A Basic User's Manual

Scripting in the Herschel
Data Processing System

Version 1.1.0, Document Number: HERSCHEL-HSC-DOC-0517
14 June 2009

A Basic User's Manual: Scripting in the Herschel Data Processing
System

Table of Contents

The Herschel Common Science System and Data Processing (DP)ccvvvvvvieviiieiiiiiciiieeiis iX
L BHEF OVEIVIBIW .o ettt e e e e et e e eeens iX
2. Availability of DP and Operating SyStemMScvviiiiiiiiiie e e e e iX
3. Related DOCUMENEEIIONcveeeiieiiiii e e e et e et e e e e s X
Y = 6 Lo 11 oo X
5. What's New and Previous Versions of DP User's Manualccccevveveiiiniiiiiinnecennn, X
6. LiSt Of CONITDULOIS .. .ceeiiiieeceii e et e e e Xix

1. HCSS Downloading and INStallationcocvuiiiiieiii e e 1
IS 1 01 (oo 1 o o PP TPPPRTRPN 1
L2, PlatfOrm o 1
1.3. Minimum System REQUITEMENTSuevieieiii e eee e e e e e e e e e e e e e e eaes 1
1.4. Pre-Installation REQUIFEMENEScvvueiii e e e e e e e e e e e aanas 1
1.5, User InsStallation ProCeAUIEooiieuiieiiiiie et e e 2
1.6. DP Property INitialiSationcociuiieiiiiiiiii e e e e 3

2. Using JDE or the IDE VIiew iINHIPEooiiiii e 4
P20 O [oo [0 (o o PSPPSRI 4
2.2. DP Scripting Using the Editor View of HIPE ..o, 4

221 FIHE MENU ..o 6
222, EQIE MENU ..ot 6
223 RUNMENU ..ot 7
224, EXItING HIPE ..oooiiiiii et e eaees 7
2.2.5. Window and HEIP MENUSccuuiiiiiiiiii e e e e 7
2.3. DP Scripting USiNg JIDEouiiiiiii et e e e 7
231 FHE MENU e 9
2.3.2. CONSOIE MEBNU ...t 9
233 EQIE MEMU ..ot 9
234, RUN MENU ..ottt et e e e e e 10
235, HEP MENU ..o e e 10
2.4, QUITEING JIDE ... iiiiiiii e e e 13
2.5. Standard Settings for JIDE and HIPEoiiiiiiiii s e e 14
2.6. DP working directory and fil@ 8aCCESSocvvviiiiiiiiie e 14
2.7. Getting Command-line Help in JIDE or HIPEccooiiiiiiiiie e 15
2.8. Programming Loops in IDE and HIPEcooiiiiiiii e 16
2.8.1. LOOp Performance ON ATTAYSuevuuieiiieeeiieee e ee e e e e e e e e eaeas 17
2.8.2. Using the Editor view With [00PScccuviiiiiiiiieci e 17
2.9. Multiline Statements in the Console View of HIPE or JIDEccccovvvviiineneenn, 18
2.10. Pausing during script execution and debugging in IDE (ONLY)ccvvvvvvveiinennnnn. 18
2.11. Background script execution in JIDE and HIPEcoovviviiiii i 18
2.12. Running Scripts from a Shell Command Line.........cocoeoviviiiiiiiiiii e 19
2.13. Errors and EXCEptioNS iN DPciviiii i 19
2.13.1. Overview of the Libraries Used in aDP Sessioncccevevveviiineeeiiinnnnn. 19
2.13.2. The Error Traceback MeChanismcooviiiiiiiiiiii e, 20
2.13.3. The HCSS exception and logging mechanismccccceeveviiiiiiiieiinneennnn, 22

3. Some DP Basics & Beginning JYthONcoeuniiiiiiiiii e e 24
I I =7 o PP 24
3.2 COMIMENES ...ttt ettt et e et et et e e e et e e et e e et a et et e eean e e et 24
B3 VA ..t 24
3.4. Numbers and basic arithmeticoovviiiiiiiiii e 24
3.5. BOOIEEN VAIUES ...t 25
G0 S 1 11 1o 25
G A Y/ o= o0 1Y = = Lo 26
3.8. ListS @Nd DICHIONAMIES ...eevvuieieiiiiee et e et e 26

3.8.1. Setting up and AcCCESSING ListS ...cvvvniiiiiiii i 27
3.8.2. SlICING LSS ..oeviiiii e e 27
3.8.3. Setting Up and UsiNg DICHONANEScvvveiiiieiii e 27

A Basic User's Manual

3.8.4. Nested DiCHONAMESc.uuueiieii et 28
3.9. Augmenting Values and LiStSc.uuuiiiiiiniiiiiiii e 29
3.10. Lists and Jython TUPIES ..o 29
3.11. Basic programming SEAEEMENTScoeuuuneiiitieeeeii et eeees 29
AL L /ETIEISE oo 30
I 2R (o] ST 30
BLL.3. WHITE e 31
3.11.4. Loop control: break and CONt i NUEcoovviiiiiiiiiiie e 31
3.12. Printing to the screen and fileScooouuiiiiii e 31
3.13. Defining and USiINg FUNCLIONSuiiiiiiie e 32
3.14. IMPOrtiNg MOTUIESeeeii ettt 34
3.15. Object Oriented Programimingccouuueeeeutnieeeiieeeeii e et eeeai e eenieeeens 35
3.15.1. Classes and OBJECESccoevuniiiiii e 35
3.15.2. Interface, Implementation and Encapsulationcccoovveeiiiiiieiiiinnenns 36
3153, INNEITEANCE ...t e 37
3.15.4. Packages and NaMESPACESuuuieeuineeeiii et e et e et e e e e e 37
3.15.5. Advantages Of OOPcoouuiiiiiiii et 38
3.15.6. Concluding REMAIKScouuiiiiiiiee it 38
3.16. DefiNiNg @ Class iN DPciiiiie e 39
3.17. Writing Scripts - Programming in DPcoooiiiiiiii e 40
3.18. Some Useful EXtra ltems 0N SCHPLSuevereieieriie et 40
3.19. Interactivity in JYthON SCHPLS ... cvveeeieiiii e 41
3.19.1. BaSIC INTEIACHIVITY .evvueiiiiii it 41
3.19.2. A Little Bit Of SWING «...uueiieiiieiiiii e 42
3.20. USeful JAVA DITS ... 45
3.21. Jython and DP QUITKSceuuueiiiie et eeees 46
3.21.1. Two functions for 0NE goaloeiiiiiiiiiiii e 46
3.21.2. Long Names versus Short NamMeScoouuuiiiiiiiiieiii e 46
3.21.3. NamMiNG CONVENLIONSuuiiiiieeeiii ettt e s 47
3.21.4. MisCEllan@oUS QUITKScieeiiieieii e 47
4. Handling Array Data Objects, Datasets and ProdUCtScc.uuiieiiiinieiiiiineeceii e 49
v I g1 (o [U ot (oo R PP PP UPPPPT 49
4.2, GEING SEATEAceeeeeeee e 49
4.3. Types of Array Data ODJECESuuiiiiiiiieiii e 49
4.3.1. DP Numeric Array AcCesS and SHICINGcvuueveeinneiiiiieeeciie e 50
4.4. Creating a Simple 1D DP NUMENC AITEY ...vuniiiiiiiieeeiiiee e 50
4.5. Creating and Handling Complex Array Data ObjectS..........coveviiiiiiiiiiiiiiiiieeciin, 51
4.6. Creating and Accessing Multi-Dimensional Array Data ObjectS..........c.vuvveevivineeees 51
4.6.1. A NOE ON &ITAY OFTENTING ... eveeee ettt 52
4.7. Adding Attributes to Create an Array DataSetoveveieiiiiiiiiiniecei e 52
4.7.1. Dataset Attributes and Metadataccovuieiiiiiiiiiiii e 53
4.8. Creating and Viewing a TableDataSatoovveviieiiiiiieec e 53
4.8.1. Row-wise appending of TableDatasetScccvuviiiiiiiiiiiiiiecc e 55
4.8.2. ASSINING UNITS oottt 55
4.9. Creating and Accessing a Composite Datasetooveviveieiiiiiieiie e 58
4.70. SPECHIUM DELESELSeeveeieieiit ettt 59
4.10.1. Spectrumld and SPeCtralSEgMENTSccuvuiiiiiii e 59
4.10.2. SPECIIUMZG ...t 60
4.10.3. Expanding Spectrum1d and Spectrum2d Datasetsccceeveeeiiiiiininnnnnn. 61
4.11. Image and Cube DABSELSuu it 63
4.12. Assigning a World Coordinate System (WCS) to Simplelmage and SimpleCube...... 64
4.13. Wrapping it @l up: ProdUCEScoouuiiiiiiiiecee e 67
4.13.1. Mandatory Parameters in ProdUCESveeiiiiiieiiiiieecii e 67
4.13.2. Setting Date INfOrMBEtioNc..uuieiiiuiieiiiii e 68
4.13.3. Additional Metadalaloeveeviieiiiii e 68
4.13.4. Inserting and Getting Datasets from aProductc.coooeveiiiiiiiiiinneenns 68
4.14. The DataSet INSPECLOTceeeii ettt 69
4.14.1. The TablEPIOMESiieeie e 70

A Basic User's Manual

4.14.2. The OVEr PlOMEN ...cciiieieeiii e 81
4.14.3. The POWer SPECIrUM VIBWESo.vuiiiiiiie et 86

5. DP Numeric: Basic Functions for Herschel DPoooiviiiiiiiiiii e 89
5.1 INEFOAUCTION ..ttt et ettt e e et e e et e e enbe e eeees 89
5.2, GEIING SEAMEAieeeie ettt 89
5.3. Basic Numeric Array ARThMELiCouiiiiiiiiii e 89
5.4. Numeric Functions and Lambda EXPreSSioNScvevevuiieieiiieeiiieee e 90
5.5. Selection, Data Filtering and Masking Methodsoovviiiiiieiiiiiiec e, 20
5.6. Array AcCESS aNd SHCING ..vvuneieiriieiiiii ettt e 93
5.7. Making sense of 10gical OPEratOrSccevuunieiiiii e 93
5.8. Advanced Tips for Improved Performanceooovvuiiieiiiiiiieii e 94
5.9, TYPE CONVEISIONS ...oeviieiiiii ettt ettt ettt e ettt e e et e e et e e e e e e eenens 95
5.9.1. EXPlIiCIt CONVEISIONceeiiiiiiiiis ettt 95
5.9.2. IMPIiCIt CONVEISIONcoeiiiiiiiii e 95

5.10. FUNCLION LIDIBIY oottt 95
5.10.1. BASIC FUNCHIONSciiiiieiiiiie et 96
5.10.2. Integral TransformScoouuiiiiiiii e 96
5.10.3. CONVOIULION ...oevieiiiiie ettt 97
5.10.4. Boxcar and Gaussian Filters 98
5.10.5. Interpolation FUNCLIONScoeiiiiiiiiiiiee e 98
5.10.6. BasiC Fitter ROULINESccouuiiiiiiiiieiiii e 100
5.10.7. SPECtral FittiNg. ...cccevuiiiiiiiie it 107
5.10.8. MatriXx ManipUlaLioNsooeuuuuiiiiiiieiiei e 114
5.10.9. Random NUMDEIS gENEratioNccevvurieeiiiiieeeeii e et e e e e e e 115
5.10.10. NUMENC INLEGIaIIONeieiiiieeeei ettt 116
5.10.11. Interpolating DiSCrefe Dalaccuuueieeiiieiiiiiieeeii e 117

5.11. EXAMPIE PrOGraMS ... ieeiii ettt ettt et e e e e e enaens 118
5.12. Mathematical Operations 0N SPECIIAueiiiriieiiiiie e 118
B5.12. 1. INIFOGUCTION ...ttt et e e et eenes 118
5.12.2. Toolbox Primer: SEleCHioNcocuuniiiiiiiiici e 119
5.12.3. Toolbox Primer: AVErage SPECIIAuuneveiiieieiii et 120
5.12.4. Toolbox Primer: Subtract SPECHra........c.cuuiviiiiiiiiiiiieeeei e 121
5.12.5. Toolbox Primer: Divide SPECIIaccevvvuiiiiiiieieiiie e 121
5.12.6. Toolbox Primer: Add and Muliply SPectra..........c.oceeevuieiiiiiniiiiiiinieeeens 121
5.12.7. Toolbox Primer: Resample and Smooth Spectra............ccooveviiiiiieiiinnnnen. 121
5.12.8. Toolbox Primer: Statistics 0N SPECLra.......cccvvnieeiiiiiieiiiiieeeceie e 122
5.12.9. Summary of TOOIDOX OPEratioNSceevuuiiiiiiiieeiiiiie e 122

6. DP Plot: BasiC PIOttiNG Of D@8cceuuiiiiiiiiieieii et 124
B. 1. INEFOAUCTION ...ttt ettt e e 124
6.2. What do | need to make asimple XY PIot?ccoiiiiiiiiiiiiiiei e 125
6.2.1. Introducing PIOLXY ... 125

6.3. How to setup your Pl ot XY Propertiesooeveeiiieieiieeeei e 127
6.3.1. HOwW t0o MOdify PropertiesSccouuuiiiiiiiieeiei e 128
6.3.2. PIOt PrOPEITIES ...t 128
6.3.3. LaYEr PrOPEITIES ..oovvueeiiiii ettt et 129
6.3.4. AXIS PrOPEITIES. «.oevtiiieiii et 131
6.3.5. HOW O USE PrOPEITIES. ..oevviiieiiiiie ettt 132
6.3.6. RESIZING @ PIOL ..eiviiiiiiii e 134

6.4. Manipulating Layers, Axes, and Annotations in DP SCriptS.........coccceveveiiiennenennnn. 135
6.4.1. What about theSE LaYEIS?cieiiii it 135
6.4.2. What can | do With AXiS?couuiiiiiiiiiiiiii e 140

6.5. Adding Error BarSt0 @ POtccovuuiiiiiiiiecii e 146
6.6. How can | annotate, decorate and save my Plot?ovveiiiiinieiiiiineeeeiieeeeiinen 148
6.7. How can | make my plots more colourful?oooiiiiiiiiiii e, 150
6.8. Creating file output and printing a plot without displayingccccoeeveiiiiinienen. 150
6.8.1. USINg batCh MOdEooeiiiiiieii e 151

6.9. Windows containing more than one plotoooviiiiiiiiii e 151
6.10. Mouse Interactions With PIOtSoiiiiiiiiii e 153

A Basic User's Manual

6.11. What about a complete PIOtXY example?c..uiviiiiiiiieiiiiiieecii e 154
7. Di spl ay - Handling | mages and CUDEScoouuiiiiiiiiii e 155
4% T [L (oo (8o (o o R PSP P TR PUPPRTR 155
7.2. 1 mMBGES 8N CUDES ..ooviieiiii e 155
7.2.1. Flagging out Pixels: the Fl @ag Classccocviiiiiiiiiiiiiiiiecceecci 157
7.2.2. Coordinate Conversions: the WS ClasSuvevviiiiieiiiiiiieicii e 157

7.3. Display vs. Image EXPlOrercoouuiiiiii e 159
731 D SPI Y e 159
7.3.2. IMage EXPIOTEN ..o 169

7.4. Visudisation, Analysis and Manipulation of | MBgescccceevieiiiiiiiiiiinneeeeinnnn. 170
741 Profile PIOMINGoeeeieeeeei e 170
7.4.2. APErture PROLOMELIYciiiii e 173
743 HIiSIOGIaIMS ...t 183
7.4.4, CONtOUr PIOMING ..evvniieiii et 189
745, MOSAICKING ..eevenieiiii e e 194
746, SMOONINGeeeeiiie et e e 195
7.4.7. Clamping/CliPPING ...ccvvueeeiiee e 196
TA.8. CrOPPING . eeveneeeeii ettt ettt et ettt e et e et eeba s 198
749, ROEBIING ... ceeetieteii ettt et e ettt e e e e eneas 199
A LS o 1o o ST TT 201
TALL TrANSIAHNG cevneeeeii ettt aaaas 203

T 412, TrANSPOSING evteeeetieeeeett e e et e eeeete e e e e et e e e eete e e e eete e e e eata e e eentaaeeenns 204
7.4.13. Flagging saturated PiXEIScooevuiiiiiii e 205
7.4.14. Getting the CUt LEVEISccooiiiiiiiii e 207
7.4.15. Image ATItNMELICSniiii e 208

7.5. Visudisation, Analysis and Manipulation of Cubesccccoovviiiiiiiiiiiiineniiinnn. 212
8. INrOdUCTION 10 TASKS ...eevteeiiiie ettt ettt e et e e et e e e e e eees 214
8.1. The Task frameWOrKooieiiiiei e 214
8.2, MY FIFSE TASK . tieeiiiiii ettt e ettt e e e e e e e e et e e e e e eeeeananas 214
8.2.1. BEfOre the Taskiiiiiiiiiiii e 214
8.2.2. What MaKeES 8 TaSK?ueiiiiiieee et 215
8.2.3. An Example of a Task: AVEI0Euvviiiuiieiiii e 216

8.3. Guideline on How to Work With GUIS Within Taskscccuiviiiiiiiiiiiiiiieeeennn, 222
8.3.1. The use of task parameters handled viaa dialogcccovveeeiiiieiiiinnenns 222
8.3.2. The use of more enhanced GUISccouiiiiiiiiiiiii e 222
8.3.3. Example Task Handled by aDialogooovveviiiiiiiiiiieiiiiccc e 222
8.3.4. Example Task Controlled by a GUIccouuiiiiiiiiiiiiiiiiiecii e 223

9. Other DP Packages: What is AVailable?cooouiiiiiiiii e 224
9.1 INEFOAUCTION ..t ettt et e e et e e b s 224
9.2. Overview of JavaDocs Documentation for DP Packagescccevvveieiiineeeeinnnnn. 224
0.3, PACKAJE VIBW ...ttt et et 225
9.4, ClBSS VIBW ...ttt et ettt ettt e et e et e e e e eee 227
0.5, THEE VIBIW ettt ettt 229
O.6. DEPIECALEA VIBW ...ttt ettt ettt e et e e 229
O.7. INAEX VIBW ...ttt ettt e et e e eab e eees 229
9.8. DP Packages And DOCUMENTELIONccuuureiiiriieeeiii et e et e e et e e e e 229
9.8.1. herschel.iadatafloWoiiiiiiiiii e 229
9.8.2. herschel.iadatasetoooeveiiiii 229
9.8.3. NersChel.iademOoooeii e 230
9.8.4. NErSCNELTAAOC ... 230
9.8.5. herschel.iadoCumentoouiiiiii e 230
9.8.6. herschel.iahelp ..oooveni 230
9.8.7. hersChel.iaimagecovuiiii e 230
9.8.8. herschel.iainSPECLOroiiiiiii e 231
9.8.9. NEISCNELTAIO .evuieiiii e 231
9.8.10. herschel.iafjCoNS0IEuuiiiiiii e 231
9.8.11. hersChel.iaNUMENICueeiiii et 231
9.8.12. hersChel.iaPlOtcoeeeiieeeiei e 232

Vi

A Basic User's Manual

9.8.13. hersChel.iatasKuueiiiiiiie et 232

9.8.14. NEISCRELIALUI «...uiieeiie e 232

10. 10 of DP Variables, Tabular ASCIl and FITSFIESc.uuiiiiiiiiiiiiiiiecee e, 233
FO.1. INEFOAUCTION ..ttt ettt e et e e e e s 233

10.2. Saving and Restoring DP Variablescoooiiiiiiiiiiii e 233

10.3. Getting Started with ASCIH IMPOIM/EXPOITccvuuiiiiiiieiiiiiie e 234
10.3.1. Basic ASCII Table Import/Export TOol USAgeveveevvnieiiiiiiieeeiiieees 234

10.3.2. Examples of How to Import/Export ASCIl TablesinDPcccc.oceee. 237

10.4. Overview Of FITS TO oouuiiiiiiii e 239
10.4.1. Getting Started With FITS 1O ...oouuiiiiiiic e 239

10.4.2. Parameter Name Conversion and FITSHeaderccooveviiiiiiiiiiininnens 240

F0O.4.3. CAVEALS ...eeveieeeeei ettt 242

11. Using Time in the DP ENVIFONMENToouuiiiiiiiie e 244
0 O 1 1o o [0 (o PO P T PUPPTTR 244

11.2. Time DEfINITIONSvuiiiii e 244
11.2.1. System time iN DP o.uenieiee e 244

11.2.2. International Atomic Time (TAl) and Fi neTi neccooeviiiiiiiiiinieeen, 245

11.2.3. Coordinated Universal Time (UTC)uviiiiiiiieiiiiieeci e 245

11.2.4. DecMeC Time [PACS ONIY] ...ciiiiiieiiiii e 245

11.3. Timein Instrument House-Keeping (HK) Data............ooeveiiiieiiiiinieiiiiieeeeiin, 246

11,4, TIME CONVEISION ..eetiieiiiti ettt ettt e ettt e e et e e e e e e e et e e eeaens 246
11.4.1. Time conversion iN HCSS ... 246

12.4.2. CUCCONVEITENieeieit ettt ettt e e e e e e 247

12. Accessing and REEVING Dalalccuuuiiiiiiieiiii et 248
12.1. The Product Access Layer and Product POOIScoooviiiiiiiiiiiniiiiiieeciie 248
12.1.1. Available Product POOIScooouuiiiiiiiiccc e 248

12.1.2. LOCE POOIS ... ettt 248

12.1.3. DBPOO ...t 254

12.1.4. HSAREAAPOOI ... 254

12.1.5. CaChedPOO!oiiiiiiieei e 254

12.1.6. Setting up and Accessing Remote POOISoveviviiiiiiiiiic e, 255

12.1.7. Specia ImportSinto POOISc.uuuiiiiiiiiieiiiii e 255

12.1.8. CommON ProblemMSooiiiiiii e 256

12.1.9. Storage Product VErSIONINGcccuuunieiertieieiiieeeeiin e eeei e e e eennnns 257

12.1.10. The ProducCt BrOWSESccouuiiiiiiiiieeeei e e 259

12,2, DABIBSES ... ettt 263
12,21, INEFOTUCTION «.eeviieieii e 263

12.2.2. Starting Up A Database:uveiiiiiiieiiiii e 264

12.2.3. SChema EVOIULIONoiiiiiiiiiii e 264

12.2.4. Providing Database Access for a DP SeSSIiONovveviviiieiiiiiiieeiiie, 264

12.2.5. Changing the Database to be ACCessadcccevuviiiiiiiiiiiiiiicci e, 265

12.2.6. Browsing @ Databaseuvveiiiiiiieiiiiiie e 265

12.2.7. Getting Data Frames From a Databasecoooeveviiieiiiiiiiciiecci 266

12.2.8. Accessing Housekeeping (HK) Dafal.......cccuvuieiiiiiieiiiiiiieeciii e 270

12.2.9. ReMOVINg @ Databaseuuieiiiiiiiiiii et 273

A. Data Reduction Tutorial -- contributed by RUSS Shipmanccooeeiiiiiieiiiiinieiiieeeee 274
AL TNEFOAUCTION .ttt e et e b s 274

A.2. Getting Data into YOUr SESSIONccuvuiieiiiiieeieit et 274

A.3. Products and Data WIGPPENSuuiieiiiieeeeii ettt 275

A4 Numerical CalCUIALIONScoeeeiiiiii e 276

ALDL PIOING ettt 277

ALB. WIITING 8 TASK iittieeiiii ettt et e e e e aa s 281

A7 FIting @ MOEl ... 283

A.8. Saving Data and SESSIONeiiiiiieiiiii et 288

B. Example User's Property File ... 290
C. JYENON OPEIGLOIS ...ttt ettt ettt e e et et e e et et e e e et reeeentnaaaees 292
D. DEIMO SCHIPL ... eeeett ettt ettt et ettt ettt e ettt e e e et e e ettt s e et et r e e e enb e e eeraaeaees 294
DLl INTOQUCTION ..ttt ettt et e et eeeaa s 294

Vii

A Basic User's Manual

D.2. Demonstrations illustrating specific functionalityccoovveiiiiiiiiiiiinieiiien.

E. Naming Conventions

viii

The Herschel Common Science
System and Data Processing (DP)

1. Brief Overview

The Herschel Common Science System (HCSS) is being developed by the Herschel Science Center
(HSC) and Herschel Instrument Control Centers (ICCs) to provide the compl ete software system for
the Herschel Observatory mission. The intention isto provide acommon system that is able to handle
test data, observation planning, mission planning and instrument data from observations within one
common development. An important element of this common development is Data Processing (DP).

DP handles computed, stored or simulated data and has access to much of the software developed for
other purposes within the HCSS (e.g., Quick Look Analysis, which runs on real-time data or replayed
data streams from a database).

Branches of the HCSS have also been developed for handling Herschel instrument-specific tasks.
So software packages for HIFI, PACS and SPIRE also reside within the HCSS framework and are
available within DP.

Since the Herschel DP uses Java and Jython programming, it is very flexible and Java classes can be
imported into a session. However, the basic DP system is already a fully-fledged standalone system
being devel oped to deal with datafrom the Herschel spacecraft, so that users should not need to import
additional Java modules, unless stated otherwise.

Thismanua isintended for the more advanced user who isinterested in devel oping scripts and tools
within the DP system. It places an emphasis on command-line interactions which can be put together
to make flexible scriptsfor specific user tasks. It should be noted that such command-lines often mimic
the capabilities of HIPE tools -- which are displayed in the console view of HIPE when being used
interactively. This allows for copying and editting of interactive operations into user scripts such as
is described in this manual.

2. Availability of DP and Operating Systems

DPis available free of charge as part of the HCSS and can be downloaded for use on networked or
individual desktop/laptop machines. Current operating systems supported by DP include

* Solaris2.8+

* Linux (Red Hat 8.0+, SUSE 9.1+ and L SB 1.3 compliant distributions)

* Mac OS X

» Windows (2000, XP)

* Notethat WindowsVistaisNOT currently supported and aninstaller isnot provided for thissystem.
In order to allow full use of the system, including download, the following browsers should be used.
* |[E6+,

* Netscape 7+,

* Mozilla(Firefox) 1.5+,

o Safari (Mac)

For download and installation instructions see Chapter 1.

The Herschel Common Science
System and Data Processing (DP)

Note

@ Being DP a multiplatform software, screenshots in this manua come from different
operating systems. Do not worry if the look and feel you get on your system is different
from what you see in this manual; while things like window decorations may vary, al the
relevant features are system independent.

3. Related Documentation

The current document is intended to complement the "cookbook™ approach to using the HIPE user
interface by users -- incorporated in the "HowTao's Manual." The current document is intended for the
more advanced user who intends to do more involved scripting as compared to the cookbook (often
GUI-based) interactions described in the "HowTo's manual ."

Currently availableisaUser's Reference Manual that contains acommand dictionary for all available
DP tasks.

4. Versioning

DP is gtill very much a system under development. This manual will be updated with the regular
user release updates of the system. Each new version will report the HCSS version it is associated
with. Every care has been put into ensuring that the text and example code are consistent with the
corresponding HCSS User Release; however, no guarantee can be given on compatibility with future
releases or developers' builds.

This version of the User's Manual is associated with User Release 1.1 of the HCSS.

5. What's New and Previous Versions of DP
User's Manual

Thefollowing was changed for version 1.1.0:

» Added section on plot resizing to Plot chapter.

» Removed reference to old and new style from Task chapter.
» Added section on array ordering to Chapter 4.

* Integrated new documentation on OverPlotter.

» Added instructions on unzipping FITSfiles.

» Expanded section on package imports.

» Removed references to SimplePool.

v0.26 contains a substantial update to chapter 7 on the use of image displays in DP plus some minor
updates to the plotting chapter (chapter 6), for working with 0.6.7 of the Herschel DP system.

Example scripts for v0.25 using the HCSS user release version 0.6.6.8.
» Thefollowing was changed for v0.25

» Chapter 1: Fixed minor typo

» Chapter 2: Changing working directory explained.

» Chapter 6: Added note on Auto-variable update to plots.

The Herschel Common Science
System and Data Processing (DP)

Chapter 7: Section added on display of SimpleCube 3-d images.
Chapter 11: Time conversion example clarified.

Chapter 12: HsaReadPool information updated.

Example scripts for v0.24 were tested using build 1776 of the HCSS, equivalent to HCSS user release
version 0.6.5.

Thefollowing was changed for v0.24

Subtitle: Updated to indicate hierarchical view of UM more describibg scripting possibilities.
Preface: Updated preface to accentuate use of Basic User's Manual

Chapter 1: Installation instructions updated to use installer, plus system recommendationsincluded.

Chapter 2: Complete upgrade to include full description of Classic(JIDE) perspective for HIPE and
updates within JDE. Background processing corrected/updated for both HIPE and JIDE. Added
more prominently tips on best performance methods (especially with respect to loops).

Chapter 5: Tips on speed improvements updated.
Chapter 7: Updates with respect to Display and WCS API changes.

Chapter 12: HsaReadPool added to pools available.

Example scripts for v0.23 were tested using build 1708 of the HCSS, equivalent to HCSS user release
version 0.6.4.

Thefollowing was changed for v0.23

Preface: Updated preface to contain information on supported platforms and browsers plus updated
section on relted documents.

Chapter 1: Installation instructions updated to useinstaller, plus system recommendationsincluded.
Chapter 2: Added information on the use of "jylauncher.”

Chapter 5: Updates to spectral arithmetic and spectral fitting added.

Chapter 5, 6, 7 and 8: Updates to examples due to changesin API.

Chapter 7: Updates to Display incorporated

Chapter 12: Complete revamp of PAL section of the chapter. Added information onimporting FITS
and PNG filesinto pools.

Example scriptsfor v0.22 were tested using build 1602 of the HCSS, equivalent to HCSS user release
version 0.6.3.

Thefollowing was changed for v0.22

Chapter 4: Added examples of setting dates in a Product; Added information on Spectrumld,
Spectrum2d, Simplelmage and SimpleCube datasets and the application of WCSs,; Extended
information on the use of Units.

Chapter 6: PlotXY updatesw.r.t. updated API.

All: Updated all chapters to new documentation framework.

Example scriptsfor v0.21 were tested using build 1547 of the HCSS, equivalent to HCSS user release
version 0.6.2.

Xi

The Herschel Common Science
System and Data Processing (DP)

Thefollowing was changed for v0.21
Chapter 2: JDE "Run" menu updates.

Chapter 5: Added information on input of own non-linear fitter function with examples; SIGMA
removed.

Chapter 6: Updated information and examples to match new PlotXY API.

Chapter 7: Complete document update of al Image functions with updated Image API.

Example scriptsfor v0.20 were tested using build 1480 of the HCSS, equivalent to HCSS user release
version 0.6.1.

Thefollowing was changed for v0.20
Chapter 2: JDE interactive debugger (pause()); JIDE "File" menu updates.
Chapter 3: Warning on maximum Jython script size inserted.

Chapter 4. Updated TablePlotter documentation included. Mandatory Product metadata updated
and date creation for Productsillustrated.

Chapter 5: Spectrum arithmetic section added. Spectrum fitter section added with example.
Chapter 7: Removed deprecated Histogram() task.

Chapter 12: Simplified query included and example time query. Removed Pool Manager section.
Added short section indicating how to turn off product versioning in pools.

Example scriptsfor v0.19 were tested using build 1403 of the HCSS, equivalent to HCSS user release
version 0.6.0.

Thefollowing was changed for v0.19
All chapters: Checks on code examples.

Chapter 4: DatasetI nspector updatesincluded. TableDataset section updated to include TableM odel
method of obtaining/changing table values. A section was added about units and how to handle
them based on the herschel .ia.share.unit package.

Chapter 6: Plot introduction changed, no reference to old plot package and removal of composite
plot discussions. All plot properties (plot, layer and axis) descriptions updated and extended.

Chapter 7: All nanoTITAN library discussions removed and examples now use share.unit instead.

Chapter 10: RegexParser described in ASCI| table input section plus example given.

Example scriptsfor v0.18 were tested using build 1349 of the HCSS, equivalent to HCSS user release
version 0.5.2.

Thefollowing was changed for v0.18

All chapters: Checks on code examples.

Chapter 3: More information on type conversion.

Chapter 4: Convenience setter methods added to section 4.10.

Chapter 5: Interpolating discrete data -- FitterFunction -- section added to the end of the chapter.

Chapter 6: Removed deprecations (e.g. setText) and indicated TEX-like method for getting
subscripts and superscripts in labels.

Xii

The Herschel Common Science
System and Data Processing (DP)

» Chapter 12: Local store section moved from 12.2.4t0 12.2.1.9. Added information on Pool Daemon
in sections 12.2.1.9 and in association with PoolManagers in section 12.2.2. Added section on
Storage Product Versioning.

Example scriptsfor v0.17 were tested using build 1278 of the HCSS, equivalent to HCSS user release
version 0.5.1.

» Thefollowing major changes were madein v0.17

» Chapter 5: Further feedback on example code for fitters. Added sub-section on numerical
integration capabilities within DP.

» Chapter 12: Updates and fixes to parts of the PAL section, including local store usage. Updated
database setup info for the user (requires Versant client software).

» Appendix A: Updated the data analysis tutorial.

Example scriptsfor v0.16 were tested using build 1225 of the HCSS, equivalent to HCSS user release
version 0.5.0.

e Thefollowing was changed for v0.16

» Chapter 2: Extensive updates on the new JIDE console capabilites including find/replace and Goto
line edit capabilities.

» Chapter 5: Extended documentation of examples in the chapter. Updated one example script.
» Chapter 6: Documented Axi s class quirks and information on default property storage.

» Chapter 7: Updated information on Histogram plots -- new plot types available in the Image
package. Also gave more examples on getting image information, e.g. sky coordinates.

