scale - allows the scale of an image to be changed. Four different types of interpolation are possible.

• Translate - moves an ImageDataset. The WCS is also adapted.

• WCS - associates a World Coordinate System to an ImageDataset

Sub-package:

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/productgeneration_demo.py

Other DP Packages: What is Available?

231

herschel.ia.image.gui - classes that handle GUIs. These should ONLY be called from within the
Display program.

9.8.8. herschel.ia.inspector
This package contains the classes and utilities for providing the dataset and session inspectors available
in JIDE (see Section 2.3.5).

9.8.9. herschel.ia.io
herschel.ia.io - This is a package that provides a means of accessing local archives where Products
can be saved or loaded from. Products are combinations of data and information and can be likened
to the contents of a single FITS file.

Sub-packages:

herschel.ia.io.fits - A FITS implementation that can write Products to a FITS file and read such FITS
files back into the system. Allows the production of a FITS archive.

herschel.ia.io.ascii - Allows the input/output to and from ASCII files from within the DP environment.

herschel.ia.io.dbase - Allows data/products to be put into objects that can be stored in databases
(Versant databases are currently available for use with the HCSS). See Chapter 12 for information
about the setup and use of databases with DP.

9.8.10. herschel.ia.jconsole
herschel.ia.jconsole - Package containing the classes used in running JIDE, a GUI for running/editing
of DP/Jython scripts. Allows control of the JIDE setup and access to classes that setup the components
of the GUI interface (in herschel.ia.jconsole.gui).

9.8.11. herschel.ia.numeric
herschel.ia.numeric - This package is discussed in some detail in Chapter 4 and Chapter 5

Sub-packages:

herschel.ia.numeric.toolbox - Provides a large set of numeric classes available within Herschel DP.
These include mathematical functions (trigonometric functions, polynomials), Fourier transforms,
fitter functions, interpolation and matrix functions. NOTE: toolbox classes are automatically loaded
when starting DP.

herschel.ia.numeric.toolbox.basic - Provides the classes that allow basic mathematical manipulation
of numeric arrays, e.g., trigonometric functions, mathematical product, variance etc.

herschel.ia.numeric.toolbox.filter - Provides the classes BoxCarFilter, Convolution and
GaussianFilter.

herschel.ia.numeric.toolbox.fit - Provides the classes that allow the fitting of data with numerous
models (iterative fitters, sine model fitters, polynomial model fitters etc.).

herschel.ia.numeric.toolbox.interp - Provides the classes that allow the interpolation of data.
These include CubicSplineInterpolator, Interpolator (a general interpolator),
LinearInterpolator and NearestNeighborInterpolator.

herschel.ia.numeric.toolbox.matrix - Provides the classes that allow the manipulation of Double2d
arrays holding matrices. It includes the classes MatrixDeterminant, MatrixInverse,
MatrixSolve.

Other DP Packages: What is Available?

232

herschel.ia.numeric.toolbox.util - Provides the single class MoreMath which has methods for
mathematical manipulation of single numerical elements (integers, doubles, bytes etc.).

herschel.ia.numeric.toolbox.xform - Provides the classes FFT, Hamming and Hanning for Fourier
transforms and Hanning/Hamming smoothing of data.

9.8.12. herschel.ia.plot
herschel.ia.plot - This package provides access to the DP plotting utilities available with DP (callable
from JIDE). This includes PlotXY and access to plot properties. The use of the plotting capabilities
in Herschel DP is discussed in Chapter 6.

9.8.13. herschel.ia.task
herschel.ia.task - This package provides the tools needed to create a DP "task" which a user can then
incorporate when constructing his/her own DP software package. This can be used by a user to set up
a script which has an associated "signature" (parameter setup). In setting up a task, parameter checks
can be performed and a history of the processing can be made.

This package is discussed in Chapter 8.

9.8.14. herschel.ia.ui
herschel.ia.ui - Provides the programs dealing with the GUI interfaces available within Herschel DP.
The setup and use of GUIs and incorporation of Java.

233

Chapter 10. IO of DP Variables,
Tabular ASCII and FITS Files

10.1. Introduction
This chapter describes how to save to disk and restore DP variables and how to read and write tabular
ASCII and FITS data files within DP. Illustrations are provided that run in the HIPE environment.

10.2. Saving and Restoring DP Variables
Some or all of your DP variables can be saved to disk and restored later in the same session, or even
a different session. DP variables types that can be saved are:

• simple scalar values, lists and strings (1, [1,2,3], "a string")

• numeric arrays (Int1d, ... Complex3d)

• datasets (TableDataset, ArrayDataset, CompositeDataset)

• products (Product) - which contain one or more datasets, a history of how they were created and
meta-data describing their contents.

These can be saved from and brought back into a DP session using the save and restore
commands. This is illustrated in Example 10.1.

a=1
b=[1,2,3]
c="Hello world"

x=Int1d.range(3)
y=Complex2d([[1+2j,3+4j,5+6j], [0+1j,2+3j,4+5j]])
z=Double3d(4,2,3)
z[0,0,:]=x
z[3,1,:]=x+1

u=ArrayDataset(data=x.copy(),description="Demo array dataset")

--- save some of the above variables
save("xyz.sav","x,y,z")

--- save all variables
save("all.sav")

--- make all variables invalid
a=b=c=u=x=y=z=None
print a,b,c

--- restore x,y,z
restore("xyz.sav")
print x,y,z
x=y=z=None
print x,y,z

--- restore all
restore("all.sav")
print a,b,c
print x,y,z
print u

Example 10.1. Using save and restore

IO of DP Variables, Tabular ASCII and FITS Files

234

10.3. Getting Started with ASCII Import/
Export

Assuming you have successfully started HIPE, then the following packages should already be available
within the standard DP setup:

herschel.ia.io.ascii
herschel.ia.dataset

10.3.1. Basic ASCII Table Import/Export Tool Usage
The tool to read and write tabular ASCII files is called AsciiTableTool. In your session, you may
have multiple instances of this tool - each with a different configuration to suit the format of the input/
output tables being used.

In general, create the ASCII tool with default settings

ascii = AsciiTableTool()

ascii is now known in your session as a table import and export tool. You can apply methods on
ascii to load and save tabular information from and to an ASCII file.

Let us set up a TableDataset to export. Input the following lines into the HIPE console view:

table = TableDataset()
table["x"] = Column(Double1d([1.0,2.0,3.0]))
table["y"] = Column(Double1d([4.0,5.0,6.0]))
table["z"] = Column(Double1d([7.0,8.0,9.0]))

We can now export it to an ASCII file with the following command:

ascii.save("table.output",table)

If we now look inside the file, "table.output", we'll see something like this:

x,y,z
Double,Double,Double
,,
,,
1.0,4.0,7.0
2.0,5.0,8.0
3.0,6.0,9.0

The first two lines show the name and data type of each column. The third and fourth lines show the
units and description of the columns. Here they are empty because we did not set any.

To load the data back into HIPE the command is

loadedTable = ascii.load("table.output")

You can look at the new TableDataset by typing print loadedTable, to see that it is the same
as table, as expected.

You can change the behaviour of the tool to allow various formatting changes with the following
attributes:

parser=yourParser Changes the line parsing behaviour at import.

IO of DP Variables, Tabular ASCII and FITS Files

235

formatter=yourFormatter Changes the line formatting behaviour at export

template=yourTemplate Specifies how to interpret raw cell data.

For example

ascii.parser = CsvParser()

indicates to use the CsvParser, while

ascii.formatter = CsvFormatter(delimiter = '&')

indicates that we want to use a non-standard delimiter (ampersand rather than a comma).

10.3.1.1. Import Parsers

A parser controls how to break-up a line into table cell data. All parsers share the following attributes:

ignore=expression

Lines containing expression are ignored. By
default the expression skips lines starting with
a hash, possibly preceded by one or more
whitespaces:

skip=value
First number of lines can be skipped by specifying
a value>0. Default is 0.

trim=0|1
Whether to strip lines from leading and trailing
spaces, default is 0 (false).

The following lines make the parser skip the first twenty lines and removes leading and trailing blanks.

ascii.parser.skip = 20
ascii.parser.trim = 1

10.3.1.2. Comma-Separated-Variable Parser

The Comma(Character)-Separated-Variable Parser named CsvParser breaks up a line into cells
using a delimiter symbol. The delimiter character can be part of one or more cell-data itself.

In addition to the common attributes of any parser, a CsvParser gives you control over the following
extra attributes:

delimiter=character
The character used to distinguish cells within a
line of data. Default is a comma character ','.

quote=character
The character used if cell-data contains a delimiter
character. Default is a double quote character '"'.

This example skips 2 lines and makes the delimiter symbol a semi-colon. The * character is used to
indicate cells containing the delimiter symbol.

ascii.parser = CsvParser(skip=2,delimiter=';',quote='*')

10.3.1.3. Fixed-Width Parser

The FixedWidthParser breaks up a line into cells by interpreting every cell to be of a fixed
number of characters.

IO of DP Variables, Tabular ASCII and FITS Files

236

In addition to the common attributes of any parser, a FixedWidthParser gives you control over the
following extra attributes:

sizes=array
An array n elements, where n is the number of
columns, and each element specifies the width of
that cell.

This example uses a FixedWidth parser that expects three columns in the table with widths 10, 20
and 10 characters respectively - and in that order.

ascii.parser = FixedWidthParser(sizes=[10,20,10])

10.3.1.4. Regular Expression Parser

The RegexParser breaks up a line into cells by interpreting every cell to be separated by a set of
characters given by a standard regular expression.

The following short example uses a RegexParser that expects a vertical slash separator with one
or more spaces either side.

ascii.parser=RegexParser(delimiter="\s*\|\s*")

10.3.1.5. Export Formatters

A formatter controls how to format a row of cells into a line of ASCII. All formatters share the
following attributes:

commented=0|1
States whether comments will be allowed in the
output or not, default=0 (false).

commentPrefix=string Prefix used for all comments, default="# ".

header=0|1

Whether to precede the actual data with header
information, default is 0 (false). This header may
contain name, type, units and description of each
column

In the following example, first indicate that a header is to be added to the output table, then allow
comments in the output and finally indicate how comments are prefixed in the table.

ascii.formatter.header=1
ascii.formatter.commented=1
ascii.formatter.commentPrefix="$$$ "

10.3.1.6. Comma-Separated-Variable Formatter

Please read its counterpart CsvParser (see Section 10.3.1.2) for parameters and defaults.

The default comma(character) separated variable formatter has a ',' delimiter and a '#' quote character.

formatter = CsvFormatter()

The delimiter and quote characters can be changed, e.g. the & symbol is useful for creating latex tables

IO of DP Variables, Tabular ASCII and FITS Files

237

formatter = CsvFormatter(delimiter='&', quote='<')

10.3.1.7. Fixed-Width Formatter

Please read its counterpart FixedWidthParser (see Section 10.3.1.3) for parameters and defaults.

Take default width for table cells

formatter = FixedWidthFormatter()

Set the width of 3 columns of cells to specific sizes

formatter = FixedWidthFormatter(sizes=[5,12,3])

10.3.1.8. Table Template

Many tabular ASCII files contain only raw data. Though the human eye may interpret cell-data being
a string or a rational number, the computer needs some more information.

The TableTemplate allows you to specify such information. The only mandatory argument for a
table template is the number of columns that are expected. Its optional attributes are:

names=array
Specifies names that will be attached to the
columns.

types=array

Specifies the types of all columns. If not specified,
the template assumes that all columns are of
type String. Allowed types are: Boolean,
Integer, Float, Double and String.

units=array
Specifies the units of all columns. Uses SI units,
and units that are accepted for use with SI.

descriptions=array Specifies comments for all columns.

The following table template indicates a table with 4 columns with associated names character/number
types and associated units

ascii.template=TableTemplate(4,\
 names=["Frame","Energy","Foo","Bar"], \
 types=["Integer","Double","Double","Double"], \
 units=["s","eV","N m -1","kg L-1"])

10.3.2. Examples of How to Import/Export ASCII Tables
in DP

Section 10.3.1 introduced the various import and export capabilities of the AsciiTableTool. We
can put these together to illustrate how a user can import and export ASCII tables of virtually any type.
The example below provides an illustration of how to handle ASCII tables in the DP environment.
A number of ASCII tables are created and reimported. These can be viewed by opening them within
HIPE window (or within any other text editor). In order to run the program the user will also require
an input file, which is given below and can be downloaded from here. Remember to rename the file to
ascii_demo_data.txt, and to delete any blank lines at the end, otherwise you will get an error
when reading its contents.

Sample file, using default settings of AsciiTable object
table=AsciiTableTool().load("ascii_demo_data.txt")

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/ia/ia-7.2/manual/um/chap10_example1_input.txt

IO of DP Variables, Tabular ASCII and FITS Files

238

Frame,Counts,Valid,Comments
Integer,Double,Boolean,String
s,eV,,
,,,
1,1.0,true,
2,5.0,true,
3,0.0,false,incomplete data
4,0.0,false,missing data
5,1.234567E-8,true,

--- import a table that complies to default settings
ascii=AsciiTableTool()
table=ascii.load("ascii_demo_data.txt")
--- export a table using defaults settings:
ascii.save("table.out1",table)
--- export using Fixed Width format, with header info:
ascii.formatter=FixedWidthFormatter(sizes=[8,16,8,30])
ascii.save("table.out2",table)
--- importing it back requires Fixed Witdh parser
ascii.parser=FixedWidthParser(sizes=[8,16,8,30])
table=ascii.load("table.out2")
--- export using Fixed Witdh format, only raw data:
ascii.formatter.header=0
ascii.save("table.out3",table)
--- importing a raw "fixed width" table that has only data. So we
have to define the template ourselves:
ascii.template=TableTemplate(4,names=["Frame","Counts","Valid",\
"Comments"], types=["Integer","Double","Boolean","String"])
table=ascii.load("table.out3")
--- saving current state of AsciiTableTool:
ascii.save("table.template")
--- quick save table with default settings, equivalent to
#"table.out1":
AsciiTableTool().save("table.out4",table)
-- reloading state:
mine=AsciiTableTool("table.template")
table=mine.load("table.out3")
mine.save("table.out5",table)
--- saving with comments
table.description="Sample description can be found here"
mine.formatter.header=1
mine.formatter.commented=1
mine.formatter.commentPrefix="; "
mine.save("table.out6",table)

Example 10.2. ASCII demo data

Finally, we also present an example of the use of the RegexParser for importing tables.

from herschel.ia.io.ascii import *

#instantiate the table tool
ascii = AsciiTableTool()
regular expression looks for vertical slash between spaces
ascii.parser=RegexParser(delimiter="\s*\|\s*")
#6 columns will be read
ascii.template = TableTemplate(6)
now load it
cat = ascii.load("test_ascii_space.dat")
#get the number of data elements in the first column
n = len(cat["Column0"].data)

#Now print out the columns we have read into "cat"
for i in range(n):
 print cat["Column0"].data[i],cat["Column1"].data[i],\
 cat["Column2"].data[i],cat["Column3"].data[i],\
 cat["Column4"].data[i],cat["Column5"].data[i]

############

IO of DP Variables, Tabular ASCII and FITS Files

239

The data file for the above script is the following which should
be called "test_ascii_space.dat":
########
1 | 2 | 3 | 4
2 | 3 | 4 | 5
3 | 4 | 5 | 6
4 | 5 | 6 | 7 |

| 5 | 6 | 7 | 8 |
6 | 7 | 8 | 9 |
a | b | 8 | 9 |
#########

The result from above script should look like this:
#######
1 2 3 4 None None
2 3 4 5 None None
3 4 5 6 None None
4 5 6 7 None None
None None None None None None
None 5 6 7 8 None
6 7 8 9 None None
a b 8 9 None None
#####

10.4. Overview of FITS IO
In the next few sections we describe how to write and read Products (which contain one or more
datasets, a history of how it was created and meta-data describing the contents - the latter two are
typical FITS header components) to and from FITS files within the DP environment.

Note

FITS stands for Flexible Image Transport System, a format adopted by the astronomical
community for data interchange and archival storage.

10.4.1. Getting Started With FITS IO

Assuming you have successfully started HIPE, the facilities needed to create products as well as to
create FITS files should already be available in your session.

10.4.1.1. Basic FITS IO Tool

The tool to write and read Products to and from FITS files is FitsArchive. In your HIPE session,
you may have multiple instances of this tool -each with a different configuration.

In general, we can set up a FITS file for archiving, export DP products to it and retrieve back a product
from a FITS file.

A generic FITS reader is available. This generic reader can parse FITS files that were created by
applications other than the HCSS software.

from herschel.ia.io.fits.FitsArchive import *

fits=FitsArchive(reader=STANDARD_READER)
product=fits.load("input.fits")
myDisplay3 = Display(Double2d(product["PrimaryImage"].data))
#which takes the data from the FITS file, puts it into a 2D array
#and displays it.

Example 10.3. Using FITS Archive

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/dataset/index.html

IO of DP Variables, Tabular ASCII and FITS Files

240

The HCSS product can be manipulated in the DP system in a similar way to DP-produced arrays.
In the above example, a 2D FITS image is displayed after having been imported.

A DP product containing data and meta data can be saved into a FITS file using the following

fits.save("output.fits",product)

In particular, you can save a SimpleImage in FITS format:

fits = FitsArchive()
myImage = SimpleImage(description="An image",image = Double2d(50,100), \
 error=Double2d(50,100),exposure=Double2d(50,100))
fits.save("myImage.fits", myImage)

Warning

The above code will generate a FITS file with the value 50 assigned to the NAXIS2
keyword and 100 assigned to NAXIS1. In other words, the image size will be 50 pixels
along the y axis and 100 pixels along the x axis. The coordinate values will be displayed
in this order (y, x) in the Image Viewer. For an explanation of why the y size is specified
before the x size, see Section 4.6.1 in Chapter 4.