» Chapter 7: Included image analysis task information -- aperture photometry, area histograms, 2D
profiles and contouring.

» Chapter 12: Updates and fixes to parts of the PAL section.

Example scriptsfor v0.15 were tested using build 1176 of the HCSS, equivalent to HCSS user release
version 0.4.3.

» Thefollowing was changed for v0.15

* All chapters. Comprehensive checks on code examples.

e Chapter 6: Documented several new methods of the Layer XY and Axi s classes.
e Chapter 12: Updates and fixes to the PAL section.

Example scriptsfor v0.14 were tested using build 1106 of the HCSS, equivalent to HCSS user release
version 0.4.1.

» Thefollowing was changed for v0.14
» Chapter 2: Documented the new Conpi | eAndRun function in JIDE.

» Chapter 3: Modified Section 3.21 on Jython and DP quirks. Now the shorter descriptions are
grouped in asingle section, Miscellaneous quirks.

» Chapter 4: Added documentation on how to access the contents of Productsin Section 4.13. Added
a section on the Dataset Inspector and the TablePlotter manual (Section 4.14).

 Chapter 5: Added documentation onlogical operatorsin Section 5.7. Referenceto this section added
to thelist of quirks.

xiii

The Herschel Common Science
System and Data Processing (DP)

Chapter 7: Fixed error in ??? on how to start the Annotation Toolbox.

Chapter 8: Added a warning on the old and new interaction styles. Added features of the new
interaction style in Section 8.2.2 Added Section 8.2.3.5 on how to get help on Tasks.

Chapter 12: Added ?7?? on the Pool and Storage Managers.

Appendix D: Naming conventions document added as new appendix.

Example scripts for v0.13 were tested using build 1023 of the HCSS, equivalent to HCSS user release
version 0.3.6.

Thefollowing was changed for v0.13

Chapter 2: Added short section on blank line treatment in the debugger window (section 2.8.1,
SPR886). Added short section on working directories and accessing files in DP (section 2.6,
SPR1721). Short section added on running scripts in the background (section 2.10).

Chapter 3: Added "clear" method on how to clear some or al variablesfrom a session (section 3.3).
Wrote new section: "basic programming statements" which includes subsections on for, while, if/
dif/else, continue, break (section 3.10). Added information on formatting of printed output (section
3.11). Added material on defining user functions (section 3.12). Updated and enlarged the DP
"quirks' section at the end of the chapter.

Chapter 5: Implemented SPR 2304 -- removal of INDEX from numerics.

Chapter 6: Added sectionson i) creation of composite plots with new PlotXY API (section 6.9), ii)
placing error bars on plots (section 6.5), iii) mouse interactions with plotted information (section
6.10).

Chapter 8: Added section on keyword and positional parameter settings when calling tasks (section
8.2.3.6). Corrected one of the task examples.

Chapter 12: Included documentation on the use of local storein the Product Access Layer (section
12.2.3). Updated ProductBrowser section to fit changed API (section 12.2.2).

Example scripts for v0.12 were tested using build 994 of the HCSS.

Thefollowing was changed for v0.12

Chapter 2: Removed warning about j i de_new, updateson Help access, other minor updates about
JDE

Chapter 3: Fixed typos and US spelling, added warning on loading of Jython libraries, new sections
on interactivity and Jython/DP quirks

Chapter 5: Implemented SPR 2183, added sections on random numbers generation and 2D fitting,
updated old plot examples, updated section on matrix manipulation

Chapter 6: Updated notice on new and old plot
Chapter 7: Implemented SPR 2103

Chapter 8: Updates on Task interaction
Chapter 10: Reorganised chapter structure

Chapter 12: Added section on Product Browser, updated section on database access, reorganised
chapter structure

Appendix A: Removed notice on new plot

Example scripts for v0.11 were tested using build 898 of the HCSS.

Xiv

The Herschel Common Science
System and Data Processing (DP)

Thefollowing was changed for v0.11

Chapter 12: Minor textual corrections to the Product Access Layer Description

Example scripts for v0.10 were tested using build 898 of the HCSS.

Thefollowing was changed for v0.10
Preface: added note on different look & feelsin screenshots

Chapter 2: added notes on usage of j i de_new instead of j i de and on usage of debugging
window. More detailed explanation of save and exit options.

Chapter 5: added note on the proper usage of selection and on the difference between max, MAX
and other similar Jython/Numeric function pairs

Chapter 6: Updated with new plot interface.

Chapter 8: Fixed broken example layout.

Added Appendix C with list of Jython operators.

Chapter 12: Added a description of the Product Access Layer

Updates to plotting codein all the other chapters.

Most example scriptsin v0.9.1 were "randomly" tested (i.e. most but not all) using build 848 of the
HCSS. In particularly, there was no systematic attempt to find out which "from" imports are necessary
or redundant with startup initialization.

Thefollowing was changed for v0.9.1

Chapter 5: Updateto UM on "and" and "&" closing Al DP-CCB-14/1.
Chapter 6: Warning on use of the "old" plotting package.

Chapter 10: Added xref "FITS-start” as section I1D (reference from tutorial).

Appendix A and B: Included Russ Shipman's tutorial on data processing as Appendix A; moved
existing Appendix A to "B" position

Example scripts for v0.9 were tested using build 800 of the HCSS.

Thefollowing was changed for v0.9

Chapter 1: Updated installation instructions and reference platform information.

Chapter 3: Expanded textual explanations and a number of examples. Added if/elif/else example.
Chapters 4 and 5: Removed redundancy between two chapters.

Chapters 5: Improved fitter usage explanations.

Chapter 6 and 7: Fixed typos, clarified DP command usage for PlotXY and Image.

Chapter 8: Tidied up Task examples to run under build.

Chapter 10: Expanded FITS conversion explanation.

Chapter 11: Expanded time conversion discussion. Included use of java.text.SimpleDateFormat.

Chapter 12: Small code correctionsin the examples.

Scripts for v0.8 were tested using build 766 of the HCSS.

XV

The Herschel Common Science
System and Data Processing (DP)

Thefollowing was changed for v0.8
Chapter 1. Updated installation instructions.

Chapter 5: Reduced use of lambda functions (replaced with "where"). Amplified information on
how to do non-linear model fitting. Extended examples on non-linear model fitting.

Chapter 6: Simplified introduction. Improved presentation of different plot initiation possibilities.
Introduced nT.quantity library and provided URL link to nanoTITAN.com who supply this third-
party library in section discussing Unitsin PlotXY.

Chapter 7: Provided nT.quantity link.

Chapter 8: Tidied up examplesto run under build.
Chapter 10: Minor changes to examples.

Chapter 12: Small code corrections in the examples.

All Chapters: minor typos and inconsistencies fixed, code examples adapted to newer build.

Scripts were tested using build 728 of the HCSS.

Thefollowing was changed for v0.7
Chapter 1. Updated JRE version.

Chapter 2: Double, not single click needed in JDE to get info about an error. Fixed. Also
documented the Syst em exi t (1) command.

Chapter 3: Added introduction on Object Oriented Programming with brief explanation of its
advantages. Fixed links to Jython and Python homepages. Fixed a couple of bugsin the Basket
class. Added the Useful Java bits section with a brief explanation on frequently used Java
components.

Chapter 4: Fixed confusion between array data objects and array datasets.
Chapter 7: Link to example JPG file moved to the beginning of the chapter.

Chapter 8: Brand new chapter on the Task framework. Therefore Chapters 8 to 11 in version 0.6
are now Chapters 9to 12.

Chapter 10: Changed section on ASCI| table import/export. Now atableisfirst exported and then
imported, so that the ASCI| file already has the correct format.

All Chapters: minor typos and inconsistencies fixed, code examples adapted to newer build.
Thefollowing was changed for v0.6

Preface: Updated "What's New..." section. Added Editorial Board membership list.

Chapter 1: Updated known installation bugs section. CLASSPATH length no longer an issue.
Chapter 2: Revised section 2.8 on errors and exceptions.

Chapter 3: Added a section on naming conventions (short/long names and upper/lower case) in DP.

Chapter 5: Updated numerics section to include more information on linear and non-linear model
fitting. Updated example to provide polynomia model fit example. Moved al "Numeric User
Guide" information into User Manual (fitters, models, matrix manipulations, integral transforms).

In all sections -- updated/removed "import" commands used in examples (as appropriate). Also
updated all example scripts for running with build 645 of the HCSS.

Xvi

The Herschel Common Science
System and Data Processing (DP)

Thefollowing was changed for v0.5

Preface: Updated contributors and "What's New..." section

Chapter 1: Added full link namesto text in section 1.4

Updated property initialization section 1.5

Chapter 2: Added more information on on-line help within JIDE.
Updated text and figures dealing with dataset and session inspectors.

Chapter 3: Updated to include more on basic JDE usage as well as components on numbers/
conversions/booleans and string handling

Added explanation of lists/tuples and the differences with numeric arrays (in chapter 5)
Chapter 4: Added sub-section on row-wise appending of TableDatasets

Short explanation Jython/Java shortcuts when discussing meta data

Chapter 5: Extended section 5.4 on filtering

Added section on array dlicing

Added section on multi-dimensional arrays

Added section on complex arrays

Updated scripts to new numeric scheme -- notably the use of fitting routines

Chapter 6;: Removed all deprecated plot mode components discussed and in examples (and it
chapters which used plots for illustration).

Updated figures of PlotXY properties windows (plot, layers and axes)
Added section on Conposi t ePl ot -- two new figures added
Chapter 7: Updated text on image import

Chapter 8: Updated 10 (including FITS) description

Updated discussion of numerics

Added descriptions of numeric toolbox sub-packages

Small update to dataflow description (event as well as thread based dataflows)
Chapter 9: Renamed to include DP variable IO

Added sectiononsave andr est or e

Updated to include new Fi t sAr chi ve capability

Chapter 11: Updated examples to remove plot deprecations
Thefollowing was changed for v0.4.1

The major difference between this and the previous version is that the source for this document
is no longer in Windows Word format, but in DocBook XML format. This greatly simplifies the
maintenance of the document e.g. now several writers can work on selected chapters concurrently.
In addition it isvery easy to generate different formats from thisDocBook XML format i.e. XHTML
for the Herschel DP Web page, JavaHel p for the JIDE on-line help, PDF for printing a paper
version of thismanual.

XVii

The Herschel Common Science
System and Data Processing (DP)

The main content of the User Manual is currently left untouched. There are a few minor changes
thought:

» The first chapter is turned into a Preface which means the number of all other chapters is
decreased by one.

« The Appendix B isleft out sinceit is merely a duplication of the Javadoc for her schel . i a.

e At severa places, thought not al, the acronym 'lA’ is replaced by 'DP' and the word ‘jconsol€
has been replaced by 'JIDE'.

Thefollowing wasadded in v0.4

* Introduction: Added full list of contributors.

» Chapter 1: Changed chapter 1 to allow for description of updates. Added list of contributors.
e Chapter 2: Updated installation information. Provided pointer to HCSS installation.

» Chapter 3: Section 3.2.5 was added providing short descriptions on new components added to
the Jconsole environment (i.e., session and dataset inspectors).

« Figure 3-1 was updated to the new view of Jconsole and Figures 3-2, 3-3 and 3-4 were added
in section 3.2.5.

» Added section 3.7 on error and exception handling in lA.

e Chapter 4: Augmented discussion on classes and methods in section 4.7.
 Clarified last paragraph in section 4.9

» Added section on script writing in A (section 4.8).

» Chapter 5: Changed required imports section.

* Added components on complex and multi-dimensional datasets.

e Basic numeric arithmetic moved into chapter 6.

» Chapter 6: Changed required imports section.

» Added basic numeric arithmetic from chapter 5.

* Added two figuresillustrating fitting capabilities.

e Chapter 7: Updated introduction to reflect new setup of the HCSS.

« Extended PlotXY introduction in section 7.2. First example split into two.

e Added sections 7.2.1.1 and 7.2.1.2 on handling arrays and datasetsin PlotXY.
* Updated all examplesto present system.

¢ Added section 7.4.2.1 and 7.2.2.2 to better illustrate command axes adjustment.
e Chapter 8: Updated required imports section.

« Included new subsections on the use of each of the Image operations.

e Updated use of numeric2d arrays.

» Examples rewritten and extended to include new information on Image and Image operations.

XViii

The Herschel Common Science
System and Data Processing (DP)

Chapter 9: Updated import information with regard to | A startup.

Added subsections on 'inspector’ and 'help' packages.

Chapter 10: Updated information regarding required package imports.

Updated introduction to highlight current FITS usage.

Examples updated.

Chapter 11 (NEW): Chapter added on time usage within the HCSS and time conversions.
Thisis based on the original user HowTo document, heavily revised.

Chapter 12 (previously chapter 11): Revised package imports needed for using databases and
examples. Reworded and typo corrected sections 1 to 6.

Significantly revised (made clearer?) sections on getting Dataframes and Housekeeping (HK)
datainto an |A session.

Appendix B: Updated listing of classes (including links) availablein A packages.

» Thefollowing new sections were added in v0.3.1

Section 2.4.1 on updating Versant databases and schema evolution
Section 2.6.3 on known installation problems.

Updates were included in the following places

Section 2.5.2 Windows installation instructions updated.

Chapter 4 typo edits

* V0.3.1, 22 December 2004 (A.Marston)

* V0.3, 22 July 2004 (A. Marston & H. Siddiqui)

6. List of Contributors

The following people have contributed to the creation of this manual:

Philip Appleton, Jorgo Bakker, Helen Bright, Jon Brumfitt, Nicola de Candussio, Diego Cesarsky,
Alessandra Contursi, Steve Guest, Rik Huygen, Juliet Kemp, Sarah Leeks, Tanya Lim, Andrea
Lorenzani, Anthony Marston, Wim de Meester, Craig Porrett, Sarah Regibo, Davide Rizzo, Peter
Roelfsema, Bernhard Schulz, Russ Shipman, Hassan Siddiqui, Ivan Vatchanov, Roland Vavrek,
Michael Wetzstein, Ekkehard Wieprecht, Peer Zaal, Rob Zondag.

The following people comprised the Editorial Board for this edition of the User's Manual.

Katrina Exter, Anthony Marston, Carolyn McCoey, Brian O'Halloran, Chris Pearson, Davide Rizzo,
Markos Trichas, Russ Shipman, Ivan Valtchanov,

Xix

Chapter 1. HCSS Downloading and
Installation

Important

A In case of any problems during installation please contact the Herschel Helpdesk viathe
Herchel Science Centre website.

1.1. Introduction

In this chapter we explain how to download and install the Herschel Common Science System (HCSS)
software. For local area networks thisislikely to be done by a system manager. The system can then
be run by anyone on the network. However, personal versions (e.g., for laptops) can also be set up
by a user.

If you are not worried about using V ersant databases (only typically for Herschel calibration scientists)
for now then the Section 1.5 section is probably all you need to follow at present.

This chapter describes how to set up a basic user (or user-as-developer) HCSS environment. A key
component of the HCSS is its interaction with local and remote databases storing test data and
(later) observations. Upgrading your installation to alow for database interactions is discussed in
Chapter 12 of thismanual. Chapters 2 and 3introduce the user to DP/Jython and do not require database
interactions.

1.2. Platform

The reference platform used for Unit and System testing the HCSS software, prior to release, is now
SuSE 9.1 (previously used RedHat 8.0) running on an Intel processor.

Note that thisOS versionisLSB (Linux Standard Base) v1.3 so theoretically one should be safe using
another Linux distribution providing it has been certified LSB v1.3, see: LSB certified products for
more information.

1.3. Minimum System Requirements

Software can be run on a server or individual workstation running Windows XP, Linux or Solaris.
The minimum recommended system is Windows/Linux 32-bit w/1GB RAM or 64-bit W/Lin/Mac
w/1GB RAM; Browsers for use with the systemm (including download) IE 6+ , Netscape 7+, Mozilla
(Firefox) 1.5+, Safari (Mac).

1.4. Pre-Installation Requirements

The following third-party software is required to be installed prior to run (or develop software for)
the HCSS. In order to run all the facilities of the HCSS the necessary components are completely
available with the HCSS installer.

 In many cases users will not require any additional software in order to install and run the HCSS.

* ALL USERS You will need access to a Java JRE (Java Runtime Environment), which can be
downloaded from the SUN web pages. A Javaruntime environment is usually available as standard
on most modern computer systems. The reference platform build is currently version 1.5.0_06. Y ou
can check the Java version recommended in the Reference Platform at ftp://ftp.rssd.esa.int/pub/
HERSCHEL /csdt/rel eases/doc/refPlatformVersion . To see which Javaversion isinstalled on your
machine type the following in aterminal window:

http://www.opengroup.org/lsb/cert/cert_prodlist.tpl
http://java.sun.com/j2se
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion

HCSS Downloading and Installation

>> java -version

» For database usage: Versant Database System (see notes on Versant in the full installation
instructions at ftp://ftp.rssd.esa.int/pub/HERSCHEL /csdt/rel eases/doc/Install.html) will need to be
installed. Thiswill allow setting up databases and accessing databases. Not needed if you are not
using HCSSV ersant databases. The setup and use of databaseswithin DPisdescribedin Chapter 12.

» For users of TestControl: If you are using HCSS in a Herschel instrument testlab environment
for ILT/AIV tests then you will aso need TclBlend. This can be downloaded from: http://
sourceforge.net/projectgtcljava

 For users who want to become involved in the development of HCSS, the following should be
installed. Note that development of DP/Jython scripts can be done with the HCSS Users software
needs noted above.

e JavaJDK (Java Development Kit), which can be downloaded from: http://java.sun.com/j2se
« Versant Database System (see notes on Versant below)

e JavaCC, which can be downloaded from: https://javacc.dev.java.net/servietsy
ProjectDocumentL.ist.

e CVS (client/server version), which can be downloaded from: http://ccvs.cvshome.org/serviets/
ProjectDownloadList

« TclBlend (only needed if you are devel oping the TestControl package), which can be downl oaded
from: http://sourceforge.net/projects/tcljava.

» Together (optional), can be downloaded from: www.borland.com/together.

Note

@ the exact version numbers of the applications listed above, can be obtained from: ftp:/
ftp.rssd.esaint/pub/HERSCHEL /csdt/rel eases/doc/ref PlatformVersion

Warning
o Please note that you may/will need system administrator support and/or privilegesin order
to install one or more of the component(s) listed above.

All other third-party libraries required (see the HCSS reference platform specification for a complete
list), can be redistributed and are included with the HCSS installer.

For those who are considering HCSS development, the full third-party packages may be required
(includingits Javadoc, sample code, etc.). A compressed TAR-file containing theselibraries (matching
the latest reference platform set) can be downloaded from the HCSS ftp area: ftp://ftp.rssd.esaint/
pub/HERSCHEL /csdt/refPlatformDownloads. Alternatively you can download al libraries from the
supplier site (most of the URLs can be found in the HCSS reference platform specification, ftp://
ftp.rssd.esa.int/pub/HERSCHEL /csdt/rel eases/doc/ref PlatformVersion).

You must now configure your environment to include the above listed packages in your PATH and
CLASSPATH environment variables, following the installation instructions provided by the suppliers.
In addition, developers should include the JavaCC library 'j avacc. j ar' in their CLASSPATH,
because of the way that the HCSS 'jake’ tool invokes JavaCC.

1.5. User Installation Procedure

Installation of the HCSS/DP system isrelatively straightforward and has recently been simplified for
both UNIX and Windows users. It can installed with a software installer (see Herschel Science Centre

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html
http://sourceforge.net/projects/tcljava
http://sourceforge.net/projects/tcljava
http://java.sun.com/j2se
https://javacc.dev.java.net/servlets/ProjectDocumentList
https://javacc.dev.java.net/servlets/ProjectDocumentList
http://ccvs.cvshome.org/servlets/ProjectDownloadList
http://ccvs.cvshome.org/servlets/ProjectDownloadList
http://sourceforge.net/projects/tcljava
http://www.togethersoft.com/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/refPlatformDownloads
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/refPlatformDownloads
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/refPlatformVersion

HCSS Downloading and Installation

website, or HCSS installer script). Software can be run on a server or individual workstation running
Windows XP, Linux or Solaris. The minimum recommended system is Windows/Linux 32-bit w/1GB
RAM or 64-bit W/Lin/Mac w/1GB RAM; Browsers for use with the system (including download) |E
6+, Netscape 7+, Mozilla (Firefox) 1.5+, Safari (Mac). The system is Java based, and indeed general
Java scripts can be run on the system. Installation instructions are provided at the bottom of the FTP
page.

Once the software is installed, HIPE or JIDE can be started by several means. Under Windows,
Herschel software can be started under the "Start" menu after a standard installation. Alternatively,
HIPE or JIDE can be started from a command line, e.g.,

$ jide
or

$ hi pe

If theinstallation is done by the installer then the user at the end of the installation receives a message
informing her/him where the applications reside on their computer and the links to the applications.

Themaximum javasizefor an application can be set viaan optioninthe expert panel of theinstaller. the
downside of thisimplementation isthat it can only be set once. A more flexible solution is envisaged
in the future.

Once downloaded, some environmental propertiesneed to be set up. Thisisnow handled automatically
by the DP installer.

For an up-to-date list of installation problems please see

ftp://ftp.rssd.esa.int/pub/HERSCHEL /csdt/rel eases/doc/I nstal l.html#K nownl nstal | ationProblems

1.6. DP Property Initialisation

Standard user properties are set up when the DP system isinstalled. However, the HCSS environment
that has been set up can be configured to user specifications. This can, for example, change the
database being used for interactions or change the memory allocation to JIDE and HIPE (the prime
interfacesfor running the HCSS and DP). For those new to the HCSS it is not necessary to adjust these
properties unless database interactions areto beimmediately attempted. L ater, with more sophisticated
interactions, users will want to make changes to their properties. Storage of user properties is in
the .hcss/myconfig file. Changes can be made to properties while working within the HCSS - no restart
isrequired for the updated properties to be made available. This can be useful when, for example, you
are changing the database with which you wish to work.

Properties can be set in the SHOVE/ . hcss/ myconf i g (under the Windows systems properties are
held inthefile hcss. props within the user's home directory) file with the use of the HCSS tool
"Property Generator". Use the following command to initiate the tool (also seethe property generator
user manual).

pr opgen

For the most part, system default values should be adequate for most users. A list
of these properties is avalable at ftp://ftp.rssd.esa.int/pub/HERSCHEL /csdt/rel eases/doc/
Release.html#A_List_of user properties in_HCSS. Property setting allowing the use of databasesis
discussed in Chapter 12

After theinitia download, the Property Generator tool is useful to run every time you download and
install anew build, asit will inform you of added propertiesthat are not defined in your property files.

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/installer/hcss-new-current/install.htm
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Install.html#KnownInstallationProblems
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/propertygenerator/Propertygenerator_user_guide.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/propertygenerator/Propertygenerator_user_guide.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Release.html#A_List_of_user_properties_in_HCSS
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/Release.html#A_List_of_user_properties_in_HCSS

Chapter 2. Using JIDE or the JIDE
View in HIPE

2.1. Introduction

A DP session involving scripting istypically initiated within a console window of HIPE or JIDE. This
window includes help and history for the session. Individual commands can be input to the console
using DP/Jython commanding, which is discussed later in this chapter. Alternately, the console and
associated editor window allow for the construction and running of complete algorithms based on
the Jython language or even sections/individual lines of algorithms. Since no separate compilation is
required, individual lines or sections of algorithms can be checked for validity very quickly. DP scripts
that use GUI s can also be started from within the HIPE/JIDE view. Example HIPE/JIDE input codeis
provided throughout the text in shaded boxes. Comments on the code and, frequently, example output
are provided within the boxes on lines preceded by the "#" mark.

In this chapter we discuss how to start working in the DP console view of HIPE or JDE. We provide
some simple DP interactions to illustrate its use. We discuss some more detailed DP capabilities in
Chapter 3.

2.2. DP Scripting Using the Editor View of
HIPE

HIPE has a full set of abilities that is described at the beginning of the "DP HowTo's" manual. A
similar perspective can be obtained by selecting the JIDE perspective from HIPE (see "DP How Tao's
Manual" introduction to HIPE). In describing the use of the DP system for more advanced, scripting
purposes with HIPE we will concentrate on the Classic(JIDE) perspective available within HIPE.

The user can start the HIPE console can be initiated from the computer " Start" menu after installation
using the HCSS installer.

Alternately, it can be started at a command window prompt.

$ hipe

Note
@ For Windows users, open a command window and type in the same thing, or execute
hi pe. bat fromthebi n directory of your HCSS build.

Starting HIPE does the following:

* Loads acustomised DP environment (imports a set of libraries and defines a set of variables).
» Keepsahistory of successful DP statements.

» Implements a set of basic editing functions (copy, paste, find and replace).

On startup, HIPE displays a Welcome window. From the initial HIPE Welcome window the user
should select the "Classic(J DE)" icon at top right of the screen ().

Alternatively, we can obtain the "Classic(JIDE)" perspective for doing more advanced scripting work
by going to the "Show Perspectives" area of the "Window" pull-down menu at the top of the screen
(seeFigure 2.1).

Figure 2.1. Selecting the Classic(JI DE) per spectivein HIPE.

Using JIDE or the JIDE View in HIPE

This provides a perspective of three windows with an Editor view to the top of the screen, a Console
view towards the bottom left and a History view towards the bottom right (see Figure 2.2).

Figure 2.2. The Classic(JI DE) perspectivein HIPE.

The bar at the bottom of the perspective shows the amount of allocated memory used by the session.
As memory usage increases the bar will turn from green to yellow and then to red. Finally, note the
indicator in the right corner which will show arotating set of emphasized dots during periods when
aDP command is being performed.

An interactive Console view is given to bottom left of the view with a customizable "I A>>" prompt.
Individual DP commands can be run here. Click in the bottom left window with your mouse, then
typein

print 5 + 3

Followed by Enter. The answer should be provided on the next line, prior to receiving the "l A>>"
prompt back again:

IA>> print 5 + 3
8
| A>>

Note

@ In a plain Python or Jython console it would be enough to type "5 + 3" followed by
the Enter key to get the result. In DP we have to use the pr i nt keyword, otherwise we
would get no output.

The bottom right of the perspective contains a History window that lists the commands (including
those inside algorithms) used in the current session. Any command highlighted by a red cross next
to it caused an error. Some information on the error that occurred can be obtained using the mouse
to click on the command highlighted. A response with the error is shown in the traceback column of
the History window. Try the following

sign 5

After hitting Enter the user will see the history window has a command highlighted by a red cross
next to it. Click on this using the left button of the mouse. This then expands the information on the
error incurred.

The top pane of the perspective is available for the user to develop his’her own scripting agorithm
using the available DP commands.

In order to start scripting in this pane, go to the "File" menu and pull down to "New" ->"Jython script”.
Thiswill produce awhite screen that allowsinput of DP commands that can be formulated into scripts
(see Figure 2.3).

Figure 2.3. The Classic(JIDE) with script screen made available.

Click in this window, type in asimilar print command to the above example. Hitting return will not
run this simple script. To run the one ling, click in the grey margin to the left of the line you have
typed. An arrow should appear beside the line. Now go to the line of icons at top left of the HIPE
screen and click onthe singlearrow (). Thiswill run your oneline algorithm and the result will appear
in the lower left command line window (again). If you want to "print" astring it needs to be in quotes
(e.g., print "Hello World").

Note
@ The top pane is not meant to be a fully-fledged text editor, nor a sophisticated IDE
(Integrated Development Environment). It offers basic editing and debugging capabilities

Using JIDE or the JIDE View in HIPE

2.2.1.

2.2.2.

for developing simple scripts, but larger projects should be developed in external tools
and then loaded into the window for execution.

Now that we have a brief introduction to the three windows of HIPE Classic(JIDE) perspective we
will consider each of the menu and icon itemsin turn.

File Menu

Only one of the File menu items has an associated icon (the "Save" capability).

Use New creates a new window for algorithm development ("Jython script™) or text ("Text file") in
the top "Editor" view of HIPE (note that a new "Tool" window feature is yet to be devel oped).

Open File dlows afile to be opened in the Editor that is chosen from anywhere within the system
(ASCII - DP script files are typically stored with the suffix .py, in ASCII format). If the suffix is.py
the window is always a Jython script window -- otherwise a text window.

Close closes the current window shown in the Editor view. Close All
closes all the windows showing in the Editor view.

Save and Save As for saving the current algorithm shown in the top window. The "Save" capability
isalso available using theicon shown in the line of iconsto top left of the HIPE window.

Revert Reverts back to the original version of the file currently being editted.

Refresh this IS NOT FOR USE WITH THE EDITOR. This capability is for the Navigator view
available in HIPE. The Navigator view automatically updates every 5 seconds so that new/changed
files in the computer system (e.g., copied files) are made available in the Navigator view of HIPE.
Hitting F5 or "Refresh” does thisinstantaneoudly.

Rename this IS NOT FOR USE WITH THE EDITOR. This capability is for the Navigator view
availablein HIPE. It allowsthe renaming of ahighlighted file showing in the Navigator view of HIPE.

Print printstext of HIPE Editor session to a printer (various page types and setups) or postscript file.

Exit exits from the HIPE session. For any unsaved changes to any of the files showing in Editor
windows the user is given the opportunity to accept or reject changes before HIPE is closed down.

Edit Menu

Most of the Edit Menu functions (except Cut, Copy, Paste and Open) have an associated icon at the
top of the HIPE panel. The associated shortcut icons are shown next to the function namein the menu.
Each function also has an (standard) associated CTRL combination (except for Open and Open With).
See Figure 2.4.

Figure 2.4. The Classic(JI DE) with script screen made available.

Undo (CTRL-Z) and Redo (CTRL-Y) and alowsedits (cut/paste or deletion from the keyboard)
to be undone or redone.

Cut (CTRL-X), Copy (CTRL-C) and Paste (CTRL-V) These provide the usual cut, copy and paste
facilities, using the mouse to select and position text in the Editor window.

Open (enter key), Open With, and Delete (delete key) these are NOT FOR USE WITH THE
EDITOR. This capability is for the Navigator view available in HIPE. It alows the highlighted file
in the navigator view to be opened in the HIPE Editor view -- as Jython Script, text editor (default
for Open) or File Overview (gives size/type of fileinfo), or delete the highlighted selection from the
system.

Find/replace (CTRL-F) does the usual find and replace of text within the current window of the
HIPE Editor view.

Using JIDE or the JIDE View in HIPE

2.2.3.

2.2.4.

2.2.5.

GotoLine(CTRL-L) alowsthe user to go to aspecified line number.

Run Menu

The Run Menu items all have associated icons at the top of the HIPE window.

Stop (ALT-T) - stopsascript being executed. Click on this button or choose Stop from the pulldown
menu to stop the execution of a script before it reaches the end. Note that thisicon is greyed out when
there is no script in execution.

Run (ALT-U) -runsasinglelineor logical block of ascript. A selected set of lines can be highlighted
using the mouse and these can be executed by then clicking the Run button or selecting Run from the
menu. The lines are iterated to the console window and their status shown in the History window to
bottom right. While running, the red stop button isit.

Run all using pulldown or icon, this alows all DP commands in the current Editor window of HIPE
to be run in sequence. The lines are iterated to the console window. The stop button turns red while
running.

Exiting HIPE

To exit go to Exit under the File menu of HIPE. For any unsaved changes to any of the files showing
in Editor windows the user is given the opportunity to accept or reject changes before HIPE is closed
down.

Window and Help Menus

The "Window" menu allows access to HIPE perspectives (such as the Classic(JIDE) discussed here)
and views. There are a number of views available which are discussed more extensively in the "DP
HowTo's" document. By selecting one of the offered views an extra panel is added to your HIPE
perspective. For example, in Figure 2.5 the Navigator view showing the available directories and files
on your system is added in a panel to the right on the HIPE screen.

Figure 2.5. Adding the Navigator view to the Classic(JI DE) per spectivein HIPE.

The "Help" menu, in addition to providing access to Help inside of HIPE (together with Help search
facilites) also provides "About" information on HIPE and access back to the Welcome page that you
get on starting up HIPE.

2.3. DP Scripting Using JIDE

DP users who wish to do scripting may choose to work within DP JIDE separately from HIPE. After
installing the HCSS (see Chapter 1), the user can start the JIDE console can be initiated from the
"Start" menu after installation using the HCSS installer.

Alternately, it can be started at a command window prompt.

$ jide

Note
@ For Windows users, open a command window and type in the same thing, or execute
j i de. bat fromthebi n directory of your HCSS build.

Note that some feedback from the DP session is provided to the terminal window from which it
was started. This includes information on the settings used on JDE startup and information on
database access (basically feedback on where interactions occur with systems outside the immediate
DP session). The JIDE shell performs the following tasks:

Using JIDE or the JIDE View in HIPE

* Loads acustomised DP environment (imports a set of libraries and defines a set of variables).
» Keepsahistory of successful DP statements.

» Implements a set of basic editing functions (copy, paste, find and replace).

It isan extension of the standard Jython shell. Here, we provide some basic startup information.

If entering the JIDE command from atermina window, information on preloaded elementsin the DP
session appear in the terminal window. Startup from the " Start" menu goes directly to the following.
After any feedback, a separate three-paned console window should appear (see Figure 2.6). The bar at
the bottom of the window displaysthe amount of memory used by the session: in the case of Figure 2.6
we are using just three per cent of the available memory. As memory usage increases the bar will turn
from green to yellow and then to red. Finally, note the clock at the lower right corner.

Figure 2.6. The JIDE window set-up.