10.4.2. Parameter Name Conversion and FITS Header

The current implementation of the FITS archive converts long, mixed-case parameter name, defined
in the meta data of your product, into a FITS compliant notation. The latter dictates that parameter
names must be uppercase, with a maximum length of eight characters. Clearly, we do not want to force
all our parameters to have names that fit within such a FITS specific restriction.

The FITS Archive uses lookup dictionaries that convert well known FITS parameter names into a
convenient and human readable name. Currently the following dictionaries are in use:

Common keywords (ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/
DictionaryHeasarc.map) widely used within the astronomical community, which
are taken from HEASARC (http://heasarc.gsfc.nasa.gov/), Standard (ftp://ftp.rssd.esa.int/
pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryStandard.map) FITS keywords,
and HCSS keywords (ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/
DictionaryHcss.map) containing keywords that are not defined in the above dictionaries.

For example the following Meta data is transformed into a known FITS keyword:

product.meta["softwareTaskName"]=StringParameter("FooBar")

Providing the following FITS product header via direct translation using the lookup dictionaries.

HIERARCH key.PROGRAM='softwareTaskName'

PROGRAM = 'FooBar '

A full demonstration of FITS IO is available in the example below. The script creates a product with
several (nested) datasets, stores it into a FITS file, and then retrieves it again.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHeasarc.map
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHeasarc.map
http://heasarc.gsfc.nasa.gov/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryStandard.map
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryStandard.map
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHcss.map
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHcss.map

IO of DP Variables, Tabular ASCII and FITS Files

241

first we will get some unit definitions for our example
from herschel.share.unit import *
from java.lang.Math import PI

--- construction of a product. note this is only for demonstration
purposes. For more infomation, please see the dataset and numeric
chapters of the manual (chapters 5 and 6).
points=50
x=Double1d.range(points)
x*=2*PI/points
eV = Energy().ELECTRON_VOLTS
#Create an array dataset that will eventually be exported
s=ArrayDataset(data=x,description="range of real\
values",unit=eV)
degK = Temperature().KELVIN
#provide some metadata for it (header information)
s.meta["temperature"]=LongParameter(long=293,\
description="room temperature",unit=degK)

#we can store the array in a FITS file
#after making it a Product
p=Product(description="FITS demonstration",creator="You")
#add some meta data
p.meta["sampleKeyword"]=StringParameter("First FITS file")
p.meta["observationInstrumentMode"]=StringParameter("UnitTest")
#add the array of data to the product
p["myArray"]=s
store in FITS file
fits=FitsArchive()
fits.save("sdemo.fits", p)

and restore it
scopy = fits.load("sdemo.fits")

#create a tabledataset for export
t=TableDataset(description="This is a table")
t["x"]=Column(x)
t["sin"]=Column(data=SIN(x),description="sin(x)")

and a composite dataset with an array and a table in it
c=CompositeDataset(description="Composite with three datasets!")
c.meta["exposeTime"]=DoubleParameter(double=10,description="duration")
c["childArray"]=s
c["childTable"]=t
c["childNest"]=CompositeDataset("Empty child, just to prove nesting")

and finally, a product that has the composite dataset,
tabledatset and array dataset.
p=Product(description="FITS demonstration",creator="demo.py")
p.creator="You?"
p.modelName="demonstration"
p.meta["sampleKeyword"]=\
StringParameter("Example keyword not in FITS dictionaries")
p.meta["observationInstrumentMode"]=StringParameter("UnitTest")
p["myArray"]=s
p["myTable"]=t
p["myNest"]=c

save our product ...
fits.save("demo.fits",p)

... load it back into a new variable, n,...
n=fits.load("demo.fits")

... and show it!
print n
print n["myArray"]
print n["myNest"]
print n["myNest"]["childNest"]

#we can also get information on the metadata/keywords
print n.meta

#and look at a specific piece of metadata
print n.meta["startDate"]

Example 10.4. FITS IO from within Herschel DP

IO of DP Variables, Tabular ASCII and FITS Files

242

10.4.3. Caveats

For more information see the FITS IO general documentation (ftp://ftp.rssd.esa.int/pub/HERSCHEL/
csdt/releases/doc/ia/io/fits/index.html).

10.4.3.1. FITS header character limit

A FITS header card is limited to 80 characters. Within those limitations the FitsArchive will
try to store the abbreviated FITS keyword, parameter value, and in the comment area optionally
a quantity and description. The latter two might be truncated due to these limitations. Also a
StringParameter with a long value can be truncated.

10.4.3.2. Corrupted FITS file after unzipping

The Herschel Science Archive provides an option to download observations as a TAR (zipped) file.
Windows users often extract such a file with the WinZip program and find that their FITS files are
corrupted.

The default settings of WinZip tries to be smart and converts text files to DOS format, which means that
the line feed (LF, or \n) character is replaced by line feed and carriage return (CR, or \r) character.
Obviously this should not be done to binary files.

WinZip seems to determine whether a files is an ascii file by reading the first few characters of the
file, if this is looks like plain text, it will do the conversion. Unfortunately all (binary) FITS files start
with the word "SIMPLE". Hence the FITS file is interpreted as text file and conversion and therefore
corruption takes place.

The above is the result of running WinZip with default settings. Fortunately WinZip provides a way
to disable the conversion. The steps below describe the procedure for WinZip 12.0.

• Select in the menu Options -> Configuration...

• Go to the Miscellaneous tab

• De-select the TAR file smart CR/LF conversion option (see Figure 10.1).

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/index.html

IO of DP Variables, Tabular ASCII and FITS Files

243

Figure 10.1. The Configuration dialogue window in WinZip.

Note

It seems that 7-Zip does not cause this problem. If using another compression software,
please consult its documentation. You may want to inform the Herschel Editorial Board
of your findings so that they can be included in this section.

244

Chapter 11. Using Time in the DP
Environment
11.1. Introduction

This note describes which and how Time is defined within HCSS and how to deal with it.
Unfortunately, there are several ways in which time can be represented. The standard for the HCSS/
DP is a FineTime - which is the number of microseconds since the beginning of 1 January 1958.
This provides the kind of accuracy needed to represent time on a space mission.

However, there are several other time representations and it is often the case that conversions between
times/dates is necessary. In particular, it is noted that the standard Java commands lead to date
measurements with respect to 1 January 1970. This chapter indicates how to deal with times within
DP and converting between the various times, particularly between dates and FineTime's.

11.2. Time Definitions
11.2.1. System time in DP

There are many ways to access the system time within DP. See also the description of the Java class
"Date" for a discussion of slight discrepancies that may arise between "computer time" and coordinated
universal time (UTC).

The Java Date class is deprecated and is being replaced by a more flexible SimpleDateFormat
capability within Java that allows the user to express dates more conveniently. A Date object is still
obtained and can be turned into a FineTime (see below) once created.

Two possibilities for creating a "Date" object are:

To get the current time in milliseconds:
The difference, measured in milliseconds, between the current
time and midnight, January 1, 1970 UTC.
print java.lang.System.currentTimeMillis()
To get the number of milliseconds since
January 1, 1970, 00:00:00 GMT represented by a Date object.
d = java.util.Date()
#printing this gives the current time and date at the location of the
#system on which the java is being run.
print d
#We can also get the number of milliseconds since Jan 1, 1970 using
#this Java Date
print d.getTime()

Example 11.1. Current Time

Note that while the unit of time of the return value is a millisecond, the granularity of the value depends
on the underlying operating system and may be larger.

If we want to get the number of milliseconds since 1 January 1970 for any other date then we can use
a non-default form of the Java Date capability where the year, month, day, hour, minute and second
are provided.

• Year format -- year (A.D.) - 1900. So the year 2006 = 2006 - 1900 = 106

• Month format -- number of the month, beginning from January = 0. E.g. March = 2.

• Day -- just day number in the month.

• Hours, minutes, seconds -- on the 24-hour clock.

Using Time in the DP Environment

245

NOTE: This is the time on our computer system.

#Format of date is year (in units of true year - 1900), month (number 0...11),
#day, hour, minute, second. So the following gives us the number of milliseconds
#between the beginning of 1 January 1970 and 3:15:00 pm on 23 October 2004.
d = java.util.Date(104, 9, 23, 15, 15, 0)
print d # should indeed show we have 3:15pm on 23 October 2004
print d.getTime() # provides the number of milliseconds between this
#date and 1 Jan 1970.

The following sample code shows how to use SimpleDateFormat to create a "Date" object.

simpleDate = java.text.SimpleDateFormat("yyyy.MM.dd HH:mm:ss z")
#set up how you want to set up your input Date format. In this
#case we could input "2006.01.14 01:00:00 CST" for 1a.m. on 14
#January 2006. z -- indicates the time zone (default is the zone for the
#computer system being used).

simpleDate.applyPattern("dd/MM/yy HH:mm")
#change the pattern to a different format

startTime = simpleDate.parse("13/01/06 14:06")
#create the data object "startTime"

print startTime
#...and see what this looks like

Allowed choices for the data format are available from Java documentation of the SimpleDateFormat
capability.

11.2.2. International Atomic Time (TAI) and FineTime
TAI is an international standard measurement of time based on the comparison of many atomic clocks.
TAI is the basis for Coordinated Universal Time (UTC). Finetime is based on TAI as measured
from 00:00:00 1 January 1958.

11.2.3. Coordinated Universal Time (UTC)
UTC , World Time, is the standard time common to every place in the world. UTC is derived from
International Atomic Time (TAI) by the addition of a whole number of "leap seconds" to synchronise
it with Universal Time 1 (UT1), thus allowing for the eccentricity of the Earth's orbit and the rotational
axis tilt (23.5 degrees), but still showing the Earth's irregular rotation, on which UT1 is based.

11.2.4. DecMec Time [PACS only]
The commands DPUSelectTime and DPUWriteTime are selecting and setting a start time which is
written to the TMP1 and TMP2 fields of the Dec/Mec headers. This is used in coordinating the
activities of the mechanical devices on board PACS. It is possible to construct an absolute time by
adding counters (CRDC) to the start time considering an offset between setting and writing the start
time.

This offset is expected to be a number with an uncertainty depending on the system load. It might
require a calibration file. Currently this offset is not considered.

In case the commands and are not given the TMP1 and TMP2 fields are zero. To avoid software
confusions the time will be related to a fixed date (1.Jan 1970, 0:00).

During construction of the SpuBuffer the time is computed from the TMP1, TMP2 entries in the Dec/
Mec header and the CRDC counter. This time is used during construction of the DataFrameSequence
and the associated Tables holding the SPU science data.

Between the Dec/Mec time and the packet time (see PusTmBinStruct) we have an offset. Therefore
the association between HK and science data will be within an accuracy of 2 seconds.

Using Time in the DP Environment

246

11.3. Time in Instrument House-Keeping (HK)
Data

The most convenient method of obtaining time stamped HK information is the use of the
"herschel.binstruct" package. The use of this is illustrated in Chapter 12.10 where HK data is obtained
from a database and then read/converted for use within the DP environment.

When dealing with HK time information directly, it is important to know that telemetry packets contain
the time as defined within the "PUS Data Field Header". The field represents the on-board reference
time of the packet, referenced to TAI, expressed in spacecraft time units - CCSDS Unsegmented Time
Code (CUC) units. CUC units are multiples of 1/65536 sec from 1 January 1958 in TAI time. CUC
units cannot be expressed in whole microseconds but can be converted to the FineTime standard (see
below).

CUC time is written for HK by the data processing unit (DPU).

Current PusTmBinStruct methods related to time:

long getTime()

Returns the packet time of the Pus telemetry packet.

boolean isTimeSynchronized()

Returns true if the telemetry packet is synchronized, false otherwise.

java.util.Date getTimeAsDate()

Returns the packet time as a Date object.

FineTime getTimeAsFineTime()

Returns the packet time of the Pus telemetry packet as FineTime.

11.4. Time conversion
11.4.1. Time conversion in HCSS

It can often be the case that we need to convert between FineTime (TAI) and Date (UTC). Coordinated
Universal Time is expressed using a 24-hour clock and uses the Gregorian calendar. FineTime
represents a TAI time (epoch 1958), whereas the Java Date class is used to represent UTC, by resetting
the system clock whenever a leap second occurs and don't need to handle leap seconds. Converting
between Java dates and the FineTime standard requires the use of the DateConverter() class. Long
integers can also be directly converted to FineTimes and are interpreted as representing the number of
microseconds since 00:00:00 1 January 1958. In Example 11.2 we illustrate how to create a FineTime
from a long integer and convert back and forth between FineTime and Java Dates.

from herschel.ccm.util import *
from herschel.share.fltdyn.time import *

FineTime to Date
Enter a time in seconds (a long integer - put letter "l"
at the end of the number)
c = FineTime(1436094449715400l) # convert to a FineTime
Prints corresponding date and time
print DateConverter.fineTimeToDate(c)
Date to a FineTime
d = java.util.Date() # gets today's date and time
Prints corresponding FineTime
print DateConverter.dateToFineTime(d)

Example 11.2. Time conversion between Date and FineTime

Using Time in the DP Environment

247

11.4.2. CucConverter
Converts between Spacecraft Elapsed Time, in CCSDS Unsegmented Time Code (CUC) format and
FineTime (TAI). This implementation is for the Herschel CUC format, which is corrected on-board
the spacecraft to TAI (epoch 1 Jan 1958). This representation uses 32-bits for seconds and 16 bits
for fractional seconds. CUC times are multiples of 1/65536 sec and cannot be expressed as an exact
multiple of 1 microsecond (the resolution of FineTime). However, the following relations hold for
'coarse' and 'fine' values in the allowed range:

long coarse(FineTime t)

Return the number of whole seconds since the epoch 1 Jan 1958.

long cucValue(FineTime t)

Return the number of 1/65536 fractional seconds since the epoch 1 Jan 1958.

int fine(FineTime t)

Return the fractional part of the number of 1/65536 seconds since the epoch 1 Jan 1958.

FineTime toFineTime(long cuc)

Return a new FineTime constructed from a 48-bit CUC time.

FineTime toFineTime(long coarse, int fine)

Return a new FineTime constructed from CUC coarse & fine fields.

from herschel.share.fltdyn.time import *

d=CucConverter.toFineTime(50000000000000L)
#Converts the long integer - representative of a CUC time -
#into a FineTime. The FineTime is stored in d.
e = CucConverter.coarse(d)
#provides the number of whole seconds since 1 Jan 1958
#and stores it in e.
print e

248

Chapter 12. Accessing and Retrieving
Data

This chapter has two main sections: First the section Section 12.1 deals with the Product Access Layer
(PAL) and Product Pools. A particularly useful concept is that of a local product pool (or local store)
which is a product pool that you can create on your local (e. g. laptop) computer and allows you to
work offline if need be (see ???). In addition it provides guidance on how to query these data pools
with the Product Browser tool. The section Section 12.2 describes how to set up and use a database
created with the Versant Database System. We note that products in a Versant database can also, in
principal, be accessed via the PAL as a remote pool.

12.1. The Product Access Layer and Product
Pools

The Product Access Layer (PAL) consists of several elements that allow a user to create, access or
query Product Pools. Product Pools are data storage areas that could be on your local laptop, (a local
store) or might be a remote pool. Examples of a remote pool are, i) the future Herschel Archive,
ii) products accessed from a Versant database, or iii) a pool which you can share with others on a
remote computer. Perhaps the most convenient component of the PAL is the Product Browser. This
is a graphical visualisation tool, and will be covered in Section 12.1.10. We will show an example in a
moment of how to launch this from a JIDE session. The browser is also easily launched within HIPE.

12.1.1. Available Product Pools
The implementation possibilities are unlimited (using an object-oriented database such as Versant,
relational databases such as Oracle, MySQL), but that is beyond the scope of this project.

With the release of the Product Access Layer, two main pools are available (LocalStore and DbPool),
plus some mechanisms for setting up or accessing remote pools:

• A LocalStore for storing and accessing Products in your local system (default is FITS format)

• A DbPool for accessing Products from a remote object database, such as a Versant database.

• A SerialClientPool allows you to read/write or access a remote pool. When used in conjunction
with a PoolDaemon (which runs on the mechine of the remote pool) this can make the remote pool
immediately available to your session.

• A CachedPool is a way to cache everything retreived from a pool. It is useful if the pool you are
working with is normally a remote on-line pool, and you want to work offline.

• HsaReadPool: This is a pool that allows access from an HCSS session to the Herschel Science
Archive (HSA).

• HttpClientPool: A networked pool similar to SerialClientPool.

In the next few sections we will discuss and provide examples of pools mainly in the context of Local
pools, but most of these examples can be generalized to any kind of pool. In later sections we will
decribe these other kinds of pools and some other useful concepts that refer to them.

12.1.2. Local Pools
We will in this subsection discuss Local pools. However much of this information presented here is
applicable generally to any kind of pool.

Accessing and Retrieving Data

249

12.1.2.1. The Default Local Pool directory and how to change it

By default, data is stored in a directory with the user-supplied store name in the following directory

users_home_directory/.hcss/lstore/

This can be changed by changing the property hcss.ia.pal.pool.lstore.dir.

For example, in MS Windows we can do this using the following statement in our JIDE session:

hcss.ia.pal.pool.lstore.dir=${user.home}/.hcss/alternate_store/

Or in LINUX with:

hcss.ia.pal.pool.lstore.dir=~/.hcss/alternate_store/

12.1.2.2. Registering Local Pools

The storage location pointed to by hcss.ia.pal.pool.lstore.dir can contain several
pools, which in the specific implementation of local store are subdirectories in that location. After
importing the PAL classes with from herschel.ia.pal import *,we create a storage object
with storage=ProductStorage(). We obtain a reference (pool1) to a pool from the pool
manager using the statement pool reference = PoolManager.getPool(poolname),
where poolname is a string. Then the pool reference is registered by storage.register(pool
reference). With the command print PoolManager.getPoolMap() we can see which
pools are currently registered.

A practical example where we open two pools would look like this:

from herschel.ia.pal import *
storage = ProductStorage()
pool1 = PoolManager.getPool('default')
pool2 = PoolManager.getPool('test')
storage.register(pool1)
storage.register(pool2)
print PoolManager.getPoolMap()

In case there is already a pool with that name in the default directory, it is registered and becomes
accessible. If it doesnt exist, the pool is created as soon as we store a product there. This can be verified
by inspecting the respective directory before and after.

At this point we have created a storage and opened two pools. Note that when writing to the storage,
the data is written to the first pool that was registered. If you want to write to a different pool you can
create and use another storage for writing, where you register the desired pool. The same pool can be
registered with more than one storage at the same time. Here an example where we make the pool
"test" accessible for saving products.

otherStorage = ProductStorage()
otherStorage.register(PoolManager.getPool('test'))

We should also note that storage can also be obtained with the LocalStoreFactory, however this
is discouraged by developers who strongly recommend using the PoolManager.

12.1.2.3. Saving products in pools

Lets first create some products to play with. In this case we will create two products containing one
table dataset each. First the table datasets are created from random numbers.

r = RandomGauss()
n = 1000

Accessing and Retrieving Data

250

tbl1 = TableDataset(description='Test Dataset 1')
tbl1['time'] = Column(Double1d.range(n))
tbl1['signal'] = Column(Double1d(n).apply(r))
tbl1['error'] = Column(Double1d(n).apply(r) * 0.3)
prod1 = Product(creator='ThatsMe', description='Test Product 1')
prod1['Table1'] = tbl1

Well do the same for a second product:

tbl2 = TableDataset(description='Test Dataset 2')
tbl2['time'] = Column(Double1d.range(n))
tbl2['signal'] = Column(Double1d(n).apply(r))
tbl2['error'] = Column(Double1d(n).apply(r) * 0.5)
prod2 = Product(creator='ThatsMe', description='Test Product 2')
prod2['Table1'] = tbl2

Now we have two products, prod1 and prod2, at our disposal. Their contents can be verified by
launching the dataset inspector. Any product can be saved in our storage using the following statement:
urn = Storage.save(product), where product is the product to be saved and urn is the
resulting "Uniform Resource Name" that is a unique identifier of the product within the storage. This
URN can be used directly to retrieve the product from the storage, however typically the URN is not
remembered, but rather re-obtained by a query to the storage. This will be shown later.

Lets save our two products using:

urn1 = storage.save(prod1)
urn2 = storage.save(prod2)

To see how the URN looks just use:

print urn1, urn2

As they are written by default to the first registered pool of storage, they will end up in the pool named
default. Lets store one of the products also in the pool named test using:

 otherStorage.save(prod1)

As we will recover the URN of this product later by a query, we dont bother to store the URN right now.

12.1.2.4. Finding out what is in storage: Starting the Product
Browser

If we have followed all previous examples, there should be now 3 new products in our storage that
have listed as creator ThatsMe. Two of the products should be in the first pool named default, while
the third product should be found in test.

We will examine first the simpler way to examine the contents of the storage using a GUI tool called
the Product Browser. It is launched with the statement: uri = browseProduct(storage),
where storage is the storage we want to access and uri contains a list of references that result from
our query. In our example we would type:

result = browseProduct(storage)

which brings up the GUI.

In the field "Creator:" type ThatsMe to restrict the selection to the files we created in our example
and hit the "Submit" button. The Query result panel in the middle left should now show a table with 3
rows, one for each product. Clicking on one of the rows will highlight it and bring up a diagram of the
product contents on the panel to the right, where we can verify that our products contain attributes,

Accessing and Retrieving Data

251

metadata and datasets. The string to the right of the P is the URN. Clicking subsequently on the 3 rows
shows how the URN changes for each product. We can see that the pool names default and test are
part of the string, which shows that indeed two products ended up in the first and one in the latter. The
Product Browser can be used to bring the URN for a given product into the JIDE session, i.e. make it
available on the command line. Lets click on the squares to the left of the result table so that they are
marked and the corresponding entries appear in the Download panel below. Upon clicking Apply, a
list of the selected URNs becomes available in the variable result.

The statement:

print result

will show the list of the URNs we have selected. Note that after changing the selection and hitting
"Apply" again, the print result command will give a different result corresponding to your
selection. The "OK" button will update "result" as well and close the GUI.

The object "result" contains now a list of references to our products. We can obtain the same result
"GUI-free" by creating a query on the command line and applying this to our storage:

query1=Query("creator == 'ThatsMe'")
res = storage.select(query1)
print res

Now "res" contains the list of references. Printing "res" should give the same result as the previous
first example with the Product Browser.

If we want to execute an unconditional query to find all products in our storage, we can use:

query2=Query("True")
res2 = storage.select(query2)
print res2

In case we have used the default storage before, there may be other products here that would now
show up in the list.

12.1.2.5. More On Storage Queries: Other kinds of Querie and
more examples of command line queries

The Product storage can handle three types of queries:

• Attribute query is a (fast) query on meta data that all Products contain: creator, creationDate,
startDate, endDate, instrument, modelName. This is akin to querying a standard set of FITS header
keywords.

• Meta data query is a (semi fast) query on meta data that can be different from Product to Product,
depending on what was placed in the product by the person creating it in the first place. This is akin
to doing a query on any FITS keywords (if present).

• Full query is a data mining query that allows querying on all data elements in Products, using the
general methods provided for Products and datasets as well as the additional methods provided in
specialisations of those datasets and Products.

All query types have the same syntax, but a different purpose as described above. Setting up a query
is as follows:

#Simple query
query = Query(expression)
#More advanced queries
query = AttribQuery(product-class, variable, expression)
query = MetaQuery(product-class, variable, expression)

Accessing and Retrieving Data

252

query = FullQuery(product-class, variable, expression)

where the parameters to the query are:

• product-class: restricts a family of products. All Product classes have
herschel.ia.dataset.Product as the base class. You can restrict the query to a sub-family
of Product. For example, if all HIFI Calibration Product classes stem from HifiCalProduct,
you can limit your search by specifying that class.

• variable: is a string denoting the variable name of the product that will be used in the expression.

• expression: is a string holding the query expression, which is limited to the query type.

It is worthwhile mentioning that the syntax of the expression above uses the same syntax as you would
usually use when inspecting the contents of numerical data in a JIDE session, (see eg Chapter 4) so
there is no additional syntax to learn.

• Query Example

query = Query("instrument ==HIFI and band == 1a")
a simple query should be the default form used by most users.

• AttribQuery Example

query = AttribQuery(Product, 'product', \

 'product.creator=="Me" and product.instrument="HIFI"')

• MetaQuery Example

This type of query allows to inspect any part of the meta data of the product specified in the first
argument.

query = MetaQuery(HifiCalProduct, 'h', 'h.meta["key1"].value < 123 and \
 h.meta["key2"].value == "Hello world"')

Note

In order to obtain a numerical value (rather than, e.g., the string equivalent) it is
necessary to stipulate that the meta key "value" is required, hence the need for the
stipulation of query on 'h.meta["key1"].value' rather than 'h.meta["key1"]'

• FullQuery Example

A data mining query exploits the full interface of the product in question. Numeric functions defined
in the basic toolbox are allowed:

query = FullQuery(Product, 'p', 'p.creator=="Me" and (ANY(p.spectrum.data < 2) \
 or ALL(p["myTable"]["myColumn"].data > 5)')

Note

Note that the ANY function used above is one of the standard numerical function
provided for DP, and simply checks whether the expression provided in its argument
is true for any of the elements in that argument. See the DP User's Reference Manual
for more information.

12.1.2.6. Retrieving products from storage

The list of references obtained by our query with either the Product Browser or the
command line allows to load the product back from the storage using product =

Accessing and Retrieving Data

253

storage.load(res[index].urn).product, where index is the index of the list entry to be
retrieved. Following our example and assuming we still have the result res from our query1, we would
retrieve and plot the first product in our list by:

p1 = storage.load(res[0].urn).product

The Table Dataset would be extracted and plotted with:

t1 = p1.get('Table1')
pl = PlotXY(t1['time'].data, t1['signal'].data,\
style=Style(line=Style.MARKED, symbol=Style.TRIANGLE))
pl.setErrorY(t1['error'].data,t1['error'].data)

In order to help know which index in the reference list is the one we are intere sted in without opening
every product and inspecting it, we could sort the refer ence list by metadata entries. For example, to
make the reference to the latest product appear last:

MetaComparator.sort(res, ["creationDate"])

This sorts the reference list by "creationDate", with oldest first. Other metada ta items, or multiple
metadata items are also possible). However, beware: it cha nges the contents of the original variable,
"res", rather than making a new list.

The Java "Collections" package (this must be imported into our session) can also be used for simple
reference list manipulation. For example to reverse the order:

from java.util import Collections
Collections.reverse(res)

12.1.2.7. Deleting Products from Storage

Now we want to clean up our storage again, as this was just an exercise. In theory we could go into
the relevant directory, identify the products by their filename and delete the respective FITS files.
After that we would need to re-build the index. This would work for the Local Store, we used in our
example, but in other implementations like the DbPool that would not be an option.

To remove our test products within the PAL context, we first need to identify them again by obtaining
their URNs and use the method .remove() on the storage. In our example we can remove the first
two items in our list as follows:

 query1 = Query(creator == ThatsMe)

 res = storage.select(query1) storage.remove(res[0].urn)

 storage.remove(res[1].urn)

We can verify now with:

 print storage.select(query1)

Trying to remove the third product in the previous list will result in an error, as we have no write
permission to the pool test through this storage. We will need to access this pool through the other
storage which was created by registering test as the first pool.

Accessing and Retrieving Data

254

res1 = otherStorage.select(query1)
otherStorage.remove(res1[0].urn)
print storage.select(query1)
print otherStorage.select(query1)

The last two statements verify that the operation was successful and affected both storages because
the pool test is registered in both. Both queries result in an empty list.

12.1.2.8. Updating/Repairing Storage

If the storage index becomes inconsistent, for example in the case of files being deleted or added in the
directory, the index can be re-built using pool.rebuildIndex(), where pool is a pool reference
obtained from the pool manager as shown above. For example the index of Pool1 can be rebuilt with:

pool1.rebuildIndex()

There should be no attempt to access this pool during the operation, which can take a while depending
on pool size.

12.1.3. DbPool
Used to access Products stored in a remote object (Versant) database. Here's an example:

Access to Products from the default
object database of logical name
'hcss.test.database'.
pool = DbPool.getInstance()
Access to Products from an
object database of logical
name 'hifi.test.database'.
pool = DbPool.getInstance("hifi.test.database")

Note that this is an early implementation that needs to be tested thoroughly, so it is recommended to
use DbPools only around test databases, or databases that are used for casual development purposes
such that if data is lost, it is not a big problem.

It is recommended for performance purposes to cache products locally. To do this, wrap a CachedPool
around a DbPool as follows:

pool = CachedPool(DbPool.getInstance())

12.1.4. HsaReadPool
The HSA read pool is an implementation that allows you to access and download observations held in
the Herschel Science Archives. By default, the whole observation context is downloaded when using
this pool (level 0, 0.5, 1 and 2, plus auxiliary products):

 archive = HsaReaPool()
 store = ProductStorage(archive)

12.1.5. CachedPool
The cached pool is an implementation that allows you to cache everything (including queries and
their results!) retrieved from any remote pool. Any remote pool, regardless of whether it is an Oracle,
Versant or whatever implementation, can therefore be cached as follows:

Accessing and Retrieving Data

255

pool = CachedPool(remotePool)

Registering a cached remote pool allows you to work offline.

12.1.6. Setting up and Accessing Remote Pools

12.1.6.1. PoolDaemon

If you have a pool that you wish to share with someone then you can start a PoolDaemon that allows
a person access and indicates whether they have read/write/query access. The PoolDaemon can be
started from a command line in your system.

java herschel.ia.pal.pool.serial.PoolDaemon [<hostPort>(=4444)
[<poolname>(=${hcss.ia.pal.defaultpool}=stdprod)
[<loadAccess>(=true) [<saveAccess>(=true)]]]]
Examples:
 java herschel.ia.pal.pool.serial.PoolDaemon
 java herschel.ia.pal.pool.serial.PoolDaemon 4567
 java herschel.ia.pal.pool.serial.PoolDaemon 4567 stdprod
 java herschel.ia.pal.pool.serial.PoolDaemon 4567 stdprod true true

This makes the pool available on port number 4567.

12.1.6.2. Accessing Remote Pools Using the SerialClientPool

SerialClientPool (prototype) and PoolDaemon can be used to access remote pools.

SerialClientPool can be used for accessing a remote product pool. Usage:

a PoolDaemon is running at
host=the.host.domain
port=4567
pool.id=foo
create a store and register the pool:
store=ProductStorage()
store.register(SerialClientPool("the.host.domain",4567,"foo"))

A simple mechanism to allow read/write/query access to remote pools. This remote pool can be a
Versant one (making happy all those who cannot run a Versant client such as the MacOS X fellows,
or those who do not have a Versant licence), or a local store of a colleague.

Note that wrapping it up in a CachedPool ensures that you do not have to download a product twice.

12.1.7. Special Imports into Pools
We can import/store files of various types in pools. Here, we give some specific examples.

12.1.7.1. Putting a Directory of FITS Files Into a Pool

It is possible to take any set of FITS files (e.g. from the Herschel Science Archive) and place these
into a pool. We can iteratively place all FITS files from a directory into a pool which can be accessed
via a browser and queried using the mechanisms described in this chapter.

from java.io import File

lstore=LocalStoreFactory.getStore("newdir") # or any local store name
storage=ProductStorage()
storage.register(lstore)

lstore.ingest(File("C:/testdata/"), 0)

Accessing and Retrieving Data

256

#or any directory name
to look at what you have use the Product Browser

a=browseProduct(storage)

In the above example a local store is placed in the default area (.hcss directory under the user's home
directory) of the user's computer. It is directly accessible in the same way as other pools from there.
This method does, however, not reproduce any hierarchy to the pool. It is a "flat" pool.

12.1.7.2. Placing Image (PNG) Files in a Pool and/or FITS File

Image data can be stored in a pool by placement in a Product with a suitable name, and saving this
product in pool or in a FITS file:

Obtain bytes from PNG image
bytes = ...

Create a product with PNG data
p = Product()
p["png"] = ArrayDataset(bytes)

Save it in a PAL pool
pool = PoolManager.getPool("myPool")
storage = ProductStorage()
storage.register(pool)
storage.save(p)

Save it directly in a FITS file
fits = FitsArchive()
fits.save("myPng.fits", p)

The image can be placed in a byte array for storage in a dataset that can be placed in the pool.

Obtain bytes from PNG image
(it depends on how you generate the PNG image of a plot)
from java.awt.image import BufferedImage
from java.io import ByteArrayOutputStream
from javax.image import ImageIO

image = BufferedImage(<image name>) # implementing java.awt.image.RenderedImage
stream = ByteArrayOutputStream()
ImageIO.write(image, "png", stream)
bytes = Byte1d(stream.toByteArray())

12.1.8. Common Problems
Why do I keep getting 'IndexError' or 'IllegalArgumentException: <query> could not be
evaluated correctly' messages when I run my query on my PAL Product Storage?

You could get these message for one of the following reasons:

1. Your query string (the third argument of a query, eg 'p.creator==..') is simply not consistent with
the jython syntax and could not be correctly interpreted by the internal jython interpreter the PAL
uses. Check your query string by evaluating it on the jython command line. If your query uses a
'handle' to a product (eg the 'p' in a query 'p.meta[..]' is a handle), then create a dummy product of
the type you want to query on the command line to test the query against.

2. It could be possible that the query references some data that does not exist in *any* of the products
that match the product type you have passed in that query. If you see in the details of the error
message something along the lines of '<something> does not exist', then this may be the case for
you.

Accessing and Retrieving Data

257

For example, consider the following MetaQuery:

query =MetaQuery(Product, 'p', 'p.meta["temperature"].value==10)
resultset=storage.select(query)

The query first starts creating a shortlist of all products in the storage matching type 'Product'. It
then runs the query string on each product in that shortlist. If any of those products don't contain
the information referenced in the query string, an error is raised.

There are two ways to avoid this:

• Be as specific as you can when it comes to specifying the product type in a query. If you know the
product type you want to query is of type 'CalHrsQDCFull', then specify that. Running queries
using the most general product type of 'Product' is not recommended.

• Run a two-stage query, using the containsKey() operator to check whether a component exists
first, e.g.

Get a sub-set of products that contain the metadata 'temperature'
queryOne= MetaQuery(Product, 'p', 'p.meta.containsKey("temperature")')
resultsetOne = storage.select(queryOne)
Run the original query on this subset
queryTwo =MetaQuery(Product, 'p', 'p.meta["temperature"].value==10)
resultsetTwo = storage.select(queryTwo, resultSetOne)

Accessing the Results of a Query

The results set can be accessed in the following way

a = resultsetTwo.toArray()[0].product
b = resultsetTwo.toArray()[1].product

Why is my PAL query so slow?