The JDE window has three components. An interactive command line/console window is given to
bottom left of the view with a customizable "I A>>" prompt. Individual DP commands can be run
here. Click in the bottom left window with your mouse, then typein

print 5 + 3

Followed by Enter. The answer should be provided on the next line, prior to receiving the "l A>>"
prompt back again:

IA>> print 5 + 3
8
| A>>

Note

@ In a plain Python or Jython console it would be enough to type "5 + 3" followed by
the Enter key to get the result. In JDE we have to use the pri nt keyword, otherwise
we would get no output.

The bottom right of the console contains a command history window that lists the commands
(including those inside algorithms) used in the current session. Any command highlighted by a red
Cross next to it caused an error. Some information on the error that occurred can be obtained using
the mouse to click on the command highlighted. A response with the error is shown in the command
line window to bottom left. Try the following

sign 5

After hitting Enter the user will see the history window has a command highlighted by a red cross
next to it. Click on this using the left button of the mouse. This then expands the information on the
error incurred.

The top pane of the console is available for the user to develop hissher own agorithm using the
available DP commands. Click in thiswindow, typein asimilar print command to the above example.
Hitting return will not run this simple script. To run the one line, click in the grey margin to the left
of the line you have typed. An arrow should appear beside the line. Now go to the line of icons and

click on the single arrow (). Thiswill run your one line agorithm and the result will appear in
the lower left command line window (again). If you want to "print" a string it needs to be in quotes
(e.g., print "Hello World").

Note
@ The top pane is not meant to be a fully-fledged text editor, nor a sophisticated IDE
(Integrated Development Environment). It offers basic editing and debugging capabilities

Using JIDE or the JIDE View in HIPE

2.3.1.

2.3.2.

2.3.3.

for developing simple scripts, but larger projects should be developed in external tools
and then loaded into JIDE for execution.

Now that we have abrief introduction to the three windows of JIDE we will consider each of the menu
and icon itemsin turn.

File Menu

Each of the File menu items has an associated icon except for exit. These are the first 5 icons on the
bar under the menu headings.

New ﬂ creates a new window for algorithm development. New history and/or command line
windows are not created.

El
Open allows a file to be opened in the top window (ASCII - DP files are stored in ASCII
format).

|
SaveJ and SaveAs IE for saving the current algorithm shown in the top window.

Close J closes the file in the top window pane. Only closes the window showing the current
algorithm.

Print prints text of JDE session to printer or postscript file.
Screenshot as JPG creates JPG file of screen view.
Screenshot as PNG creates PNG file of screen view.

Exit exits from the JIDE session.

Console Menu

Executein the console requests the input of a DP script file, loads it and runsit inside of JIDE.

Execute does a similar thing, except it runs the whole script on the system rather than using the JIDE
console

Executein the background does the same as Execute, but runs the script in the background.

Save history and Savehistory as ... saves ahistory of successful JIDE commands from this session.

Edit Menu

Each of the Edit Menu functions (except Goto) has an associated icon at the top of the JIDE panel
(middle section of icons).

Import history alows the import of the history of a saved JIDE session.

Undo and redo E
undone or redone.

and allows edits (cut/paste or deletion from the keyboard) to be

Using JIDE or the JIDE View in HIPE

2.3.4.

2.3.5.

e i

Cut and paste and the usual cut and paste using the mouse to sel ect and position text.
Find/replace does the usual find and replace of text within the upper window of the JIDE
console.

Goto allowsthe user to go to a specified line number.

Run Menu

The next four icons at the top of the JIDE window relate to the Run menu.

Script mode This only appears in the Run Menu. The default is that the script mode is disabled, the
Run, Run selection and Run all buttons then work asif on the command line for lines of code written
in the debug window and the commands are reiterated to the console. In script mode, only requested
output (e.g., from a"print" command) will have output sent to the console.

Stop - stops a script being executed. Click on this button or choose Stop from the pulldown
menu to stop the execution of a script before it reaches the end. Note that thisicon is greyed out when
there is no script in execution.

Run J -runsasinglelineor logical block of ascript. Thelineisiterated to the console window,
unless in script mode (see under "Run Menu") when only explicit outputs from script commands
appear at the console. In script mode the button turns red.

I
Run selection select a set of commands by dragging the mouse over them. Pull down
to Run selection (or click the icon) to run these DP commands only. The lines are iterated to the
consolewindow, unlessin script mode (see under "Run Menu™) when only explicit outputs from script
commands appear at the console. In script mode the button turns red.

e

Run all using pulldown or icon, this allows all DP commands in the top pane of JIDE to be
run in sequence. The lines are iterated to the console window, unless in script mode (see under "Run
Menu") when only explicit outputs from script commands appear at the console. In script mode the
button turns red.

Help Menu

Thelast four icons at the top of the JIDE window relate to various forms of help that are also available
under the Help pulldown menu.

*H

Dataset | nspection J allowsthe user to view datasets (notably tables) currently availablein the
DP session in aseparate Dat aset | nspect or code window (see Figure 2.7). Since the Dataset
I nspector involvesadvanced conceptslike Productsand Table Datasets, adetailed treatment isdeferred
until Section 4.14.

10

Using JIDE or the JIDE View in HIPE

& Datasetinspector

[Datasets and Products
@ [Datasets

§§ ~MetaData

[y Meta data (D)

May 23, 2005
[y Table data (5,)

|endDate:

@ [a: TableDataset null |- e - Unknown |

[Meta data (0) creator: - Me, myselfand | |

[Table data (5, 2) creationDate: | May 23, 2005 |

) ? gjiu;trguduct This is iy pro |instrument: |ru13fFavnurite |
[y eta data (@) rodeltame: | Flight |

|

|

|

|
|
@ [CJ Spectrum: TableData || stariDate: | Way 23, 2005
: |
|

|Versi|:|n: |2.1 A4

Figure2.7. TheDat aset | nspect or window

Session | nspection allows the user to view the classes (programs) and functions available in
the current DP session. Also allows the user to inspect all variables used in a session. See Figure 2.8.
Further classes and functions can be made available by importing "packages' (see Chapter 7).

11

Using JIDE or the JIDE View in HIPE

& Session Inspector

[1 Session

Eg -Data: java.lang.Double

@ [variables
[y coNvERSION

|j| False

|__°“| True

|__°“| _doe__
|__°“| __name__

B _document
B _interpreter
RE

|__°“| chsub

|__°“| chsub2

[chwidth

B hioverk

B hplanck
[y hrs_chwidth

[imp
|__°“| itern
[&

6.626E-34

[1ogoer =

Figure2.8. The Sessi on | nspect or window

Log Window : provides a listing of the feedback from running commands in the system,
including error messages. These appear in aseparate Log window. The log can be saved when exiting

from JIDE.

Accessto On-line Help Documentation

[

clicking thisicon allows accessto full set of current

(website) documentation in a separate window. See Figure 2.9.

12

Using JIDE or the JIDE View in HIPE

[»

INENEY

- Wl

Frequently Asked Questions
Frequently Asked Questions| : Nt
Wihat's Mewin 14 1003 :

A Basic User's Manual

e [Frequently Asked
ST lQuestions

Herschel Data Processing

|Hassan siddiqui

Anthony Marston
version 0.4.1225 , Document Number HERSCHEL-HSC-DOC-0519

| Table of Contents

‘| General Information

| Jython scripting

‘| Mumeric Library Usage

:| Task development

‘| Saving and Restoring of Objects
‘| Common problems and solutions

|General Information

1.What is the HCES and what is the relationship between the HCSS and DP?
¢ 2. How do | get hold of the HCSS and DP?
3. Where do | find documentation for DP? -

Figure 2.9. The JIDE Help window

For the Help window there are tabs at the top of theleft hand column. These provide, from left to right,
atable of contents for help, an index of help documents in aphabetical order, alisting of favourites
and a help search capability.

The main help documentation folders are included on the left hand side of the panel. These include
accessto thisUser'sManual, the User's Reference Manual, and the equivalent for devel opers. Clicking
on the folders expands these so that individual chapters or sections can be selected.

Note

@ The main difference between the User's Manual and User's Reference Manual is the fact

that the User's Manual attempts to guide the user through linked DP commands typically
found in a user's data processing session, while the User's Reference Manua mainly
contains the listing of available commands and their usage. For alisting of available DP
commands (including any JTasks the user has imported -- see Chapter 8) go to the DP
Commands section of the User's Reference Manual. Commands are placed in a phabetical
and task type order.

2.4. Quitting JIDE

We already know that the Exit entry in the File menu can be used to quit JDE. In this case a new
window appears, prompting the user to save the current work (scripts and command history). Y ou will
get alist of all unsaved files, together with entries like

» [New-1]: -no file associated-. Thisis a script that has not been saved yet (beware that it could be
an empty script).

 [History of Consolel]: -no file associated-. Thisis the history of the commands you have issued,
listed in the lower right panel. Useful if you want to save to a script what you have typed.

13

Using JIDE or the JIDE View in HIPE

To select an item click on it. You can select multiple items by holding Ctrl while clicking on them;
if they are contiguous you can select them in one go by clicking on the first one and then clicking on
the last one while holding Shift.

Below the list of unsaved items there are four buttons: Select all to select all the items, Save Selected
to save the selected items, Cancel to go back to JIDE without quitting, and Close to quit JIDE.

After pressing Close, a second confirmation window is displayed. Click Yesto quit or No to go back
to JDE.

An alternative way to quit isto type Syst em exi t (1) at thel A>> prompt and press the Ent er
key. This command can also be added to a script (for more information about writing scripts, see
Section 3.17).

Warning
O The System exit (1) command causes the current JIDE session to terminate
immediately. All unsaved work will be lost.

2.5. Standard Settings for JIDE and HIPE

JDE and HIPE come with a memory specification that is dependant on the installer information
supplied by the user when setting up the system initially. The settings are specified in the startup
script for JIDE. Thisscript islocated inthe $HCSS_DI R/ bi n directory (namedj i de. | ax. These
settings can be modified by editing this JIDE startup script. The following two lines adjust the initial
and max memory allocations.

I ax. nl.java. option.java. heap.size.initial =134217728

l'ax. nl.java.option.java. heap. si ze. max=536870912

A similar hi pe. | ax file has the same editable lines. Make sure that the environment variable
HCSS_PROPS is properly defined (see Chapter 1).

Make sure HCSS PROPS contains the specification of the standard var.hcss.dir property (this
should be the property defined in your $HOVE/ . hess/ myconfi g file IF you have set up your
own environment and are not using a local network installation or an installer). And be sure that
var . hcss. di r pointsto the HCSS build directory. You can check any property with a command
such as the following in the Console area.

print Configuration. getProperty("var.hcss.dir")

There are several properties for JDE and HIPE that are set up during initialisation (for example, see
under Set Up in the JIDE HowTo document). These can be used to determine such things as window
size. However, window size can be adjusted in the usual fashion by clicking and dragging corners and/
or sides of the JIDE or HIPE window.

2.6. DP working directory and file access

The current working directory of DP is the directory from which JDE/HIPE was started. Jython has
some limitations, inherited from Java, with regard to navigation of the underlying operational system.
However, changing the default directory can be accomplished in two ways.

By changing the underlying system path using sys.path. This can dynamically change the default
directory.

14

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/jconsole/index.html

Using JIDE or the JIDE View in HIPE

at the console command |ine type

inmport sys # if "sys" not already inported

sys.path.insert(0, '/dir/path")

the '0'" puts it to the front of the directory path of the user

By setting a standard directory in the path by putting the name of adirectory inthefile".jython" under
the users home directory. Thisthen means that, from whatever directory JIDE or HIPE is started, this
directory is aways in the path.

But the user is advised to start JIDE/HIPE from a directory where he/she is going to read/write files
by default and to use absolute paths for the file names.

When using "Save" under the File menu of JIDE/HIPE the user can specify any directory.

A view of the current directory contents is available through the HIPE navigator view. Such a view
is not possible with JIDE. Opening afile in either HIPE or JDE under the "File" menu does allow a
view of the available filesin any directory on the system.

Itispossibleto print the file contents of the current working directory using the following in aconsole
window.

i mport os

print the working directory

print os.getcwd()

print the nanes of the files in the working directory
print os.listdir(os.getcwd())

any directory nane can be placed in the brackets

This provides an unsorted listing of al filesand directoriesin the working directory. If the user wants
tofilter thefileligt, e.g. to select only thefitsfiles, then aglob modul e can be used with search pattern
following the UNI X shell rules, i.e. "*", "?", "[]" etc which are interpreted in the same way as in the
UNIX shell.

import gl ob

ffiles = glob.glob("*.fits")

or even nore el aborate exanple to provide the list of all fits file
in a given directory and perform some action on them

ffiles2 = gl ob. gl ob("/home/user/scratch/fitsfiles/*.fits")

fits = FitsArchive(reader = FitsArchi ve. STANDARD READER)

for fi in ffiles2:
product = fits.load(fi)
do sonething on the products, like print the di mensions
print fi, product.default.data.di nmensions

2.7. Getting Command-line Help in JIDE or
HIPE

Further help in JIDE or HIPE is available through command-line interaction. There are two methods.

* hel p() -- which provides an overview of the help system via a separate popup window (see
Figure 2.10). The window also includes all documentation provided by each of the instruments,
for specific aspects associated with handling instrument information, providing more specialised
documentation.

* In HIPE, selection of help through any button marked provides access to Help that is shown in
abrowser. Search and full Help document selection is available through this system.

15

Using JIDE or the JIDE View in HIPE

Figure 2.10. Theonlinehel p() popup window

2.8. Programming Loops in JIDE and HIPE

Earlier in the chapter we tried some basic commands to illustrate the components of the HIPE and
JIDE windows. One particular capability of JIDE and HIPE is allowing block support for DP coding.
Suppose we want to take a basic print command typed in the command line window.

a=>5 [Enter]
print a [Enter]
5

Now simply input (the[Ent er] meansyou have to press the enter key on your keyboard)

for i in (1,2,3): [Enter]

Thiswill returna. . .. response in the command line. Note that the colon at the end of the lineis
important for starting the block. The command isincomplete. Inputapr i nt i command indented by
at least one space. A further isreturned. Hit Enter once more, the command is now complete.

The whole session should ook like (again, note the indent prior to the print statement on line 2):

for i in (1,2, 3):
. oprint i

#1

#2

#3

We could have added a number of commands to thisf or loop. The block statement continues until
ablank line is produced. The history of the window is now available. The up arrow will provide the
previous command, which can then be edited as desired and re-entered

for i in (1,2,3):
print i

Y ou can edit thisblock statement in the bottom left panel of JIDE by using the LEFT and RIGHT keys
(not UP and DOWN, these are used to move through the history) and deleting/adding characters.

Blocks within blocks (nested f or loopsori f statements) are also possible. Basic rules about the use
of blocks follow Jython language syntax.

» Each statement in a block must begin in the same column;

Each of the DP key statements and clauses (class, def, for/else, if/elsif/else, try/except/else, try/
finally and while/else) denotes the beginning of a new block;

» A new block must be indented at least one space from the enclosing block;

Theend of ablock ismarked by having the next statement begin in the same column asthe enclosing
blocks.

For example

for x in (1,2,3):
print x # outer block
for y in (4,5,6):
if y==>5 # inner block
print y # inner-inner block
print x*y # inner block

16

Using JIDE or the JIDE View in HIPE

2.8.1.

2.8.2.

insert inner block statenment here
insert outer block statenent here

Asusual, end with ablank line! Notethe end of each f or loop is determined by where the indentation
ends.

Loop Performance on Arrays

Numeric Arrays are discussed in Chapter 4 of this manual. But we mention here how loops can be
computationally expensive when used with numeric arrays in the system.

In performance checks using the HCSS timing differences for standard operations (e.g., division and
multiplication many times on arrays) are found to be very similar to using similar programming
languages such as Python. However, Jython/HCSS loops can be slow and for large computations this
can become very inefficient for the user.

One means of reducing quite significantly the computation time for simple arithmetic computations
on arraysisto use the ability of the HCSS language to do in-line calculations. For example:

z=Doubl eld(x.size) # create a 1d nuneric array of the same size as an original
array called "x"
for i in range(1000):
z.set (x) # assign, not allocate

z-=y # inline subtraction

z/ =c # inline division
instead of the following -- which is nuch sl ower
for i in range(1000):

z = (x-y)lc

For large operations this can reduce computation time by nearly an order of magnitude.

Some further advanced tips to improve performance are provided in Section 5.8.

Using the Editor view with loops

Thetop edit window of JIDE and Editor view of HIPE can be used to keep lines of codein your session.
To run thingsin thiswindow we have three "arrows" at the top of the JIDE screen (two in HIPE). The
single arrow on the left of these will run things as if you were putting them on the command line. So
if we have a"for" loop ablank line will stop the loop. However the middle arrow (runs a highlighted
section of code -- incorporated into single arrow also for HIPE) and the double arrow (which runs
everything within the currently opened edit window) run commands within the whole group in the
editor window sand ignores blanks. For example, we may consider the following lines of code.

for i in range(4):
ifi >0:
print i
j =i
print j-i
print "Finished"

If runline-by-line (mouseclick to produce arrow next to the"for i inrange(4)" line-- then hit thesingle
arrow at the top of JIDE or HIPE) then only thefirst loop is run before a blank line is encountered. If
the double arrow is used then the blank isignored and the whole thing is run.

Warning

O This means that the way blank lines are treated depends on how the DP codeis run. Y our
codewill run differently if you run it line-by-line as compared to running it as acomplete
script.

17

Using JIDE or the JIDE View in HIPE

2.9. Multiline Statements in the Console View
of HIPE or JIDE

Another improvement of JIDE/HIPE compared to other Jython interpretersisthat it allows multiline
statements. The backslash (\) character at the end prevents execution of the line when hitting Enter
and the statement can be continued.

The following example breaks up alonger definition of atuple into three lines:

| A>> a = ("neaning", "of", "life", \
. "shrubbery", "killer rabbit", \
. "holy hand granade")
IA>> print a
("nmeaning', 'of', 'life', 'shrubbery', 'killer rabbit', 'holy hand granade')
I A>>

Note that the backslash initiates a continuation mode. The mode is left upon hitting Enter after the
first line without backslash, and the entire line is executed.

2.10. Pausing during script execution and
debugging in JIDE (ONLY)

A script may be paused at any point using the pause() command. Thisallows values to be changed
while a script is paused in the "Debug window". See the following example script.

from herschel.ia.jconsole.util inport * # inport pause
def test(arg=1):
a=12
for i in range(arg):
pause() # pause here, change of a within the debugger is allowed !
a=ati
print a
pause() # and here
print a

test(10) # run the exanple

| warning
o | Thisfeature DOES NOT WORK [N HIPE RIGHT NOW and causes an error.

Once the change has been made in the "Debug window" use the "console" menu in the "Debug
window" to scroll down to "Resume" to continue the script.

| Note
@ | Note that this should only be done in JIDE. This capability is not available in HIPE.

2.11. Background script execution in JIDE
and HIPE

There are two ways to run time consuming scripts in background. One is from the drop-down menu
under "Console" -> "Execute in background" which executes, in the background, the script which is
loaded in the JIDE editor window. Thisis not availablein HIPE.

18

Using JIDE or the JIDE View in HIPE

The other method is by using the execfile capability, edg.,
bg(' execfile("script_nane.py")') from the JDE or HIPE command line. Print
statements are redirected to the console and can be used to monitor the state of the execution.

Statements passed as parameters to the function are evaluated in the global namespace therefore the
following exampleislegal:

IA>> a =5

I A>> bg(' execfile("print a")")

I A>> bg(' execfile("a = anExtensi veConput ati on(12)")")
I A>> bg(' execfile("b aConputation(a)")")

There is no guarantee however that the last statement will be executed after the preceding returns the
value and that uncertainty can easily lead to cases where "aComputation™ is run passing the value 5
(thefirst assigned to &) or the value returned by "anExtensiveComputation(12)". Thisis unpredictable
and should be carefully avoided.

2.12. Running Scripts from a Shell Command
Line

2.13

it is possible to run user-created DP scripts from the command line of a shell window using the
j yl aunch command.

The following line at the command prompt can be run from a shell.

> jylaunch nyscript. py

where, of course, myscript.py should be replaced with the filename of the script you want to run.

Thej yl aunch command can also be run from the Start menu for the 'hcss' provided by the HCSS
installer script.

With the use of the HCSS installer, the j yl aunch capability is also available under the Program
Files start menu as a stand-alone task.

Errors and Exceptions in DP

Here we explain how errors are generated within DP and how these are reported back to the user.
Following from this the user should be able to:

* understand error messages that might show up (i) while running an application, or (ii) during aDP
session.

* report the error to the custodian of a HCSS module in case a badly described exception occurred,
i.e., one which cannot be handled by the user.

2.13.1. Overview of the Libraries Used in a DP Session

The base routines for DP are written in JAVA, but DP user development uses the more friendly
Jython. Typical user development is expected to take place in the console panel with plots and images
appearing in separate windows. Within a DP session one can run commands from the JIDE tool that
enablesthe execution of DP/Jython commands, saves and loads scripts, and provides command history
support. Thistool often provides the core of a user's DP session.

19

http://www.jython.org/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/jconsole/index.html

Using JIDE or the JIDE View in HIPE

Figure 2.11. Theoverall library structurefor a DP session

Library usage for aDP session isillustrated in Figure 2.11. Errors, as thrown by Jython and/or JAVA
classes, have the same means by which they follow the error back down the program layersto find the
root of the error -- "traceback mechanism" (although they differ in theway they present error messages
to the user, as shown in the next section).

Interpretation of these error messages allows the user to identify the place where the exception/error
originated from.

2.13.2. The Error Traceback Mechanism

In this section we describe the differences in the way Jython and JAVA libraries present error
messages.

2.13.2.1. The way Jython presents error messages

Errors in the use of Jython are typicaly returned directly to the user after their attempted
implementation. An example of how Jython presents error messages is given in the following short
code example:

array = [1,2,3,4,5]
print array[5]
IndexError: index out of range: 5

Another typical Jython error form is a syntax error. Consider the following lines of code

2
3
X + 2y

X
y
a

An error message using this piece of code has the form

Traceback (innernost |ast):
(no code object) at line O

20

Using JIDE or the JIDE View in HIPE

SyntaxError: ('invalid syntax', ('<string>, 1, 10, 'a = x + 2y'))

which indicates the fault happening in line 1 of the block of code (we only have one linein this case)
at the position of character number 10. Note that this information appears in the bottom right panel,
by double clicking on the red line corresponding to the error and selecting the Tr aceback entry.

2.13.2.2. The way JAVA presents error messages

Most DP packagesuse JAVA classes. If JAVA classesare run within aDP session and an error occurs,
an exception is thrown which is propagated upwards to the DP level. An example:

dbl = Doubl e("wong arg")
j ava. | ang. Nunber For mat Excepti on: For input string: "wong arg"

In the history window the command line will be indicated by ared cross, showing that thereisan error
for this command. Information on the command can be obtained by clisking on the indicator to the
left of the red cross. This provides access to the error message and traceback of the error (again, via
amouse click on the indicator).

A Log window can be obtained by using a right-click of the mouse on the history line, in JIDE
ONLY, and using the pull-down menu. This provides a separate window with all the information on
the problem command.

I NFO
<COMVAND>
<STATEMENT>
dbl = Doubl e("wrong arg")
</ STATEMENT>

<EXCEPTI ON>
<MESSAGE>
j ava. | ang. Nunber For mat Excepti on: For input string: "wong arg"
</ MESSAGE>
<STACK_TRACE>
Traceback (innernost |ast):
File "<string>", line 1, in ?
j ava. | ang. Nunber For mat Excepti on: For input string: "wong arg"
j ava. | ang. Nunber For mat Excepti on: For input string: "wong arg"
at java.l ang. Nunber For mat Excepti on. f or | nput St ri ng\
(Nunmber For mat Excepti on. j ava: 48)
at java.l ang. Fl oati ngDeci mal . readJavaFor mat St ri ng\
(Fl oati ngDeci mal . j ava: 1207)
at java.l ang. Doubl e. val ueX* (Doubl e. j ava: 202)
at java.l ang. Doubl e. <i ni t >(Doubl e. j ava: 277)
at sun.reflect.NativeConstructorAccessor| npl.new nstance0\
(Nati ve Met hod)
at sun.reflect.NativeConstructorAccessor| npl.new nstance\
(Nati veConst ruct or Accessor | npl . j ava: 39)
at sun.refl ect.Del egati ngConstructor Accessor |l npl . new nst ance
(Del egat i ngConst ruct or Accessor | npl . j ava: 27)\
at java.lang.refl ect.Constructor.new nstance
(Constructor.java: 274)\
at org. python. core. PyRefl ectedConstructor.__call__\
(PyRef | ect edConstructor. java)
at org. python. core. PyJaval nstance. __init__(PyJaval nstance. j ava)
at org. python. core. PyJavaC ass. __cal | _ (PyJavaC ass. j ava)
at org.python.core. PyObject.__call__(PyObject.java)
at org. python. pycode. _pyx113. f$0(<string>: 1)
at org. python. pycode. _pyx113. cal | _function(<string>)
at org. python. core. PyTabl eCode. cal | (PyTabl eCode. j ava)
at org. python. core. PyCode. cal | (PyCode. j ava)
at org. python. core. Py. runCode(Py. java: 1136)
at org. python. core. Py. exec(Py.java: 1158)
at org.python.util.Pythonlnterpreter.exec(Pythonlnterpreter.java)
</ STACK_TRACE>
</ EXCEPTI ON>
</ COMMAND>

21

Using JIDE or the JIDE View in HIPE

The placesin JAVA classes where the code breaks down are indicated. Typically, the traceback starts
with the line number of the original program where the problem occurs and follows this with the line
numbers in the classes accessed where the problem propagates from. In the above example we have
simply tried to attach a string, "wrong arg", to a numeric double. So it is of the wrong format -- as
indicated in the first line of the traceback. On other occasions, a more fundamental JAVA error may
be occurring deeper in the system. The traceback allows the user to find where this may be happening.

2.13.3. The HCSS exception and logging mechanism

Next to the standard JAVA exception handling mechanism the HCSS is using, it also has alogging
mechanism which forwards information, error and warning messages to the user.

2.13.3.1. Exceptions Thrown From HCSS Classes

In case an error occurs inside the HCSS, for example due to a missing or incorrectly defined
configuration variable, the information as part of the exception thrown should explain to the user the
cause of the exception. In this way the user should be capable to adjust his’her input arguments and/
or property settings. Property settings can be set using the Property Generation tool ("propgen”) -- see
Chapter 1. For example:

L et us assume the user has set the configuration variable "var.database.devel" to a database name that
does not exist:

var . dat abase. devel = "idonotexi st @ccdb. sron.rug.nl"
when trying to access this database in a DP-session by:

from herschel . access inport *
tm = Packet Access(1030)
packets = HcssConnection. get(tm

Here, a query is done on the database as set by the above property and the exception, appearing in
the command line window, reads:

herschel . access. Locati onException: Exception in constructor of
her schel . access. db. Local Connecti on:

herschel . access. Locati onException: Failed to get store

herschel . store. api . St oreException: Failed to create store for
i donot exi st @ ccdb. sron. rug. nl:

herschel . store. api . St oreException: Failed to create
Obj ect Store "idonot exi st @ ccdb. sron. rug. nl

Cannot open dat abase: idonotexi st @ ccdb. sron.rug. nl

Error while accessing database: idonotexist@ ccdb. sron.rug.nl

{ VException(7001: UT_DB NOT_FOUND: DB directory not found) }

In cases where the information as passed by the Except i on thrown is not sufficient (for example
a Nul | Poi nt er Except i on without any textua explanation), then there is a problem with the
current system and the user is encouraged to provide feedback to the HSC regarding the lack of
exception handling information (currently, thisis best achieved through the SPR/SCR system).

In the above example the "access" package might improve its exception notification by adding
information to the Locat i onExcept i on, including a hint for the user that the database is not
existing and that the user should check whether var . dat abase. devel isproperly defined.

2.13.3.2. The HCSS logging mechanism

Thelogging mechanism alows (HCSS) classesto passerrors, warnings and/or info to the end-user. To

view the error logging mechanism, go to the Help menu or click on the icon (see also Section
2.2.5).

22

Using JIDE or the JIDE View in HIPE

For the HCSS end-user this mechanism, rather than the analysis of exception handling, is likely to
be used more often, especially when HCSS software is fully matured. The difference between the
two is that exception handling is more often used by the developer for debugging purposes, whereas
the logging mechanism is intended to be used by the end-user to get insight into the behaviour of an
(HCSS) application or class. The logging mechanism enables the devel oper to include messages when
an exception is thrown on how the class internally handles possibly thrown exceptions.

To give an example why, next to the exception mechanism, the logging mechanism was introduced:
suppose we have a layered HCSS component (i.e. within an instance of a class there are calls to
instances of other classes and these will call others on their turn), deep within this component an
exception occurs and at a higher level this exception is caught again. In such a scenario the end-user
of the component will not be aware of the fact that this exception occurred. However, by use of the
logging mechanism the developer of the component can pass a message (an error, warning or info;
depending on how severe this exception was) next to the exception thrown, as well as being able to
pass relevant information to the user when the exception is caught.

More detailed information on the logging mechanism and how it may be used with user-devel oped
scriptsis discussed in herschel .share.log.api.Log (which isalink to HCSS javadoc)

23

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/share/log/api/Log.html

Chapter 3. Some DP Basics &
Beginning Jython

3.1. Basics

The Herschel DP is a development system based on programs written in Java or Jython. Jython is a
Javaimplementation of the Python language. The syntax is therefore well defined and there is plenty
of documentation freely available.

Remember however that, while the C implementation of Python (what we usually refer to as just
"Python") is already at version 3.0, the version of Jython used for DPis still 2.1. This means that not
all available Python documentation will be applicable to Jython.

Warning

o Standard Jython libraries are not automatically imported into HIPE. If you want to try
Python/Jython examples from external sources such as books and tutorials, you will have
to import them manually.

3.2. Comments

Comments on aline can be added after a hash (#) mark.

3.3. Variables

Variables do not have to be declared (i nt eger x, Xmax etc. isnot required). They appear when
you assign to them and disappear when you do not use them anymore. Assignment is done by the =
operator and equality testing is viathe == operator. Y ou can also assign several variables at once.

Y, 2, 3

X,
a=>bh

1N

=]]_’
123
If you need to clear some or all variables then the command cl ear can be used asin the example:

I A>> clear("x,y, z")
to clear all variables, but not the | oaded cl asses and net hods
I A>> cl ear(al |l =True)

3.4. Numbers and basic arithmetic

The interpreter acts as a ssmple calculator. Expression syntax is similar to other languages, e.g. the
operators +, -, * and /, and parentheses can be used for grouping. For example, we can type the
following into the Console window of HIPE at the HI PE>:

H PE> print 2+2

4

H PE> # This is a comment

H PE> print 2+2

4

H PE> print 2+2 # and a conment on the sane |ine as code
4

H PE> print (50-5*6)/4

5

H PE> print 7/3 # Integer division returns the floor
2

24

http://www.jython.org/
http://www.python.org/

Some DP Basics & Beginning Jython

H PE> print 7/-3
-3

A list of Jython operatorsis provided in Appendix C.

Thereisfull support for floating point; operatorswith mixed type operands convert theinteger operand
to floating point.

print 3 * 3.75/ 1.5
7.5

print 7.0/ 2

3.5

Complex numbers are also supported; imaginary numbers are written with a suffix of "j" or "J'.
Complex numbers with a nonzero real component are writtenas" (real + inmag j)", or canbe
created with the "complex(real, imag)" function.

print 1j * 1J

(-1+0j)

print 1j * conplex(0, 1)
(-1+0j)

print 3+1j*3

(3+3))

print (3+1j)*3

(9+3))

print (1+2j)/(1+1j)

(1.5+0.5))

To extract these parts from a complex number z, use z.real and z.imag.

a=1. 5+0. 5j
print a.real
1.5

print a.img
0.5

3.5. Boolean values

Boolean values are available in the Jython environment.

val = Bool ean(0)
print val
fal se

3.6. Strings

Jython can also manipulate strings. These can bein either single or double quotes.

print 'spam eggs'
spam eggs

print "doesn't"
doesn't

String literals can span multiplelinesin severa ways. Continuation lines can be used, with abackslash
asthe last character on the line indicating that the next lineisalogical continuation of theline:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C \n\

Not e t hat whitespace at the beginning of the line is \
significant."

print hello

25

Some DP Basics & Beginning Jython

Note that newlines till need to be embedded in the string using \n; the newline following the trailing
backslash is discarded. This example would print the following:

This is a rather |long string containing

several lines of text just as you would do in C.
Not e t hat whitespace at the beginning of the line is significant.

We can access individual characters using
print hello[?2]
i

print hello[10: 16]
rat her

Note that numbering of the characters starts at 0.

Our variable hel | o essentially contains an array of characters (including blank spaces). We can find
the length of such an array using thel en() function.

print |en(hello)
157

NOTE: Thisalso illustrates the means by which functions are applied in Jython.

3.7. Type conversions

Conversion functions exist to change numbers into floating point and integer (float(), int() and long()
arrays).

a=1
print float(a)
1.0

These conversions DO NOT work with complex numbers.

There are aso a number of methods to convert string representation of a number to a number. Here
are acouple of examples using java.lang methods:

fromjava.lang inport *
s = "01234.56"
print Doubl e. val ued (s)

1234.56

print s + 2.22

TypeError: __add__ nor __radd__ defined for these operands
print Doubl e.val ued(s) + 2.22

1236.78

Note that with this method when you try to convert astring representation of afloating point to integer
you will get an error:

s = "01234.56"
print Integer.val ued (s)
java. | ang. Nunber For mat Excepti on: For input string: "01234. 44"

3.8. Lists and Dictionaries

Lists and dictionaries are important data structures available in Jython.
Lists are simple arrays written in a specific order.