One of the possible reasons is that you are executing a FullQuery, and full queries by their very nature
are the most intense of queries and are therefore the slowest.

FullQuery executions should be run as the last stage of a multi-stage query operation. Below is an
example of how to search a storage for products of type 'MyProduct' that are created by a developer
called 'timo', but contain a specific value in the product data itself.

Stage one: Find all products of type MyProduct with creator 'timo'
attquery = AttQuery(MyProduct, 'p', p.creator=='timo')
resultset = storage.select(attquery)
Final stage: Find all products in selection generated from previous queries,
that has a value 10 in the column 'mycolumn' in dataset 'mydataset'
fullquery = FullQuery(Product, 'p', 'p["mydataset"]["mycolumn"].data[5]==10')
storage.select(fullquery, resultset)

There can be as many intermediate queries between the first stage and final stage involving
AttribQuery or MetaQuery, but FullQuery's should be left to last.

12.1.9. Storage Product Versioning

12.1.9.1. Versioning

To save a set of versions of a particular edition of a Product:

Accessing and Retrieving Data

258

edition = Product()
storage.save(edition) # version 0 of Product saved
Modify edition
storage.save(edition) # version 1 of Product saved

To get the latest version of the Product edition, or the list of versions for that edition, you need to have
available at least one, arbitrary, version. With this, you can recover the latest version of that Product,
and the list of all versions of the Product in the storage. For example:

latest=storage.getHead(productRefOfAnyVersionOfEdition)

versions=storage.getVersions(productRefOfAnyVersionOfEdition)

You can get information on the current version of each product, as well as tag information, as follows:

print storage.versioningInfo

12.1.9.2. Querying Product Versions

The default query is to search for just the latest version of a Product edition:

query=AttribQuery(Product, "p", "1")
storage.select(query) # Just the latest versions

If you want to get all versions of editions that match a query, use the extended query constructors,
setting the fourth argument to true (or 1):

query=AttribQuery(Product, "p", "1", 1)
storage.select(query) # All versions of Product editions that match

(Note that with this extended query, the special products containing versioning information,
VersionTrackProduct and TagsProduct, are also returned if they match the query.)

Warning: make sure that you use the meta.containsKey() checks when performing Full or Meta-data
queries, as the presence of versioned products may affect those queries, or worse, result in an exception
if the metadata being queried for is not present in any product version.

12.1.9.3. Tagging Products in a Store

To save a product with a given tag:

storage.saveAs(myproduct, "mytag")
saves myproduct to URN=product:123, and links tag 'mytag' to that URN
storage.load("mytag")
returns a ProductRef to product at URN=product:123

To assign a tag to an existing product in the storage:

storage.setTag("mytag", urn)

You can assign multiple tags to the same product:

storage.setTag("mytag1", urn)
storage.setTag("mytag2", urn)
storage.setTag("mytag3", urn)

You can re-assign tags from one product to another:

Accessing and Retrieving Data

259

storage.setTag("mytag", urn1)
storage.setTag("mytag", urn2)

Note that the above steps removes the tag mytag from urn1, and re-assigns it to urn2. A given tag
maps to only one URN.

You can also remove tags from the system:

storage.removeTag("mytag")

And check if a given tag exists:

print storage.tagExists("mytag")

12.1.9.4. Turning Off Product Versioning

If Product versioning is not wanted or required, you can turn off the use of versioning within your
session by using.

hcss.ia.pal.version = none

12.1.9.5. Using the New Versioning Mechanism Against Existing
Pools

You can use the new versioning mechanism against pools with previously existing data. Although it
is highly recommended to use the mechanism against new pools with no data.

If you wish to use the mechanism against pools with existing data be aware that existing products in
your pool do not have versioning information. So if you modify such products, and then save them:

p = oldstorage.load("myurn").product
// modify p
oldstorage.save(p)

The PAL does not know what version the modified product belongs to, and therefore saves the
modified version of the product as the first version of a whole new version track.

It is therefore recommended to use the new versioning mechanism against a clean ProductStorage,
devoid of any products, or as the next best thing, migrate your products to a fresh pool as follows:

storage.register(newpool)
storage.register(oldpool)
p = storage.load("urn:123").product
storage.save(p) # saves the product with versioning information, to newpool

And then use the newpool for future sessions (archive or remove oldpool).

Note also that a tool for copying pools, which reads all products and saves them back again, by
preserving their hierarchy, will be placed in the HCSS at a later date. This will allow migration from
old to new pools to be done more easily.

12.1.10. The Product Browser
After all the theory it is now time to entertain ourselves with a graphical tool, the Product Browser. We
will start by describing how to start the browser from JIDE, before moving on to a short description
of the current browser features.

Accessing and Retrieving Data

260

To start the browser, open a HIPE session and execute the following script:

storage=ProductStorage()
pool = LocalStoreFactory.getStore("devel")
storage.register(pool)
result = browseProduct(storage)
Use the popped up GUI to explore and select products.
The result variable will not be populated until you push
either 'Ok' or 'Apply' in the Product Browser.
print result

Note

Alternatively, execute the script herschel/ia/pal/browser/
browserStart.py

12.1.10.1. A visual tour of the browser

The following image shows a screenshot of the product browser user interface. The screen is divided
into four areas:

1. Query area: enter query parameters.

2. Result area: view the result.

3. Result inspection area: inspect a selected product.

4. JIDE basket area: collect the products to be returned to JIDE.

Figure 12.1. The Product Browser

Accessing and Retrieving Data

261

The following sections describe first a typical use case and then each area in more details.

12.1.10.2. Simple use case

1. Specify attributes of a product in the query area (A)

2. Click on the "play" button to execute the query

3. Review the results in the result area (B)

4. Optional: if there are too many results, refine the query by specifying meta data and/or data mining
queries, and press the "Refine" button.

5. Inspect selected results in the result inspection area (C)

6. Transfer the results of interest from the area (B) and (C) to the JIDE basket (D)

7. Click "ok" or apply and process the selected results in JIDE. The results are available in the return
variable of the browseProduct() method (in the browser start example above it is called "result").

12.1.10.3. A: Query area

The query area is divided into three input areas: Attributes, Meta Data, and Data Mining.

1. Attributes queries search commonly defined attributes only.

2. Meta data queries search on additional meta data specific to a product. The user needs detailed
knowledge about a product to specify meta data queries. However, the result inspection area (C)
may be used to see available meta data for a product.

3. Data mining queries allow to specify free form queries in the Jython query language. Refer to the
documentation of the ProductStorage for further information on this topic.

Note that all attributes and meta data parameters are joined by the AND operator.

Note for power users: for simple OR-Operations you can use the JIDE basket (D). First, do a query
for the first term (e.g. Creator="André") and add the results to the JIDE basket. Then, do a query for
the second term (e.g. Creator="Marc") and add the results to the JIDE basket.

For more complex OR-queries you can use Data Mining queries, although they might become very
slow. Complex OR-Queries on meta data level are currently not supported.

12.1.10.4. B: Result area

This table displays all products that match a specific query.

Check/Uncheck a product to move it to or remove it from the JIDE basket.

You have several possibilities to rearrange the products:

• Click on a table header to sort ascending or descending.

• Right click on a table header to pop up a context menu where you can hide/unhide a column.

• Drag and drop a column header to rearrange the column order.

• Click between two column headers to resize a column.

Accessing and Retrieving Data

262

Please note that the current version of the browser does not store your settings between two sessions.
This is one of the high priority features for the next version.

Currently the browser supports the following columns:

• Site (URN): the data store of the result.

• URN Class (URN): the class of the product as encoded in the URN.

• Id (URN): the unique id within the data store.

• Create Date (Attribute): self-explaining.

• Start Date (Attribute): self-explaining.

• End Date (Attribute): self-explaining.

• Instrument (Attribute)self-explaining.

• Model Name (Attribute)self-explaining.

• Type (Attribute)self-explaining.

• Creator (Attribute)self-explaining.

• URN (URN)convenience column for copy & paste. If you triple click into a cell of this column you
can select and copy the urn to your operating system clipboard. This is one way to use the browser
independently from JIDE.

• Product Storage: experimental only. Might be of use if the browser support multiple storages.

12.1.10.5. C: Result inspection area

Select any entry in the query result area (B) or in the JIDE basket (D) to inspect its attributes, meta
data and children in the result inspection area C. The selected product or context will be displayed
in a hierarchical tree structure.

There are currently five types of nodes:

• P: a Product contains the real data and can be examined with the data set inspector. To open the
data set inspector you can either double or right click on the 'Product...' node.

• C: a Context contains other Contexts or Products.

• A: a predefined set of Attributes common to all products and contexts.

• M: Meta data that is specific to each type of products.

• V: old Versions of a product or context.

To add/remove products and contexts to or from the JIDE basket you can right click and select the
appropriate action: Add to/Remove from JIDE Basket.

First note for power users: The current implementation of the tree supports only contexts that are
inherited from ListContext or MapContext. This is due to missing generic meta information about the
children of an ordinary context.

Second note for power users: The current implementation of the tree does not support the description
attribute of a product. This is due to a missing getter-method in ProductRefs.

Accessing and Retrieving Data

263

12.1.10.6. D: JIDE basket area

The JIDE basket collects the products and contexts of interest. Clicking on "Ok" or "Apply" will make
the content of the basket available within JIDE. "Ok" will close the browser, "Apply" will keep it open
for further usage. Note that the results are sorted the same way as in the JIDE basket.

Now you can further analyse the results in JIDE. Note that the ProductBrowser will return a list of
ProductRefs rather than a list of Products. A ProductRef is a small object that stores a pointer to a
Product, without loading the Product into memory.

result = browseProduct(storage)
This will print the list of ProductRefs
print result
This will print the first ProductRef in the list.
print result[0]
This will print the first Product in the list.
print result[0].getProduct()

12.2. Databases

12.2.1. Introduction

If you want to work with databases, which is one of the main ways in which test and (later)
observational data are to be stored within the HCSS, then you will need to have a Versant Database
System available to you. For most large sites your system manager will have installed a Versant license
which allows the setup and use of databases at your home institution. You can also install a database
capability on your own computer/laptop. Unix and Windows versions are available.

Most users will not need to set up a database but rather just access for reading stored data. In this case,
Section 12.2.2 may be skipped.

Note

Versant is commercial software and procurement has been done centrally for Herschel.
Please contact the Herschel software administrator at your institute for more details on
how to proceed.

Alternatively you can contact the following people:

HIFI:

• Albrecht de Jonge

• Peer Zaal

PACS:

• Ekkehard Wieprecht for PACS/MPE

• Wim de Meester for PACS/KUL

SPIRE:

• Steve Guest

Some notes on Versant database setup are available in Section 1.4. For further information please also
consult the Known issues with Versant Databases document.

mailto:A.R.W.de.Jonge@sron.rug.nl
mailto:peer@sron.rug.nl
mailto:ewieprec@mpe.mpg.de
mailto:wim@ster.kuleuven.ac.be
mailto:S.Guest@rl.ac.uk
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/devel/versant.html

Accessing and Retrieving Data

264

12.2.2. Starting Up A Database:
The following command is the only one required to set up a database within the HCSS and make it
available for use.

> db_admin -i <dbname>@<host> #initializes directory

Database names should be given in the format: tony_hcss@lin-sron-02.sron.rug.nl.

The database now being used should be in the properties file (use "propgen" to check this out - Just
put "propgen" on the command line and hit the "General" tab at the top. The database currently in use
is on the second line down. Change if needed).

Now we can fill the database.

12.2.3. Schema Evolution
On occasions, new database formats need to be created for the HCSS. In such cases, it is necessary
to perform a schema evolution on old databases to update for use in current DP environment For
development purposes, it may of course be acceptable to simply create a new database, if there is no
data to be preserved.

Schema Evolution is supported for databases created by versions of the HCSS back to HCSS-v0.1.3
(build number 168) although, in principle, it should be possible to go back to HCSS build number 162.

Schema evolution is necessary when a new version of the HCSS is installed that has a higher schema
version than the database. The schema version of the CCM can be found by examining the file
'%HCSS_DIR%/doc/SCHEMA_VERSION' in the HCSS distribution and is displayed against releases
in the HCSS download web page.

If it is determined that a schema evolution is needed then the user is referred to the manager of the
system and document DBA procedures.

12.2.4. Providing Database Access for a DP Session
Database access can be changed during a DP session without the need to exit JIDE. After editing
properties or saving changes made using the properties tool (propgen), the user can use the new settings
immediately within an ongoing DP session.

There are two methods for changing properties to allow database access.

12.2.4.1. Properties File Setup for Database Access

There are two ways of setting up your properties to allow access to a particular database during a DP
session. First, the file hcss.props (on Windows) or the file myconfig (on Unix) can be edited.

On Windows, the hcss.props file is usually in the top directory of the user (e.g., C:\Documents
and Settings\<username>).

On Unix, the myconfig file is in the directory ~/.hcss.

The following three lines should be placed in the file being edited if they are not already there.

var.database.server = servername
var.database.devel = dbname@${var.database.server}
hcss.access.database = dbname@${var.database.server}

where servername is the name of the server where the database is located (e.g. lin-sron-02.sron.rug.nl)
and dbname is the name of the given database to be used in the DP session.

http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/versant/dba-procedures/index.html

Accessing and Retrieving Data

265

12.2.4.2. Using the Propgen Tool

Alternately, the propgen tool can be used to indicate the server and database to be used. The propgen
tool can be started from a terminal prompt assuming the HCSS system has been installed and it has
been setup to run on the system.

At a terminal prompt, the command

> propgen

will start up the propgen tool (see Figure 12.2). Using the tabs at the top of the propgen screen, the
user should click on the tab marked "General ".

Now edit the variables var.database.server (input servername) and var.database.devel (input
dbname@${var.database.server}) at the top of the tabbed page.

Figure 12.2. The propgen window.

Most properties that can be changed using the property generator are created automatically in the DP
environment. The first screen 'General' allows the identification of a default database and server name
to be set up.

12.2.5. Changing the Database to be Accessed
The database to be accessed for information can be changed by changing a configuration property
called 'hcss.access.database'.

Configuration.setProperty("hcss.access.database","<database name>")

12.2.6. Browsing a Database
In order to know what you might want out of a database, you need to be able to browse through the
database contents. The TestExecutionBrowser task allows the user to do just that. Input of the
following short example allows the user to view the database connected to. In dealing with databases

Accessing and Retrieving Data

266

we use the herschel.access package and the sub-package herschel.access.util. The
first two lines of the small script shown below import these packages. These need to be imported into
our session before using the browser to display the contents of a Test Execution database.

Warning

For large databases this can take up considerable amount of memory (and time) and is
therefore only recommended for relatively small databases at present.

import herschel.ia.task.Task
from herschel.access import *
from herschel.access.util import *
Used in this mode, the browser is not set up to allow mouse selection
TestExecutionBrowser.display()

Successful execution of this command will bring up a separate window displaying information on
the data contained in the database. This includes information on the script used to create data, the
observation ID (scroll to the far right of the window) and the time (local) for when the data was placed
in the database.

At a future date, a filtered display of a database is expected to be possible (see bottom left of current
TestExecutionBrowser window). It is also expected that selection and download following a mouse
click will become available.

12.2.7. Getting Data Frames From a Database
Once connected to a database and knowing the date or observation id of your data (see previous
section), we can retrieve both data frames and housekeeping data from the database. In this section
we discuss the basic means for obtaining dataframes from a database. Here we are handling RAW
dataframes for which there is no directly associated meta-data, although housekeeping data is available
from the period of time during which the data was taken (see next section).

There are two main methods for obtaining dataframes.

• Command line access

• Through a DataSelector GUI

When accessing dataframes it is particularly useful to use the navigation property available in DP.
This speeds up the accessing of dataframes in a database. In order to do this, start the propgen tool (see
Section 12.2.4.2) and then go to the "Access" tab. Near the bottom of the window, change navigation
value from false to true (click on the cell containing the word "false" and pulldown to "true").

12.2.7.1. Command Line Access to Data Frames

The basic idea for command line access is to

• Create a means to access data frames

• Indicate which data you want to get (e.g., by observation identification, obsid)

• Go search for it in the database

• Actually get the frames and put them into an array (or table).

The following example illustrates how the above is done within a DP environment. In this example,
an observation made up of several frames is placed in a table with each column of the table being a
single 1D spectrum. Something similar could also be set up for multi-dimensional data. In these cases,
each "column" of a table would have an N-dimensional object.

Accessing and Retrieving Data

267

from herschel.access.util import *
from herschel.access import *
Create a tabledataset for the data frames to go into
table=TableDataset()
Start means by which we will access the dataframes
in the database
dfaccess=DataFrameAccess()
Provide an id for the frames we are looking for
In this case the observation has an identification number of 1844
dfaccess.setObsid(1844)
Find the data in the database (navigate/query).
This just provides a set of references
to where data frames fitting the criteria reside in the database
data=HcssConnection.get(dfaccess)
If there is something found, length of the references > 0
if len(data) > 0:
 # Then loop around and get all the frames associated with the obsid
 for j in range(len(data)):
 df = data[j]
 # Now actually get each frames and put them in a real 1D array
 datad = Double1d(df.getFrame())
 # And we make each frame into a column in a table
 # so that table[0] is the first column and contains
 # the first 1D spectrum of the observation, value for each channel
 # The column label is the string value of j, i.e., 0, 1, 2, 3...
 table[str(j)]=Column(datad)

Example 12.1. Basic command line method for getting data frames from a database

Warning

Using HcssConnection.get() means that all the dataframes in the observation are
passed into the user's JIDE session at one time. Care should be taken since this could lead
to large amounts of data being requested and the JIDE session running out of memory.
This will usually then require the user to quit the current session and unsaved work is lost.