Dictionaries are like lists that can be accessed via a key (or label). To access an element you use a
key or "name". Thisiswhat is used to look up the value of an element.

26

Some DP Basics & Beginning Jython

3.8.1.

3.8.2.

3.8.3.

Setting up and Accessing Lists

Lists are formulated within square brackets, which can be nested. E.g.,
nane = ["Rol f", "Harris"]
(note - strings of characters need to be placed inside quotation marks)

y z =5

x = [[1,2,3], [y, 2] . [1,[2[3, 4]]]]
print x

print x[O0]

print x[2]

print x[2][1]

print x[2][1][1]

Inthefirst line we have set both the variablesy and z to the value 5. In the second line, the variable x
is associated with a Jython array which itself contains three arrays, the third of which contains further
nested arrays. The print commands that follow show how the nested arrays can be accessed (counting
of array elements starts from 0). The last line therefore indicates we take the third element of x, take
the second element of that and then the second element of the array we are left with (i.e., [3, 4]).

Y ou can access lists by individual names or groups

print name[0], nane[1l] # prints "Rolf Harris"
print name[0:2] # gives list in brackets ['Rolf', "Harris']
print name[:2] # ditto

In the first instance the parts of the nane list are picked up individualy, in the second part arange of
list componentsis picked out (0 to 2) and in the last case all components up to nane|[2] are picked
out. Notice how in the last two cases the command is interpreted as going up to but not including the
number range being given. We can try the same with the list 'x".

print x[0] # gives the first element in the list "[1,2,3]"

Try printing the other elements of thelist (x[1] and X[2]) to seeif you get what you expect!
Slicing Lists

The last two examples using the list nane (above) are also examples of dlicing. Slicing of this type
can also be performed with numerical and string arrays. For instance,

y = ["The", "quick", "brown", "fox", "junped", "over", "the", "lazy", "dog"]
print y[1:4] # prints the list ['quick', "brown', 'fox']

Again - the end integer value given for the slice is not included, so the above example only givesthe
valuesfory[1] ,y[2] andy[3] .

» Choosing y[: 4] means "take every element from the beginning of the list up to element 4, not
including element 4 ."

* Wecanasotohavey[4:] which means"take every element from number 4 up to the end" - note
that thiswill include element number 4.

 Lastly, negative numbers mean count from the end of thelist y[- 3] meanstake the third element
from the end of thelist.

Setting Up and Using Dictionaries

A dictionary has a set of {key: value} pairs. E.g.,

27

Some DP Basics & Beginning Jython

3.8.4.

person = {"Alice": 111, "Boris": 112, "Clare": 113, "Doris": 114}
print person.get("Alice")

111

print person["Alice"]

111

We"get" the associated valuefor "Alice" within the dictionary "person”. Alternatively, the key can be
given between square brackets aswith the array notation. To seeall the "keys" and "values' separately
usethekeys() andval ues() methods of the dictionary "person”.

print person. keys()

#['Care', '"Alice', "Boris', '"Doris']
print person.val ues()

[113, 111, 112, 114]

The use of the empty brackets at the end indicate that we are not passing a parameter on to "keys' or
"values' in order to get a printout of their current settings. In fact, no parameters are allowed for these
commands, but we still need the brackets.

Also note how the commandskeys() andval ues() areapplied/work on the dictionary "person”.
We will see this frequently when running DP code in the future.

If we want to change the dictionary then we need to write something like
person[' Alice'] = 222

Here, the value associated with Alice in the dictionary called person has been changed to the number
222,

Nested Dictionaries

Dictionaries can hold other dictionaries too. So advanced data structures can be made.
Let us set up adictionary called abc

abc = {"John": 12345, "Jerry" : 23456, "Joe" : 34567}

We will now put thisinside another dictionary called di ct

dict = {"Alice" : 111, "Boris" : abc, "Charlie" : "angel"}

Note here that we have NOT got inverted commas around the value abc since we want it to point to
our dictionary abc and not be a string.

So now we can look at the value of "Boris"

print dict.get("Boris")

Which should simply give usthe dictionary abc printed on our screen. Wheress,
print dict.get("Charlie")

Simply prints the string we gave as the value (we know it is a string since it has inverted commas
around it).

If we now want to get the value of "John" we would need to do
print dict.get("Boris").get("John")

First we get the dictionary abc which is pointed to by the key "Boris', then welook for the key " John"
inside. This returns the value 12345.

28

Some DP Basics & Beginning Jython

3.9. Augmenting Values and Lists

3.10.

3.11.

Jython alowsafull range of augmentation assignment operators (including +=, -+, *=, and /=). These
all behave in asimilar fashion.

5
2 # Adds 2 to the value of a
3 # Miltiplies a by 3

SR Y
* 4]

We can add to lists too.

b =[1]
b +=[2] # Nowb =[1, 2]. Note that the result is NOT b = [3]!

Note that here we have appended an element to the end of the list. This we could also do with the
append() method.

b. append(3) # Now b =[1, 2, 3]

Lists and Jython Tuples

A possibly confusing aspect of Jython is the use of brackets in producing what appear to be identical
lists. True Jythonlistsare mutable - they can be changed/sorted (represented by square brackets, "[]").
Whereastuplesareimmutableand represented by curved brackets, "()" and aretherefore unalterable,
including ordering. So while we can append new elementsto alist, we can not do so to atuple.

[1,2,3,4]
["x", "y, " 2]

#[1, 2, 8, 4, ['x, 'y, "z']]
Thelist["x","y","z"] hasbeen added as asinglefifth element of thelist a. Wheresas...

(1,2,3,4)
("x","y", "2")
a. append(c)

(9]

...gives an error:

AttributeError: 'tuple' object has no attribute 'append

"Adding" lists or tuples can be done to form aresultant third list or tuple. For example

1,2,3,4)
"y
Cc

—nonon
T + X

n

—~T T O D

(
("
a
rint
1, 2, 3, 4, 'x', 'y, 'z")
If we wish to do arithmetic with one or more arrays of numbers, rather than individual list or tuple
elements, then we need to deal with numeric arrays. These have been developed for use in DP and
are discussed in Chapter 4.

Basic programming statements

Thebasic programming statements arethe conditional statement if/elif/el se, theloop statementsfor and
while and the loop control statements break and continue. The conditional and loop statements serve
to execute blocks of commands depending on a given condition. Blocks are indicated by indentations

29

Some DP Basics & Beginning Jython

and only through indentations (and can be handled within JIDE - see Chapter 2). No begin/end braces
are required.

3.11.1. if/eliflelse

Thei f/elif/el se statement executes blocks of commands depending on given conditions. The
syntax is.

if conditionl
bl ockl

elif condition2
bl ock2

el se
bl ock3

A few examplesto illustrate
x = 13

if x <5 o0r (x >10 and x < 20)
print "The value is OK"

if x <5 or 10<x<20
print "This value is OK"

if 0<= x <= 10

print "The value is in the range [0, 10]
elif 10<x<20

print "The value is in the range [10,20]"

el se
print "The value is not in the range [0, 20]"

The first two examples are identical.

3.11.2. for

Thef or loop was briefly discussed in Section 2.8, where its use within the JIDE environment was
illustrated. The syntax of thef or loop isthe following:

for variable in I|ist:
bl ock

where list can be an array of values, sequence of dictionary keywords, tuples, strings.
Some examples:

for i inJ[1,2,3]:
....print

The abovef or loop goes through valuesin an array indicated in the square brackets. A simpler way
- particularly for large numbers of iterations - isto use the inbuilt r ange function to create an array.

The following example prints the values from 0 to 99 using the range function -- it actually createsa
list of rising integer values that can then be looped through.

for value in range(100)
. print value

Note how values start from 0 and end one below the value assigned to the range function. Currently,
the print output is going to the Console window of HIPE.

A combined example of using f or loopandi f/elif/ el se isgiven below. Note the indentation
of the different blocks.

30

Some DP Basics & Beginning Jython

person = {"Alice" : 111, "Boris": 112, "Clare": 113, "Doris": 114}
first we get the list of people's nanes
list = person. keys()

for each nane in the list we get the associated value -- this
could be a test score, for exanple.
for i in list:

pval =per son. get (i)
we check if the person is on the cutoff, and print the nane
if pval == 112:
print i, "is at the cutoff"
bel ow the cutof f
elif pval < 112:

print i, "is below the cutoff”
or el se, above the cutoff
el se:

print i, "is above the cutoff”

3.11.3. while

Thewhi | e loop executes ablock of commands, while a given condition istrue. The syntax is:

whi | e condi tion:
bl ock

The condition can be any expression which results to avalue: the numeric zeroisFal se, aswell as
empty string, tuple, list, otherwise the condition is Tr ue.

Some examples:

x =0

while x <= Math.Pl:
..y = SIN(x)

....Xx += 0.1

3.11.4. Loop control: br eak and cont i nue

The command br eak can be used to immediately exit from aloop and cont i nue isused to jump
to the next iteration of the loop without executing the rest of the block.

An example for their usage is given below.

x =0
while 1:

y = TAN(X)
ify<o:
br eak
print X,y
x += 0.1

The above example shows an infinite while loop (the condition is always true) and inside the loop
block we check for a given condition and jump out of the loop once it is true, so at the first negative
tangent we exit the loop.

for i in range(100):
if i %2: continue
print i

The above example shows how we can skip the printing of the odd numbers (i % 2 isi modulus 2
and it is zero for all even numbers).

3.12. Printing to the screen and files

We have aready seen how a print command can produce a result

31

Some DP Basics & Beginning Jython

3.13.

print 1, 2, 1+2
#123
print a
(1, 2, 3, 4)

(... following on from the above augmentation example).

The printout can be formatted in the same way aswiththe C spri nf format codes. Some examples:

print "Wen % is % years old then Pl will be 98.10f" %"John", 23, Math. Pl)

When John is 23 years old then PI will be 3.1415926536

print "Wen 9%Bs is %4i years old then Pl will be 9916.12f" % "John", 23, Math. Pl)
\Wen John is 0023 years old then Pl will be 003.141592653590

To print lists or arraysit is necessary to make aloop:

a=1[1,1,2,3,5,8,13, 21, 34]
for i in range(len(a)):
print "Line: 98i" %al[i])

Another useful usage of formatted printout is with dictionaries as shown in the following example:

record = {"nane": "John", "Rooni: 112, "class": "nanager", "age": 27}
print "Extracted record\in Name: 9% nane)10s Room 9% Room4i" %record
Extracted record

Nane: John Room 112

We can also print to afile.

file = open("output.txt", 'wW) # 'wW allows wite access overwiting

previous contents.

'a" would append at the end of the file.
print >> file, 2 # Puts the nunber 2 into output.txt

Or

print >> file, a # Puts the array "a" into output.txt

For printing an array/list to afile.

Notethat it is not necessary to close access to afile within your DP session. To overwrite the original
text file, reopen the file. Reopening the file will remove the contents.

Defining and Using Functions

Here we name a piece of code, cal it with some parameters and have it return aresult. Functions are
set up with the keyword def. e.g.,

def square (x):
return x*x

print square(2)
4

The arguments of the functions are passed by value, i.e. the input argument is not changed outside
the function:

def nyfunc(a):
a=a+1
return a

#

X =4.0

32

Some DP Basics & Beginning Jython

print myfunc(x)
#5.0

print x

4.0

Note that variables from the main HIPE session have global scope, i.e. they are accessible inside
functions but cannot be changed. The example below will produce an error:

def nyfunc(a)
a=a+1l
X =X +5
return a

#
X =
print nyfunc(x)

UnboundLocal Error: local: 'x'

However, the following example shows a dangerous effect:

def nyfunc(a):
b=a*z +1
return b

#
X = 4.0
z = 10.0
print nyfunc(x) # this one works as z is global and accessible inside the function
41.0

This may have side effects especially when one has plenty of variables in the HIPE session and
seemingly the defined user functions work. There is no guarantee though that next time the same
global variables will be available or they may have different values, in which cause the functions will
throw errors or worse give wrong results. That iswhy our advice iswhen it is necessary to use global
variablesinside user functions to pass them as arguments.

Some arguments of the functions may have default values. Thisisillustrated by the following example:

def nyfunc(x, y=1.0, ver bose=Tr ue)
Z = X*X +y
if (verbose)
print "The input is % % and the output is %" %Xx,y, z)
return z
#
nyfunc(5.0) # using default values for y and verbose
The input is 5.000000 1.000000 and the output is 26.000000
print nyfunc(5.0, y=5.0, ver bose=Fal se)
30.0
print nyfunc(5.0,5.0, Fal se) # the same as the previous
30.0.
print nyfunc(5.0,5.0)
The input is 5.000000 5.000000 and the output is 30.000000
30.0

The arguments of a function can be functions themselves, like in the following example:

def funcl(x)
return x*x
def func2(x)
return x/2.0
def myfunc(fl,f2,x)
return f1(x) + f2(x)
#
x =3.0
print nyfunc(funcl, func2, x)
10.5
Even the user can input any avail abl e function of one argunent
print nyfunc(SIN, funcl, x)
1.6411200080598671

33

Some DP Basics & Beginning Jython

3.14

In actual fact, DP has a sophisticated numeric functions package that can allow squaring of values and
numeric arrays of varioustypes (double, integer etc.). Numeric functions availablein DP are discussed
in Chapter 5.

If you want to call afunction without arguments then the () brackets are required.

A useful thing to know is that functions are values in Jython. So taking an example from the previous
section

print person. val ues()

Could be changed to

pval ue = person. val ues

print pval ue

whi ch indicates "pvalue" is a Jython val ues type
print pval ue()

which actually prints out the val ues

Importing modules

Most useful classes and functions are put into Jython modules or Java packages. These are then
imported into a given environment or program with thei nmport statement.

Try issuing the following command from within HIPE:

print localtinme()

You will get an error:

NarmeError: |ocaltine
Thisisbecause, althoughthel ocal t i me function ispart of the software distribution, it has not been

imported into your session. Thel ocal t i ne functionispart of thet i ne Jython module, which you
can import by issuing this command:

import tinme

This imports the entire module, but forces you to use the qualified name of the function (that is,
including the module name):

print tinme.localtinme()
(2009, 5, 17, 10, 41, 18, 6, 137, 1)

The following syntax allows you to usethel ocal t i e function without the qualified name:

fromtine inport |ocaltine
print time.asctine(localtinme())
Sun May 17 10:44:35 2009

Note that asct i me, which converts the time into a human-friendly format, still needs the qualified
name. To import all the names from a module, use the following syntax:

fromtinme inport *
print asctine(localtinme())

Some DP Basics & Beginning Jython

3.15

Sun May 17 10:44:35 2009

Use this option with caution, because some of the names imported from the module could overwrite
names you defined locally. To see all the names contained in a module, use the following command
(herefor thet i me module):

print dir(tine)

To avoid name clashes, you can define a different name from what you import:

fromtine inport localtine as Itine
print Itime()
(2009, 5, 17, 10, 41, 18, 6, 137, 1)

Importing Java packages works in exactly the same way as importing Jython modules. For more
information about Java packages, see Section 3.15.4.

A basic set of packages most relevant to usersis loaded when HIPE is started.

Object Oriented Programming

HIPE is based on Jython and Java. Java is an object oriented language, and Jython can be
used as an object oriented language, although it is mostly used in its procedural form. Object-
oriented programming, or OOP for short, has been (and still is) the subject of much hype, several
misconceptions and afew urban legends. It is not the remedy to al evils, but in many casesit can help
to write cleaner, more reusable and more maintainable code. Although you will not have to write a
single line of object-oriented code to use HIPE, being familiar with some of its concepts may help to
gain abetter understanding of the DP system. Wewill now briefly explain the basic words of thetrade
and describe the advantages of the OOP approach.

3.15.1. Classes and Objects

The traditional, or procedural, way of programming is relatively straightforward. We take program
inputs and store them in variables, which can be of many types (integer, string, float etc.). We process
this input using the set of commands provided by the language we are using. Other variables are
employed to store the outputs and any intermediate values we might need. Finaly, the outputs are
given back to the user in some way and the program terminates.

Totidy up our code, we might want to group sets of commandsthat perform particular tasksinto blocks
called functions or subroutines. Such blocks can be called multiple times using loops, thus avoiding
the need to duplicate code. At any point our program can decide to execute one function instead of
another, based on whatever criteria we set: this would be achieved via a control flow statement such
asani f...then block. By organising code into functions/subroutines we just made the leap from
unstructured to proper procedural programming.

Object oriented programming takes it one step further. The old ingredients are till there: variables,
functions (here called methods) and a set of commands such as control flow statements. So, where
isthe big difference?

The difference liesin the way all these tools are organised. An object is abundle of related variables
and methods (functions) acting on these variables. A class, on the other hand, is like a mould from
which objects are created.

The best way to grasp these conceptsisto think of a concrete example. Imagine that, for some reason,
we have to code a model of an airplane. We all have a general idea of what an airplane is (it has a
fuselage, wings, one or more engines, landing gears...) and of what it does (it can take off, land, climb
and descend...). Also, we are probably not thinking of a particular aircraft, but of our idea of aplane.

35

Some DP Basics & Beginning Jython

Thisideaiswhat in OOPtermsiscalled aclass. A classisagenera description of an object, of what
itisand what it does. What our Ai r pl ane object is, or its status, is described by instance variables
(just so you know, there is a distinction between instance and class or static variables; more on this
later). Aninstance or class variable could be of a primitive type (e.g. afloat called wi ngspan) or a
full-fledged object (we could think of creating an Engi ne object). What an object does is described
by functions called methods.

Aswe said, aclassis not the real thing, it is just a mould. When we create an object from a class it
is said that we instantiate, or create an instance of the class. In other words, besides the Ai r pl ane
class, which represents no specific plane, we now havethemy Ai r pl ane object, whichisareal plane
we can climb on and fly.

Finally, there can be propertiesthat are specific of each instance of aclass, i.e. of each particular object;
these are aptly called instance variables, as we already know. But there could be variables having the
samevaluefor all the objects of agiven class, which would then be better defined inside the classitself
and then shared by al itsinstances. These are called classor static variables. The samedistinction also
applies to methods, but let us stop here for now. What we say below referring to instance variables
can also be applied to static ones, unless stated otherwise.

3.15.1.1. A Note about Terminology

Y ou might be confused about the exact meaning of the words method, function and subroutine. All the
three words denote a subprogram, i.e. a separate block of code that may be invoked from elsewhere
in the program. This block of code may take input values and return an output. The term method is
typically used in OOP to indicate a subprogram inside a class (or an object, which is an instance of
aclass), while function or (less frequently) subroutine denote a subprogram in procedural code. Thus
we will usually speak of amethod in a Java class, but afunction in a Jython script.

Just when you think you got it, you may encounter the notion of function object. Why would afunction
be mentioned in connection with an object? A ccording to what wejust said, we should call it amethod,
right?

Not realy. Function objects, also known as functors or functionoids, are objects that
can be invoked or caled as if they were functions. For example, if you write y =
SORT(x) in HIPE to sort a vector, you are using an object, namely an instance of the
herschel .ia. nuneric. tool box. basi c. Sort class. If you do not believe what you are
reading, try issuing this command in HIPE:

print SORT

Y ou will get something like

herschel . i a. nuneri c. t ool box. basi c. Sort @65e0

The hex number after the '@ will likely be different. What you got is the output of thet oSt ri ng
method, whose aim isto give astring representation of an object. The default output contains the class
name of the object.

3.15.2. Interface, Implementation and Encapsulation

You aready know that actions performed by objects are coded in functions called methods. Our
Ai r pl ane class will have methods liket akeOf f , | and and so on. Some or all of these methods
will be public, i.e. visible (and callable) from other pieces of code. Thisiswhat is called the interface
of aclass: aset of methodsto operate on the object, makeit do stuff and enquire about itsinternal state.

Going on with our airplane example, theinterface ismade of al the dials, displays, buttons and levers
in the cockpit. We can operate the plane and read the value of al the relevant variables (speed, fud,
altitude...). The nice thing is that we do not have to know in detail how the controls work in order to
use them. It may be the latest fly-by-wire technology, or the old mechanical one, but in both cases

36

Some DP Basics & Beginning Jython

we know that pulling on the yoke the plane will climb. In OOP terms, the user just needs to know the
interface of an object, not its implementation, i.e. the gears and cogwheels behind its shiny surface.
The implementation is said to be hidden, with the advantage that it can be modified, tweaked and
patched as much as the developer wishes. As long as the interface remains the same, the user will
not notice anything.

It is good practice to prevent users from directly accessing instance variables. These are part of the
implementation, and could have to be changed (e.g. fromi nt tof | oat) possibly breaking external
code accessing our object. A much better way is to provide methods to get and set the value of a
variable (these methods are usually know as getters and setters). It may seem overkill, but it helps
keeping the code moremaintainable. It issaid that our instance variables are neatly encapsulatedinside
our class. To say it with a metaphor, we want the pilot of our plane to read the fuel level from adial
(theget Fuel Level method) rather than tampering with the fuel tank to get alook inside (trying to
directly accessthef uel Level instance variable).

3.15.2.1. Interfaces, the Java Way

Interface is a generic programming concept, but it is aso a specific Java construct. Without getting
into too much detail, a Java interface is a collection of methods and constants. If a class implements
an interface, you can be sure that all the methods and constants listed by the interface are right there
inthe classand in al of itsinstances, ready to be used.

3.15.3. Inheritance

Thisis a dightly more advanced concept, which can be safely skipped without trouble. However it
is not very complicated. When you think of all the different kind of airplanes existing today, from
tiny ultralights to huge jets, you may wonder how asingle Ai r pl ane class could represent them all.
Actualy, it cannot: that is why we can define subclasses of Ai r pl ane. These subclasses receive, or
inherit, the variables and methods of their parent class, and we can override them, or add new ones,
to suit our needs. We can create the Boei ng787 and Ai r bus380 subclasses of Ai r pl ane, with
specialised methods and different values of instance variables (like nunber Of Engi nes). Note that
there are waysto prevent subclasses from inheriting certain variables or methods, but this goesbeyond
the scope of this manual.

One more example: suppose we have a class Seat to describe airplane seats. We can subclass
it into Firstd assSeat and EcononySeat. Each of them will have (very) different
values of the seat Pi t ch instance variable. Also, we could add a t ur nl nt oBed method to
Fi r st G assSeat , which will definitely be absent from Econony Seat .

By creating such hierarchy of classeswe can reuse general pieces of code many times, to tackle several
specialised tasks.

3.15.4. Packages and Namespaces

Common problems in programming are name clashes and, as a consequence, running out of
meaningful (or suitably short) names for variables, methods and the like. This is even more serious
when we use several different pieces of code, each developed by several people. Think about the DP
system, for instance: we are putting together Java, Jython and a lot of Herschel-specific code. How
can be sure that nobody thought of the same name for completely unrelated entities? How can we
avoid such confusion?

To answer this question, let ustake alook at HCSS Javadoc here:
ftp://ftp.rssd.esa.int/pub/HERSCHEL /csdt/rel eases/doc/api/index.html

Look at the upper left corner of the page. There is a list of names such as herschel.access,
herschel.access.db and so on. Click on any of these item. The box below will change to show a
list of the classes and interfaces contained in that package. Now go back to the list of packages

37

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Some DP Basics & Beginning Jython

and scroll it from top to bottom. As you can notice, everything starts with "herschel”. Then there
are subpackages such as herschel.ia and herschel.ccm, and finer subdivisions like herschel .ia.dataset
and herschel.iahelp. Y ou get the picture: packages are used to organise classes, interfaces and other
programming constructsinto ameaningful hierarchical structure. To usethefunctionality of apackage
in a Jython script, we can import it with acommand such asi nport herschel . i a. nuneri c.

That makes a lot of sense, but how can it prevent name clashes? In away, it does not: it just makes
them harmless. The point isthat every package is a separate namespace, i.e. a separate domain where
we can choose names as we please (well, almost), without worrying about names in other packages.
And what happens if we import two packages containing a class with the same name? For example,
herschel.ia.numeric.toolbox.basic and herschel.ia.dataset both have classes named Pr oduct (doing
completely different things). In that case we can use the fully qualified class name, i.e. write
herschel . i a. dat aset. Product instead of just Pr oduct to get rid of any ambiguity.

3.15.5. Advantages of OOP

The most commonly cited advantages of OOP can be summarised as follows:

* Modularity. Organising code into a hierarchy of classes is a natural invitation to build modular
programs. Natural, but not automatic: nobody prevents you from designing few enormous classes
doing several unrelated tasks at once. To reap the most benefits from modularity, classes should
have one well-defined purpose (in object oriented jargon they are said to have high cohesion) and
interact with other classes only through their interfaces, without having to know about their internal
state (low, or loose, coupling). To get a picture of the concept, think of a plumber working with
severa specialised tools rather than fumbling with a Swiss Army knife.

* Reuse of previouswork. Thisis probably the most cited benefit. A set of modular classes, following
the guidelines mentioned above, arerelatively easy to plug into one another, which allows creation
of new programs. As before, benefits are the result of good planning and design.

* Increased quality. We do not mean here that programmers developing object oriented code are
intrinsically better than their procedural colleagues. Increased quality is largely a result of the
previous point, code reuse. The more existing, tested code can be employed to develop a new
application, the less will have to be built and debugged from scratch.

» Faster development. Again, this is not because of some mysterious power of OOP that leads
developers to type much faster. Like the previous point, it is mainly an advantage of code reuse:
if alarge part of a new application consists of existing code, this will automatically translate into
faster development.

 Better mapping to the problem domain. What we mean by this statement is that with OOP it is
easier to model the software on the real-world problem that hasto be solved, rather than bending the
problem to the constraints of the programming language. New objects can be created representing
all sortsof things, like customers, machinery, banksor, well, airplanes. When dealing withthe Task
framework in Chapter 8 we will discover that OOP works well even for representing more abstract
concepts, like the different stages of a data reduction pipeline.

3.15.6. Concluding Remarks

For people with along tradition of writing procedural code, switching to the object oriented paradigm
can be painful at first, leading to decreased productivity and astrong desire to give up and keep writing
code the old way. A little perseverance will pay in the end, keeping in mind that the time lost at first
will be more than regained at the end.

Aswe said at the beginning, it is also important to remember that OOP, despite its advantages, is not
the solution to all problems. It isindeed possible to write excellent and easily maintainable procedural
code and absolutely messy object-oriented code. No coding approach, however ingenious, will avoid
ill-designed algorithms, cryptic variable names and inextricable spaghetti-like loops. Most important
of al, no piece of code, whether object-oriented or not, will spontaneously document itself at night.

38

Some DP Basics & Beginning Jython

3.16

Now it is time to put theory into practice. The following section deals with the Basket class, an
example class written in Jython.

Defining a Class in DP

Thefollowing isan example that can be placed in the Editor pane of HIPE. Remember to keep proper/
accurate indentation. Note that program command lines can be extended to the following line by
theuse of abackdash, "\", at theend of aline. Although not needed for the example class given
hereit appearsin several example scriptslater on this manual

cl ass Basket:
al ways renenber the self argunent
def __init__ (self, contents=None):
sel f.contents = contents or [] # @
def add(self, elenent):
sel f. contents. append(el enent) # ©
def print_ne(self):

result ="'
for element in self.contents:
result = result +" " + “elenent> # ©

print "Basket contains: "+result

O thishit doesalogical or - if aparameter is passed to it, it becomes the contents, otherwise we
get an empty basket!

this adds the element to the contents (sel f. cont ent s)

this printsthe contents of the Basket. Note the use of upper left keyboard single inverted commas
around el enent .

(2]
(3]

Wehave created aclasscalled Basket andit hastwo associated methodsadd() andpri nt _ne()
(following def in the above example).

Try placing the above within the Editor pane of HIPE. Here we create an object to work on, called
sel f - whichiscustomary. Thisisinitiated by thedef __init__ command (by the way, that is
two underscores on either side of i ni t).

Leave a blank line at the end of the script when placing it within the Editor pane of HIPE. Now hit
the double arrow icon to load this into your DP session.

Once created, we can run the class by typing Basket () in HIPE viathe Console window.

Now try the following in the command line window.

a = Basket() # @
a.add("saw') # @
a.add("hanmer") # ©
a.print_me() # O

this line sets up an empty basket which we have called a

thisline adds the item sawto the basket. It runsthe add() method on the object a.

thisline adds theitem hanmrer to the basket.

thisline prints the contents of the basket we called a, which should be 'saw' and 'hammer’. This
runsthepri nt _me() method on the object a.

[~)

We could equally have started our basket with one item
a = Basket (["saw'])
Note
@ If we had written a = Basket("saw') (without the square brackets) the

print_ne() method would have returned this. Basket contains: 's' 'a'
W

39

Some DP Basics & Beginning Jython

3.17.

3.18

Basically we have obj ect . met hod(argl, arg2)
In the above case a is the object and we have the methodsadd() and pri nt _me().

__init__ isaspecia method that is said to be a constructor setting things up in the first place. The
constructor (initial call to the routine) creates an instance of the object (in the above case it creates
a basket we can put thingsin).

Writing Scripts - Programming in DP

Scripts take individual DP statements and combine them to make more complex routines. Y ou can
edit a script directly in the Editor window of HIPE. A series of DP commands/instructions can then
be input and then run in the DP environment.

Following on from our Basket example. If the class Basket has already been created you can create a
script that uses it. For example, you can place the following in the HIPE Editor window.

= Basket ()
.add("saw")
add(" hamrer")
add("chisel ")
= Basket ()
add(" bread")
.add("cheese")
.add("m | k")
.print_me()
.print_me()

TOQOoCOCTOLD OO

Now if we hit the "Run all" button then we create two baskets the contents of which will be printed
to the command window (bottom left).

This script can be saved using the "File" pulldown menu or save icon (default is".py" extension).

Some Useful Extra Items on Scripts

» Some arguments can be optional and can be given adefault value. E.g.,

def spam(age=32):
tamy_age = age - 5
print "Tamy is ", tanmmy_age
print "Tamy's brother is ", age

Here, spam can be called with zero or one parameter. |f no parametersare given it will be called with
the default parameter of age=32. If a parameter is given with the call then that will be assigned
toage instead.

Our little script can now be run using, for example,

span()
span(age=34)

» Backquotes (*) convert an object to its string representation (so the number 1 can be converted to
string "1").

age = 32
message = "Tammy is "+ age’
print nessage

Here we add (viathe plus sign) the string value of age to our message.

» The + sign can be used to append string lists.

40

Some DP Basics & Beginning Jython

» One change to make printing easier. We can change to the special method __str__ so that our
last function starts with the line

def __str__ (self):
Instead of
def print_ne(self):

We should also change

print "Basket contains: " + result
to
result = "Basket contains: " + result

return result

Now we can use

print a

to show our basket contents rather than

a.print_ne()

3.19. Interactivity in Jython Scripts

Sometimesall weneed isascript that islaunched, performsall its cal culationswithout asking anybody,
and then outputs the result and exits. Other times we would like the user to interact, give input while
the script is running, take decisions that influence what the script will do. This section takes a look
at the tools Jython offers to do just that.

3.19.1. Basic Interactivity

The most common caseis for the script to ask the user to input avalue. We can usether aw_i nput
function, as the tiny example that follows demonstrates.

ny Answer
nmyAnswer raw_i nput ("Pl ease wite sonething, anything\n")
print "You wote " + myAnswer + "\nWell done."

Hereisan interesting fact. When we run this script in HIPE, asmall window pops up (see Figure 3.1)
with the text we passed to r aw_i nput , a box where we can input text and two buttons, OK and
Cancel. Savethisscriptand call itt i nyScri pt . py, then executeit from the command line, outside
HIPE, issuing python tinyScript.py or jython tinyScript.py, or try double-clicking on the file icon.
Y ou will see no fancy windowsthistime, everything will happen inside atext console. In other words,
the window we got is a feature courtesy of HIPE, not a Jython feature.

L Please write something, anything

| OK || Canceli

Figure 3.1. The window that appearscalling ther aw_i nput function from within HIPE.

41

Some DP Basics & Beginning Jython

Warning

O Remember that r aw_i nput takes everything the user inputs and turns it into a string,
including numbers. So be careful when comparing thisinput to other numbers: you might
need to cast your variable to anumerical type.

A fundamental flaw of our little example is that it does not check the input in any way. We could
even get away with writing absolutely nothing in the text box, and HIPE would give the seemingly
sarcastic reply

You wote
Wl | done.

Of course if we had initialised myAnswer to anything else than an empty string, we would get
that value in the output. Worse still, if we press the Cancel button, regardless of whether we wrote
something or not, theny Answer variablewill be set to None and thefollowing linewill givean error.

One way to have the user input something sensible isto embed the request into awhi | e loop, asthe
following example demonstrates.

nyAnswer = ""
whi | e nyAnswer == "":
myAnswer = raw_i nput ("Wite sonething, anything\n")
if nmyAnswer == None:
nyAnswer = ""
print "You wote " + myAnswer + “\nWell done."

Thisway the window will not go away until we write something and press OK, and if wetry to bypass
the check by pressing Cancel the following i f clause will at least prevent an error on the last line.

More complicated checks can be put in place, for example to make sure that a numerical value stays
within the allowed range, and more sophisticated loops may be needed, but the principle is the same.

The above example can also be useful when we want to stop the execution of a script, for whatever
reason, and wait before resuming it until the user lets us know that he is in front of the computer
and is paying attention. In this case the input does not matter at all, since we just want the user to
acknowledge a request by pressing a button.

Well, it works but it is far from optimal. Why having a box for entering text if the text itself does not
matter? Wouldn't it be much better to have awindow with Press OK to continue written on it, the OK
button, and nothing else? Thisis the subject of the next section.

3.19.2. A Little Bit of Swing

To put it simply, Swing is the name given to that part of Javathat deals with creating graphical user
interfaces (or GUIS). Yes, you read correctly: Java, not Jython. Please do not let this scare you. We
have used Java hits before, amost without realising it (after all, it iswhat makes Jython so powerful)
and this case will not be different. As a matter of fact, using Swing within Jython is easier than doing
so within Java.

This section will teach you enough about Swing to get you started, but if you want to become a GUI
guru you may want to look elsewhere. The first chapter of the Jython Essentials book has something
more to say about Swing. Y ou can find it here:

http://www.oreilly.com/catal og/jythoness/chapter/ch01.html

3.19.2.1. showvessageDi al og

The first thing we will do is to invoke a Swing method to display a message in a window, together
with an OK button:

fromjavax.swi ng inport *

42

http://www.oreilly.com/catalog/jythoness/chapter/ch01.html

Some DP Basics & Beginning Jython

print "Let's stop for a while"
JOpt i onPane. showiessageDi al og(None, "Press OK to continue")
print "Wl |l done."

The first line imports the swing package (note that it isj avax rather than j ava). Then we have the
line creating the window, embedded between two lines printing text messages to demonstrate that the
script will not advance until we press the OK button.

B Message -

P
i1 Press OK to continue

Figure 3.2. Thewindow that appears calling the Swing showMessageDi al og method.

Y ou have probably noticed that the showiVessageDi al og method takes two parameters, and we
have set the first oneto None. It is used to indicate the "parent” element of the dialogue box we are
creating. In this case (and in everything that follows) we arejust creating a single window and nothing
else, so we will not worry about this parameter anymore.

Actually the showvessageDi al og can take more than two parameters. Notice that the text in the
title bar of our window wasjust "Message". In order to customiseit we have to add another parameter,
like this:

JOpt i onPane. showiessageDi al og(None, “"Press OK to continue", "Title bar text")

Try this and you will get... an error. This is because this third argument must go with a fourth one,
telling what kind of window we are creating. Let ustry again:

JOpt i onPane. showessageDi al og(None, "Press OK to continue", "Title bar text", \
JOpt i onPane. ERROR_MESSAGE)

B Title bar text -

® Press OK 1o continue

Figure 3.3. Customising theicon and the window title.

Now it works, and it even alows us to change the icon to a nice "error" one. There
are a number of possibilities for this fourth parameter, all of which are self-explanatory:
ERROR_MESSAGE, | NFORVATI ON_MESSAGE, WARNI NG_MESSAGE, QUESTI ON_MESSAGE
and PLAI N_MESSAGCE. Fed freeto try them at your leisure.

If you are sharp-eyed you might have noticed that the previous error message said "expected 2 or
4-5 args, got 3". This mysterious fifth argument is used to add a custom icon to the window, in case
you are not satisfied with the predefined ones. Since thisis pure eye candy and adds nothing to the
functionality of the window, we will not cover it here.

3.19.2.2. show nput Di al og

Now wewould liketo takeit astep further and create awindow for entering text, just like we did with
ther aw_i nput function. We just have to use a different method, like this:

43

Some DP Basics & Beginning Jython

nyAnswer = JOpti onPane. show nput Di al og(None, "Please wite sonething, anything")

IE\ Please write something, anything

i OK || Cancel|

Figure 3.4. Thewindow that appears calling the Swing\show nput Di al og method.

Y ou can put thisline in the scripts we used to describe ther aw_i nput function and you will obtain
the same behaviour, quirksincluded (even the two windows|ook exactly the same). The big difference
is that, even if you are launching the script from a command line interface outside HIPE, a window
will still pop up.

Granted, awealth of additional optionsis available for this method as well. The ones we saw before
are still valid:

myAnswer = JOpti onPane. show nput Di al og(None, "Pl ease wite something, anything", \
"Bi g question", JOptionPane. QUESTI ON_MESSAGE)

But there is more. We can put a default string of text in the box like this:

myAnswer = JOpti onPane. show nput Di al og(None, "Pl ease wite sonething, anything", \
"Default text")

If we want the user to choose from a predefined set of options, we can use the showl nput Di al og
with awhopping seven parameters, as the following script demonstrates:

fromjavax.swi ng inport *
nmyAnswer = ""
possi bl eAnswers = ["H FI", "PACS", "SPIRE', "No clue", "All three"]
whi |l e nyAnswer == "":
nyAnswer = JOpti onPane. show nput Di al og(None, "Favourite Herschel instrument?", \
"Test", JOptionPane. QUESTI ON_MESSAGE, None, possibl eAnswers, possibl eAnswers[4])
if myAnswer == None:
nmyAnswer = ""
print "Your answer is: " + nyAnswer

- Favourite Herschel instrument?
L]

|SPIRE | =

| oK || Cance||

Figure 3.5. A more complex window with a combo box.

L et us go through the parameters one by one:

1. None: the "parent”" element.

2. "Favourite Herschel instrument?":thewindow text.
3. "Test " : thewindow title text.

4. JOpt i onPane. QUESTI ON_MESSAGE: the type of window.

5. None: the custom icon. We choose to provide no one and stick with the default one.

44

Some DP Basics & Beginning Jython

6. possi bl eAnswer s: the array of possible answers.

7. possi bl eAnswer s[4] : the default answer.

3.19.2.3. showConf i r nDi al og

3.20.

Next we take alook at the showConf i r nDi al og method, which can be used to display a window
asking the user to confirm or block a certain action. One example will clarify what we mean:

fromjavax.swi ng inport *

myAnswer = JOpti onPane. showConfirnDi al og(None, "Yes or no?")

if myAnswer == O: # Now nyAnswer is an integer variable
print "You agree"

elif myAnswer == 1:
print "You di sagree"

el se:
print "You have no opinion on this"

B selectan Option 2

? Yes or no?

Yes Mo Cancel

Figure 3.6. Using the Swing showConf i r nDi al og method.

Note that we can use predefined constants to make the code easier to understand, if a little more
verbose, as the following, slightly expanded example shows:

fromjavax.sw ng inport *
nyAnswer = JOpti onPane. showConfirnDi al og(None, "Yes or no?")
if nmyAnswer == JOptionPane. YES OPTI ON:
print "You agree"
elif myAnswer == JOpti onPane. NO_OPTI ON:
print "You disagree"
elif myAnswer == JOpti onPane. CANCEL_OPTI ON:
print "You have no opinion on this"
elif myAnswer == JOpti onPane. CLOSED_OPTI ON:
print "You closed the w ndow. How rude!"

Asawayswe arefree to make things more complicated than that. We can add another two parameters
to provide atitle for the window and the type of buttons we want:

myAnswer = JOpti onPane. showConfi rnDi al og(None, "Yes or no?", "Question", \
JOpt i onPane. YES_NO_OPTI ON)

Here we decided to drop the Cancel button. Other possible optionsare YES_NO_CANCEL_ OPTI ON,
OK_CANCEL_ OPTI ON, both self-explanatory, and DEFAULT_OPTI ON, which will just display an
OK button.

Useful Java bits

The Jython language is an implementation of Python written in Java, which means that it is as good-
natured yet powerful as Python, but with the added benefit of thousands of packages and classes
developed for Java. We will be using some of these classes in the next chapters, and here is a brief
description of what they do.

» Thej ava. awt package. Asyou already know a package is a collection of related classes, like a
binder on your desk keeping related documents together. The j ava. awmt package contains all of

45

Some DP Basics & Beginning Jython

3.21.

the classes for painting graphics and images. It will be particularly useful in Chapter 6 for plotting
and Chapter 7 for viewing images.

e Thejava. awt . Col or class. With this class you can specify a colour for an object. There
are thirteen predefined colours available: BLACK, BLUE, CYAN, DARK GRAY, GRAY, GREEN,
LI GHT_GRAY, MAGENTA, ORANGE, PI NK, RED, WHI TE and YELLOW If you feel you need a
fancier shade you can provide the red, green and blue valuesindividualy, asthreei nt sbetween
Oand2550r f | oat sbetween 0.0 and 1.0, likethis: j ava. awt . Col or (0.3, 0.2, 0.5).
You can aso add the alpha (transparency) value as a fourth parameter: 0.0 means completely
transparent and 1.0 completely opague.

e« Thejava. aw . Font class. This class allows you to select fonts for annotations on your
graphical objects, together with their style and size. The syntax of the constructor (i.e. the special
method called to instantiate an object from a class) is like this: Font (" SansSeri f", 0,
64) , where we have the font name, its style code (O for plain, 1 for bold, 2 for italic) and its
sizein points.

e Thejava. awt . W ndow class. This class deas with the drawable area of a window on
your desktop (not with borders or menu bars). One useful method, especially for plotting, is
set Locat i on, inherited fromj ava. awt . Conponent . It acceptstwo i nt parameters, the
x andy position of the top left corner of the object you want to move.

For more information on these and other classes of the standard Java APl you should browse the

official Javadoc. If you are looking for a less traumatic introduction to the Java language, the Java
Tutorial is an excellent resource.

Jython and DP Quirks

Every programming language or software system has its quirks. Jython and DP are no exception, and
this section deals with some of the features you might find confusing.

3.21.1. Two functions for one goal

There are some mathematical function in DP existing in two forms, one in the usua
FirstLetter Capitalised form (the so-called Camel Case convention), the other in UPPERCASE. The
first formistherecommended way to go, sinceit isconsistent with therest of the system; thealternative
syntax (technically known as Jython wrapper) is being kept for backward compatibility, but is not
recommended for use in new code and is no longer described in this manual. Examples of Jython
wrappers are MATMUL and SCOLVE instead of the classes Mat ri xMul ti pl y and Mat ri xSol ve,
or RESHAPE instead of Reshape to change the shape of arrays. You might still bump into them
when browsing legacy code.

Unfortunately Jython wrappers are not the only names in uppercase letters, so thisis not a good way
to identify them, since also e.g. static instances (see Section 3.21.3) such as SI N and COS use the
same convention.

3.21.2. Long Names versus Short Names

The general rule used in developing the classes used in the DP system is to use long descriptive
names, e.g., TableDataset rather than TDset. An exception to theruleis, e.g., |IOException rather than
I nputOutputException

The genera rule is that a class name must be self descriptive (easier to remember) which
sometimes conflicts with the requirement "I should do every thing by typing three-six letters".
The latter was a restriction in F77, and language developers fortunately diverted from that (as
it introduced names like CCDF12, CCEFLT, EMPXFF), which are indeed less typing but make
the code less (if not completely un-) readable. Exceptions are usualy dealing with "well-known"

46

http://java.sun.com/j2se/1.5.0/docs/api/
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/index.html

Some DP Basics & Beginning Jython

abbreviations. Acronymssuch as"IBM Type Writer" istaken to become " lbmTypeWriter" rather than
"Industrial BusinessM achinesTypeWriter."

Any Jython user can create aliases by do thingslike:

TDS=Tabl eDat aset

t 1=TDS(description="Hello world, this is still a tabledataset!")

print TDS

herschel . i a. dat aset . Tabl eDat aset

print t1

{description="Hello world, this is still a tabledataset!", nmeta=[], colums=[]}

print t1.__class__
herschel . i a. dat aset. Tabl eDat aset

Here, in effect, we have created a shortened version of the command we can use to set up a
TableDataset called "TDS". We then create a TableDataset, called "t1", which initially contains only
adescription in the second line. Thisis equivalent to writing

t 1=Tabl eDat aset (descri ption="Hello world, this is still a tabl edataset!")

The last two lines indicate the contents of "t1" and the class that created it.

3.21.3. Naming conventions

A potentially confusing aspect to the naming of DP classesisthe mix of upper- and lower-case |etters.
A comprehensive description of the naming convention used inthe HCSSis given in Appendix E and
here we just shortly describe the most important aspects.The upper-case/l ower-case scheme used in
predefined DP classes has the following conventions.

» Classes
Class definitions have names that consist of words of which each first letter is capitalised:

MyOmnd ass
Tabl eDat aset
Hi fi Product

 Classinstances -- objects

Objects (variables) of a particular class have names that should start with the first letter in lower
case. In general, thistrandatesto

myOowmnd ass=MyOmnd ass(....)
t abl e=Tabl eDat aset
a=2

» Classinstances as constants

Certain class instances (or simple variables) are used as constants. The convention isto use names
with al their letters capitalised and words separated by an underscore ' . These are sometimes
referred to as static instances. An example is SIN: it is the only (allowed) instance of class Sin, as
it does not make sense to have multiple instances of these. Examples are:

VARI ANCE
IS FINTE
ALL_PRESENT

3.21.4. Miscellaneous quirks

» Workingdirectories. Restrictions are placed on dealing with working directories due to the use of
Java. Thisisdiscussed in Section 2.6.

47

Some DP Basics & Beginning Jython

» Loops, indentation and blank line usage. Indentation in loopsis very strict within HIPE. Blank
lines can have particular significance, particul arly with respect to setting up loops. These quirks are
described in Section 2.8.

» Logical operators. The presence of Jython origina features together with DP specific ones can
result in counter-intuitive behaviour and unexpected results Section 5.7 in Chapter 5 deals with

these quirks.

X

Warning

Each jython script iscompiled by the Javavirtual machineinto one single non-native, non-
abstract method and such Java methods cannot exceed certain limit, usually 65536 bytes.
If your jython script is very long (more than few thousands of lines) then it is advisable
to split it into separate scripts.

48

Chapter 4. Handling Array Data
Objects, Datasets and Products

4.1. Introduction

This chapter aims to familiarize the user with the DP Array data objects, Datasets and Algorithms
concepts. Thisis not an exhaustive reference to all the functionality provided, the full set of available
array object and dataset capabilities are discussed in the herschel.ia.numeric and herschel.ia.dataset
packages Javadoc.

There are three types of basic datasets:

 array datasets (datasets containing single Ar r ayDat a objects, holding numbers, strings, €tc. in
1D, 2D, 3D, 4D or 5D)

« tabledatasets (x rowsby y columnsof numeric or string arrays). Table datasets can have columns of
various data types mixed in the same dataset and can also contain unit and descriptive information
for individual columns.

» composite datasets (combines multiple connected arrays/tables in a single dataset).

One of the major advantages of DP numeric array objects (as opposed to Jython lists) isthe ability to
do array arithmetic in single line commands rather than having to loop through arrays.

In this chapter, we discuss how to formulate and use each array object and dataset type.

4.2. Getting started

All classes and methods associated with handling datasets and numeric functions are automatically
loaded when the DP session is started in this manner.

The DP numeric package currently contains many functions and is discussed in more detail in
Chapter 5. Here we include the use of portions of it to help illustrate how datasets may be handled.

4.3. Types of Array Data Objects

DP numeric array data objects can have up to 5 dimensions and have the types shown in the following
table.

Table4.1. Numeric typesavailablein DP (N = 1...5)

Name Type Dimensions
1 2 3+
BoolNd boolean yes yes yes
ByteNd byte yes yes yes
ShortNd short yes yes yes
IntNd integer yes yes yes
LongNd long yes yes yes
FloatNd float yes yes yes
DoubleNd double yes yes yes
ComplexNd complex yes yes yes
Stringld @ string yes NO NO

49

Handling Array Data Objects, Datasets and Products

© TheStringld array typeis not strictly numeric.

4.3.1. DP Numeric Array Access and Slicing

The numeric package introduces the following square brackets notation:

where each element is separated by a comma, and the number of elements must be equal to the rank
of the array. Arrays are zero-based which means the first element of an array hasindex 0 (zero) and
theindex of the last element of an array isarray. | engt h() - 1.

In addition the package supportsthe colon (:) notation to designate aslice. A sliceisarange of indices
defined asi : j , wherei isthe starting index and inclusive, and it is zero if not specified. The ending
index j isexclusiveanditisequal toarray. | engt h() if not specifiedandarray. | engt h() -
j if negative.

The following example illustrates the access to elements in a multi-dimensional array and the use of
dlices. More examples can be found in the section on Multi-Dimensional Arrays.

define something that is like a rectangular 2x3 array:

123

456

x=Int2d([[1,2,3],[4,5,6]])# Intld can swallow the jython sequence
print x #[[1,2,3],[4,5,6]]

print x[1] # 2 (second el ement of the first row)
print x[1,:] # access arowi.e. [4,5,6]

print x[1,1] # access an individual elenent i.e. 5
print x[:,:] #[[1,2,3],[4,5,6]]

print x[:,1] # access a colum i.e. [2,5]

4.4. Creating a Simple 1D DP Numeric Array

In order to create an array data object we only need to do something like the following:

a = Intld()

This provides us with an empty integer array. We can now add elements to this by

a. append(2)

Or

a. append(Int1d([1,2,3,4,5]))

to append awhole 1D integer array.

Alternately, we could have created the array in one go, like this:

a = Intld([1,2,3,4,5])

The following show various ways in which numeric 1D arrays can be created in the DP environment.

Doubl e1d([1.0,2.0,3.0,4.0]) # Create froma Jython array
Doubl e1d(4) # [0.0,0.0,0.0,0.0]

Doubl eld(4, 42.0) # [42.0,42.0,42.0,42.0]

Doubl eld. range(4) # [0.0,1.0,2.0,3.0]

<K<K <
o mn

50

Handling Array Data Objects, Datasets and Products

4.5. Creating and Handling Complex Array
Data Objects

The numeric library has a Conpl ex class and a Conpl exNd class for N-dimensional arrays of
complex numbers (N =1, 2, 3,4 or 5).

z = Conplex1d([1,2,3,4],[4,3,2,1]) # Set up conplex array

print z # [(1.0+4.0j),(2.0+3.0j),(3.0+2.0j), (4.0+1.0j)]

print z.getReal () # Print real part

print z.getlmag() # Print imaginary part

print z.conjugate() # [(1.0-4.0j),(2.0-3.0j),(3.0-2.0j),(4.0-1.0j)]

Complex numbers in the numeric package are constructed using the Conpl ex constructor (with an
upper-case 'C):

z1
z2

2 + 3j # Jython conplex (2+3j)
Conpl ex(2,3) # Nuneric Conplex (2.0+3.0j)

In other respects, Conpl ex arrays are used in much the same way as Doubl e arrays. Their main
use, at present, is for discrete Fourier transforms.

4.6. Creating and Accessing Multi-
Dimensional Array Data Objects

Creating and manipulating multi-dimensional arrays occursin a similar way to the 1D case. The DP
numeric library supports arrays of up to 5 dimensions. For example, to create aDoubl e2d array:

x = Doubl e2d([[2,4,6],[1,3,5]])

Multi-dimensional arrays are conceptually arrays of lower-dimensional arrays. For atwo-dimensional
array, the first subscript selects arow and the second subscript selects an element within that row (the

column).
Note
@ Thisisthe opposite order to some other computer languages, but it is the same behaviour
asin the Java programming language.
For example:

print x[1,:] # Get row1l i.e. [1.0,3.0,5.0]
print x[1,2] # 5.0, the element in row 1, colum 2

Note: indexing multi-dimensional arrays is done differently in DP numeric arrays as compared to
Jython arrays. The following code examples show the syntax for Jython and DP numeric arrays. The
reason for thisisto alow slicing on multi-dimensional arraysin DP which istechnically not possible
using the Jython syntax.

Jython array:

x =[[1,2,3,4],[5,6,7,8]]
print x[1][2] # 7
print x[1][1:3] # 6, 7

DP nuneric array:

y = Int2d([[1,2,3,4],[5,6,7,8]])
print y[1,2] # 7

print y[1,1:3] #6, 7

51

Handling Array Data Objects, Datasets and Products

4.6.1.

Individual elements or slices can be set as follows:

x[1,2] = 22 # Set an elenent in place
x[0,1:3] = 42
print x # [
[2.0,42.0,42.0],
#[1.0,3.0,22.0]
]

It ispossible to set arow to acopy of a1d array of the same length:

x[0, :]
y[1,:]

[5,6,7,8] # Set arowto (a copy of) a Jython array
Int1d([9,7,6,5]) # Set a row to a Doubl eld array

A note on array ordering

Look again at the first example of Section 4.6:
x = Doubl e2d([[2,4,6],[1,3,5]])

This line of code creates an array of two rows and three columns. The element corresponding to the
i-th row and j-th column can be accessed like this:

x[i,]
The values are stored sequentially in memory as follows:
[246135]

Thismeansthat, if we go through the array elements asthey are stored in memory, their indiceswould
vary asfollows:

x[0,0] x[0,1] x[0,2] x[1,0] x[1,1] x[1,2]

That is, index j varies more rapidly than index i. We can generalise to more than two dimensions
by saying that the rightmost index varies most rapidly. Thisis called row-major ordering, and is the
convention followed by languages such as Javaand C, but not Fortran.

This has an implication on performance. When looping through a multidimensional array, it is more
efficient to read its elements in the order they are stored in memory.

Confusion may al so arise when dealing with images, which are stored astwo-dimensional arrays. If we
visualize the array with horizontal rows and vertical columns, then the number of rows and columns
representsthe size of thevertical (y) and horizontal (x) side of theimage, respectively. When accessing
aparticular pixel (array element), you have to specify the y coordinate before the x coordinate:

nyl mage(y, x)

4.7. Adding Attributes to Create an Array
Dataset

Let's start by creating a simple dataset. Let's assume that we want to create a dataset containing one
component: a 1D array of double precision numbers (doublesin an array we will call 'x").

Typein the following steps (without the comments preceded by '#):

x = Doubl eld. range(10) # ©

52

Handling Array Data Objects, Datasets and Products

s = ArrayDat aset (dat a=x, descri pti on="range of double values") # @

© Therange() function creates a 1D array of integers with the values 0O, 1, 2...9. Putting
Doubl eld inthe front converts the array values to doubles.

® Thisactually createsthe array dataset with data being the array x of values 0.0, 1.0, 2.0...9.0 and
some associated information, a description.

This creates an object x, corresponding to a 1D array of 10 doubles from O to 9, and writes that to a
dataset object, s, which aso contains a description of the dataset. Ther ange command produces ten
integer numbersfrom 0to 9. Thisis placed in a1D array of doubles by thefirst line.

Now let'slook at the contents of the dataset s:

print s

If you want to be specific and print individual components of the dataset, you may do so using the
special description and data attributes:

print s.description # Just print the description that is attached to the dataset
print s.data # Print only the data contained in the dataset

And even individual elements of the data component:

print s.data[2] # View the value of the third el enent of the array
contained in the dataset

4.7.1. Dataset Attributes and Metadata

In the previous section, we have seen that the ArrayDataset s possesses at least 2 attributes:
descri pti on and dat a. They have in addition a third attribute not so far illustrated, net a. The
descri pti on and et a attributes are common across all dataset types.

Thedescri pti on attributeisused to store ahuman-readable text that hel psthe user to understand
therole of the dataset.

Thenet a attribute stores a map of keyword-value pairs of datathat can be used to identify that data
in adatabase (for example) - the so-called meta-data. Examples of metadatafor an observationinclude
the date of the current observation; the name of the source; the coordinates of the source, etc. These
are basically the DP equivalent of FITS keywords. The alowed data types for meta-data elements
are String, Double, Boolean, Long, and Date (e.g., St ri ngPar anet er, Doubl ePar anet er
etc.). See the JavaDoc on the class MetaData for more information on the allowed types.

Thefollowing code snippet shows how to add parameter information (in theform of stringsor doubles)
to the et a attribute:

.neta["observation"] = StringParaneter("NGC 4151")

.neta["principal investigator"] = StringParaneter("Anthony Mrston")
.nmeta["ra"] = Doubl eParanet er (182. 836)

.nmeta["dec"] = Doubl ePar anet er (39. 405)

n un non

These are actually shortcuts to Java usage. For example, the first line could also have been written as

s.get Meta().set("observation", StringParaneter("NGC4151"))

4.8. Creating and Viewing a TableDataset

What is often required is to store data in a tabular format with N columns. The Tabl eDat aset
providessuchameans. A Tabl eDat aset ismade up of anumber of columns. Each column contains

53

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/herschel/ia/dataset/MetaData.html

Handling Array Data Objects, Datasets and Products

an ArrayDat aset (data), a description and a quantity (unit -- require the Unit package import,
see below) value associated with the Arr ayDat aset . Each Arr ayDat aset can have up to 5
dimensions and can be of varying types. Inthefollowing example, aTabl eDat aset iscreated with
3 columns each containing a 1D dataset, one being a sequence of numbers from 1 to 100, the second
being the sine value of each of the numbers in the first column, and the final column containing the
valuesin the first column multiplied by 100. The column names are x, si h and y respectively.

Note
@ For reasons of flexibility, memory consumption and performance, this class is not
checking whether all columns are of the same length: thisis the responsibility of the user.

from herschel . share.unit inport * # to allow the use of the Unit package

X Doubl eld. range(100)

t = Tabl eDat aset (description="This is a table") # @
t["x"] = Columm(data=x, unit=Duration. SECONDS) # ©
t["sin"] = Col um(data=SI N(x), description="sin(x)") # ©
t["y"] = Col um(data=x*100, descri pti on="x*100")

This sets up the table dataset with an associated description

This creates our first column which has the data, x and its associated units, which in this case
isatime duration of SECONDS.

©® Here we have applied the SI N function from the numeric package, and we have also added a
description for the second column.

(1]
(2]

Tabledatasets can be viewed using the DatasetI nspector GUI button. Values can also be obtained using
the following steps which show how the data can be listed (plotting the data graphically is discussed
in Chapter 6):

print t # Print a Tabl eDataset called t (see above)

print t.nmeta # Print the netadata (enpty in this case)

print t["x"] # Print a columm by nane

print t[2] # Print a columm by index

print t[2].data # Print the data inside the colum

a =t[2].data # Assign data in colum to a list variable, "a".

print t[2].data[4] # Print element with index=4 in the last (third!) colum
b = t[2].data[4] # Assign the data value to variable "b".

print t[2].description # Prints columm description only

print t["x"].unit # print the associated unit values for the colum

Alternately, we can access columns via the getColumn method

print t.getColum("y") # Print a columm by nane

print t.getColum(2) # Print a colum by index

print t.getColum(2).data # Print the data inside the colum

print t.getColum(2).data[4] # Print element with index=4 in the third colum
print t.getColum(2).description # Prints colum description only

We can also get row values

print t.getRow(1l) # Gets a |list of the values in the second row.

And hereis how data can be modified:

print t["y"].data[O0]
t["y"].data[0] =999.
print t["y"].data[O0]

We may also get and set values at a position in a TableDataset.

t.getVal ueAt (0, 1) # gets the value contained in row=0, colum=1

54

Handling Array Data Objects, Datasets and Products

4.8.1.

4.8.2.

t.setValueAt (30.5, 0, 1) # sets the value 30.5 at row=0, col um=1

Row-wise appending of TableDatasets

It is possible to append the data from one table dataset to data in another, provided that they have
the same number of columns and each column in either dataset is of the same type. The following
exampleaddst 2 asarow totablet 1.

t1l = Tabl eDat aset ()

t1["x"] = Col um(data=I nt1d.range(5))
t1["y"] = Col um(dat a=Doubl eld. range(5))
t2 = Tabl eDat aset ()

t2["a"] = Col um(dat a=I nt 1d. range(10))
t2["b"] = Col um(dat a=Doubl eld. range(10))

The following will append the data in t2 to the data in t1l
tl.rowCount will then report 15 rows:
t1. addRow(t 2)

If we now use print t1["x"].data we can see that the "x" column has the values
[0,1,2,3,4,0,1,2,3,4,5,6,7,8,9].

Assigning Units

This section exaplins what units can be assigned and how they may be manipulated. Aswe have noted
above, we can assign units to the columns in our dataset. in order to use the Unit package we have
to import it:

from herschel . share. unit inport *

Note that the Unit package are used in the whole HCSS and not only in the interactive analysis, that
iswhy it is part of the herschel.share library.

The units fall into several category types, as they are shown in alphabetical order in Table 4.2. To
assign a unit the type and value s required to be given. For example -- the variable "a" can be assigned
to be aunit of angle in degrees with

a = Angl e. DEGREES # Type. VALUE

This can be associated with a column's unit in atable using

t["x"].unit = Angl e. DEGREES

55

Handling Array Data Objects, Datasets and Products

Table 4.2. All available basic unitstypes

Type VALUES

Acceleration METERS_PER_SECOND_SQUARED

Angle RADIANS, DEGREES, MINUTES _ARC, SECONDS ARC

AngularMomentum JOULE_SECOND

AngularSpeed RADIANS PER_SECOND, DEGREES PER_SECOND

Area SQUARE_METERS, SQUARE_KILOMETERS

Constant H_PLANCK, K_BOLTZMANN, ELECTRON_CHARGE,
SPEED_OF LIGHT

Duration SECONDS, MINUTES, HOURS, DAY S

ElectricCapacitance FARADS, MILLIFARADS, MICROFARADS, NANOFARADS,
PICOFARADS

ElectricCharge COULOMBS

ElectricConductance |SIEMENS

ElectricCurrent AMPERES, MILLIAMPERES

Electriclnductance HENRIES

ElectricPotential VOLTS, MILLIVOLTS

ElectricResistance OHMS

Energy JOULES, ERGS, ELECTRON_VOLTS

Entropy JOULES PER_KELVIN

Flux density JOULES PER_SQUARE_METER, JANSKYS, MILLIJANSKY'S,
MICROJANSKYS

Force NEWTONS, DYNES

Frequency HERTZ, KILOHERTZ, MEGAHERTZ, GIGAHERTZ, TERAHERTZ

Length METERS, ANGSTROMS, KILOMETERS, CENTIMETERS,
MILLIMETERS, MICROMETERS

Mass GRAMS, KILOGRAMS

NEP (Noise Equivalent |WATTS PER_SQRT_HERTZ

Power)

Power WATTS, KILOWATTS, MEGAWATTS

Pressure PASCALS, BARS, MILLIBARS

Scalar This class represents scalar units and provides some constants:ONE,
PERCENT,DECIBELS

SolidAngle STERADIANS, SQUARE_MINUTES ARC,
SQUARE_SECONDS ARC

Speed KILOMETERS PER_SECOND, METERS PER_SECOND

Temperature CELSIUS, KELVIN

ThermalConductivity |WATTS PER_METER_KELVIN

Timelnstant TAI,UTC

WaveNumber RECIPROCAL_METERS, RECIPROCAL_CENTIMETERS

4.8.2.1. Manipulating Units

We may manipulate units to obtain derived units. Examples are the following

N = Force. NEWITONS

56

Handling Array Data Objects, Datasets and Products

m = Length. METERS

m = nf*2 # Square neters
Pa = N/ n2 # Pascal s

J =N*m # Joul es

4.8.2.2. Converting Units to Strings and Back Again

We can convert aunit variable to astring in several ways:

A = Lengt h. ANGSTROVS

print A # angstrom [1. 0E-10 nj, no conversion

print A nane # angstrom This is a string quantity.

print A di al ogNane # Angstrom synbol. This is a string quantity.
um = Lengt h. M CROVETERS

print um # mcroneter [1.0E-6 n], no conversion, includes factor
with respect to Sl unit
print um nane # mcroneter, only ASCI| characters. This is a string.

print umdialogNane # pum This is a string quantity.

We can also convert astring to a unit

print Unit.parse("kms-1")

or print (Unit.parse("km') / Unit.parse("s"))

print Unit.parse("kms-1") # Speed. KILOVETERS _PER_SECOND
print Unit.parse("arcsec") # Angl e. SECONDS_ARC)

print Unit.parse("eV') # Energy. ELECTRON VOLTS)

print Unit.parse("cn') # Length. CENTI METERS)

print Unit.parse("nmm') # Length.M LLI METERS)

print Unit.parse("mcron') # Length. M CROVETERS)

4.8.2.3. Derived Units

We can also provide derived units by application of .milli, .micro and .nano methods.

Dur at i on. SECONDS
s.mcro # mcro seconds
S. nano # nano seconds

us
ns

4.8.2.4. Conversion to Sl and Other Units

If the SI unit is needed rather than the unit used then Sl unit and the factor between the two can be
provided.

print Angl e. DEGREES. asSI # gives unit as Angl e. RADI ANS

print Energy. ERGS. asSl # gives unit as Energy. JOULES

print Speed. KI LOMETERS_PER HOUR. asSl # gives unit as Speed. METERS _PER_SECOND
print Unit.parse("g cms-2").asSl # gives unit as Unit.parse("kg ms-2")

#

print Length. ANGSTROVS. t oSl # 1. 0E- 10
print Duration. HOURS. t oSl # 3600.0
print FluxDensity.M LLIJANSKYS.toSI # 1.0E-29
print Unit.parse("g cms-2").toSl # 1.0E-5

or factor conpared to other units

mn = Duration. M NUTES

ms = Duration. M LLI SECONDS

print mn.to(ns) # 60000.0

mv = Unit.parse("nV') # mllivolts

print nV.to(nV.asSl) # 0.001; sanme as nV.toSl

4.8.2.5. Physical Constants

Physical constants can also be provided to the system with their correct units, e.g.

h = Constant. H PLANCK

57

Handling Array Data Objects, Datasets and Products

print h.value # 6.62606896E-34
print h.unit #J s

print h # 6.62606896E-34 J s
k = Constant. K_BOLTZMANN

print k.value # 1.3806505E-23

print k.unit #J K1

print k # 1.3806505E-23 J K-1

4.8.2.6. Unit Compatibility

We can compare units to see if they are of compatible types.

kg = Mass. KI LOGRAMS

g = Mass. GRAMS

m = Length. METERS

print kg.isConpatible(g) # true
print kg.isConpatible(m # fal se
print kg.isConpatibl e(Mass) # true
print kg.isConpatibl e(Area) # fal se
print Unit.parse("g cms-2").isConpatible(Force) # true
print Unit.parse("g cms-2").isConpatible(Power) # false

4.8.2.7. Unit Equivalence

Wecanusethe. i sEqui val ent method to determine if two unit types are the same.

kg = Mass. KI LOGRAMS

S = Durati on. SECONDS
m = Length. METERS

N = Force. NEWTONS
dyn = Force. DYNES

print N.isEquival ent(dyn) # fal se
print N isEquivalent(kg * m/ s**2) # true

4.9. Creating and Accessing a Composite
Dataset

The ArrayDat aset and Tabl eDat aset types enable the user to encapsulate arrays and tables
of primitive data types easily. However, they do not alow arbitrary structures of data, or data within
data, to be constructed. Examples of complex datasets are grouped observations (making a map
with an offset reference position, for instance), which could have 1D and 2D array data together
with a table which might contain (for example) calibration data. Such complex structures can be
built using the Conposi t eDat aset . Example 4.1 creates a Conposi t eDat aset containing in
turn an Ar r ayDat aset, a Tabl eDat aset, afew St ri ngPar anmet er s, and another nested
Conposi t eDat aset . It alsoillustrates how we can access the components of the composite dataset.