Example 12.1 brings in a set of spectra as a table. To see what is in the table we can

Get general overview
print table
See what is in the first column
print table[0]
See just the data for the first column. No quantities, column headings etc.
print table[0].data

A plot of table[0].data will show a channel versus value 1D spectrum.

12.2.7.2. From Database to ASCII File

Following on from the previous section. If we want to have the spectra be placed in an ASCII table
output file, then we can add the following code to our example:

Set up an output table
mine=AsciiTableTool()
Add a description to our table
table.description="Sample spectra"
Make sure there is a header on the output - see AsciiTableTool help
mine.formatter.header=1
Make sure that comments are allowed
mine.formatter.commented=1
Indicate the prefix for comments in the file
mine.formatter.commentPrefix="; "
Provide a name for the ascii output file and save the data
mine.save("sample_spectra",table)

Accessing and Retrieving Data

268

Being a little more sophisticated, we can add in a prompt and also iterate around to obtain several
observations from a database and place them in ASCII files. The next example provides a basic Java
Swing component to prompt the user for a starting and ending obsid. The data is then passed onto
appropriately named ASCII table files.

Import Java swing for GUI components
import javax.swing as sshwing
from herschel.access.util import *
from herschel.access import *
The data will be placed in comma-delimited tables.
Prompt the user for first obsid using a JAVA Swing component
input_obsid = sshwing.JOptionPane.showInputDialog\
 ("Enter first obsid in list: ")
start_obsid = int(input_obsid)
Prompt again for last obsid
input_obsid = sshwing.JOptionPane.showInputDialog\
 ("Enter last obsid in list: ")
end_obsid = int(input_obsid)
for i in range(start_obsid,end_obsid+1):
 table=TableDataset()
 dfaccess=DataFrameAccess()
 dfaccess.setObsid(i)
 data=HcssConnection.get(dfaccess)
 if len(data) > 0:
 for j in range(len(data)):
 df = data[j]
 datad = Double1d(df.getFrame())
 table[str(j)]=Column(datad)
 mine=AsciiTableTool()
 table.description="Sample spectra"
 mine.formatter.header=1
 mine.formatter.commented=1
 mine.formatter.commentPrefix="; "
 mine.save("sample_spectra_"+str(i),table)

Example 12.2. Database to ASCII tables for multiple spectra

The inner loop in the above example allows us to get each frame in an observation in turn and place it
into a table "column". The outer loop takes the tables formed for each observation id and places them
in an ASCII file called sample_spectra_<obsid>.txt. These are comma-delimited ASCII
tables viewable in any text editor.

12.2.7.3. Downloading Dataframes from a Database Using a GUI

A somewhat more sophisticated method of accessing a database from within a DP session involves the
use of a GUI interface such as a DataSelector tool. This is available via the ProcessConnect command.
The next example provides a downloadable script that uses just such an interface for obtaining HIFI
dataframes and is given as an example of how to include GUI components to download dataframes
from a database.

Accessing and Retrieving Data

269

from herschel.hifi.generic import *
from herschel.ccm.api import *
import java.lang.reflect
import javax.swing as swing
The following defines a class we can then run in a DP session
class Hifids:
 def __init__(self):
 # Connect the processor so that we get data output to 'a'.
 self.pc = ProcessConnect("pc")
 # Now set up place for output of dataframe
 self.out = self.pc.getConnector("df-output")
 # Create an array which will hold HIFI data frames - up to 1000 of them
 self.a = java.lang.reflect.Array.newInstance(HifiDataFrame,1000)
 # Provide passage for the dataframes into 'a'.
 self.out.pass(self.a)
 # Now setup a user GUI for the process connector and a completion button
 self.win = swing.JFrame()
 self.win.contentPane.layout=java.awt.FlowLayout()
 self.win.contentPane.add(self.pc.getJComponent())
 choose = swing.JButton("Finished", size=(65,70), \
 actionPerformed=self.dataChoice)
 self.win.contentPane.add(choose)
 self.win.pack()
 self.win.show()

 def dataChoice(self, event):
 # This subroutine creates a table when the GUI's "Finished" button is clicked.
 table=TableDataset()
 table.description=("Data output")
 # Allow the table (output) to be seen within the session, not just the class.
 global table
 for j in range(1000):
 if (self.a[j] != None):
 datad = Double1d(self.a[j].getFrame())
 table[str(j)] = Column(datad)
 # ...and gets rid of the pop-up window to finish.
 self.win.dispose()

Example 12.3. An example GUI interface to a database

To use the program, download it into your JIDE session and hit the button. Now, whenever
you want to run the program during the rest of your DP session, type the following (e.g., at the IA>>
prompt)

Hifids()

Warning

The above example script handles HIFI dataframes only for now, but is used as an
illustration.

This brings up a window similar to that shown in Figure 12.3 - showing the "play" tab screen. You
can browse the database with the button (bottom left), choose between dataframes or source packets
under the "data" tab and get the data under the "play" tab. Dataframes associated with particular
APID, building block ID or observation ID can be chosen (see Figure 12.4). A timeframe can also
be indicated.

Accessing and Retrieving Data

270

Figure 12.3. The Dataselector tool Play tab.

Once the dataframes have been identified, they can be obtained by hitting the play button under the
"play" tab. This is the single arrowed button to the left. The buttons on under this tab have similar
functions to those on a DVD player! Once play is complete, hitting the Finished button exits the GUI
and places the dataframes in a table available to the DP session of the user.

Figure 12.4. The Dataselector tool Data tab.

Output for this program is placed in a TableDataset, called table, where one column holds a single 1D
spectrum. This table is then available for use in the user's DP session.

12.2.8. Accessing Housekeeping (HK) Data

Assuming you have access to a database whose schema is compatible with the version of the software
you are running (see above for information regarding schema evolution) then the HCSS package
binstruct can be used to access housekeeping information. Housekeeping packets are dealt with in a
somewhat different way to dataframes, but there are some similarities in structure.

12.2.8.1. Accessing HK Information For a Given Obsid

The following example illustrates basic housekeeping packet access for an observation with an obsid
of 1400. The end product is a table with two columns, time in the first column and the housekeeping
parameter value (raw) in the second column. Although an example relative to HIFI is given, this can
be adapted to dealing with HK data from the SPIRE and PACS too.

Accessing and Retrieving Data

271

Import packages needed
from herschel.access import *
from herschel.access.util import *
from herschel.binstruct import *
from herschel.pus import *
Look to access HK packets associated with obsid = 1400
pk = PacketAccess(1400)
Connect to the default database to find the packets
hk_set = HcssConnection.get(pk)
Create an empty Java array list - needed for the
PacketSequence routine below.
arrList = java.util.ArrayList()
Loop around adding the housekeeping dataset into our array
for x in range(len(hk_set)):
 arrList.add(hk_set[x])

We can look at our array
print arrList
...but to get something sensible we need packets in a time order.
pseq = PacketSequence(arrList)
Get a listing of the parameter types contained
print pseq
Find packets in the sequence which contain information on
temperatures within the focal plane unit
seq_FPU_Temp = pseq.select(TypeEquals("FPU_Temperatures"))
Find out what parameters are contained in the selected packets
by obtaining the housekeeping parameter names from the first
selected packet in the sequence
par_FPU_Temp = seq_FPU_Temp[0].getParametersContained()
Print out to the DP session the names of all the parameters contained
print par_FPU_Temp

Choose the FPU Temperature parameter you want to get info on
...and get a time ordered set of housekeeping data for it
The output file plot_fpu_hk is a TableDataset with one column for time
(a Finetime of microseconds since 1 January 1958)
and one for the value of the parameter (RAW rather than engineering
value). Here we choose the parameter FPU_b_body_top for the table
output and get the converted values (in degrees K)
plot_fpu_hk = seq_FPU_Temp.getConvertedMeasures(["FPU_b_body_top"])
time = Double1d(plot_fpu_hk[0].data/1000000.0) # puts time into seconds
data = Double1d(plot_fpu_hk[1].data)

Now we can plot the timeline of the HK data over the
time period of the observation (obsid=1400) by plotting the table
p = PlotXY(time, data, style=Style(line=8, color=Color.black))
Give a layer/legend name...
p[0].name="time plot"
...and add a title
p.title.text="FPU temperature"

Example 12.4. Basic HK packet access

12.2.8.2. Accessing HK Data For a Given Time Period

We may be interested in looking at HK data for longer periods of time, e.g., over an extended period
covering several observations within the same database. This is particularly useful when looking for
trends in instrument data.

In the next example we show how HK data can be obtained for a set of parameters over a given time
period entered as Java Dates. The example is specific to use with HIFI databases but provides a general
illustration how HK data can be obtained from a HCSS database.

Note

Care needs to be taken that time periods being sampled are not too long since the HK data
is held in memory and days of HK data can lead to an "OutOfMemory" error.

Accessing and Retrieving Data

272

Import needed packages for handling databases and HK data
from herschel.access import *
from herschel.access.util import *
from herschel.binstruct import *
from herschel.pus import *
And this allows us to deal with times.
from herschel.share.fltdyn.time import *
First we enter a start and stop time for HK information.
We enter Java Dates, given as year (-1900), Month (-1),
day, hour, minute, second.
Our start_time is therefore 01:10:00 on 25 October 2004
start_time = java.util.Date(104, 9, 25, 1, 10, 0)
stop_time is 01:15:00 on the same day
stop_time = java.util.Date(104, 9, 25, 1, 15,0)
Need to convert final numbers into a FineTime used in database.
start_1 = DateConverter.dateToFineTime(start_time)
Date/time of start for plotted data
prod_date = DateConverter.fineTimeToDate(start_1)
Ditto for stop time
stop_1 = DateConverter.dateToFineTime(stop_time)
end_date = DateConverter.fineTimeToDate(stop_1)

Initialize some parameters
pk=0
hk_set = 0
Get object ready for sorting packets.
pseq = PacketSequence()
Set up the query for accessing packets of HK data
Here we ask for packets with an APID of 1026, which carries
HIFI HK data. The database identified by the user's
properties is accessed for packets of this type
between the given start and stop FineTimes.
pk = PacketAccess(1026,start_1,stop_1)

Now we know where to look, we can get the packets!
First we create an array with the packets in
hk_set = HcssConnection.get(pk)

...then we loop over the array to get the contents and
put packets into our packet sequence
for x in range(len(hk_set)):
 pseq.add(PusTmSourcePacket(hk_set[x].getContents()))

Now we get the parameters in the packets that we can plot.
seq_HIFI_HK = pseq.select(TypeEquals("HIFI_HK_rev_3"))
Let's pick out some of them
mnemonics = ["HF_AH1_MXMG_V", "HF_AV1_MXMG_V"]

...and get their converted (physical unit) measurements.
"plot_HIFI_HK" is a TableDataset with a first column measuring time

and the next 2 columns holding the HK parameter values
at those times. We can now plot any of the parameters versus
time, or against each other, by picking out the appropriate
column of the table.
plot_HIFI_HK = seq_HIFI_HK.getConvertedMeasures(mnemonics)

This is what to do to set up the plot. Since time
is in microseconds we convert it to
seconds first.

Get the first column and divide by 1 million
time = plot_HIFI_HK[0].data/1000000.0

Let's measure time on the plot from the beginning of the observation....
We subtract the initial time value
plot_time = time - time[0]

We will plot the two voltages contained in columns 2 and 4
h_voltage = plot_HIFI_HK[1].data
v_voltage = plot_HIFI_HK[2].data
Now plot the data

Accessing and Retrieving Data

273

p = PlotXY(plot_time, h_voltage, style=Style(line=8, color=Color.black))

Resize the window
p.height = 400
p.width=600

Change the legend
p[0].name = "H Mixer Plot"
Change the axis labels...
p.xaxis.title.text="Time (hours)"
p.yaxis.title.text="Mixer voltage [V]"

...and add a title
p.title.text="Plot of Mixer Voltages. Start: "+str(prod_date)+\
 "End: "+str(end_date)

Now we can also overlay the second voltage trend in blue.
p[1]=LayerXY(plot_time, v_voltage, name= "V Mixer Plot", \
 style=Style(color=Color.blue))

The kind of output one can expect from this example is shown below.

Figure 12.5. Sample timeline plot of HK data.

12.2.9. Removing a Database
Removal of a database that you have created can be done at a terminal prompt (not within the jide
session).

>> removedb -rmdir mydatabase

274

Appendix A. Data Reduction Tutorial
-- contributed by Russ Shipman

A.1. Introduction
This is a quick start tutorial for getting a taste for the Data Processing. The purpose of this tutorial is
to relay the flavour of the Herschel Data Processing software. This tutorial is written for Calibration
Scientists and Instrument Engineers who require deeper access to the HCSS software. This tutorial
should also provide a reasonable starting place for astronomers who simply want to have more control
over the processing of their data.

The tutorial will focus on a number of general tasks listed below. Each topic will progress from the
basic functionality to more complicated constructions. The tutorial will not (cannot?) shy away from
the fundamental nature of the software and therefore avoids using any "Helper" functions which may
hinder a deeper understanding of how the software works.

One last point. I am not a software developer. I am sure there are may subtleties which I have failed
to appreciate. The only comfort I may give to the reader is that I am using JIDE at the same time as
writing this tutorial so each line of code presented here actually runs.

This tutorial has the following outline:

• Reading a FITS file stored locally on disk. Section A.2.

• Understanding and interpreting data types. Section A.3.

• Numerical operations on data within . Section A.4

• Displaying the results. Section A.5

• Fitting models to data. Section A.7

• Writing scripts and procedures. Section A.6

• Saving the work and exporting the data to a FITS file Section A.8

A.2. Getting Data into Your Session
This section walks through an example of reading a FITS image or spectrum from a file on a local
disk. More information of accessing FITS data structures may be found in User Manual Chapter 10.

The first step in retrieving a FITS data structure is to set up the access the FITS archive class.

from herschel.ia.io.fits.FitsArchive import *
from herschel.share.util import Configuration

#You will need to have access to the test data. For this we must set up the
 directory where the
#data are stored on you system.
dir=Configuration.getProperty('var.hcss.dir') + '/doc/ia/demo/data/'
#The first part of this is where HCSS is installed on your system, the second part
 is the path to the test data.
#
#note the unix systax for directories. If you are working on a Windows machine the
 actual directory name
#will look very strange, but the HCSS system will take care of that.

Data Reduction Tutorial --
contributed by Russ Shipman

275

#
#Now create an instance of the class FitsArchive
fits = FitsArchive()
#Not all FITS files are created equal. The most general FITS structure can be
#found in the STANDARD_READER. Apply the STANDARD_READER to our FitsArchive.
fits.reader = fits.STANDARD_READER
#now the instance fits is able to read a generic fits file. This will return
#a "product".
#You will need to have access to the test
fitsproduct = fits.load(dir+"test.fits")

First, for more information the concept of PRODUCTS is described in Section A.3 below. From the
example above you can see the flavour of Herschel Data Processing at a low level. We have accessed
a general FITS utility for reading and writing FITS files. The utility has a method load specifically
for reading FITS data.

OK, now it is your turn. Choose your favourite FITS file (image, spectrum, cube, table, etc) load it
into your session. Be sure to specify the entire path to the file. The next section shows how to look
into the product within your session and see its structure.

A.3. Products and Data Wrappers
Herschel data are carried about in structures called products. Products are software onions; they are
made up of layers and each layer has its own description of the contents (e.g. labels of columns of
tables, etc.), specific actions which can be taken with that layer and a history describing how the
product was created. The software onion has the great benefit of being able to do all that its inner layers
can do as well as the new items which are provided by the outer layer. This is called inheritance.
Peeling away all the layers, will give a data structure containing actual data, be it an array or a single
number.

To see what I'm talking about, let's go through the steps to create a product from double floating point
sequence of numbers ranging from 0 to 9.

#Create our data:
range(10) gives the sequence of numbers from 0 to 9
Double1d puts these numbers into a 1 dimensional double presision floating
point array
x = Double1d.range(10)
#Wrap the Data x in an Array
array=ArrayDataset()
array.setData(x)
array.setDescription("Data-Onion")
#Now wrap the Array in a Product
prod=Product()
prod.setDescription("Product-Onion")
prod["Dataset-Onion"]=array
To see what Dataset Inspector shows instantiate the Inspector
ds=DatasetInspector()
Now tell the inspector what it should look at..
ds.register(prod,"prod")
#

Registering items one by one is not very useful, and also not the intention of the DatasetInspector
which should show all the datasets and products within your Jide session. For this you should make
use of the special DatasetInspector button provided to you by Jide itself (or alt-D).

This will bring up a window which shows two fields and initially two tags: Datasets and Products.
Open the Products tag by double clicking on the word Products. The Products branch will be expanded
to show all the products currently available in your session.

Double clicking on the name of a product within the DatasetInspector will give you details about it.
Specifically, the tree will be expanded with two more branches on Meta data and another Dataset.
The Meta data for the fitsproduct is the FITS header and has a clear connection to the data within the

Data Reduction Tutorial --
contributed by Russ Shipman

276

product. The PrimaryImage contains the actual data array. By clicking on PrimaryImage, you can see
the values of the elements and the dimension of the array itself.

Significantly more information about datasets and products can be found in User Manual Chapter 4.