58

Handling Array Data Objects, Datasets and Products

First we set up a one-di mensional array of doubles (0.0, 1.0 ... 9.0)
= Doubl eld. range(10)

Then we create an array dataset with an added description

= ArrayDat aset (dat a=x, descri pti on="Range of doubl es")

This sets up an enpty table with a description

= Tabl eDat aset (description="This is a table")

The array 'x' is then added to the table and given a

col um headi ng "x"

t["x"]=Col um(x)

Each of the array elements of 'x' is nmultiplied by 4

and becones the data in the table columm | abel ed "y".

The table colum al so has a description added to it.
t["y"]=Col um(dat a=x*4, descri pti on="x*4")

c is an enpty conposite dataset.

c=Conposi t eDat aset ()

We add a description to c

.description="This is a conposite dataset. It contains three datasets!"
We add the author's name as a string paraneter

.meta["author"] =StringParanet er ("Jorgo Bakker")

We input a version nunber as a string paraneter

.meta["version"]=StringParaneter("2.0")

We put the array dataset s into the conposite dataset c

and give it the name nySinple so that we can refer to it
c["nySinple"] =s

W do the sane for the table

c["nyTable"] =1t

This just shows you can add a conposite dataset into another
conposite dataset (nesting)

c["nyNest"] = ConpositeDataset("Enpty nested conposite dataset")

HH T HOH X H

HFHOHFOHOH

print c # View contents of the conplex dataset.

tab = c["nmyTabl e"] # Gets our Tabl eDataset back. Now called "tab".
print tab # We see that it has two columms called "x" and "y"
print tab["x"] # Prints out what is in the "x" colum.

print tab["x"].data # To just print out the data val ues.

Example 4.1. Example of how to create a composite dataset

4.10

Spectrum Datasets

Spectra are contained within datasets that also contain raw data counts together with metadata that
allows for the correct handling of combinations of spectra (e.g., spectra arithmetic) and display of
spectra. Basic spectral types are Spect r al Segnent , Spect r umld and Spect r und.

4.10.1. Spectrumld and SpectralSegments

A one-dimensional representation of a spectrum. Container has a TableDataset() that has columns for
flux, flag, weights and numbered segments (components of the 1d spectrum). It contains

A flux column (Doubleld). This can be obtained from a Spectral Segment using the getFlux()
method. For example; a= %spectrumld_name%.getFlux().

» A wavelength/frequency column (Doubleld). The wavelength column can be obtained using the
getWave() method.

» A weight column (Doubleld). The weight column can be obtained using the getWeight() method.

» A segments column (Doubleld). The segments column can be obtained using the getSegment()
method.

» A flag column (Int1d). The flags can be obtained using the getFlag() method.

A Spectrumld can also have metadata (header information) added. The following illustrates how a
Spectrum1d dataset can be built from scratch.

59

Handling Array Data Objects, Datasets and Products

flux = Doubl eld([12.2,12.5,13.0,11.8,11.9,12.6, 14.2,15.8,12.2,15.2])
segs = Int1d([0,0,0,0,0,1,1,1,1,1]) # segnent id for each point
wave = Doubl eld([1000. 0, 1000. 2, 1000. 4, 1000. 6, 1000. 78

\ 1100. 0, 1100. 2, 1100. 4, 1100. 6, 1100. 78])
flag = Int1d(10) + 1
wei ght = Int1d(10) + 1.0
a = Spectrumld(fl ux, wei ght, fl ag, segs) #indicate the fluxes and segnents
a.set ("wave", wave) # add the wavel engths col um
a.set Meta(" name", "Arp220") # sets keyword name in netadata of Spectrum
ot her netadata can be added, as needed
print a.getWave() # shows the "wave" col um
Using the Dataset viewer, the full information can be viewed (see
Section 4.14)

The spectrum can be made of several segments. A Spect r al Segrent is the smallest spectrum
component dealt with by the DP system. This can be a piece of a spectrum extracted from a larger
one-dimensional spectrum to be used for fitting purposes (for example). It can be extracted from a
Spectrum1d using the following.

b=a. get Spectral Segnent (1) # get second spectral segnment (nunbering starts at 0)
print b.getWave() # provides the wavel engths associated with this segnent

Many of the spectral tools (arithmetic, fitters) work with the basic unit of a spectral segment.

4.10.2. Spectrum2d

For multiple spectra taken in an observation, a 2D structure is required. The components of a
Spectrum?2d dataset is similar to that of a Spectrum1d dataset, except for having a second dimension.
An additional component is the ability to contain subbands. A clear example of the usefulness of this
comes in the output from the HIFI spectrometers where several CCD or autocorrelator readouts lead
to several "chunks' (subbands) of spectra in one data frame. Having subbands is an option for the
Specrum2d. It contains

* A flux column (Double2d). This can be obtained from a SpectralSegment using the getFlux()
method. For example; a= %spectrumld_name%.getFlux().

« A wavelength/frequency column (Double2d). The wavelength column can be obtained using the
getWave() method.

» A weight column (Double2d). The weight column can be obtained using the getWeight() method.
» A flag column (Int2d). The flags can be obtained using the getFlag() method.
* (optional) a subbandstart column (Int1d). Indicates where in the arrays that a subband starts.

* (optional) asubbandlength column (Int1d). Indicatesthelength of array section that a subband takes
up.

The number of channelsisautomatically generated in the metadata when setting up a Spectrum2d. An
example of setting up a Spectrum2d from scratch is given below.

flux2 = Doubl e2d([[12.2,12.5,13.6,12.8],[12.8,12.2,13.3,12.9],

\ [10.2,14.5,12.5,11.4],[12.2,12.5,13.6,12.8]])

flag2 = Int2d([[1,1,1,1],[1,1,1,1],[1,1,1,1],[1,1,1,1]])

wei ght2 = Doubl e2d([[1,1,1,1],[2,1,12,1],[1,1,12,1],[1,1,1,1]])

a2 = Spectrund(flux2, wei ght2,flag2) # sets up 4 channels each with 4 pixels

wave2 = Doubl e2d([[1000. 0, 1000. 2, 1000. 4, 1000. 6], [1000. 0, 1000. 2, 1000. 4, 1000. 6],
\ [1000. 0, 1000. 2, 1000. 4, 1000. 6], [1000. 0, 1000. 2, 1000. 4, 1000. 6]])

a2.set ("wave", wave2) # add the wavel engt hs

print a2.getWave() # to print out the wavel engths

print a2.getFlux() # to print out the fluxes

60

Handling Array Data Objects, Datasets and Products

We can also set up a Spectrum2d with associated subbands. This basically allows us to set up, in one
dataset, a container which holds many individual spectra which as many subbands each covering a
different wavelength range, if necessary (e.g., with the individual subbands of the HRS spectrometer
of HIFI). This forms the basis of how spectral observations, which typically are made up of many
frames, are stored in the Herschel DP environment.

Now deal with subbands.

Create the container for the spectra

a3 = Spectrund()

indicate the nunber of subbands it will have

a3. set Subbands(2)

a3. set SubbandStart (I nt 1d([0, 2]))

a3. set SubbandLengt h(Int1d([2,2]))

flux3 = Doubl e2d([[12.2,12.5,13.6,12.8],[12.8,12.2,13.3,12.9]])
flux4 = Doubl e2d([[10.2,14.5,12.5,11.4],[12.2,12.5,13.6,12.8]])
a3d.set ("flux_1", flux3)

a3.set ("flux_2", flux4)

print a3.getFl ux(1)

wave3 = Doubl e2d([[1000. 0, 1000. 2, 1000. 4, 1000. 6], [1000. 0, 1000. 2, 1000. 4, 1000. 6]])
a3. set ("wave_1", wave3)

a3. set ("wave_2", wave3)

#get wavel engths for second subband

note that there are two sets of neasurenents

print a3.get\Wave(2)

#get fluxes for first set of measurenents

of subband nunber 1.

print a3.getFlux(1l).get(0)

or second set

print a3.getFlux(1l).get(1)

this way you can go through nultiple

measurenments using the sane subband that are

stored in the sane dataset.

We can do the same for wavel engths, e.g.,

print a3.get\Wave(1l).get(0)

i nstrument pipelines producing spectra store the data in Spectrunid
or a variant (see next section).

4.10.3. Expanding Spectrumld and Spectrum2d
Datasets

Extensions to the basic Spectrumld and Spectrum2d datasets have been created that allow for more
convenient access to specific instrument data types. Typicaly, thefull spectral information, including
metadata, is created from the original instrument dataframes and housekeeping information coming
from the spacecraft. However, it can be instructive to formulate things from their basic components.

4.10.3.1. HIFI Extensions

Examples of HIFI extensions to the Spectrumld and Spectrum2d datasets are the
WbsSpect r unDat aset andHr sSpect r unDat aset availablefor thetwo types of spectrometer
datafrom HIFI. These can be created by obtaining HIFI dataframes and housekeeping telemetry source
packets (these are not generally available to most users).

creating a WBS spectrum dat aset
from herschel . hifi.pipeline.product inport *
w = WosSpectrunDat aset (array of WBS dataframes, array of HK tel enetry)

Such a spectrum dataset automatically includes more metadata such as observation identification and
data creation date. It can also contain the information for the wavelength as a model -- typically
polynomial fit information.

Displaying the table of dataset, for each spectrum not only is flux and wavelength listed but other,
HIFI-specific, information such as chopper position and on-board buffer storing the data (see Fig.***).

61

Handling Array Data Objects, Datasets and Products

Typical observations actually contain groupings of such datasets. For example, internal flux calibrator
dataframes, science dataframes and frequency calibrator data frames. These are typically grouped
together in a HIFI timeline product. So a typical HIFI observation with all four spectrometers used
would have four HIFI timeline products.

Creating a H FlI tineline product
from herschel . hi fi.pipeline.product inmport *
htp = Hifi TinelineProduct (array of WBS datafranmes, array of HK tel emetry)

For the most part users will not need to create the datasets/products but will need to access the data
in them. We can use the get Fl ux() and get Wave() methods as before. For HIFI spectra, the
get Wave() method providesthe IF frequency values. The lower or upper sideband frequencies can
also be obtained using theget LsbFr equency() or get UsbFr equency() methods. So we can
crudely plot -- with labels to be attached later -- the spectrum (upper or lower sideband) using the
following.

Continui ng from above.

Get the first dataset in the product

wbs = htp.get(1)

Plot of flux against |F frequency

p = Pl ot XY(wbs. get Wave().get (1), wbs. get Fl ux().get(1))

This provides a plot of the second franme, called frame nunber 1.
Simlar but noww Il plot the LSB frequency which takes

the local oscillator frequency information into account

p = Pl ot XY(wbs. get LsbFrequency().get (1), wbs. get Fl ux().get (1))

4.10.3.2. SPIRE extensions to Spectrumld

The SPIRE instrument also uses an extension of Spect rumnild. The basic component dataset
for the spectrum obtained by a single SPIRE pixel is the Spi r eSpect r uniid. As opposed to
Spect runild, complex data are possible (stores Numericld inputs as Complex1d). The data is
composed of complex values of flux and flux error with associated units. A mask can also be added
(typel nt 1d).

Individual spectra from separate pixels can be grouped together to formulate a single SPIRE scan
dataset. Thisin turn can be grouped into a set of scans that would be more typical of asingle SPIRE
observation.

from herschel . share. unit inport *

from herschel . spire.ia.dataset inport *

¢ = Conpl ex1d([2+3j, 3+2.1j,3.6 +2.4j,0.9+2.1j])

err = Conpl ex1d([0. 2+0. 2j, 0.8+0. 3j, 0. 4+0. 3j, 0. 15+0. 1j])
flu = Fl uxDensity. JANSKYS

wu = WaveNunber . RECI PROCAL_METER

wn = Doubl eld([0. 3,0.4,0.5,0.6])

mask = Int1d([1,1,1,1])

sps = SpireSpectrumld("Pi xel name")

sps. set Conpl exFl ux(c, flu)

sps. set Conpl exFl uxError (err, flu)

sps. set Wavenunber (wn, wu)

sps. set Mask(mask)

Now we can get the data by replacing set by get,

and renoving the argunents, e.g.,

sps. get Conpl exFl ux() # returns the flux data

and we can get the units separately, e.g.,

sps. get Conpl exFl uxUni t s()

Now we can place a nunber of pixels in a single unit
a SpireSpect rumConposi t eDat aset .

Create sps, spsl, sps2, sps3 etc.

spire_cds = SpireSpectrunConpositeDataset("Scan nunber")
Scan nunber can be a string nane (as above) or a long nuneric val ue.
add pi xels of data.....

spire_cds. set Pi xel (sps)

62

Handling Array Data Objects, Datasets and Products

spire_cds. set Pi xel (spsl)

spire_cds. set Pi xel (sps2)

spire_cds. set Pi xel (sps3)

pi xel names are as set up in the original SpireSpectrumld

we can get a pixel using

want ed_sps = spi re_cds. get Pi xel ("Pi xel nane")

Most SPI RE spectroneter observations are conposed of many scans

which we can then place several conposite datasets in a single dataset.
spire_sds =SpectroneterDetectorSpectrum() # create enpty dataset
spire_sds. set Scan(spire_cds) # add in scan, given next scan nunber available =0
spire_sds. set Scan(spire_cdsl) # add in scan, given next scan nunber available =1
Now access a scan

want ed_cds = spire_sds. getScan(0) # for the first scan

4.10.3.3. PACS Spectrumld and Spectrum2d extensions

4.11

PACS spectra is based on handling the Frames and Ramps based on the readout of the PACS
spectrometer. The handling of these dataiis currently discussed in the PCSS User's Manual.

Image and Cube Datasets

Image and cube datasets are composed of Double2d and Double3d componentsthat represent intensity,
masks and errors. They also contain metadata information that provide for coordinate information.

Si npl el nage contains a standard two-dimensional image which contains the following.
* | mage made of aNumeric2d (e.g., Double2d or Int2d) component.

e Error madeof aNumeric2d (e.g., Double2d or Int2d) component can be added.

» Exposur e made of aNumeric2d (e.g., Double2d or Int2d) component can be added.

» FI ag made of a Short2d (e.g., Double2d or Int2d) component can be added. is created.
Units can be added/set to the image contained and World Coordinate System information.

An example of creating a Simplelmage from an imported JPG image is given below.

from herschel .ia.gui.inmge inport *

from herschel . i a. dataset.image. wcs i nport Ws

from herschel . share.unit inport *

choose units

myQuant = Fl uxDensity. M LLI JANSKYS

create WCS to assign

myWs = Wes(crpixl = 29, crpix2 =29, crvall = 30.0, crval2 = -22.5)

create the sinple inage with an assi gned WCS and a description

nyl mage2 = Si npl el mage(description="Veil nebula",unit = nmyQuant, wes = nyWs)
inport an inage -- converted into Doubl e2d/Int2d for inclusion

Note: to inport the image with the foll ow ng command, the JPG file

needs to be in the sane directory as the the HCSS interface (JIDE or H PE)
was started from

nmyl mage?2. i nportFil e("ngc6992.j pg")

Assign a reference wavel ength to the inage

nyl mage2. set Wavel engt h(12. 0, Lengt h. M CROVETERS)

print reference wavelength in millinetres

print nyl mage2. get Wavel engt h(Lengt h. M LLI METERS)

print the units being used

print nyl mage2. getUnit()

#print intensity at pixel position 30, 35

print nylmage2. getlntensity(30, 35)

W can add exposure and error naps.....

Use nyl mage2. set Exposur e(<a Doubl e/ I nt2d i nage>) or

nyl mage2. set Error (<a Doubl e/ I nt2d i mage>) to incl ude

exposure maps or error maps W th the inage

Using the .getError and .get Exposure nethods extracts these images from

the Sinplelnage dat aset.
To display we can use

63

Handling Array Data Objects, Datasets and Products

Di spl ay(nyl nage2)
Sone display edit functions are avail able using right button nouse click on
the inmage

In asimilar vein to the above, we can also create a Si npl eCube which allows us to store three-
dimensional images (or multiple stacked 2D images). The Si npl eCube currently can also include
error, flag and/or exposure maps, which must also be 3D arrays. A single WCS only can be applied
to the Si npl eCube. For example, it is not possible to provide different WCS's for each image in
an image stack.

To create a Si npl eCube we need to import a Double/Int3d object. For simplicity, we can create
thisfrom ny| nage2.

11 = nyl mage2. get | nage()
12 = nyl mage2. get | nage()
d3 = Doubl e3d()

d3. append(l 1, 0) # which appends the i mage al ong the 0 axis (stacking)
d3. append(l 2, 0) # append the sane inage

Now we create the SinpleCube

nmyl mage3 = Si npl eCube(description="Veil nebula in 3D'

\uni t=MyQuant, inmage=d3, wcs = nmyWs)

W can obtain the units

print the units being used

print nyl mage3. getUnit ()

#print intensity at pixel position 30, 35 in layer (depth) 0 -- the first |ayer
print nyl mage3. getlntensity(0, 30, 35)

We can create an array of Sinplelnmges fromthe cube

sa = nyl nage3. deconposeToSi npl el mages()

4.12. Assigning a World Coordinate System
(WCS) to Simplelmage and SimpleCube

We are able to assign WCS information to images and cubes. The World Coordinates System
(wcs) describes the coordinates of a Simplelmage or SimpleCube. It makes it possible to convert
imageCoordinates to worldCoordinates and the other way around. The WCS can have a lot of
parameters, as defined in the FITS standard :

* naxis: the number of axes

+ crvall: First coordinate of the centre

* crva2: Second coordinate of the centre
» crpix1 : Reference pixel X coordinate

e crpix2 : Reference pixel Y coordinate

» cdeltl : Pixel scale axis 1. Step per pixel or number of degrees per pixel along x-axis when
converting to Sky Coordinates. These parameters are no longer used in modern Wcs definition, but
areincluded in the CDi_j matrix.

e cdelt2 : Pixel scale axis 2. Step per pixel or number of degrees per pixel along y-axis when
converting to Sky Coordinates. These parameters are no longer used in modern Wcs definition, but
areincluded in the CDi_j matrix

* ctypel, ctype2 : Projection type name. This can be "LINEAR", "PIXEL" or the FITSconvention.
The default value for ctypel and ctype2 is "LINEAR". When using the FITSconvention, first 4
characters are:

0 RA-- and DEC- for equatorial coordinates

0 GLON and GLAT for galactic coordinates

Handling Array Data Objects, Datasets and Products

0 ELON and ELAT for ecliptic coordinates

The next 4 characters describe the projection. Possibilities are:
0-AZP: Zenitha (Azimuthal) Perspective

0 -SZP: Slant Zenithal Perspective

0 -TAN: Gnomonic = Tangent Plane

0 -SIN: Orthographic/synthesis

0 -STG: Stereographic

0 -ARC: Zenithal/azimuthal equidistant

0 -ZPN: Zenithal/azimuthal PolyNomial

0 -ZEA: Zenitha/azimuthal Equal Area

0-AlR: Airy

0-CYP: CYlindrical Perspective

0-CAR: Cartesian

o0 -MER: Mercator

0 -CEA: Cylindrical Equal Area

0 -COP: COnic Perspective

0 -COD: COnic equiDistant

0 -COE: COnic Equd area

0 -COO: COnic Orthomorphic

0-BON: Bonne

0 -PCO: Polyconic

0 -SFL: Sanson-Flamsteed

0 -PAR: Parabolic

0 -AlT: Hammer-Aitoff equal areaall-sky
0-MOL: Mollweide

0 -CSC: COBE quadrilateralized Spherical Cube
0 -QSC: Quadrilateralized Spherical Cube

0 -TSC: Tangentia Spherical Cube

0 -NCP: North celestial pole (special case of SIN)

0-GLS: GLobal Sinusoidal (Similar to SFL)

» Other types are aso possible (for examplgsT EMP for temperature.)

Handling Array Data Objects, Datasets and Products

o cunitl : The Unit of Axis 1.

0 cunit2 : The Unit of Axis 2.

0 epoch : Epoch of coordinates

0 Radesys: The reference frame, default value is"ICRS"

o pcl 1: Element (1,1) of the linear transformation matrix. The pcl and pc2 parameters are no
longer used in modern Wcs definition, but are together with CDELT1 and CDELTZ2 included in
the CDi_j matrix

opcl 2: Element (1,2) of the linear transformation matrix.

o pc2_1: Element (2,1) of the linear transformation matrix.

0 pc2_2: Element (2,2) of the linear transformation matrix.

ocdl_1: Element (1,1) of the corrected linear transformation matrix

ocdl 2: Element (1,2) of the corrected linear transformation matrix

ocd2_1: Element (2,1) of the corrected linear transformation matrix

ocd2_2: Element (2,2) of the corrected linear transformation matrix
For the situation where there is athird dimension the following also apply.
* ctype3 : Description of what the 3rd axis represents, e.g. Wavelength, Time, M1 Temperature, ...
* cunit3: The Unit of Axis 3.

» crva3: [Optional - in case of equidistant 3rd dimension]. Wavelength, time, ... of reference layer;
unit : length, time, ...

e crpix3: [Optiona - in case of equidistant 3rd dimension] Reference layer index

» cdelt3 : [Optiona - in case of equidistant 3rd dimension] Scale in 3rd dimension - unit : length,
time, ...

* PC elements
opcl_3: Element (1,3) of the linear transformation matrix
o pc2_3: Element (2,3) of the linear transformation matrix
opc3_1: Element (3,1) of the linear transformation matrix
o pc3_2: Element (3,2) of the linear transformation matrix
0 pc3_3: Element (3,3) of the linear transformation matrix

To create aWCS object that can be assigned to an image we can use something like the following.

from herschel . i a. dataset.i mage. wcs i nport Ws

create WCS object, units in degrees by default

myWs = Wes(crpixl = 29, crpix2 = 29, crvall = 30.0, crval2 = -22.5,
\ cdel t 1=0. 0004, cdelt2 = 0.0004, cunit 1="DEGREES",

\ cunit2="DEGREES", ctypel = "RA---TAN', ctype2= "DEC - TAN')

we can assign the world coordinates to the an i mage

nyl mage2 = Si npl el nage(descri ption="Veil nebula", wes = nyWs)

and can obtain the world coordinates at any pixel on the inage.

66

Handling Array Data Objects, Datasets and Products

print nyl mage2. get Ws() . get Wor | dCoor di nat es(31, 31)

This provides an array of sky coordi nates in degrees.

W can get the intensity at a given WS position.

First put an inmge in....

nyl mage2. i nportFil e("ngc6992.j pg")

Cet the intensity at a given WCS position.

print nyl mage2. get | ntensityWrl dCoordi nat es(30. 0012, - 22. 498)

For the Si npl eCube we can do this almost identically.

from herschel . i a. dataset.image. wcs i nport Ws
create WCS object, units in degrees by default

myWs = Wes(crpixl = 29, crpix2 =29, crvall = 30.0, crval2 = -22.5,

\ cdel t 1=0. 0004, cdelt2 = 0.0004, cunit1="DEGREES",

\ cunit2="DEGREES", ctypel = "RA---TAN', ctype2= "DEC - TAN')
We need to have a Double/Int3d image to put in our cube (call
we can assign the world coordinates to the an i nage

nyl mage3 = Si npl eCube(description="Veil nebula", inage=d3, ws = nyWs)
and can obtain the world coordinates at any pixel on the inage.

print nyl mage3. get Ws() . get Wor | dCoor di nat es(31, 31)
Get the intensity at a given WCS position. W need three

argunents now, with the first argunent being the |ayer nunber (depth)

fromwhich we want the intensity nmeasure. Count starts fromO.
print nyl mage3. get |l ntensityWrl dCoordi nat es(0, 30. 0012, - 22. 498)

4.13. Wrapping it all up: Products

Let us briefly run through what we have covered so far. We started with simple arraysin Section 4.3,
went on with multidimensional arrays in Section 4.6 and introduced array datasets in Section 4.7.
Then it was time for table datasets in Section 4.8 and composite datasets in Section 4.9. As you can
see, every object we have examined acted as a container for the previous ones. Now we complete the

journey by introducing the highest level of them all, the Product.

A Product is an object containing a set of metadata entries (some of which are mandatory) and one
or more datasets. The mandatory metadatavaluesaredescri pti on,creat or,creati onDat e,
i nstrument,start Dat e,endDat e, nodel Nane andt ype. They will be automatically added

whenever you create a new product. Let us check:

nyProduct = Product () # Creating a new, enpty Product
print nyProduct. neta # Printing its netadata
print nyProduct.getMeta() # Sane thing, "Java style"

4.13.1. Mandatory Parameters in Products

Asyou can see some entries are already set to meaningful values, othersare set to Unknown. Y ou can
now modify the mandatory metadata and add as many new entries as you wish. There are so-called
"setter" methods for setting values of the mandatory metadata, which currently includes a description,
the creator, an instrument, model name of the instrument in use and type, as shown below:

nmyProduct . set Descri ption("M/ SPI RE product")
nyProduct . set Creat or ("Msel f")

nmyProduct . set | nstrunent (" SPI RE")

nmyProduct . set Model Nanme(" PFM")

nmyPr oduct . set Type(" UM")

Alternately, these can be set using

nyProduct . creator = "Msel f"
nmyProduct . i nstrunent = "SPlI RE"
etc...

Finally, we can include many of these settings on asingle line

67

Handling Array Data Objects, Datasets and Products

myPr oduct =Pr oduct (creat or="Msel f", instrunent="SPIRE", \
description="M/ SPI RE product"”, nodel Name="PFM', type="UM")

4.13.2. Setting Date Information

The creation, start and end dates for a Product need to be expressed in terms of a FineTime. If all of
these are the current date then we can convert a Java date to a FineTime and include it as metadata
in our product. For example:

from herschel .share.util.fltdyn.time inport FineTine

myProduct . set Creati onDat e(Fi neTi me(j ava. util.Date()))
myProduct . set St art Dat e(Fi neTi me(j ava. util.Date()))
nmyPr oduct . set EndDat e(Fi neTi me(j ava. util.Date()))

Because the st art Dat e, the endDat e and the creati onDat e are mandatory metadata
parameters, they are set to the current date and time at the moment when the product is created. If
those dates are not the current date then it is possible to set it up using UTC or TAI representation of
acalendar day (see e.g. Section 11.2), like it is shown in the following example:

from herschel . share.fltdyn.time inport *

formatter = SinpleTi neFornat (Ti meScal e. UTC)
timeUtc = formatter. parse("2008-01-31T12: 35: 00. 0Z") # Z at the end is mandatory

for UTC
formatter = SinpleTi neFornat (Ti meScal e. TAl) # or just SinpleTi meFormat ()
timeTai = formatter. parse("2008-01-31T12: 35: 00. 0TAI") # TAl at the end is mandatory
for TAl

myProduct . set CreationDate(timeUtc) # or
myProduct . set Creati onDate(ti meTai)

Note that the two previous dates, represented as FineTime, are different:

print timeUtc # 2008-01-31T12: 35: 33. 000000 TAI (1580474133000000)
print tinmeTai # 2008-01-31T12: 35: 00. 000000 TAI (1580474100000000)

4.13.3. Additional Metadata

Now, to add, modify and read additional metadata:

myProduct . get Met a() . set (" Here goes a nane", StringParaneter("Here goes a value"))
print nyProduct. neta["Here goes a nane"]
{description="", string="Here goes a val ue"}

In the example above we set a name and a value for the metadata. In this case the value was
represented by a St ri ng object, but as you already now you can also assign other types of values
with LongPar anet er , Doubl ePar anet er, Bool eanPar anet er and Dat ePar anet er .

4.13.4. Inserting and Getting Datasets from a Product

But how do you insert and get the contents of the datasets in a product? You can use the
get Def aul t () method to get the first dataset stored in the product, or the get () method to get
any stored dataset, whose hame you have to provide as argument. The nameis a string assigned when
the dataset isfirst inserted into the product. Here is an example:

nmyTabl e = Tabl eDat aset ()

nmyTabl e. set Description("This is a Table Dataset")

myConposi te = Conposit eDat aset ()

myConposi te. set Description("This is a Conposite Dataset")

myProduct . set ("oneDat aset", nmyTable) # W have to give a nane to every
dataset we insert

68

Handling Array Data Objects, Datasets and Products

4.14.

myProduct ["anot her Dat aset"] = nyConposite # Jython style to add a dataset
nmyProduct . set ("anot her Dat aset”, nyConposite) # Java style
print nmyProduct.getDefault() # As you will see fromthe description,
this is the Tabl e Dataset
print nyProduct["anot her Dat aset "] # Getting the Conposite Dataset,
Jython style...
print nyProduct. get ("anotherDataset") # ...and Java style

Instead of just printing out the datasets you get, you can assign them to variables and execute other
operations on them. To see how to explore the contents of datasets please refer to the previous sections
of this chapter.

If you are not a fan of the command line you can use the handy Dataset |nspector tool to view and
mani pulate datasets and products. Thistool is described below, in Section 4.14.

Products are also treated in Appendix A, Section A.3.

The Dataset Inspector

Aswe have seen above, inspecting Datasets and Products using the command line can quickly become
cumbersome, especially when dealing with several large instances. Luckily there is a quick and
efficient way to carry out these tasks via a graphical tool, the Dataset Inspector, already briefly
introduced in Chapter 2 (see Section 2.3.5 and Figure 2.7).

Using it is very simple. Once invoked via its icon on the toolbar or the Dat aset | nspect or
command, it will display its main window, divided in two panes. The left pane shows a tree-like
folder structure whose root is called Dat aset s and Product s, with two main branches called
Dat aset s and Pr oduct s. The former will contain any datasets not included in products, while
the latter will list the products themselves. Whenever the icon of afolder appears, clicking on it will
display its contents. A similar tree-like structure will appear in the right panel, which is also used to
display the objects' contents, like metadata and table data.

Figure 4.1 shows Dataset I nspector displaying the metadata of a product. Thetableisdivided in three
columns showing the name, value and unit (if any) of each keyword. When the value of akeyword is
undefined thisis signalled with ared undef i ned label.

[Datasets and Products i| MetaData
g Datasets i Keyword value it
b Products i
A type: Lk ot
¢ [m: BuildinaBlockProduct] e

[y Meta data (13} creator: Unknoven
‘| creationDate: 2007-07-27T10:34:20 058000 TAl (1564222670058000)

instrument SPIRE

modelName: Unknown

startDate: 2007-07-27T10:24:30.058000 TA| (1564223670058000)

endDate: 2007-07-27T10:24: 20058000 TA| (1564222670058000)

obshMode: Unknan

obsid: -80537827E

subsystem: PHOTOMETER. oy el 1D (oo

bbid: -1

biasFreq: 1.55382E-5 Hz

myUndef: undefined

1]

1 Dk

Figure4.1. The Dataset I nspector showing product metadata.

69

Handling Array Data Objects, Datasets and Products

Additional features are available for parameterssuch asobsi d and bbi d (theidentification numbers
of observations and of their building blocks). By right-clicking on the value of these parameters we
can switch between decimal and hexadecimal representations.

Dates and times are shown by default in UTC (Coordinated Universal Time), with their Fi neTi me
representation in brackets (for more information on time in DP see Chapter 11). By right-clicking on
the parameter values we can switch between UTC and TAI (International Atomic Time).

The Dataset Inspector can do much more than displaying products and datasets. It aso contains a
number of plugin viewers that allow more advanced data manipulation. Three of them are described
below.

4.14.1. The TablePlotter

4.14.1.1. Introduction

The TablePlotter utility is a GUI tool to graphicaly view and analyze table datasets which are
organized in columns with an equal number of rows, for instance, time ordered detector signals. In
addition the tool provides advanced means of interactively selecting subsets of this data and create
new table datasets from these selections. After its integration into HIPE the TablePlotter appears as
atab in the Editor view.

4.14.1.2. Invoke TablePlotter

* Invoke TablePlotter asa Viewer in HIPE

The TablePlotter works with Table Datasets and products that contain TableDatasets. Double
clicking on aFITS binary table file in the Navigator view of HIPE will load the file into a product
containing atable dataset and automatically bring up the product viewer. Right clicking on thetable
dataset within the product and selecting "Open With" leads to a choice of viewers and tools that
can be applied (see Figure 4.2).

Data 5ets

ﬂ" 2pen With Dataset VWiewer

(7) Help Selection F1 Fower spectrum Cenerator
TablePlotter

COwerPlotter

Figure 4.2. Options for different viewers appearing upon right click on a table dataset in the product
viewer, among them TablePlotter and OverPlotter.

Selecting "TablePlotter" opens the table dataset and brings up a view with the main TablePlotter
screen (seeFigure 4.3).

* Invoke TablePlotter from the Command Line or from a Script

TablePlotter can aso be invoked from the command line. First we need to import TablePlotter and
the window manager with:

from herschel .ia.gui.explorer.table inmport Tabl ePlotter

70

Handling Array Data Objects, Datasets and Products

from herschel . share. conponent inport W ndowVanager

Assuming tbhs is a Table Dataset, then the TablePlotter would be invoked by the following
commands in a Jython script:

wm = W ndowManager . get Def aul t ()
wm addW ndow ' test', Tabl ePlotter(tbs).conponent, 1)

or by the single command:

W ndowManager . get Def aul t () . addW ndow("t est", Tabl ePl otter(tbs).conponent, 1)

If you have aproduct created by reading in aFI TSfile containing abinary table, thefirst table dataset
can be easily extracted with the default method. For instance, if a FITS file was read by double
clicking onitinthe navigator view, aproduct will appear asavariable. Assuming the variable name
is"Myfile", the following command lines send it to TablePlotter.

wm = W ndowManager . get Def aul t ()
wm addW ndow("t est", Tabl ePlotter(Mfile.default).conponent, 1)

wm.addWindow('test', TablePlotter(TablePlotterExerciseFile]"HDU_1"]).component, 1)

If the product contains more than one dataset, the desired table dataset can be retrieved by itsname.
If you don't know the name of the dataset, alist of datasets can be obtained with the keySet method.
In the following example the list of dataset names is obtained and printed, then the first dataset is
chosen and displayed in TablePlotter.

wm = W ndowManager . get Def aul t ()

datasets = M/file. keySet () #Get the names of the datasets

print datasets #Here you see the nanes of the datasets
within the product

dat aset Nane = dat aset s[0] #Choose your dataset, in this case the

first with index 0
wm addW ndow("test", Tabl ePlotter(Mfil e[dataset Nane]). conponent, 1)

If invoked from the command line, the TablePlotter will appear in its own window, instead of a
HIPE view.

If the name of the dataset is unknown, but its sequence number is known, the following shortcut
can be used, in this case for the first dataset with index O:

wm = W ndowManager . get Def aul t ()
wm addW ndow("test", TablePlotter(Mfile[Mfile.keySet()[0]]).conponent, 1)
 Limitation on Datasets

Among the three generic datasets, TablePlotter supports only the TableDataset.

4.14.1.3. Layout of the TablePlotter

When TablePlotter isinvoked, a GUI appears, displaying an X/Y -plot of the first two columns of the
selected Table Dataset (See Figure 4.3). The TablePlotter GUI containsthree major components, aplot
display area, the plot control panel on the right, and axis selection boxes on the bottom. Sometimes it
is necessary to adjust the window size and the sizes of the sections to see al components.

71

Handling Array Data Objects, Datasets and Products

| Editor % =
[= ILT_PERF_..D3_SPECFC TJ ILT_PERF_..["HDU_1"] X\
rDisplay stde
0.020 |— s PIEL S
- |ﬂ”NoIine v|—
- EE
0015 N - rMawvigation
- - f
N .- t -
% N : - 4 | Fast| ey | =7
I:El 0.010 — STFED, Q.01
A B - — 'r I +
B = ~Selections
0.005 — == - Hide ¥ | Unhide O
B _- Excl. Select | Unhide All
- LA Current Col | Show Al |
(} (I)D _l_IdTrl-l-ll-l-l | I | | L1111 | | | | | | | | | | L1 Ext el |
0 200 400 600 800 1000 1200 1400 |oExtract_|[Preferences|
TIME(s) Chvarlay plots
[Crerlay
] Legend
¥-axis: [TIME =l | 1== v-auiz =5_R1 = 2= [Remove a layer -
¥0=1551353229:2007-02-28 11:26:26(UTC)
TPL 1803.0

Figure4.3. Layout of the TablePlotter GUI in a HIPE editor view.

4.14.1.4. Controls and Functions

The TablePlotter provides the following control buttons to view and analyze data.

e X and Y- Axis Selection:

Under the graphics display area, two selector arrangements allow to assign columnsin the table to
the X and Y -axis of the plot. The elements of each selector are a Combo Box and a Spinner.

By default the first column of the TableDataset is associated with the X-axis. The second coumn
isinitially associated with the Y -axis.

Clicking the arrow on the right of the Combo Box invokes a drop down menu with the displayable
columns of the table dataset. Holding down the left mouse button and moving the mouse up or
down scrollsthrough the columns if more than 8 columns are present. The colum is selected by left
clicking on the respective name. Thislist can be quite large. To help with the selection, a substring
can be entered after clicking into the white name field of the Combo Box. Only columns whith
names containing this substring will be shown in the drop down menu. No distinction is made for
upper or lower-case charactersin this selection.

Columns can also be selected by index using the Spinner, either by entering the index number
directly after clicking into the index field, or by clicking on the up or down arrow buttons of the
Spinner. Fast forward/backward selection of columnsin the spinner can be achieved by holding the
left mouse button down and moving the mouse up or down.

The axis selector provide an additional "virtual" index column that allows to plot columns against
the order in which they appear in the table dataset. This column only exists for convenience and is
for instance not part of the extracted dataset, as shown further below.

72

Handling Array Data Objects, Datasets and Products

* Display Style:

The control buttons in this section change the type of scaling of the X- and Y-axes, as well as the
syles of lines and symbols used in the plot.

lin
== | Thisbutton signifiesthat the linear scaleis selected for the X-axis. Clicking on the button
will switch to logarithmic scale.

log
L === | Thisbutton signifiesthat the linear scaleis selected for the X-axis. Clicking on the button

will switch to logarithmic scale.

lin
L T : | This button signifiesthat the linear scaleis selected for the Y -axis. Clicking on the button
will switch to logarithmic scale.

o
L I g | This button signifiesthat the linear scale is selected for the Y-axis. Clicking on the button
will switch to logarithmic scale.

The two pull-down menus select line- and symbol-styles. The selection of symbol styles is only
available when the line styles are either MARKED, MARK_DASHED or NONE.

| This button increases symbol sizes.

= This button decreases symbol sizes.
* Navigation:

The navigation field contains several buttons to zoom and pan within a plot. In addition the
view can be controlled with the mouse pointer. L eft clicking into thefield, and pulling acr oss
an areawith theleft mouse button held down selectsthisarea. Thisiscalled furtheron ahold-
and-drag operation. When the mouse button isreleased, thisarea will be scaled so that it now
fitsthe plot window (zoom-in).

This button zooms out simultaneously in X- and Y -axis.

[1
W

Y
L | This button zooms in simultaneously in X- and Y -direction.

| This button zooms out along the X-axis only.

i
Ln This button zooms out along the Y -axis only.

4=

L IThisbutton pans the view towards the | ft.

| |
—

L Thisbuttonpanstheview tUWdJ?;éb theright:

Handling Array Data Objects, Datasets and Products

|
!

The size of each zooming or panning step is controlled by a toggle button at the center of the
Navigation field as follows:

This button pans the view up.

This button pans the view down.

Fast
This button signifies that the fast mode is selected. Clicking on it toggles to slow mode.

Slow
Thisbutton signifiesthat the slow mode is selected. Clicking on it togglesto the fast mode.

Preferences | _ . _ -
This button opens the Preferences menu. Thefirst entry in this drop-down menu

opens a Properties window, where the factors can be changed that control fast and slow zooming
and panning (for details see the Preferences section below).

._I_.

L= | Thisbutton switches into free-scale mode. It is one of the most frequently used buttons.
The displayed ranges on X- and Y -axis are selected automatically to show all visible datapoints of
the currently selected columns with optimal zoom parameters.

This button switches the X-axis into free-scale mode.

This button switches the Y -axis into free scale mode.

Selections:

Table Plotter isnot only adisplay tool for table datasets, but al so adata sel ection tool. The selection
feature can be used to hide or select a particular portion of the data points, to make use of the fast
automatic scaling when scanning through many columns of data.

The data selection feature, is also very useful for unplanned, ad-hoc, interactive data analysis tasks.
Subsets of data in a table can be selected and extracted into new table datasets, that can then be
sujected to other tools or tasks like the power spectrum tool. Typical applications would be for
instance to manually remove glitches from a signal time stream, or to extract a specific period of a
signal time stream out of a sequence of instrument configurations.

The following buttons are relevant in this respect:

Show All
b | This button signifies that al data points are being displayed. De-selected data

p0| nts are replaced by a small red cross. The automatic scaling takes also de-selected data into
account. Clicking on this button switchesto " Selected Only" display mode.

74

Handling Array Data Objects, Datasets and Products

—
Sel Onl

I—y Thisbutton signifiesthat only selected data pointsare being displayed. De-selected

data points are not shown. The automatic scaling takes only selected datainto account. Clicking on

this button switchesto "Show All" display mode.

[- |

X
LI Clicking this button first, and then performing a drag-and-hold operation within
the plot hides all selected data points within the selected rectangle. In "All Columns" mode only

the X-axis range is taken into account (see below).

[.
1]
Unhide D Clicking this button first, and then performing a drag-and-hold operation within
the plot selects al hidden data points within the selected rectangle. In "All Columns® mode only
the X-axis range is taken into account (see below).

Mo o]
xcl, Sel L _ _ _ . -
w Clicking this button first, and then performing a drag-and-hold operation within

the plot selects all data points within the selected rectangle and de-selects everything outside. In
"All Columns' mode only the X-axis range is taken into account (see below).

BTN
| Unhide All | 1 i< button will re-select al hidden data points.

]
Current Col

Thisbutton signifiesthat selections and de-selections only affect the two columns
used for the plot. Clicking on this button will switch Table Plotter into "All Colum" mode.

|
|
All Cols H]]] This button signifies that selections and de-selections affect al columns of the
table. The selection is based on the range on the X-axis, while the selected Y -axis range isignored.
Clicking on this button will switch Table Plotter into "Current Colum™ mode.

[TablePiot...rciseFile "\ TablePlot...'HDU_1"] | = TablePloL.["HDU_1"] x

0.0057912 [[———
C ® w play Sty
- A b |ﬂ"NoIine v|—
C ®X ® KX 2 A % %K : =i
0.0057911 |- A [1in [TriancLe » |
» SO XX BA A O O A Navigati
C KM K O K KM A A A A X HOHK KK AT
» HONOK B R B A A MK W A K e I
— 0.0057910 WX X Mo A . HO0K, t | A~
> 8 WX K K WA A A AW OBUXN XX K
— C SOHICH RGO 80000 | A A MMM A X O X X X 4mm | Fast| mp | =7
e, F WM DaE H®OWA A A WM XE KK
W) 0057909 r R B W A A A AN P A S A S 4 l [
ol = WO MK ORCROMOGRAOOMA A AM MM X OB OBOK I
C WM WX MO AN AA A M X K XX X -
- W OO MK MOBAA AA KK | X X rSelections
0.0057908 X Koo 4 & X HK Hide X | Unhide O
= WO X K AA A -
C D A A A e e Excl. Select | Unhide All
r aﬂ x * Al Gols M| Show Al
0.0057907
E % [Btract | [Proferonces]
CL 11 1 1 | | N A | | N I A | | | I I | | | N A | | I I S | | I I | B e | Pre'erences”
946 948 950 952 954 956 I ——
TIME(s) [Overlay
[J] Legend
¥-axis: TIME -] 1= y-axis: 55_R1 B %
#0=1551353229:2007-02-28 11:26:26(UTC)

498.2

Figure4.4. The plot with selected (blue) and hidden (red crosses) data points.

75

Handling Array Data Objects, Datasets and Products

* Printing and Saving the Plot:

Right click into the plot area of Table Plotter brings up a small window with the options " Save as"
and "Print". The first one brings up a file selection dialog, that allows to save the current display
as PDF, PNG, JPEG. or EPS image file. The second choice brings up a printer dialog including
general selection of print service, page setup, and print appearance.

o Dataset Extraction:

Besides visualization, the Table Plotter can be handy for creating new datasets out of existing ones.
Typically thisis done in data analysis where a specific portion of interest is selected and saved into
another dataset for subsequent analysis. The result becomes another table dataset. The extracted
columnsarethetwo being displayed whilein " Current Columns’ mode, or an arbitrary user selection
of columnsin"All Columns' mode. Asageneral rule, any row, whereat |east two columnsrepresent
avalid datapoint (X,Y), will appear in theresult. Datathat were "hidden" in such arow are replaced
by NaNs. All other rows will be purged from the resulting table dataset.

The selection of datapointsisinternally donewith flagsthat exist for each datum. Making sel ections
while choosing different columns for the X-axis can have sometimes results that first appear
confusing, but make perfect sensein alogical way. Especially the Exclusive Select button and the
Unhide button should be used with due consideration of the side effects.

Extract
[#==———————*| This button extracts a subset of the data that remains selected after all prior
selection operations. The selected datawill be extracted into anew table dataset that will befed back
into the session. A name can be assigned to the new variable, which will appear in the Variables
view.

it Current Col

be extracted.

is selected, only the selected data points in the currently displayed column will

Al Cols [

IfL__— — ——lis selected, the selected data points in al the columns become available for

extraction. After clicking b a column selection window (see Figure 4.5) will pop
up, alowing to Add individual columns or Add All columns to alist. Individual columns can be
also Remove again from the selection. The Remove All button allowsto start over. Up and Down
buttons are available to change the order of columnsin the new dataset (see Figure 4.5).

76

Handling Array Data Objects, Datasets and Products

TIME H
<5 R1

55 _Ad
S5_AZ
S5 A2
55 Al
55 DK1

o

Addd Al

Femowe

Femowe All

L

(el

Do

<]

Close

Figure4.5. Extract Selected Data from Multi Columnsto a New DataSet.

Hitting the Close button will compl ete the extraction and an option is provided to change the defaullt
name of the new dataset. A default nameis given too (see Figure 4.6).

Input

Please enter name here

P_120D9940D3E

Ok Cancel

Figure 4.6. Rename panel for new extracted table dataset. A default nameis present that will be taken
with the OK button.

After OK in the rename panel, the newly created table dataset appears as a new variable in the
Variables view of HIPE and can be worked with in the same way as any other table dataset in the
session. In particular it can be displayed again with the Table Plotter. Other tools like the Over
Plotter (see below), the Power spectrum tool, and the simple Dataset Viewer are available as well
and can be applied.

7

Handling Array Data Objects, Datasets and Products

02 variables x\ [e

DEGREES

Ja]

MIMIUT ES_ARC
FADLAMNS

SECOMDS _ARIC
TablePlotterExerciseFile

PO OO O OO

TP 120D994003E

Figure4.7. Thenewly created tabledataset appearsasanew entry in theVariableview of HIPE. Double
clicking opensit in its default application, right clicking opens a menu with all available applications
for thistype of dataset.

Overlay Plots:

Even though the TablePlotter was primarily designed for single X-Y scattergram display, there is
limited overlay capability available, simply because it was easy to do from a technical point of
view. For any more complex overlay plotting, the Over Plotter was created that is described in
detail further down.

Simple overlay plots are created by marking Overlay in the Overlay plots panel on the lower right,
and selecting another column for the Y -axis. The old plot stays on display and the new X/Y-plotis
overlaid with a different color. If different symbols, symbol sizes or line styles are required, they
must be selected now. They can not be selected at alater stage. While Overlay ison, the Y -axiswill
have the same scale for all overlays and it is not possible to select another column for it. The only
way to change a plot that was done earlier, is to remove the overlay in question with the Remove
a layer drop-down menu, and selecting the column for the Y-axis again. Activating the L egend
button shows the relation between color and name of the overlay in alegend (see Figure 4.8).

78

Handling Array Data Objects, Datasets and Products

[TahleFion...reisefile = TahleFlot..['HDU_1"] | = TablePlot.["HDU_1"] X

3.5 107 ~Display Style

[tin, | marked v|ﬂ
[11n [upcross '|ﬂ

rMavigation

3.0 107

25107

V)

20107

SS_A2

1.5 107

raelections
Hide X | Unhide O
Excl. Select || Unhide All

All cols [II] show Al |
0.0 B
0.000 0005 0010 0015 0020 — Preferences|

SS_R1(V) - Crvirlay plots
[Vl Owerlay
[v] Legend

Femowve a laver -

1.0 107

5.0 107

| A—A SS_A2 SL_TI SL_T2 33— SS_DKI |

H-aHis |§§_R1 - |_2% o awis |§§_A2 B S=

4498.2

Figure 4.8. Simple overlay plots of different columns plotted against the same X-axis are created by
marking the Overlay field.

» Preferences:

There are several parametersin Table Plotter, that control behavior of certain functions. These are
accessible with the Preferences button.

—
Pref:
Im This button provides a drop-down menu, giving access to the zoom- and pan-

properties, the display rules for complex data, and the control over time offset subtraction on the
X-axis of the plots (see Figure 4.9).

Set properties. ..

i_omplex Data for x axis »

_omplex Data for w axis »

M Subtract time offset

Figure4.9. Preferences: Thisdrop-down menu gives accessto the zoom- and pan-properties, thedisplay
rulesfor complex data, and the control over time offest subtraction on the X-axis.

Choosing the Set properties entry brings up the respective panel, where individual percentagesfor
panning and zooming in fast and slow mode can be set. Reset and cancel buttons are available for
convenience (see Figure 4.10).

79

Handling Array Data Objects, Datasets and Products

il TablePlotter Property Panel = (O] %

~foom Out Factors

Fast Factor €5 |140 |

Slow Factor G5 |105 |

~Pan Factors

Fast Factor 2 |2 & |

Slow Factor Gox |1 |

ok || cancel || reset |‘

. A

Figure4.10. Preferences: Thepropertiespanel allowsfor selection of zoom- and pan-factor sindividually
for fast and slow modes.

The Table Plotter is able to show complex data in 4 different representations, the modulus, the
real part, the imaginary part, or the phase. Thisisindividually controlled for each axis through the
preferences manu.

Set properties. .. }«Eﬂ:iSEFiIE

Caomplex Data for axis HECES][8l TR
Carnplex Data fory axis § = PIot real part only

O plat imaginany part anly
) plot phase part onky

¥ Subtract time offset
— RN

Figure 4.11. Preferences: Complex data can be displayed in 4 different ways as shown in this properties
menu.

The last entry in the Preferences menu is a flag for subtracting time offsets from the data chosen
for the X-axis. Thisis useful for absolute times like TAI that start at an Epoch some time ago and
bear alarge offset compared to the time period covered by the data. If thisflag is activcated, and if
the column bears atime unit, the first time in the X-axis column is subtracted from all other values
in this column for display only. The subracted value is displayed below the selector for the X-axis
and also converted to a start date datein UTC.

The selected preferences are stored in a properties file and will be "remembered” in the next call
to Table Plotter.

Advanced Command Line Control of TablePlotter
After invoking Table Plotter from the command line or ascript, itsdisplay can befurther controlled,

alowing for integration of thistool into other applications that require interactive X/Y display and/
or data selection. As stated before, the following imports must be performed first.

80

Handling Array Data Objects, Datasets and Products

from herschel .ia.gui.explorer.table inmport Tabl ePlotter
from herschel . share. conponent inport W ndowVanager

A Table Dataset ths would be plotted as follows in a Jython script or from the command line. Note
that in this case we retain the object tpl inbetween. Thislink enables usto access the Table Plotter
and its components from the command line.

wm = W ndowManager . get Def aul t ()
tpl = Tabl ePl otter(tbs)
wm addW ndow(' test', tpl.conmponent, 1)

Now we should see a Table Plotter window as before, coming up detached of the HIPE window.
We can now go about our businessin HIPE. In case we make selections, we can get the result back
into the session with the following commands.

ext bl
fl ags

tpl.activelLayerStruct. extractedTabl eDat aset
tpl.activeLayerStruct.flags

The variable extbl now contains the resulting TableDataset after selection. It contains only rows
with at least two valid entries. Deselected entries are replaced by NaNs. Sometimes however it is
more convenient to just return the flags that were actually set for the origina table dataset. Thisis
done by the second line, where the flag array is saved in the variable flags. The dimensions of this
flag array match those of the original table dataset tbs, but the typeisa2 dimensional Boolean array.

The Table Plotter can also be pre-loaded with aflag array, which can be convenient in programmed
applications.

4.14.2. The Over Plotter

4.14.2.1. Introduction

The Over Plotter isaconsequentia evolution out of the Table Plotter. It can be thought of as a stack of
individual Table Plotterswith the sameindividual functionalities so that several graphs can beoverlaid
on top of each other with their individual scaling, panning, and data point selections. In addition, the
OverPlotter provides capabilities to navigate the stack of layers in a coordinated fashion, i.e. like a
stack of glued together transparencies. It further allows for synchronization of axis scales of different
layers and synchronous selection of data acrosslayers. Asthe basic Table Plotter functionalities apply
tothesinglelayersof Over Plotter aswell, they will not be repeated here. Please refer to the applicable
Table Plotter sections instead. This section will focus on al the functionalities that are specific to
Over Plotter.

4.14.2.2. Invoke Over Plotter

A table dataset can be opened also in Over Plotter. Right clicking of the table dataset within a product
in the product viewer and selecting "Open With" leads to a choice of viewers and tools that can be
applied (see Figure 4.2). To bring atable dataset into Over Plotter, just choose the respective option.
Note that at any time there can exist only one instance of Over Plotter in a session, while Table Plotter
can exist in many instances. In other words, selecting the option Table Plotter will always create a
new view in HIPE, while selecting Over Plotter will create anew view for Over Plotter only once and
after that send any further dataset to the same Over Plotter view as new layer.

4.14.2.3. Layout of Over Plotter

The Over Plotter main view looks very similar to the Table Plotter, but also shows a few important
differences.(seeFigure 4.12). The main differences are the "Layer Controls' panel, which replacesthe
"Overlay Plots' panel, and the addition of four synchronization buttons. The plot area now contains
obviously more graphs and a second pair of axes to the top and right sides.

81

Handling Array Data Objects, Datasets and Products

TatlePlot..._w4.5.doc \Q'E.-E TahlePlot...rcisefile T-’ TablePlot.["HDU_1"] x

TIME(s)

0 500 1000 1500

0.020

0.015

0.010
|

SS_C1(v)
I|IIIII|IIIII|IIIII|IIIII|IJ

0.005

0.000

0020

0015

“(760,0.010) 0010

0.005

|
s T E e amw ema aEa W

0.000

0 500 1000 1500

TIME(s)

rDisplay stde

IR markc da... = |88

|T lin ||DOT V|—

rMavigation

i
AN

(1

4mm || Fast

— ¥ |-~
L
LAY

— 31+

SS_A3(V)

rSelections

=| #f [=—| +f

Hide X | Unhide O

Excl, Select | Unhide All

Current Col || Show All |

Preferences ‘

K-axis

IME [1 y-axis: f5_C1 - [1z

¥0=1551353229:2007-02-28 11:26:36(TC)

rLaver Controls
Layar: Al -

Colar
Eemaowve:| Mone -

498.2

Figure 4.12. The main panel of Over Plotter is very similar to that of the Table PLotter. New features
include the Layer Controls panel and the synchronization buttons. This Over Plotter isin " All Layers'
mode.

The Over Plotter works in two main modes that can be chosen through the selection of layers: 1) a
"SingleLayer" modeand 2) an"All Layer" mode. The"Layer" drop down menu showsall theavailable
layers, i.e. al the table datasets that have been sent to the Over Plotter so far. In addition, it contains
an"All" entry. If selected the Over Plotter is switched to "All Layers' mode.

Please note that the same dataset can be sent to Over Plotter more than once. This makes sense as one
may want to overlay diagrams of different pairs of columns of the same table dataset. A limitation
of the Over Plotter is that a pair of columns of two different datasets can not be combined into one
diagram,as the equal number of rows of both datasets is not guaranteed. However, columns of two
different datasets can easily be combined on the command line into two one table and then plotted
into one diagram, provided the tables have the same length. For instance, if tbl1 and thl2 were two
related table datasets of equal length and we wanted to plot the column RA from one dataset against
the column DEC from the other dataset, then we would execute 3 simple command lines like the
following and then display the newly created table dataset in Table-Plotter.

tbll and thl 2 are table datasets

tbl = Tabl eDat aset () #create new enpty tabl e dataset
tbI["RA'] = thl1['RA'] #add col um RA
tbl['DEC] = thl 2[' DEC] #add col uim DEC

#now open tbl in Table- or Over-Plotter.

In Figure 4.12 the Over Plotter isin "All Layers' mode and the graphs are shown in their selected
colors. Only for two graphs the axes can be shown. These are called the primary and the secondary
layers. The axes of the primary layer are the ones on the bottom (X-axis) and to the left (Y -axis), while
the axes of the secondary layer are the ones on the top (X-axis) and to theright (Y-axis). The axes are
shown in the color of the respective layers.

82

Handling Array Data Objects, Datasets and Products

TahlePlot..._w4.5.doc \Q'Eg_: TablePlot..risefile T-‘l TablePlot..["HDU_1"] X

0.020 L

0.015

V)

\ 0.010

SS_A3

0.003

0.000

TIME(s)
0 500 1000 1500

0010

i e -
camemu ==a S

o e e =TSR R [0.000

0 500 1000 1500
TIME(s)

C1(v)

SS

rDisplay Style

rMavigation

+ Y4
- ' ‘ Y
4um | Fast| mmp | 22

—J 41+

Sync sync‘ Sync sync‘

=
raelections
Hide X | Unhide O
Excl. Select | Unhide All

Al Cols] Show AN |
Extract || Preferences ‘

= 4f

w-axis: TIME =] 1= Y- EKiS: E§_A3 =] ==

¥0=155135

3229:2007-02-28 11:26:36(UTC)

rLaver Controls
Lawer: laver O -
Color blue -
Remo\.fe:,Noneiv

498.2

Figure 4.13. This Over Plotter isin " Single Layer” mode. The primary layer is displayed in its selected
color and the secondary layer isdisplayed in green. All other layersaredisplayed in grey color.

In Figure 4.13 the Over Plotter isin "Single Layer" mode. In this case only the primary layer is shown
inits selected color. The secondary layer is always green and all other layersare all displayed in gray.

Theassignment of primary and secondary layer isdynamic and changeswhen another layer is sel ected.
Then the layer that was prime before becomes the secondary layer and will be displayed in green. The
previously secondary layer changes to grey color, unless it has been selected to be prime again, and
the new prime layer is shown in its selected color. An example is shown in Figure 4.13, where the
third layer that was gray in the previous example is now chosen to be prime, and the colors change
accordingly.

83

Handling Array Data Objects, Datasets and Products

[TablePlot_v4.5.doc = TablePlot_rcisefile | = TablePlov.["HDL_1"] X

TIME(s) ~Display Ste
0 500 1000 1500 [Lin_ [[Marked .. v [

[Tin oot~

0.020 — 0020

rMavigation

+ Y4
= ' S
mm | Fast| mmp | %2

—J 4 1]+

Sync sync‘ Sync sync‘

0.015 — 0015

(V)

— 0010

0.010 = (750,0.010)

SS_R1
$S_A3(V)

= uth
raelections
Hide X | Unhide O
Excl. Select | Unhide All

— 0,000 Al Cols[[lll| Show Al
0 500 1000 1500 Extract || Preferences ‘

TIME(s) -Layer Cantrols

Layer. |lawver 1 -

-axis: TIME i — yads fSRL o] | 22— ;Z:ﬂ:row_-—r:”;nqeenta :

= 4+f

0.005 — 0005

0.000

¥0=1551353229:2007-02-28 11:26:26(UTC)

438.2

Figure 4.14. This Over Plotter isin " Single Layer” mode. The primary layer is displayed in its selected
color and the secondary layer isdisplayed in green. All other layersaredisplayed in grey color. Theseare
the samelayersasin the previousfigure, but after selecting Layer 1to become prime.

4.14.2.4. Controls and Functions

Layer: |layer 0w |

This drop down menu button shows the currently selected layer.
If asingle layer is selected, all actions apply to the selected layer only. Individual zooming, panning
etc. isperformed in thismode. ALL indicatesthat all layers are selected and actions are performed on
all layers simultaneously. A number of buttons are not applicable in this mode and are grayed out.

Calar blue -

This drop down menu button shows the currently selected color.
Thismenu isonly available in single layer mode and selects the color of the currently active layer. In
this mode by default the secondary layer appears in green, while the primary layer appearsin blue or
another color manually selected by this menu. In All Layer mode all datasets appear in their selected
colors.

|Rem|:ma:| Mone - ‘
This drop down menu button allows to remove specific layers.

Thismenu is available in any mode.
[sync

i
L™ Thisbutton synchronizes the scale of the X-axis of the primary layer to the scale of that of
the secondary layer, i.e. the distances between equal intervals on the X-axis display on the same scale.

[Sync

| ¢ I This button synchronizes the scale of the Y -axis of the primary layer to the scale of that of
the secondary layer, i.e. the distances between equal intervals on the Y -axis display on the same scale.

84

Handling Array Data Objects, Datasets and Products

[Sync

—
L= This button synchronizes the offset of the X-axis of the primary layer to the offset of the
secondary layer, i.e. the primary layer is shifted in X-direction such that the values where the | eft Y -
axis cuts the primary and secondary X-axes become the same.

[8ync

| f' This button synchronizes the offset of the Y-axis of the primary layer to the offset of the
secondary layer, i.e. the primary layer is shifted in Y -direction such that the values where the bottom
X-axis cuts the primary and secondary Y -axes become the same.

With &l the possibilities of Table Plotter, except for the overlay function, available for each layer,
many combinations are possible. In Figure 4.15 an overlay of 3 layers with different scaling and
panning is shown. These are the same layers as in the previous plots, just with several display
parameters changed to illustrate the possibilities. In addition the first layer (Layer 0) hasa Y -log axis,
and the blue circles are connected by solid lines. The second layer (Layer 1) has selected enlarged
magentafilled diamonds, which are shown in green, because thisisthe secondary layer at thistime and
we arein single layer mode. The third layer (Layer 2) has selected blue enlarged triangles connected
with adashed line, which in this caseis shown in gray color, because this layer is neither primary nor
secondary layer right now.

[TablePlat_v4.5.doc & TablePlat_rcisefile | = TablePlot.["HDU_1"] X

TIME(s) rDisplay Stde _

400 600 800 1000 1200 1400 1600 | in, |marked . » | j

joe [T A R L e ety L SN IS L B AR [Tiog Jerraie v i
: 5 : H 0015 rMNawigation

LI I
*"tf

R

0010

0.000

-500 0 500

1000 1500 2000
TIME(s)

s . s
i RN S N - ~46. AN OP W W V. Y.~ o sl —
o = 1+
SYNC|sYnc| sync| sync
a 0005 4 YN 3:1 sy tl

4mm | Fast| mep | 57

raelections
Hide * | Unhide O
Excl. Select | Unhide All

_Ancos | show A |
Extract || Preferences

¥-axis: TIME B4 1=

- aKis: [§§_A3 -] ==

rLaver Controls
Layer: _Ia\,-erT
Color _blue—v
Remo\re::Noneiv

¥0=1551353229:2007-02-28 11:26:36(UTC)

498.2

Figure 4.15. A complex examplefor illustration. The Over Potter isin " Single Layer" mode. The primary
layer isdisplayed in bluewith large symbolsand connected by aline. TheY-axisisset tologarithmic mode.
The secondary layer isdisplayed in green with large filled diamonds. Thethird layer isdisplayed in grey
color.

Due to the many logical combinations that are possible, mastering the Over Plotter can be a challenge
at times, especially when it comes to synchronizations of plots. Some serious training with the tool is
recommended. It should also be mentioned that at thetime of writing (HIPE V1.1) therearestill known
issues with overplotsinvolving log scales, or log/lin overplots, that will have to be fixed in the future.

85

Handling Array Data Objects, Datasets and Products

4.14.3. The Power Spectrum Viewer

4.14.3.1. Introduction

The Power Spectrum Viewer, which can be accessed under theright-click menu item Power Spectrum,
will generate a power spectrum for each column of the table dataset. A time column must be selected
in the main menu. The result is another table dataset, that can be displayed graphicaly with the
TablePlotter.

4.14.3.2. Power Spectrum Generator

Table dataset that are suitable for power spectrum conversion typically contain a column bearing
units of time, and several other columns of quantities that the power spectra are to be determined of.
Since real signals sometimes contain unwanted strong excursions, called glitches or spikes, that will
dominate the power spectrum, asimple de-glitcher is provided, that detects and removes such events
from the data stream, and replaces the datum with an average of the surrounding data. An example of
asignal timelineis shown in (Figure 4.16, below).

TR—’ EPDT_2001.. ["PHOTF"] K—: EPDT_2001.. . ["PHOTF"] TJ p30012152..["HDU_1"] X\C: pE0012152. ["HDU_1"] K—z noiseSpec 15
‘ rDisplay Stye
3.5 107 | 1 “l | _lin_ ||Marked R
| H ik ‘ Ay H | ‘ ||| I ||||‘| il Moot <
'I | |||| LT RO T DT CRRATITNTIL U YRR A AT O ||| M| ||||| | |||||||| I —
3.0 107 | || [|||| ||||| |||||| | || H I [l |f § ||||| |||| ||| I||||||| IlIlIllllll” I| [l || ||||||||||| |I||||| |||I| rNawvigatian
1] Vo e
S | I T t t ™
2
0 2310 4mm | Fast| wep | =L
[m] Il | | | | | |
o I ||||| 1|l . || | | | | || — l I ._{_.
8- 2.0107 ey |||||||||||||||||| WL L ||||||| lllll |||||||| LI |||||| ||| I T
||I | || Il ||| |||| Il 11 ||||| LTI (L || Il |||||| | | ||||||] | ||| ||||||||| |||||||||||| | ~Selections
E1 || Il || [N RIOR |
1.510° - || Hide X || Unhide O
a Excl, Select | Unhide All
B Current Col | Show All |
1.0 107 —
i T T R R R T |I SAEC | Preferences”
(100 200 300 400 5([0 ~Cnverlay plats
TIME(s) [orverlay
[Legend
%-axis: [TIME x| 1= y-axis: [PS_D15 > | = e
¥0=15501964982:2007-02-15 02:15:45(UTC)
498.2

Figure4.16. A signal timelinedisplayed in Table Plotter that the Power Spectrum generator can be applied
to.