Since a Product is a high level all-encompassing object, the data within the product still must be
extracted. Both the data and the header are extracted in the following steps:

#Retrieve the 1st data field of a product using "default" and put it into a
#variable named fitsdata.
fitsdata=fitsproduct.default
#The FITS header is contained in the MetaData of the product. Put it into a
#variable called fitsheader
fitsheader=fitsproduct.getMeta()

The Session Inspector (Alt-I) gives a slightly different view into the session. It will show all the
variables which are currently defined within your Jide session whereas the DatasetInspector only
shows Datasets and Products. There will be a number of tags within the session inspector: Variables,
Functions, Classes, and Packages. Open the "Variables" tag and look for the variables named "fitsdata"
and "fitsheader". The variable "fitsdata" is a 4 dimensional array. Not what I expected, but the FITS
header does say that it should be that way. I want a simple Doulbe1d array which is the proper length
of just my data.

#Now let's deal with those extra 3 annoyance dimensions.
from herschel.ia.numeric.toolbox.basic import Reshape
#
Reshape with no parameters takes an "any" dimensioned array and
turns it into a 1 dimensional array.
to1D=Reshape()
Now apply it
spectrum=to1D(fitsdata.data)
By the way the same results are possible by:
spectrum=Reshape()(fitsdata.data)

An extremely useful feature is the .__class__ method. This method works on every object within Jide.
The result of this method is the name of the class of the object. I wanted "spectrum" to be a one
dimensional array. Let's find out what it is:

print spectrum.__class__

This will give the type of value we now have which should be a "herschel.ia.numeric.Int1d". This
is saying that our spectrum at this point is an integer array. When examining the FITS header, this
is exactly what the FITS file contains. In the next section, we'll go through the steps to apply the
calibration information contained in the FITS header in order to create a floating point array, frequency
scale and velocity scale.

A.4. Numerical Calculations
We now have a Double1d array of spectral data (That is what is present in the test.fits file provided
with this tutorial). However, the values themselves are not so interesting without the frequency scale.
This still has to be constructed from the fits header. So let's gather all the fits header information we
need and put it into variables which we have some experience with. Please note that at this point, I
heading back into a more traditional realm of processing and increasing the complexity since ALL
parameters and values are contained in fitsheader.

#Extract FITS header information into variables
#
bscale = fitsheader.get('BSCALE').value
bzero = fitsheader.get('BZERO').value
crpix = fitsheader.get('crpix1').value
crval = fitsheader.get('crval1').value

Data Reduction Tutorial --
contributed by Russ Shipman

277

restfr = fitsheader.get('RESTFREQ').value
cdelt1 = fitsheader.get('cdelt1').value
altrpix= fitsheader.get('ALTRPIX').value
altrval= fitsheader.get('ALTRVAL').value
deltav = fitsheader.get('DELTAV').value
#We will also need the length of the data vector
naxis1 =len(spectrum)
#The len command is a built in Python command,
#Now create the frequency and velocity vectors
frequency=(Double1d.range(naxis1)-crpix)*cdelt1 + crval + restfr
The velocity is recorded in the header as m/s, I want this in km/s
velocity=((Double1d.range(naxis1)-altrpix)*deltav + altrval)/1000.00
#Now convert the integers values of the spectrum to doubles.
spectrum = spectrum*bscale + bzero
#

I do believe that numerical operations are about the simplest part of HCSS. That is, however, my
personal opinion.

It is now time to view the result of our efforts. That is the topic of the next section.

A.5. Plotting
Plotting is easy and, although the system is still under development, is highly advanced. The simplest
way to create a plot is the following:

from herschel.ia.gui.plot import *
Simplest way to plot:
PlotXY(velocity,spectrum)
#

On this plot many items can be set or changed, via the properties window which activated by a right
button click on the mouse. However, if you want to have multiple plots in your JIDE session, you
should rather work on an instance of PlotXY instead of the main CLASS itself.

myplot = PlotXY(velocity,spectrum)

The above line produces the plot shown.

Data Reduction Tutorial --
contributed by Russ Shipman

278

Simple plotting example.

Figure A.1.

If you have multiple data sets to display on the same plot, these are added as layers. Layers give you
significant control over your plot since they can be added and removed. Say for example you want to
overlay the same data but offset by a small amount. This is done with:

myplot[1] = LayerXY(velocity,spectrum+0.1)
#but adding 0.1 was not enough to see both data sets. So remove the Layer and
#add it again.
myplot.removeLayerXY(1)
myplot[1] = LayerXY(velocity,spectrum + 0.4)

With the properties dialog box, it is possible to fully annotate the spectrum and axes as well as change
line styles and plot symbols. The end result of all the work can be saved and restored for reuse.

I have a plot of my data as a function of velocity. I would also like to add an axis for the frequency
itself. This is possible as another layer. One important point to keep in mind, layers can always be
changed. If the first rendering of the layer is wrong the plot does not need to be thrown away and
restarted. So let's build this other layer in steps.

#Clear out the layer 1 again. We could move on to other layers, but there
#is no real need yet.
myplot.removeLayerXY(1)
#Create another layer of the spectrum as a function of frequency.
myplot[1]=LayerXY(frequency,spectrum)

Data Reduction Tutorial --
contributed by Russ Shipman

279

Not what I expected example.

Figure A.2.

This is a rather disturbing plot. Believe it or not, but this is what I had asked for, to plot on the same
scale another data set with numbers both around 2.6 E11 and 200. I don't have to throw anything away.
I only need to tell the plot that I want this layer (1) to have its own axis and not to have the two axes
locked together.

#Give layer 1 a dummy axis.
myplot[1].xaxis=Axis()
#Currently the scales of the axes (0 and 1) are locked together.
#To unlock Axis 1
myplot[1].xaxis.lock=0
#Still the scales are off, so rescale
myplot[1].xaxis.autoRange=1
#The range for layer 1 is OK but not layer 0
myplot[0].xaxis.autoRange=1

Data Reduction Tutorial --
contributed by Russ Shipman

280

Figure A.3.

Things are looking better. They are not yet perfect, but better. As can be seen in the last plot, both
plots of the same spectrum at least show up in the same window, but one is the inverse of the other.
Velocity to frequency is a flip. Also, the scale on the frequency axis does not have enough precision
in the display to show anything other than 2.6e+011. The final problem is that there are no meaningful
labels or annotations, just place markers. These can all be fixed as follows:

The axis for layer 1 can be easily flipped.
myplot[1].xaxis.inverted=1

The fix for the scale on layer 1 requires a change to the data i.e., the frequency scale itself. But this
means a re-making of Layer 1. OK, I'll remove layer 1 (again) and add in a new layer 1.

#First change the units to GHz.
freqGHz = frequency/1e9
#Now remove layer 1
myplot.removeLayerXY(1)
#Now add the new layer 1
myplot[1]=LayerXY(freqGHz,spectrum)
#give the layer its own axis, otherwise the following steps will always use the same
 axis
myplot[1].xaxis=Axis()
myplot[1].xaxis.lock=0

Data Reduction Tutorial --
contributed by Russ Shipman

281

myplot[1].xaxis.inverted=1
myplot[1].xaxis.autoRange=1
#Add real titles to Axes
myplot[0].xtitle='LSR Velocity (km/s)'
myplot[1].xtitle='Rest Frequency (GHz)'
myplot[0].ytitle='Antenna Temperature (K)'
#And a few items about the tick marks.
myplot[0].xaxis.getTick().setInterval(50.0)
myplot[1].xaxis.getTick().setInterval(0.05)
myplot[0].yaxis.getTick().setInterval(0.1)

Not what I expected example.

Figure A.4.

With the dialog box, you can change fonts and placement of all the titles and labels. For now I will
just write the results to a PNG file (as I've been doing for all the figures so far) and move on.

A.6. Writing a Task
If the calculations are general or you do the same steps again and again, you will likely want to put
make your steps available for later re-use. This can be done either by saving as a script, or by writing
a Task which will perform your script but allow different parameters.

Data Reduction Tutorial --
contributed by Russ Shipman

282

In the previous section, we saw that currently there are quite a few steps needed to plot two axes on
a single plot. Let's try to make that part into a Task.

As I think about making a task, there are multiple ways a task can behave with respect to plotting
multiple axes. The most straight forward in my mind, is passing a plotting task two x-axis vectors and
on y-axis vector. The plot task then puts all three together in one plot. Another approach would be to
pass a plot of an x-y pair (x axis vector and y axis vector already in a plot, and simply add the second
x-axis. The second approach, if it can be done, is using the fact that plots are just objects themselves,
they can be passed around and modified. I'll stick with passing a plotting task the three vectors I need.

First import the necessary libraries.

Import task framework classes.
from herschel.ia.task.JTask import JTask
from herschel.ia.task import TaskParameter
from herschel.ia.task.api import SignatureEntry
from herschel.ia.gui.plot import *

Tasks are just CLASS definitions, but using a particular sent of methods to define the input and output
parameters which has some user support built in. We'll see these later.

Tasks consist of two parts, a preamble and an execute. Remember that Jython definitions are highly
sensitive to spacings, so be sure to indent consistently within a definition (or loop). For ease of
understanding, I show the entire Task below.

class Plot2XY(JTask):
#Creation method
#
 def __init__(self, name="Plot2XY"):
#
#This is the preamble. Here I am defining the input parameters
#and what type they are. I define:
xaxis1 as Double1d, xaxis1 is the name of the parameter to beused below in
the execute part.
y as Double1d (for the y-axis)
xaxis1 also as Double1d, this is also indicated as mandatory.
#
 p=TaskParameter("xaxis1",valueType=Double1d,mandatory=1)
 self.addTaskParameter(p)
 p=TaskParameter("y",valueType=Double1d,mandatory=1)
 self.addTaskParameter(p)
 p=TaskParameter("xaxis2",valueType=Double1d,mandatory=1)
 self.addTaskParameter(p)
#
#assume 2nd axis is not inverted, but allow that to be changed
#invert becomes another parameter with initial value of 0 (False)
#
 p=TaskParameter("invert",False,mandatory=0)
 self.addTaskParameter(p)
#
This task will return a modified PlotXY object.
for the task, the parameter name is "plot" which will be the output.
#
 p=TaskParameter("plot",valueType=PlotXY)
This should be made the output of the task
 p.setType(p.OUT)
 self.addTaskParameter(p)
#
#Now define the execute part
#
 def execute(self):
#
Go through all steps needed to make two axis on a single plot.
Note the notation self.name is the way to use parameters initiated above in
the task.
#
 self.plot = PlotXY(self.xaxis1,self.y)
 self.plot[1] = LayerXY(self.xaxis2,self.y)

Data Reduction Tutorial --
contributed by Russ Shipman

283

Create the 2nd axis as separate from the first
 self.plot[1].xaxis=Axis()
 self.plot[1].xaxis.lock=0
 self.plot[1].xaxis.autoRange=1
 self.plot[0].xaxis.autoRange=1
#
Now check if invert = 1, invert the 2nd axis
#
 if self.invert:
 self.plot[1].xaxis.inverted=1

Here is what this task produces.

Figure A.5.

A.7. Fitting a Model
Fitting of models is of general interest, whether it is fitting a straight line or fitting a complex model.
As can be seen, the spectrum has some serious problems: an unruly baseline to say the least. If I have
reason to believe that the data are still salvageable, I could try to clean them up.

The first that I will try is to fit a polynomial to remove the drop from negative velocities and zero the
spectrum in general. Fitting involves two conceptually different steps. The first is the model to be fit,

Data Reduction Tutorial --
contributed by Russ Shipman

284

polynomial, sinusoid, whatever. The second concept is how to fit this model. Some models are linear
and the fit is a straight forward matrix inversion. Others have to be done iteratively.

from herschel.ia.numeric.toolbox.fit import *
#
#I'll choose a 5th order polynomial model to smooth out
the general trend in the spectrum
polymodel=PolynomialModel(5)
#now set up the fitter to use the model we've just defined.
linfit=Fitter(velocity,polymodel)
#just apply the fitter to the spectral data.
#Note that linfit knows that it is fitting a polynomial of 5th order
#to an array of velocity values. So at this stage the independent
#variable is not necessary.
params=linfit.fit(spectrum)
lets take a look
print params
And create a "data" array with the fit.
baseline=polymodel.result(velocity,params)
#let's plot things and have a look
plot=Plot2XY()(velocity,spectrum,frequency,1)
plot[2]=LayerXY(velocity,baseline)

A 5th order polynomial baseline fitted to the data.

Data Reduction Tutorial --
contributed by Russ Shipman

285

#I can even correct the spectrum now.
spectrum1=spectrum-baseline
plotc=Plot2XY()(velocity,spectrum1,frequency,1)
#

Spectrum after removal of polynomial baseline.

#Now we should try to remove a sinus to make the spectrum
#flat.
#I've already done this once and know that I cannot
#get a good fit of a single frequency over a wide range
#so I need to select out part of the spectrum. The
#line I am iterstested in should be around 30 km/s. So I
#can select the spectrum from say -40 to 80 km/s and still have
#significant ripples to fit a sinus.
#
#The following >and < make boolean arrays
q1=velocity > 10
q2=velocity < 60
#now identify the indices which correspond to the boolean
q=velocity.where(q1.and(q2))
ps=Plot2XY()(velocity[q],spectrum1[q],frequency[q],1)

Data Reduction Tutorial --
contributed by Russ Shipman

286

Closeup of spectrum.

#now we are ready for the fitting
#First identify the model which should be a sine model.
sine0=SineModel()
#and the fitter
lev0=LevenbergMarquardtFitter(velocity[q],sine0)
amoeba=AmoebaFitter(velocity[q],sine0)
#for our sine model we need an inital guess at the parameters
#Our sine wave goes through 1 period in about 30 km/s, so
the initial guess at the frequency is 1./30.0,the amplitudes
are around 0.1
#
param0=Double1d([1./30.0,0.1,0.1])
lev0.setParameters(param0)
lev0.setTolerance(0.000001)
#
amoeba.setSimplex(param0,Double1d([0.01,0.1,0.1]))
#
#
param2=lev0.fit(spectrum1[q])
param3=amoeba.fit(spectrum1[q])
ps[3]=LayerXY(velocity[q],sine0.result(velocity[q],param2))
ps[4]=LayerXY(velocity[q],sine0.result(velocity[q],param3))

Data Reduction Tutorial --
contributed by Russ Shipman

287

Sine fit to the spectrum.

print param2 , param3
spectrumfixed=spectrum[q]-sine0.result(velocity[q],param3)
#
#
off = SUM(spectrumfixed)/len(spectrumfixed)
spectrumfixed=spectrumfixed-off
pgood=Plot2XY()(velocity[q],spectrumfixed,frequency[q],1)

Data Reduction Tutorial --
contributed by Russ Shipman

288

Sine removed from the spectrum.

A.8. Saving Data and Session
Of course is also possible to save the work you have done. To save all the variables defined in the
entire session just use the save command.

#Saving all variables, datasets and products in a file: mysave.save
save('mysave.save')
#OR save only the velocity and spectrum
save('mysave.save','velocity,spectrum')
#

We can also save the corrected spectrum as a fits file. First we should make the onion again. At the
core of the onion was our array of data.

#Create a corrected array of fluxes
spectrum_corr = spectrum - baseline - sine0.result(velocity,param3)

Let's put this result into a HCSS defined spectrum with a column for fluxes, frequencies (or
wavelengths) and velocities.

myspec=Spectrum1d()

Data Reduction Tutorial --
contributed by Russ Shipman

289

myspec.setFlux(spectrum_corr)
myspec.set('Wave',frequency)
myspec.set('Velocity',velocity)

Now I want to update the header information to reflect the changes I've made i.e. all the fit parameters.

Add fit information to header key words.
Make a copy of the original header
newheader=fitshead.copy
#First the polynomial fit
for i in range(6):
 newheader.set("poly"+ i.toString(),DoubleParameter(params[i]))
#The the sine fit
for i in range(param3.length()):
 newheader.set("sine"+i.toString(),DoubleParameter(param3[i]))
Add the new header to the metadata of of the spectrum dataset
myspec.setMeta(newheader)

Now, this dataset can be wrapped into a product.

#Create a product from the spectrum dataset
myspectrum_prod=Product()
myspectrum_prod("Spectrum Dataset",myspec)

And saved as a FITS file.

#now save is as a FITS file

fits.save('corr_spectrum.fits',myspectrum_prod)

That's it. A later version of his Tutorial will demonstrate how to save into a Pool from the Product
Access Layer.

290

Appendix B. Example User's Property
File

An example properties file to be placed in the file ${HOME}/.hcss/myconfig for UNIX users
or C:\Documents and Settings\<user>\hcss.props for Windows users.

Note

${HCSS_DIR}/config/devel.props is the file which contains the system default
properties, whereas ${HOME}/.hcss/myconfig is the file which contains your
properties.

For most users, the first few lines are the most important ones.

var.hcss.workdir=C://temp
hcss.access.ccm = herschel.versant.ccm
hcss.access.query.navigate=true
hcss.access.database = ilt_qm_9${var.database.server}
dbname = ilt_qm_9
dbfactory = herschel.versant.store.StoreFactoryImpl
hcss.pg.useList = true
hcss.pg.xml.listLocation = {${var.hcss.dir}/config/defns,
 ${var.hcss.dir}/../../config/defns}
#****add old myconfig
HCSS Properties File - location SRON
#
Author: Craig Porrett
#
#To show queries submitted by access
#hcss.store.verbosity = 1
General
var.database.server = @lin-sron-02.sron.rug.nl
var.database.devel=tony_hcss${var.database.server}
dbfactory = herschel.versant.store.StoreFactoryImpl
dbname = tony_hcss
hcss.cus.database=tony_hcss@${var.database.server}
hcss.cus.instrument = HIFI
hcss.cus.tabledir = ${user.dir}/CUS/custables
var.hcss.dir=C:/ia/hifi/lib/hcss
#var.hcss.workdir = ${user.home}/
#changed by Peer on 27-09-2002
#var.hcss.dir = ${user.home}/hcss_builds/latest_build
#var.hcss.dir = /Users/users/hcssbld/hcss_builds/latest_build
Access
hcss.access.database = ${var.database.devel}
hcss.access.test.database = ${var.database.devel}
hcss.access.connection = herschel.access.db.LocalConnection
hcss.access.network = socket
hcss.access.socket.host = localhost
hcss.access.socket.port = 8050
hcss.access.url = http://lin-sron-02.sron.rug.nl:5019/servlets/
hcss.access.packetprocessor = HIFI
hcss.access.instrumentmodel = Engineering
hcss.access.factory.query = herschel.access.db.VersantQueryFactory
hcss.access.router.host = localhost
hcss.access.router.port = 9877
hcss.access.query.allpks = select selfoid from
 herschel.versant.ccm.TmSourcePacketImpl
hcss.access.query.alldfs = select selfoid from herschel.versant.ccm.DataFrameImpl
CCM
hcss.ccm.test.database = ${var.database.devel}
following from Kevin's email on 29th Jan. 2004 siteid = 1 for hifi-icc
this following from the ICD
hcss.ccm.siteid = 1
hcss.ccm.mission.config = democonfig
hcss.ccm.mission.database = ${var.database.server}
Formatter

Example User's Property File

291

formatter package needs to be changed to use the var.hcss.dir system
hcss.formatter.directory.root = ${var.source.dir}
MIB
var.mib.defns = ${var.hcss.dir}/data/mib/defns
var.mib.data = ${var.hcss.dir}/data/mib/example-mibs/example-1
var.mib.aux = ${var.mib.data}/auxil
var.mib.raw = ${var.mib.data}/ascii-tables
hcss.mib.database = ${var.database.devel}
#hcss.mib.database = hcssbld_hcss
hcss.mib.datadir = ${var.mib.raw}
hcss.mib.tablelist = ${var.mib.aux}/tablelist
hcss.mib.tc_command_durns = ${var.mib.aux}/tc-durns
hcss.mib.tm_param_list = ${var.mib.aux}/tmparams
hcss.mib.test_tc_command_list = ${var.mib.aux}/tcmds
hcss.mib.test_tm_param_list = ${hcss.mib.tm_param_list}
hcss.mib.tabledefs = ${var.mib.defns}/table-defns/
hcss.mib.dbroot = hcss_mib_root
hcss.mib.uplink_id = 1
hcss.mib.test_uplink_id = 1
hcss.mib.downlink_id = 1
hcss.mib.test_downlink_id = 1
hcss.mib.errorsonly = false
hcss.mib.logfile = mibchecker.log
hcss.mib.readallcmds = true
hcss.mib.tc_command_list = xxx
TM Ingest
hcss.tmingest.database = ${var.database.devel}
hcss.tmingest.port = 9877
TM Proc
Store
hcss.store.test.database = ${var.database.devel}
#ia dataflow
herschel.ia.dataflow.maxbuffersize = 50
pcss needed for ia demo 28th January
hcss.mib.cus_file = gencus_scripts.out
hcss.mib.instrument = HIFI
#hcss.ccm.mission.config = democonfig
#hcss.ccm.mission.database = hcssbld_hcss@lin-sron-02.sron.rug.nl
binstruct
hcss.binstruct.ip_filename = instr_props.ip
hcss.binstruct.tm_version_map=TmVersions.tbl
hcss.binstruct.mib=C:/ia/binstruct
hcss.binstruct.services = herschel.binstruct.mib.MibAsciiServices
hcss.bintruct.mib_source = ascii
JConsole
hcss.jython.user.import=${user.home}/iltscripts_qm_reports.py
hcss.jconsole.buffer.size=320000
hcss.jconsole.prompt = "Tony's IA>>"
hcss.jconsole.width = 900
hcss.jconsole.height = 600

292

Appendix C. Jython Operators
The following tables shows all the various operators you can use in Jython. For completeness we have
also listed one operator introduced in the latest development version of Jython (2.2 alpha) but absent
from the stable version (2.1).

This list and the associated operator descriptions have been largely taken from the Python Reference
Manual, which you can find online at http://docs.python.org/ref/.

Table C.1. Jython unary arithmetic operators

Operator Operator description Example

+
Unary plus: yields its numeric
argument unchanged.

print +5
5

-
Unary minus: yields the
negation of its numeric
argument.

print -5
-5

~
Invert: yields the bitwise invert
of its plain or long integer
argument.

print ~5
-6

Table C.2. Jython binary arithmetic operators

Operator Operator description Example

+
Sum: yields the sum of its
arguments.

print 2 + 2
4

-
Subtraction: yields the
difference of its arguments.

print 2 - 3
-1

*
Multiplication: yields the
product of is arguments.

print 3 * 2
6

/
Division: yields the quotient of
its arguments.

print 5 / 2
2
print 5.0 / 2
2.5

//

Floor division (Jython 2.2
alpha only): yields the result of
the floor() function applied
to the quotient of its arguments.

print 5 // 2
2
print 5.0 // 2
2.0

%
Modulo: yields the remainder
from the division of its
arguments.

print 5 % 2
1

**
Power: yields its left argument
raised to the power of its right
argument.

print 5**2
25

Table C.3. Jython shifting operators

Operator Operator description Example

<<
Left shift: a << b shifts plain
or long integer a by b bits.

print 5 << 1
10

>>
Right shift: a >> b shifts plain
or long integer a by b bits.

print 5 >> 1
2

http://docs.python.org/ref/

Jython Operators

293

Table C.4. Jython binary bitwise operators

Operator Operator description Example

&
Bitwise AND: yields the bitwise
AND of its plain or long integer
arguments.

print 5 & 6
4

^
Bitwise XOR: yields the bitwise
exclusive OR of its plain or long
integer arguments.

print 5 ^ 6
3

|
Bitwise OR: yields the bitwise
inclusive OR of its plain or long
integer arguments.

print 5 | 6
7

Table C.5. Jython comparison operators

Operator Operator description Example

<
Less than: a < b yields true if
a is less than b.

print 5 < 6
1

>
Greater than: a > b yields true
if a is greater than b.

print 5 > 6
0

==
Equal to: a == b yields true if
a and b are equal.

print 5 == 6
0

>=
Greater or equal to: a >= b
yields true if a is greater than or
equal to b.

print 5 >= 6
0

<=
Less or equal to: a <= b yields
true if a is less than or equal to b.

print 5 <= 6
1

!= (preferred) or <>
Not equal to: a != b yields
true if a is not equal to b.

print 5 != 6
1
print 5 <> 5
0

Table C.6. Jython boolean operators

Operator Operator description Example

and
Boolean AND: yields True if
both arguments are true, False
otherwise.

print 1 and 0
0

or
Boolean OR: yields True if
at least one argument is true,
False otherwise.

print 1 or 0
1

not
Boolean NOT: yields True if
the argument is false, False
otherwise.

print not 1
0

294

Appendix D. Demo script
D.1. Introduction

This is a collection of many (but not all) of the available scripts all over the system. The collection
is organized by package.

D.2. Demonstrations illustrating specific
functionality

Demo Files

simple.py Overview of Jython capabilities

help_demo.py Demonstration of help facility

session_inspector.py Demonstration of session inspector facility.

logging_demo.py Demonstration of jconsole's message logging facility.

save_restore_demo.py Demonstration of the save and restore of data feature in
Jconsole.

numeric_whatisnew.py Demonstration of how to use the new functionalities of the
numeric library from Jython.

numeric_demo.py Demonstration of how to use the 1D functionality of the
numeric library from Jython

numeric_2D_demo.py Demonstration of how to use the 2D functionality of the
numeric library from Jython

numeric_reshaping.py Demonstration of how to use the reshaping functionality of the
numeric library from Jython

numeric_shifting.py Demonstration of how to use the shifting functionality of the
numeric library from Jython

numeric_slicing.py Demonstration of how to use the slicing functionality of the
numeric library from Jython

convolution_demo.py Demonstration of how to use the convolution functions in the
numeric library

fit_demo1.py 1) Demonstration of how to perform fitting from the numeric
library

fit_demo2.py 2) Demonstration of how to perform fitting from the numeric
library

fit_demo3.py 3) Demonstration of how to perform fitting from the numeric
library

fit_demo4.py 4) Demonstration of how to perform fitting from the numeric
library

fft_demo.py Demo of FFT functionality

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/simple.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/help_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/session_inspector.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/logging_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/save_restore_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_whatisnew.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_whatisnew.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_2D_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_reshaping.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_shifting.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_slicing.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/convolution_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fit_demo1.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fit_demo2.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fit_demo3.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fit_demo4.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fft_demo.py

Demo script

295

boxcar_demo.py Boxcar filtering demo

gaussian_filter_demo.py
Gaussian filtering demo

interpolate_demo.py Demonstrates iterpolation

matrix_demo.py Demo of matrix functions

dataset_demo.py Demonstration of how to use datasets and create products

ascii_demo.py Demonstration of Import/Exporting of ASCII tables, the the
data file ascii_demo_data.txt is also required to run this demo

fits_demo.py Demonstration of Import/Exporting of FITS data

imageExample1.py Demonstration of general image functionality, the the image
file ngc6992.jpg is also required in your home directory to run
this demo

imageExample2.py Shows how to create an image from a simple numeric 2d array.

task_example.py Demonstration of how to write a task

task_array.py Demonstration on how to pass an array to a task.

task_stop.py Demonstration on how to stop a task.

TestPlotXY.py Demonstration of the new PlotXY capabilities

TestAxis.py Demonstration of how to use PlotXY Axis

TestLayerXY.py Demonstration of how to use PlotXY Layers

TestAnnotation.py Demonstration of how to use PlotXY Annotations

TestStyle.py Demonstration of how to use PlotXY Styles

TestCompositePlot.py Demonstration of how to compose Plots(XY)

TestMemory.py Demonstration of how PlotXY use memory efficiently

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/boxcar_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/gaussian_filter_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/interpolate_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/matrix_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/dataset_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/ascii_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/ascii_demo_data.txt
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fits_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/imageExample1.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/ngc6992.jpg
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/imageExample2.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/task_example.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/task_array.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/task_stop.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestPlotXY.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestAxis.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestLayerXY.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestAnnotation.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestStyle.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestCompositePlot.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestMemory.py

296

Appendix E. Naming Conventions
for Java and Jython users and developers. Version 0.3, 6th December 2006

Element Description Naming convention

Class

UM section 3.14.1

Defines the state and behaviour
of something. Classes are
defined as declaring variables
(fields) and functions (methods)
associated with the objects of
that class.

Names should be nouns and
written in mixed case starting
with an upper case letter. Do
not use underscores to separate
words.

DataFrameGenerator,
FitsArchive

Interface

UM section 3.14.2.1

Defines a collection of
method definitions and constant
values. It can later be
implemented by classes that
define this interface with the
implements keyword.

Names have the same
convention as class names but
are preferably adjectives. Try to
end the names with -able or -ible:

Sortable, Accessible,
Savable

Variable An item of data named by an
identifier. Each variable has a
type, such as int or Frame, and
a scope.

Names should be mixed case
starting with a lower case letter.
Do not use underscores to
separate words.

frameBufferCounter,
nSamples, line,
detectorNo

Instance Variable

UM section 3.14.1

A variable that is part of an
object.

For the rationale of this naming
convention see HSCDT/TN009
on ESA Livelink

Names should start with an
underscore, otherwise follow
the general conventions for
variables (see above).

_packetType,
_isVisible

Local Variable A variable that is part of a
function or method.

Names follow the naming
convention of normal variables.

counter, length,
pixelName

Constant A variable whose value that can
not be changed during execution.

Names should be all uppercase
using an underscore to separate
words:

MAX_ITERATIONS

Boolean variable and method A logical type/function that can
only have or return the values
'true' or 'false'. Methods have
parentheses () while variable
haven’t.

Names should start with is-, has-,
can-, or should-.

isVisible,
hasChanged(),
canHandle(),
shouldAbort

Parameter

http://www.rssd.esa.int/llink/livelink/fetch/2000/414493/10737/2557707/14323/Coding_standards_for_the_FCSS_development.pdf?nodeid=28008&vernum=-2

Naming Conventions

297

Element Description Naming convention

An argument to a function or a
method.

Names follow the naming
convention of normal variables.

name, packet

Property

UM section 1.5

A platform independent
implementation of environment
variables and settings.

Names should be all lower
case and start with 'hcss'. The
hierarchical parts should be
separated with a dot.

hcss.binstruct.services

Method

UM section 3.14.1

A function defined in a class. Names should be verbs and
written in mixed case starting
with a lower case letter. Do
not use underscores to separate
words.

getName(), load()

Function

UM section 3.12

A jython function is a collection
of code lines to perform a
specific task under one name.
Functions take arguments and
provide one output. They are
like methods, except they are not
inside a class. A function can
also be an instance of the Task
class.

Names follow the same
convention as method names in
classes.

resample(), readTm()

Numeric function

UM section 5.4

Parameterless Java functions
provided by the
herschel.ia.numeric toolboxes.
For these function only one
instance is needed. Other
numeric functions follow the
same convention as classes.

Names are in all uppercase with
an underscore to separate words.

UNIQ, MEDIAN,
IS_FINITE

Task

UM chapter 8

A Task is a class which can be
called as a function. Tasks do
input and output parameter type
checking and provide history to
Products.

Names follow the same
conventions as for classes. Task
names should end with the word
'Task'.

DisplayDataFrameTask,
ResampleTask

Package

UM section 3.14.4

Defines a collection of related
classes and interfaces in Java.
Packages provide the namespace
in Java and Jython.

Names should be in lower-
case letters and digits, don't use
underscores.

herschel.ia.numeric

Package names should be short
so that the fully qualified
package name doesn't become
excessively long.

Abbreviations and acronyms should not be all uppercase when used as a name:

Naming Conventions

298

GOOD BAD

exportAsHtml() exportAsHTML()

saveAsJpeg() saveAsJPEG()

OolPacket OOLPacket

Using all uppercase for the abbreviations in base names will give conflicts with the naming
conventions given above. A variable of this type would have to be named hTML, jPEG etc. which
obviously is not very readable. Another problem is illustrated in the examples above: when the name
is connected to another, the readability is seriously reduced, since the word following the acronym
does not stand out as it should.

The term compute can be used in methods where something is computed and might take considerable
time to execute.

computeAverage(), matrix.computeInverse()

Give the reader the immediate clue that this is a potential time consuming operation, and if used
repeatedly, he might consider caching the result. Consistent use of the term enhances readability.

The 'n' prefix should be used for variables representing a number of objects, note that the names are
plural.

nPoints, nLines, nSamples

The notation is taken from mathematics where it is an established convention for indicating a number
of objects. Note that Sun uses the num prefix in the core Java packages for such variables. This is
probably meant as an abbreviation of number of, but as it looks more like number it makes the variable
name strange and misleading. If "number of" is the preferred phrase, numberOf prefix can be used
instead of just n. The num prefix must not be used.

The 'No' suffix should be used for variables representing an entity number.

tableNo, employeeNo

The notation is taken from mathematics where it is an established convention for indicating an entity
number.

Reserved words: the following words are reserved by Java as language keywords and can not be used
for variables, methods or class names in Java.

abstract, continue, for, new, synchronized, assert, default, goto,
package, this, boolean, double, if, private, throws, break, do,
implements, protected, throw, byte, else, import, public, transient,
case, enum, instanceof, return, try, catch, extends, interface,
short, void, char, finally, int, static, volatile, class, final,
long, super, while, const, float, native, switch.

Java code example

package herschel.ia.numeric; // herschel.ia.numeric: PACKAGE
public final class Complex1d // Complex1d: CLASS
 implements Serializable // Serializable: INTERFACE
{
 private transient double[][] _internal; // _internal: INSTANCE VARIABLE
 // writeObject: METHOD
 private void writeObject(ObjectOutputStream os) { // os = METHOD PARAMETER
 os.defaultWriteObject();
 os.writeInt(length());
 if (length()==0) return;

Naming Conventions

299

 for (int i=0,n=length();i<n;i++) { // i = LOCAL VARIABLE
 os.writeDouble(_re[i]); os.writeDouble(_im[i]);
 }
 }
}

Jython code example

herschel.ia.dataset.gui = PACKAGE; DatasetInspector = CLASS
from herschel.ia.dataset.gui import DatasetInspector
PI = CONSTANT
from java.lang.Math import PI
testName = VARIABLE
testName = "chop_freq_test_2909_1832_1902_"
load = METHOD
t2 = fits.load(myDir+testname+"PHOTF.fits").default
MAX = NUMERIC FUNCTION
maxStep = MAX(step[step.where(step < 0xffff)])
startEndTimes = FUNCTION; step, maxStep, time... = FUNCTION PARAMETERS
def startEndTimes(step, maxStep, time, startTime, endTime):
 for i in range(0, maxStep): # i = LOCAL VARIABLE
 temp=(step.where(step == i+1))
 endTime[i] = time[MAX(temp.toInt1d())
 return endTime
len = FUNCTION
upper = len(startarr)

	A Basic User's Manual
	Table of Contents
	The Herschel Common Science System and Data Processing (DP)
	1. Brief Overview
	2. Availability of DP and Operating Systems
	3. Related Documentation
	4. Versioning
	5. What's New and Previous Versions of DP User's Manual
	6. List of Contributors

	Chapter 1. HCSS Downloading and Installation
	1.1. Introduction
	1.2. Platform
	1.3. Minimum System Requirements
	1.4. Pre-Installation Requirements
	1.5. User Installation Procedure
	1.6. DP Property Initialisation

	Chapter 2. Using JIDE or the JIDE View in HIPE
	2.1. Introduction
	2.2. DP Scripting Using the Editor View of HIPE
	2.2.1. File Menu
	2.2.2. Edit Menu
	2.2.3. Run Menu
	2.2.4. Exiting HIPE
	2.2.5. Window and Help Menus

	2.3. DP Scripting Using JIDE
	2.3.1. File Menu
	2.3.2. Console Menu
	2.3.3. Edit Menu
	2.3.4. Run Menu
	2.3.5. Help Menu

	2.4. Quitting JIDE
	2.5. Standard Settings for JIDE and HIPE
	2.6. DP working directory and file access
	2.7. Getting Command-line Help in JIDE or HIPE
	2.8. Programming Loops in JIDE and HIPE
	2.8.1. Loop Performance on Arrays
	2.8.2. Using the Editor view with loops

	2.9. Multiline Statements in the Console View of HIPE or JIDE
	2.10. Pausing during script execution and debugging in JIDE (ONLY)
	2.11. Background script execution in JIDE and HIPE
	2.12. Running Scripts from a Shell Command Line
	2.13. Errors and Exceptions in DP
	2.13.1. Overview of the Libraries Used in a DP Session
	2.13.2. The Error Traceback Mechanism
	2.13.2.1. The way Jython presents error messages
	2.13.2.2. The way JAVA presents error messages

	2.13.3. The HCSS exception and logging mechanism
	2.13.3.1. Exceptions Thrown From HCSS Classes
	2.13.3.2. The HCSS logging mechanism

	Chapter 3. Some DP Basics & Beginning Jython
	3.1. Basics
	3.2. Comments
	3.3. Variables
	3.4. Numbers and basic arithmetic
	3.5. Boolean values
	3.6. Strings
	3.7. Type conversions
	3.8. Lists and Dictionaries
	3.8.1. Setting up and Accessing Lists
	3.8.2. Slicing Lists
	3.8.3. Setting Up and Using Dictionaries
	3.8.4. Nested Dictionaries

	3.9. Augmenting Values and Lists
	3.10. Lists and Jython Tuples
	3.11. Basic programming statements
	3.11.1. if/elif/else
	3.11.2. for
	3.11.3. while
	3.11.4. Loop control: break and continue

	3.12. Printing to the screen and files
	3.13. Defining and Using Functions
	3.14. Importing modules
	3.15. Object Oriented Programming
	3.15.1. Classes and Objects
	3.15.1.1. A Note about Terminology

	3.15.2. Interface, Implementation and Encapsulation
	3.15.2.1. Interfaces, the Java Way

	3.15.3. Inheritance
	3.15.4. Packages and Namespaces
	3.15.5. Advantages of OOP
	3.15.6. Concluding Remarks

	3.16. Defining a Class in DP
	3.17. Writing Scripts - Programming in DP
	3.18. Some Useful Extra Items on Scripts
	3.19. Interactivity in Jython Scripts
	3.19.1. Basic Interactivity
	3.19.2. A Little Bit of Swing
	3.19.2.1. showMessageDialog
	3.19.2.2. showInputDialog
	3.19.2.3. showConfirmDialog

	3.20. Useful Java bits
	3.21. Jython and DP Quirks
	3.21.1. Two functions for one goal
	3.21.2. Long Names versus Short Names
	3.21.3. Naming conventions
	3.21.4. Miscellaneous quirks

	Chapter 4. Handling Array Data Objects, Datasets and Products
	4.1. Introduction
	4.2. Getting started
	4.3. Types of Array Data Objects
	4.3.1. DP Numeric Array Access and Slicing

	4.4. Creating a Simple 1D DP Numeric Array
	4.5. Creating and Handling Complex Array Data Objects
	4.6. Creating and Accessing Multi-Dimensional Array Data Objects
	4.6.1. A note on array ordering

	4.7. Adding Attributes to Create an Array Dataset
	4.7.1. Dataset Attributes and Metadata

	4.8. Creating and Viewing a TableDataset
	4.8.1. Row-wise appending of TableDatasets
	4.8.2. Assigning Units
	4.8.2.1. Manipulating Units
	4.8.2.2. Converting Units to Strings and Back Again
	4.8.2.3. Derived Units
	4.8.2.4. Conversion to SI and Other Units
	4.8.2.5. Physical Constants
	4.8.2.6. Unit Compatibility
	4.8.2.7. Unit Equivalence

	4.9. Creating and Accessing a Composite Dataset
	4.10. Spectrum Datasets
	4.10.1. Spectrum1d and SpectralSegments
	4.10.2. Spectrum2d
	4.10.3. Expanding Spectrum1d and Spectrum2d Datasets
	4.10.3.1. HIFI Extensions
	4.10.3.2. SPIRE extensions to Spectrum1d
	4.10.3.3. PACS Spectrum1d and Spectrum2d extensions

	4.11. Image and Cube Datasets
	4.12. Assigning a World Coordinate System (WCS) to SimpleImage and SimpleCube
	4.13. Wrapping it all up: Products
	4.13.1. Mandatory Parameters in Products
	4.13.2. Setting Date Information
	4.13.3. Additional Metadata
	4.13.4. Inserting and Getting Datasets from a Product

	4.14. The Dataset Inspector
	4.14.1. The TablePlotter
	4.14.1.1. Introduction
	4.14.1.2. Invoke TablePlotter
	4.14.1.3. Layout of the TablePlotter
	4.14.1.4. Controls and Functions

	4.14.2. The Over Plotter
	4.14.2.1. Introduction
	4.14.2.2. Invoke Over Plotter
	4.14.2.3. Layout of Over Plotter
	4.14.2.4. Controls and Functions

	4.14.3. The Power Spectrum Viewer
	4.14.3.1. Introduction
	4.14.3.2. Power Spectrum Generator

	Chapter 5. DP Numeric: Basic Functions for Herschel DP
	5.1. Introduction
	5.2. Getting Started
	5.3. Basic Numeric Array Arithmetic
	5.4. Numeric Functions and Lambda Expressions
	5.5. Selection, Data Filtering and Masking Methods
	5.6. Array Access and Slicing
	5.7. Making sense of logical operators
	5.8. Advanced Tips for Improved Performance
	5.9. Type Conversions
	5.9.1. Explicit conversion
	5.9.2. Implicit conversion

	5.10. Function Library
	5.10.1. Basic Functions
	5.10.2. Integral Transforms
	5.10.3. Convolution
	5.10.4. Boxcar and Gaussian Filters
	5.10.5. Interpolation Functions
	5.10.6. Basic Fitter Routines
	5.10.6.1. General Approach
	5.10.6.2. Available Linear Models
	5.10.6.3. Available Non-Linear Models
	5.10.6.4. Compound and Mixed Models
	5.10.6.5. Available Fitters
	5.10.6.6. Obtaining a Model Fit to 1D and 2D Data
	1D Fit Example
	2D Fit Example

	5.10.7. Spectral Fitting.
	5.10.7.1. Data format
	5.10.7.2. General Usage
	5.10.7.3. Fitting your data
	5.10.7.4. A Simple Fit Case
	5.10.7.5. Available Models For Fitting
	5.10.7.6. Multiple Line Fitting
	5.10.7.7. Background/continuum Fitting
	5.10.7.8. Fit of Line and Continuum
	5.10.7.9. Changing Parameters
	5.10.7.10. Removing Fitted Models
	5.10.7.11. Using Fit Parameters
	5.10.7.12. Subtracting a Fit
	5.10.7.13. New Data
	5.10.7.14. Functions To Be Added in the Future

	5.10.8. Matrix Manipulations
	5.10.9. Random numbers generation
	5.10.10. Numeric Integration
	5.10.11. Interpolating Discrete Data

	5.11. Example Programs
	5.12. Mathematical Operations on Spectra
	5.12.1. Introduction
	5.12.2. Toolbox Primer: Selection
	5.12.2.1. More on selection methods

	5.12.3. Toolbox Primer: Average Spectra
	5.12.4. Toolbox Primer: Subtract Spectra
	5.12.5. Toolbox Primer: Divide Spectra
	5.12.6. Toolbox Primer: Add and Muliply Spectra
	5.12.7. Toolbox Primer: Resample and Smooth Spectra
	5.12.8. Toolbox Primer: Statistics on Spectra
	5.12.9. Summary of Toolbox Operations
	5.12.9.1. Remarks

	Chapter 6. DP Plot: Basic Plotting of Data
	6.1. Introduction
	6.2. What do I need to make a simple XY plot?
	6.2.1. Introducing PlotXY
	6.2.1.1. Using PlotXY to plot one Numeric1d array against another

	6.3. How to setup your PlotXY properties
	6.3.1. How to modify properties
	6.3.2. Plot properties
	6.3.3. Layer properties
	6.3.4. Axis properties.
	6.3.5. How to use properties.
	6.3.6. Resizing a plot

	6.4. Manipulating Layers, Axes, and Annotations in DP Scripts
	6.4.1. What about these Layers?
	6.4.2. What can I do with Axis?
	6.4.2.1. Log Axes, Labels and Gridlines
	6.4.2.2. Multiple Axis Labels

	6.5. Adding Error Bars to a Plot
	6.6. How can I annotate, decorate and save my plot?
	6.7. How can I make my plots more colourful?
	6.8. Creating file output and printing a plot without displaying
	6.8.1. Using batch mode

	6.9. Windows containing more than one plot
	6.10. Mouse Interactions with Plots
	6.11. What about a complete PlotXY example?

	Chapter 7. Display - Handling Images and Cubes
	7.1. Introduction
	7.2. Images and Cubes
	7.2.1. Flagging out Pixels : the Flag Class
	7.2.2. Coordinate Conversions: the Wcs Class

	7.3. Display vs. Image Explorer
	7.3.1. Display
	7.3.1.1. Display in more Detail
	7.3.1.2. How to use different Layers?
	7.3.1.3. How to place Annotations on an Image?
	Annotations from the Command Line in your DP session
	Annotations from the Annotation Toolbox

	7.3.1.4. Other Functionalities available via the Menu
	Editing the Colours
	Editing the Cut Levels
	Zooming in/out
	Annotation Toolbox
	Printing and creating a Screenshot
	Flipping the y-axis

	7.3.2. Image explorer

	7.4. Visualisation, Analysis and Manipulation of Images
	7.4.1. Profile Plotting
	7.4.2. Aperture Photometry
	7.4.2.1. Aperture Photometry with a circular Target Aperture and an annular Sky Aperture
	7.4.2.2. Aperture Photometry with a circular Target Aperture and a rectangular Sky Aperture
	7.4.2.3. Aperture Photometry with a circular Target Aperture and a fixed Sky Value

	7.4.3. Histograms
	7.4.4. Contour Plotting
	7.4.5. Mosaicking
	7.4.6. Smoothing
	7.4.7. Clamping/Clipping
	7.4.8. Cropping
	7.4.9. Rotating
	7.4.10. Scaling
	7.4.11. Translating
	7.4.12. Transposing
	7.4.13. Flagging saturated Pixels
	7.4.14. Getting the Cut Levels
	7.4.15. Image Arithmetics
	7.4.15.1. Addition/Substraction/Multiplication/Division/Modulo
	7.4.15.2. Absolute values
	7.4.15.3. Rounding/Flooring/Ceiling
	7.4.15.4. Power/Square/Sqrt
	7.4.15.5. Logarithmic/Exponential

	7.5. Visualisation, Analysis and Manipulation of Cubes

	Chapter 8. Introduction to Tasks
	8.1. The Task framework
	8.2. My first Task
	8.2.1. Before the Task
	8.2.2. What makes a Task?
	8.2.3. An Example of a Task: Average
	8.2.3.1. Importing definitions
	8.2.3.2. Creation
	8.2.3.3. Execution
	8.2.3.4. Usage
	8.2.3.5. Getting help on Tasks
	8.2.3.6. Adaptations in the Preamble to a Script
	8.2.3.7. Positional and Keyword Arguments in Tasks
	8.2.3.8. The Transformer example

	8.3. Guideline on How to Work With GUIs Within Tasks
	8.3.1. The use of task parameters handled via a dialog
	8.3.2. The use of more enhanced GUIs
	8.3.3. Example Task Handled by a Dialog
	8.3.4. Example Task Controlled by a GUI

	Chapter 9. Other DP Packages: What is Available?
	9.1. Introduction
	9.2. Overview of JavaDocs Documentation for DP Packages
	9.3. Package view
	9.4. Class view
	9.5. Tree view
	9.6. Deprecated view
	9.7. Index view
	9.8. DP Packages And Documentation
	9.8.1. herschel.ia.dataflow
	9.8.2. herschel.ia.dataset
	9.8.3. herschel.ia.demo
	9.8.4. herschel.ia.doc
	9.8.5. herschel.ia.document
	9.8.6. herschel.ia.help
	9.8.7. herschel.ia.image
	9.8.8. herschel.ia.inspector
	9.8.9. herschel.ia.io
	9.8.10. herschel.ia.jconsole
	9.8.11. herschel.ia.numeric
	9.8.12. herschel.ia.plot
	9.8.13. herschel.ia.task
	9.8.14. herschel.ia.ui

	Chapter 10. IO of DP Variables, Tabular ASCII and FITS Files
	10.1. Introduction
	10.2. Saving and Restoring DP Variables
	10.3. Getting Started with ASCII Import/Export
	10.3.1. Basic ASCII Table Import/Export Tool Usage
	10.3.1.1. Import Parsers
	10.3.1.2. Comma-Separated-Variable Parser
	10.3.1.3. Fixed-Width Parser
	10.3.1.4. Regular Expression Parser
	10.3.1.5. Export Formatters
	10.3.1.6. Comma-Separated-Variable Formatter
	10.3.1.7. Fixed-Width Formatter
	10.3.1.8. Table Template

	10.3.2. Examples of How to Import/Export ASCII Tables in DP

	10.4. Overview of FITS IO
	10.4.1. Getting Started With FITS IO
	10.4.1.1. Basic FITS IO Tool

	10.4.2. Parameter Name Conversion and FITS Header
	10.4.3. Caveats
	10.4.3.1. FITS header character limit
	10.4.3.2. Corrupted FITS file after unzipping

	Chapter 11. Using Time in the DP Environment
	11.1. Introduction
	11.2. Time Definitions
	11.2.1. System time in DP
	11.2.2. International Atomic Time (TAI) and FineTime
	11.2.3. Coordinated Universal Time (UTC)
	11.2.4. DecMec Time [PACS only]

	11.3. Time in Instrument House-Keeping (HK) Data
	11.4. Time conversion
	11.4.1. Time conversion in HCSS
	11.4.2. CucConverter

	Chapter 12. Accessing and Retrieving Data
	12.1. The Product Access Layer and Product Pools
	12.1.1. Available Product Pools
	12.1.2. Local Pools
	12.1.2.1. The Default Local Pool directory and how to change it
	12.1.2.2. Registering Local Pools
	12.1.2.3. Saving products in pools
	12.1.2.4. Finding out what is in storage: Starting the Product Browser
	12.1.2.5. More On Storage Queries: Other kinds of Querie and more examples of command line queries
	12.1.2.6. Retrieving products from storage
	12.1.2.7. Deleting Products from Storage
	12.1.2.8. Updating/Repairing Storage

	12.1.3. DbPool
	12.1.4. HsaReadPool
	12.1.5. CachedPool
	12.1.6. Setting up and Accessing Remote Pools
	12.1.6.1. PoolDaemon
	12.1.6.2. Accessing Remote Pools Using the SerialClientPool

	12.1.7. Special Imports into Pools
	12.1.7.1. Putting a Directory of FITS Files Into a Pool
	12.1.7.2. Placing Image (PNG) Files in a Pool and/or FITS File

	12.1.8. Common Problems
	12.1.9. Storage Product Versioning
	12.1.9.1. Versioning
	12.1.9.2. Querying Product Versions
	12.1.9.3. Tagging Products in a Store
	12.1.9.4. Turning Off Product Versioning
	12.1.9.5. Using the New Versioning Mechanism Against Existing Pools

	12.1.10. The Product Browser
	12.1.10.1. A visual tour of the browser
	12.1.10.2. Simple use case
	12.1.10.3. A: Query area
	12.1.10.4. B: Result area
	12.1.10.5. C: Result inspection area
	12.1.10.6. D: JIDE basket area

	12.2. Databases
	12.2.1. Introduction
	12.2.2. Starting Up A Database:
	12.2.3. Schema Evolution
	12.2.4. Providing Database Access for a DP Session
	12.2.4.1. Properties File Setup for Database Access
	12.2.4.2. Using the Propgen Tool

	12.2.5. Changing the Database to be Accessed
	12.2.6. Browsing a Database
	12.2.7. Getting Data Frames From a Database
	12.2.7.1. Command Line Access to Data Frames
	12.2.7.2. From Database to ASCII File
	12.2.7.3. Downloading Dataframes from a Database Using a GUI

	12.2.8. Accessing Housekeeping (HK) Data
	12.2.8.1. Accessing HK Information For a Given Obsid
	12.2.8.2. Accessing HK Data For a Given Time Period

	12.2.9. Removing a Database

	Appendix A. Data Reduction Tutorial -- contributed by Russ Shipman
	A.1. Introduction
	A.2. Getting Data into Your Session
	A.3. Products and Data Wrappers
	A.4. Numerical Calculations
	A.5. Plotting
	A.6. Writing a Task
	A.7. Fitting a Model
	A.8. Saving Data and Session

	Appendix B. Example User's Property File
	Appendix C. Jython Operators
	Appendix D. Demo script
	D.1. Introduction
	D.2. Demonstrations illustrating specific functionality

	Appendix E. Naming Conventions
	Java code example
	Jython code example