When the Power Spectrum generator is invoked, only a menu will appear. It consists of selectors
for the time column in the dataset and its unit, in case that is not available or incorrect. There are 2
text boxes labeled flimit and sigma, controlling the deglitcher, which can be de-activated in another
selector below. The button Start FFT initiates the processing, which results in a new table datatset
(see Figure 4.17, below).

86

Handling Array Data Objects, Datasets and Products

Column:| TIME - Init:| = -
flirmit; (0.1
sigma: (4.0
Deglitch: | on -
Start FFT

Figure4.17. Main view of the Power Spectrum Gener ator.

Two text boxes are pre-filled with default values for the cut off frequency (flimit) and the deglitcher
threshold (sigma). The inverse cut off frequency determines the length of the intervals, that the data
timeline is subdivided into before performing the FFT. Each of these datasetsis Fourier transformed
individually, and the resulting power spectraare quadratically co-added to yield apower spectrum with
abetter S/N, i.e. ahigher cut off frequency will yield a better S/N for the resulting power spectrum.

The sigmavalue controls a simple sigmakappa deglitcher, that eliminates al datapointsthat are more
than sigma (default = 4) times the standard deviation away from the mean. After eliminating those
data points the procedure is repeated iteratively until no more data can be discarded. Both flimit and
sigma can be changed in the menu.

After clicking the Start FFT button, and a short processing time, awidget appears that allows naming
of the newly created table dataset. After pressing the OK button, the dataset isfed back into the session
and appears in the Variables view of HIPE. The TablePlotter can be used to display the dataset as
shown in Figure 4.18.

87

Handling Array Data Objects, Datasets and Products

m’ RPOT_3001.. ["PHOTF"] K: RPDT_3001.. ["PHOTF"] K: p30012152. ["HDU_1"] X\: p20012152.. ["HDU_1"] | < noiseSpec X 4r ¥

I ~Display Stde
| log "Marked 4 | —_—
[Tiog oot =]
ﬁ rMavigation
= ol we
—
N "o
I i 1. 4um | Fast|mmp | 2
‘é: T4 6, 1e-08)
R
el (A : I l [
— — —-I-'
2I B rselections
= B Hide X || Unhide O
Excl, Select | Unhide All
Current Col | Show All |
L 1 1 11 | 1 1 1 1 1 1 11 | 1 1 1 1 1 1 11 | SﬁEmram —Pre'erences
0.1 10 10.0 ~Owerlay plots
FREQU(HZ) [Owerlay
[Legend
x-axis: FREQU i — y-axis: PS_D15 = [s=—
4498, 2

Figure 4.18. Displaying the newly created power spectrain the Table Plotter.

88

Chapter 5. DP Numeric: Basic
Functions for Herschel DP

5.1. Introduction

This chapter describes how to use the DP numeric library from the interactive Jython environment
(JDE). For further details of the functions provided, or use of the library from Java programs, please
see the APl documentation for herschel.ia.numeric.

The purpose of the numeric library is to provide an easy-to-use set of numerical array classes
(programs) and common numerical functions. Thelibrary also supports arrays of bool eans and strings.

5.2. Getting Started

The DP numeric packages are loaded and available to the user on starting an DP/JIDE session. Basic
setup and arithmetic manipulation of array datasets of various types are discussed in Chapter 4.

5.3. Basic Numeric Array Arithmetic

DP numeric arrays support arithmetic operations that are applied element-by-element. For example:

y = Doubl eld. range(5)
print y *y*2+1

Thisis much simpler (and runs much faster) than writing an explicit loop in Jython. It isimportant
to appreciate that the '+' operator does not concatenate arrays, as it does with Jython arrays.
For example:

Addi ng Jython arrays
print [0,1,2,3] + [4,5,6,7] # [0, 1, 2, 3, 4, 5 6, 7]

Addi ng DP nuneric arrays
print Doubl eld([0,1,2,3]) + Doubleld([4,5,6,7]) #[4.0,6.0,8.0,10.0]

Concatenate two DP nuneric arrays

print Doubl eld([0, 1, 2, 3]). append(Doubl eld([4,5,6,7]))
#[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0]

Addi ng Jython arrays to DP nuneric arrays

print [0,1,2,3] + Doubleld([4,5,6,7]) # [4.0,6.0,8.
print Doubl eld([0,1,2,3]) + [4,5,6,7] #[4.0,6.0,8.0,10.0]

All arrays currently support the following arithmetic operators:
+’ -, * , / , % * %

Note that the 'modulo’ operator ‘%' provides the normal Jython semantics for this operation, which
is not the same as that of the Java '%' operator. The Jython definition is more consistent with the
mathematical notion of congruence for negative values.

The following relational operators are also provided, which return a Bool1d array:
<, >, <=, >=, =z | =
For example:

y = Doubl eld([O0, 1, 2, 3,4])
print y > 2 # [fal se,fal se,fal se,true, true]

89

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/numeric/package-summary.html

DP Numeric: Basic Functions for Herschel DP

5.4. Numeric Functions and Lambda
Expressions

In DP, functions can be applied very smply as follows:

print SQRT(16) # 4.0 (applied to a scal ar)
y = Doubl eld([1, 4, 9, 16])
print SQRT(y) # [1.0,2.0,3.0,4.0] (applied to a DP nuneric array)

As shown by this example, functions on scalars (such as SQRT) are implicitly mapped over each
element of an array. Functions may be combined with arithmetic operators to perform complex
operations on each element of an array:

t = Doubl eld([1, 2,3,4])

print SIN(1000 * t * (1 + .0003 * COS(3 * t)))

[0.6260976237441638, 0. 5797470124743422, 0. 8629107307631398,
#-0.9811675382238753]

The names of functionsin the numeric library have ALL LETTERS capitalised. Thisisto avoid
ambiguity, as Jython already defines certain functions, such as'abs', which are not applicable to our
DP numeric arrays.

There are various types of functionsin the numeric library:
y = Doubl eld([1,2, 3, 4])

print SQRT(4) # doubl e->doubl e

print SQRT(y) # doubl e->doubl e (napped)

print REVERSE(y) # Doubl eld->Doubl eld
print MEAN(y) # Doubl eld- >doubl e

It is possible to define new functions aslambda expressions in Jython and apply them to DP numeric
arrays. For example:

y = Doubl eld([1,2,3,4])

f = lanbda x: x*x + 1 #take the given array, call it 'x' and
#return the value x"2 +1 to an array called f.

print f(y) #[2.0,5.0,10.0,17.0]. Each elenment of y was

#taken -> x then each el enent was squared
#plus 1 added.

However, in this case, it's much easier and faster to do thiswith array operations.
print y *y +1

Lambda expressions are not as fast as the standard Java functions provided by the numeric library, but
thisis often not a problem. Where performance is an issue, new functions can be defined in Java (see
the JavaDoc of the herschel.ia.numeric library).

More complex functions (equivalent to subroutines) can be created using the def command, which
is discussed in Section 3.13.

5.5. Selection, Data Filtering and Masking
Methods

The numeric library provides operations, such as 'fil t er’, which allows the selection of array
elements based on a given criterion (e.g., element with values between 3 and 6). There is no 'map’
operation because mapping isimplicit with the array style of processing.

90

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

DP Numeric: Basic Functions for Herschel DP

The'fi |t er ' method returnsaDoubl eld array. The selection criterion for the filter method MUST
be declared using alambda function:

u = Doubl eld. range(10)
print u.filter(lanmbda x: x>3 and x<6)

Note: The Jythonf i | t er operation can be used but returns a Jython array:

print filter(lanmbda x: x>3 and x<6, u)
__class__ returns org. python. core. PyLi st
print filter(lanmbda x: x%2==1, u)

Jython list comprehensions can be used but also return Jython arrays:

print [x for x in u if x>3]

print [x*x for x in u if x>3 and x<6]

print Doubl eld([x*x for x in u if x>3 and x<6])

#this | ast now provides us with a numerical array as we have al so
#transl ated into a Doubl eld array.

The SQUARE function could equally have been applied:

print u.filter(lanmbda x: x>3)
print SQUARE(u.filter(lanmbda x: x>3 and x<6))

Warning

o If alambda expression is applied to an array, remember that it is applied to the entire
array and not mapped over the elements. This can lead to unexpected behaviour asin the
following example:

u = Doubl eld. range(10)
print (lanbda x: x>2 and x<4) (u)
[true,true, true, true, fal se, fal se, fal se, fal se, fal se, fal se]

Thisis equivalent to the following:

u>2anduc<i¢4

The expression 'u>2' resultsin aBool 1d array. The Jython 'and' treatsthis as'true, asit isanon-empty
list, and returns the result of the second expression 'u<4', which is not the intended result.

One way of overcoming this problem is to use the '&' operator instead of ‘and' to give the intended
result:

print (lanmbda x: (x>2) & (x<4))(u)
[fal se,fal se,fal se,true, fal se, fal se, fal se, fal se, fal se, fal se]

Warning
o This shows how the '& ' operator and the ‘and' operator are not identical operators.

If you wish to select elements of an array based on a given criterion then we can find out 'wher e'ina
seguence of data a certain type resides (e.g., at what position the maximum value of an array occurs)
and how to get the data that fits your selection.

For example, the 'wher e' method returns the array indices of elements that satisfy a predicate often
given asalambdafunction. Theinput to the ‘wher e' method isaBoolean array. This differsfrom the
'filter'wheretheactual elementsthemselves are obtained. Using the modulo function (%) we can
find where within an array odd values occur.

y = Doubl eld([2, 6, 3,8, 1,9])

91

DP Numeric: Basic Functions for Herschel DP

print y.where(y%®==1) # [2,4,5] indices of odd elenents

Now return the actual elements, which can be done in three ways
print y[y.where(y%®==1)] # [3.0,1.0,9.0]

print y.filter(lanbda y: y%®==1) # [3.0,1.0,9.0]
print y.get(y%®==1) # [3.0,1.0,9.0]

Predicates support standard jython operators such asnot , and and or :

y = Doubl eld([1, 2, 3, 4])
print y.where(lanbda x: x<3 and x>1) # [1]

Java/C-stylelogical operators'!','&&", and'||' are not allowed.

It can be useful to have the indices, rather than the values, when there are two or more arrays with a
predicate applied to one of them. For example:

X Doubl eld([5, 6, 7, 8])
S y. wher e(y%2==1)
print x[s] + y[s] # [6.0,10.0]

The'wher e' function can also be used to set values:

S = y.where(y%==1)

y[s] = 0 # Set all matching el enents to O

print y # [0.0,2.0,0.0,4.0]

y[s] =19,8] # Set nmatching el ements using an array of val ues
print y # [9.0,2.0,8.0,4.0]

Note
@ You can't use thewher e function like this:

a=Doubl eld. r ange(10)
b=a. where(a < 3)
print b[O]

print b[O0:2]

print a[b[0]]

The last three lines will give an error. Technicaly, this is because b is a Sel ecti on
object rather than a Jython or Numeric array. For the above to work you need to convert
ittol nt 1d:

c = b.tolnt1d()

print c[0] # Now these three lines will work
print c[O0:2]

print a[c[0]]

The 'get ' method enables you to grab individual elements or a subset of element values from an
array. It requires the input of a Boolean array (e.g., a mask). Along with getting individual elements,
there are three other forms. One enables you to select element values based on aBool 1d mask:

y = Doubl eld([5,7,8,9])

mask = Bool 1d([0,0, 1,0])
X = y.get(mask) # x == [8.0]

The second form enables you to select on a set of indices, contained inaSel ect i on object:

indices = Selection(lntld([2,3]))
X = y.get(indices) # x == [8.0,9.0]

The third form enables you to select elements from arange, specified by aRange object:

range = Range(2, 4)

92

DP Numeric: Basic Functions for Herschel DP

X = vy.get(range) # x == [8.0,9.0]

It is possible to combine 'get' calls to perform the same operation as a compound IDL WHERE
execution. Let's set up afew arraysfirst:

a = Doubl eld([1, 2, 3, 4, 5, 6])
b = Doubl eld([2, 3, 4, 5, 6, 7])
¢ = Doubl eld([3, 4, 5 6, 7, 8])

Thefollowing operationson thethree arraysarethe equivalent of the DL WHERE statement 'wher e(a
ge 2 and b It 6 and c gt 5)"

(a>=2) & (b <6) &(c > 5)

q
X a.get(qg),b.get(qg),c.get(qg) # x == ([4.0], [5.0], [6.0])

5.6. Array Access and Slicing

The numeric package introduces the following square brackets notation:

where each element is separated by a comma, and the number of elements must be equal to the rank
of the array. Arrays are zero-based which means the first element of an array has index 0 (zero) and
theindex of the last element of an array isarray. | engt h() - 1.

In addition the package supportsthe colon (;) notation to designate aslice. A sliceisarange of indices

defined asi : j , wherei isthe starting index and inclusive, and it is zero if not specified. The ending
index | isexclusiveanditisequal toarray. | engt h() if not specifiedandarray. | engt h() -
j if negative.

The following example illustrates the access to elements in a multi-dimensional array and the use of
dlices. More examples can be found in the section on Multi-Dimensional Arrays.

define sonething that is like a rectangul ar 2x3 array:

123

456

x=Int2d([[1,2,3],[4,5,6]])# Intld can swall ow the jython sequence.

print x #[[1,2,3],[4,5,6]]

print x[1] # 2 (second el enent of the first row)
print x[1,:] # access arowi.e. [4,5,6]

print x[1,1] # access an individual elenent i.e. 5
print x[:,:] #[[1,2,3],[4,5,6]]

print x[:,1] # access a colum i.e. [2,5]

5.7. Making sense of logical operators

Here we try to guide you through the jungle of logical operators you are likely to encounter when
using DP.

First of al, since Jython isembedded in DP, it won't surprise anyonethat the Jython logical operators
and, or andnot areavailable. These work like normal Boolean operators (see Appendix C for more
details), but using them with arrays (both the native Jython ones and those from the DP Numeric
package) can give unexpected and seemingly inexplicable results. See below and also Section 5.5 for
an example. The important thing to keep in mind is that these operators do not work on an element-
by-element basis when applied to arrays, but they evaluate the entire array at once.

Another tool coming straight from the Jython language are the bitwise oper ator s, represented by the
symbols &, | and ~. See again Appendix C for more details. The possible source of confusion here
isthat these symbols can be used with Numeric arrays (e.g. | nt 1d, Bool 3d etc.), but what you get

93

DP Numeric: Basic Functions for Herschel DP

is not a bitwise comparison. Instead, these operators perform the usual boolean comparisons, but this
time working element by element. Precisely what and, or and not do not do.

Finally, Numeric array classes have the and, or and xor methods acting like boolean operators
working element by element. An examplewill hopefully clarify the differencesamong all the operators

described here:
jythonOne = [1, 0, 0, 1]
jythonTwo = [0, O, 1, 1]

nurer i cOne = Bool 1d(j yt honOne)

nurmeri cTwo = Bool 1d(j yt honTwo)

print jythonOne and jythonTwo

[0, 0, 1, 1] # jythonOne is not enpty so it is treated as true, which nmeans that
jythonTwo is eval uated and returned

print numericOne and nuneri cTwo

[fal se,fal se,true,true] # Sanme thing as with the Jython native arrays

print jythonOne & jythonTwo

Here an error is returned

print numericOne & nunericTwo

[fal se,fal se,fal se,true] # Here the operator works el ement by el ement

print numericOne. and(nuneri cTwo)

[fal se,fal se,false,true] # Sane thing as the & operator

5.8. Advanced Tips for Improved
Performance

The underlying array operations and functions are very fast, as they are implemented in Java. The
overhead of invoking them from Jython is relatively small for large arrays. However, the advanced
user may find the following tips useful to improve performance in cases where it becomes a problem.

The arithmetic operations, such as '+', have versions that allow in-place modification of an array
without copying. For example:

Doubl eld. r ange(10000)
y + 1 # The array is copied
+= 1 # The array is nodified in place

y
y
y

Copying an array is slow as it involves allocating memory (and subsequently garbage collecting it).
For simple operations, such as addition, the copying can take longer than the actual addition.

Function application also involves copying the array. This can be avoided by using the Java API
instead of the simple prefix function notation. For example:

X
X
X

Doubl eld. range(10000)
SIN(x) * COS(x) # This operation involves three copies
x.apply(SIN). mul tiply(x.apply(COS)) # Only one copy

When writing array expressions, it is better to group scalar operations together to avoid unnecessary
array operations. For example:

y = Doubl eld([1, 2, 3, 4])

print y * 2 * 3 # 2 array nmultiplications
print y * (2 * 3) # 1 array multiplication
print 2 * 3* vy # 1 array multiplication

It isbetter to avoid explicit loopsin the HCSS DP system over the elements of an array. It is often
possible to achieve the same effect using existing array operations and functions. For example:

sum = 0.0
for i iny:
sum=sum+ i * i # Explicit iteration

94

DP Numeric: Basic Functions for Herschel DP

sum= SUMy * y) # Array operations

5.9. Type Conversions

5.9.1.

5.9.2.

Since the numeric library supports different types it would be very convenient to be able to convert
an array from one type to another. The numeric library supports both implicit conversion from within
jython for al supported dimensions and explicit conversion from one data type to another.

Explicit conversion

Explicit conversion is supported for all data types by constructing a numeric array from another DP
numeric array of the same or adifferent type. Note however that some explicit conversions may result
in rounding and/or truncation of the values e.g. an explicit conversion from Longld to Doubleld will
reduce the number of significant digits.

i = Intld([1,2,3]) #[1,2,3]

r = Doubl eld(i) #[1.0,2.0,3.0]

c = Conpl ex1d(r) # [(1.0+0.0j),(2.0+0.0j),(3.0+0.0j)]
b = Byteld(r) #[1,2,3]

Implicit conversion

Implicit conversions are conversions that can be done by the DP package automatically, provided that
such aconversionisawidening operation e.g. from Intld to Doubleld. Implicit narrowing conversions
are not allowed and result in an error message as shown below:

TypeError: Conversion of class org.python.core.PyFloat to class java.lang.Long implies narrowing.
Thelibrary supports implicit conversionsin the following cases:

e access. [...]

e operators: +, -, *,/,™ and %

e in-line operators: +, -, *, /, * and %

The few examples below show allowed implicit conversions.

d = Doubl eld(5) #[0.0,0.0,0.0,0.0,0.0]
df1] =3 #[0.0,3.0,0.0,0.0,0.0]
d[1:4] =[-5 0, 5] #[0.0,-5.0,0.0,5.0,0.0]

Please note that the DP package considers the conversion from int to float and from long to float/
double as an automatic widening operation, but some of the least significant digits of the value may
be lost during the conversion. Y ou will not be notified of thisloss of significant digits.

Another thing to notice is that floating point operations will never throw an exception or error. As
shown in the following example, adivision by zero resultsin NaN or Infinity.

d Doubl eld. range(5)

| Longld. range(5)

print d/l # [NaN, 1.0,1.0,1.0,1.0]

print d/SH FT(I, 1) # [0.0,Infinity,2.0,1.5,1. 3333333333333333]

5.10. Function Library

The numeric package includes a library of basic numeric processing functions, which will continue
to grow as development of the library progresses.

95

DP Numeric: Basic Functions for Herschel DP

The functions that are currently available are outlined below. For further details, reference should be
made to the Javadoc documentation and demo programs.

5.10.1. Basic Functions

Basic doubl e->doubl e functions applicable to doubl e, Doubl eld, Doubl e2d and
Doubl e3d arrays:

ABS, ARCCOS, ARCSIN, ARCTAN, CEIL, COS, EXP, FLOOR LOG
LOGLO, ROUND, SIN, SORT, SQUARE, TAN

These are applied in the form

b = SIN(a)
b will be an array of the same dimension asaor asingle value if ais single valued.

Array functions on Doubl e<n>d returning adoubl e:

M N, MAX, MEAN, MEDI AN, RMS, SUM

b = MN(a) #b'" has the m ninmumvalue of the array 'a'.

Doubl eld- >Doubl eld functions;

REVERSE

Warning
O Many of these functions have lower case equivalents built-in in Jython. Be aware of which
one you are using, because their behaviour could differ in some cases, as shown by the
example below which creates a table with Not-a-Number's (NANS) init.

tt =Doubl eld. range(10)

tt[0] =Doubl e. NaN

print max(tt)

NaN

print mn(tt)

NaN

tt[1] =Doubl e. NaN

tt[0]=1.0

print max(tt) # By using the built-in Jython functions
9.0

print mn(tt)

1.0

print MAX(tt) # By using the DP Numeric functions
NaN

print MN(tt)

NaN

5.10.2. Integral Transforms

A Discrete Fourier Transform is provided for Conpl ex1d arrays. Thisusesaradix-2 FFT agorithm
for array lengthsthat are powers of 2 and a Chirp-Z transform for other lengths. Future releases might
support multi-dimensional arrays, if required, and optimised transforms of real data.

Window functionsare provided for reducing 'leakage’ effectsusing the Hamming or Hanning window.

Example 5.1 shows the generation of afrequency modulated signal, followed by a FFT both with and
without windowing:

96

DP Numeric: Basic Functions for Herschel DP

ts = 1E-6 # Sanpling period (sec)

fc = 200000 # Carrier frequency (Hz)
fm = 2000 # Modul ati on frequency (Hz)
beta = 0.0003 # Modul ation index (Hz)

n = 5000 # Nunmber of sanples

pi = java.lang. Mat h. Pl # define pi

t = Doubl eld.range(n) * ts
#1t is a 5000 el emrent array holding time val ues

signal = SIN(2 * pi * fc *t * (1 + beta * COS(2 * pi * fm* t)))
#create the nodul ated signal with nodul ati on frequency fmand carrier
#frequency fc, t is the array we created above for the time el ements.

spect rum = ABS(FFT(Conpl ex1d(si gnal)))
#spectrum hol ds the absolute value (ABS) of the FFT of the signal.
#We need to handl e these arrays as Conpl exld rather than Doubl eld.

freq = Doubl eld. range(n) / (n * ts)
#The frequency values for the spectrum

Repeat with apodi zing
spectrum2 = ABS(FFT(Conpl ex1d(HAMM NG(si gnal))))

Example 5.1. FFT of amodulated signal , with and without HAMMING smoothing

The Inverse Fourier Transform of a Complex1d array (only) "x" can be obtained using, e.g., inver se
= IFFT(X).

5.10.3. Convolution

Convolution is currently supported for Doubl eld arrays. A direct convolution algorithm is used,
although a future release might implement Fourier convolution to improve the speed for large arrays
and large kernels. An example of itsuseis given in Example 5.2.

from herschel .ia. nuneric.tool box.filter.Convol ution inport *
x = Doubl eld. range(100)

Create array [0.0, 1.0, 2.0 ... 99.0]

kernel = Doubl eld([1,1,1])

#provi de kernel for the convol ution

f = Convol ution(kernel)

#create the convol ution

y = f(x)
#apply it to the array x. The result is in array y
Example 5.2. Example of the use of the convolution algorithm

This illustrates a general approach with the numeric library i.e. general function objects may be
instantiated using parametersto create a customi sed function which can then be applied to one or more
sets of data.

The constructor of the Convol uti on class allows optiona keyword arguments to be specified, to
further customise the function:

» The'cent er ' parameter allow selection of a causal asymmetric filter for time domain filtering or
asymmetric filter for spatial domain filtering.

» The'edge' parameter controls the handling of edge effects, as well as allowing a choice between
periodic (circular) and aperiodic convolution.

The following examples show construction of filters using these options:

Note
@ Make sure you have input the following import line before trying these out.

97

DP Numeric: Basic Functions for Herschel DP

from herschel .ia. nuneric.tool box.filter.Convol ution inport *

Use zeroes for data beyond edges, causal

f = Convol ution(kernel, center=0, edge=ZERCES)

Circular convolution, causal

f = Convol uti on(kernel, center=0, edge=Cl RCULAR)
Repeat edge values, causal
f = Convol ution(kernel, center=0, edge=REPEAT)

Use zeroes for data beyond edges with centred kernel

f = Convol ution(kernel, center=1, edge=ZERCES)

Circular convolution with centred kernel

f = Convol ution(kernel, center=1, edge=Cl RCULAR)

Repeat edge values with centred kernel

f = Convol ution(kernel, center=1, edge=REPEAT)

5.10.4. Boxcar and Gaussian Filters

Finite Impulse Response (FIR) filters and symmetric spatial domain filters can be defined by
instantiating the Convol uti on class with appropriate parameters. In addition, special filter
functions are provided for Gaussian filters and box-car filters:

from herschel .ia. nuneric.tool box.filter.Convolution inport *

f
f

Gaussi anFilter (5, center=1, edge=ZEROCES)
BoxCarFilter(5, center=0, edge=ZERCES)

These filters are subclasses of Convol uti on and hence inherit the use of similar keyword
arguments.

5.10.5. Interpolation Functions

Interpolation functions are provided for a variety of common interpolation algorithms.

Example 5.3 illustrates the use of the currently available interpolation functions. The plotting package
available for displaying the different interpolation forms (Pl ot XY) is discussed more fully in
Chapter 6.

98

DP Numeric: Basic Functions for Herschel DP

from herschel .ia. nuneric.tool box.interp inport *

Create the array x [0.0, 1.0, 2.0, ..., 9.0]

x = Doubl eld. range(10)

print x #[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]

Create an array y which contains the sine of each elenment in x

y = SIN(x)

u contains the values at which to interpolate

u = Doubl eld.range(80) / 10 + 1

print u #1.0,1.1,1.2,1.3....8.6,8.7,8.8,8.9]

Linear interpolation

This sets up the interpolation, linear x-y fit

Interpolate at specified val ues

interp = Linearlnterpol ator(x,y)

Prints out the values interpolated at each position noted in array u
print interp(u) #[0.8414709848, 0. 848253629....0.5275664375, 0. 4698424613]

Near est Nei ghbour and Cubi cSpline interpolation may be performed
in the same way:

Cubi c-spline interpolation
interp = CubicSplinel nterpol ator(x,y)

Near est - nei ghbour interpol ati on
interp = Nearest Nei ghbor | nt erpol at or (X, y)

Example 5.3. Interpolation functionsin DP

The result of the interpolations used in the above exampleisillustrated in Figure 5.1.

99

DP Numeric: Basic Functions for Herschel DP

Herschel PlotxY -

|
o

y axis
-0.90 -0.60 -0.30 ﬂ.lﬂﬂ 030 0.60 0.90
|

| | | | | | | | | |
0o 1.0 20 30 40 50 60 70 80 8.0

X axis

B W COriginal values — Linear — Cubic spline
— [earest neighbour

Figure5.1. [llustration of various forms of inter polation functions.

5.10.6. Basic Fitter Routines

A complete package of advanced data-fitting routinesis available and will be more fully discussed in
future versions of the User Manual. Here, we provide information on the basic linear and non-linear
fitting routines available within DP.

5.10.6.1. General Approach

Input Data: The fitter package expects your data to be in two datasets that are related to each other.
Typically, these are Doubleld arrays, e.g.,

Dat a points: each elenent in x and y define a data point
= Doubl eld. range(12) # Make x vector (the data positions/channels)
= Doubl eld([1.0,1.2,0.9,2.2,3.3,\

4.5,3.6,2.7,1.8,1.2,1.0,1.1]) # Make y vector (the data val ues)

Model Selection: Fitting means adjusting the parameters of a known function, called model, so that
it best matches the input data. This toolbox provides some pre-defined linear models as well as non-
linear models. Viewing your datawill hopefully give you some hints about what function model would
reflect your input data. For example, if it seemsto be polynomial of acertain degree, you would choose
a PolynomialModel.

100

DP Numeric: Basic Functions for Herschel DP

Note

@ For the case of non-linear fitters (e.g., used with Gaussians) it is also necessary to provide
initial guesses in the form of a parameter set to the model before invoking afitter. The
closer the initial guess for the parameter set to the true values the higher the likelihood
that the minimisation will not find a local minimum with wrong/unrealistic parameter
estimation.

An example of the use of alinear fitter:

Choose a nodel: 4th degree pol ynom al

nyModel = Pol ynoni al Model (4)

Create a fitter and feed it your positions/channels along the array
(x, a Doubl eld array) and your node

nyFitter = Fitter(x, nyModel)

Or for anon-linear fitter applied to our array 'x":

myModel = GaussModel ()

peak = 4.5

channel = 5.5

w dt h=1. 0

initial values = Doubl eld([peak, channel, width])

Apply the initial estimates: peak height, channel position and

wi dth of gaussian

myModel . set Paranet ers(initial val ues)

Choose non-linear fitter to use

nmyFitter = AnpebaFitter(x, myMdel) # see |later section on available fitters

Fit Execution (with and without weights)

Now actually fit the data values at each x position (the y array) to the node
fitresults = nyFitter.fit(y)

O with associated wei ghts array

fitresults = nyFitter.fit(y, yWeights)

Results Now thefitter hasdoneitsjob. We can print theresults (f i t r esul t s) to seethe parameters
fitted.

print fitresults # fromusing the polynomal fitter
[1.0993589743591299, - 1. 1096331908843398, 0. 8923489704745665
-0.14688390313399513, 0. 006825466200470528]
provides coefficients of the polynomal fit

print fitresults # fromusing the Gaussian fitter
[3.751009700481534, 5. 353351564022887, 2. 5098951536394383]
#peak of fit, channel of Gaussian peak, wi dth of Gaussian

Thefit parameters model are computed and we can start using that model to e.g. re-sample your model
fit data:

Re-sanple with equally spaced x data points and a finer grid
xs = Doubl eld. range(1200) / 100 # Re-sanpl ed x positions
ys = nmyMdel (xs) # Conputed y data points
#a plot of xs versus ys plots out 1200 points with the fit.

Satistical Information The above procedure demonstrates how to use the fit package to fit your data

against a certain model. However, it does not tell you how good the fit actually is. Thefitters provide
ways to extract such information from the fit.

After fitting

print nyFitter.get Chi Squared() # Goodness of the fit
e.g., 2.5765684980727577 for CGaussian fit
print nyFitter.autoScal e() # How wel | does the data fit the nodel

101

DP Numeric: Basic Functions for Herschel DP

e.g., 0.5350564350372312 for Gaussian fit

print nyFitter.getStandardDeviation() # Standard deviations for the paraneters.
e.g., [0.30907540430060004, 0. 24531121048289006, 0. 2525757390634412]

for Gaussian fit paraneters

print nyFitter.get Hessi an() # Retrieve the Hessian matrix
es = nyFitter.nonteCarl oError (xs) # Errors on the resanpl ed datapoints
es is now an error array with a length the sane as "xs" -- 1200 sanpl es

5.10.6.2. Available Linear Models

There are several models that can be used for linear fitting.

In the descriptions below, the models provide parameter fit values pg, p1 ... Pk

Note

@ In the following exampl es the parameter subscripts match the position of the parameter in
the output array (fi t sresul t in the previous section). So pp will be the first element
of thefitsresult array, p; the second one, and so on.

BinomialM odel, which allows for the fitting of a binomial model with two variables -- f(x,y:p) = =
P X Y9 where d is the degree. Usage: BinomialModel (4) -- provides abinomia model of degree 4.

PolynomialM odel, which allows for the least squares fitting of a polynomial to the data-- f(x:p) = =
p X< . Usage: PolynomialModel (3) -- provides a third order polynomial fitting of the data.

SineAmpM odel, which allows for the fitting of cosine and sine waves of a given frequency to get
amplitudes -- f(x:p) = pg cos(2 Ttf X) + py sin(2 1tf X) , where x is the data. Usage: SneAmpModel (f)
-- which provides cosine/sine fits with a frequency, f.

Power Model, which allows for the fitting of a power law of order k -- f(x:p) = po X* . Usage:
PowerModel (3) -- provides a third-order power-law fit

CubicSplinesM odel, which alows for the fitting of a cubic splines with arbitrary knots settings.
Usage: CubicSplinesModel(5) -- provides a cubic splines fit with 5 knots.

5.10.6.3. Available Non-Linear Models

There are a number of models that can be used for non-linear fitting. For fitting of these models we
need initial values (guesses) for parameters labelled po, p1 and p; (see example given in the "General
Approach” section).

ArctanModel, which allows for the fitting of a general arctan function -- f(x:p) = pg arctan(p; (x -
p2)). Usage: ArctanModel()

ExpModel, which allows for the fitting of a general exponential function -- f(x:p) = po exp(p1 X).
Usage: ExpModel()

LorentzM odel, which allows for the fitting of a Lorentz function -- f(x:p) = po (p2/((X - p)* + p29)).
Usage: LorentzModel ()

Power L awM odel, which allowsfor thefitting of ageneral power-law function -- f(x: p) = po (X - py)™.
Usage: Power LawModel ()

SincModel, which alows for the fitting of a sinc function -- f(x:p) = po sin ((X - p)/p2)/(X - pL)/p2.
Usage: SncModel()

SineModel, which alows for the fitting of a general cosine/sine wave -- f(x:p) = p1 cos(2 Tt pg X) +
p2 Sin(2 Tt pg X). Usage: SneModel()

102

DP Numeric: Basic Functions for Herschel DP

GaussM odel, which allowsfor thefitting of a1-D gaussian -- f(x:p) = po exp(-0.5 ((X- p1) / po)?, where
po isthe amplitude, p; the x-shift (from zero) and p, the sigma of the fit, with initial values of 1.0, 0.0
and 1.0 respectively. Note that Gauss2DModel produces afit to 2D data. Usage: GaussModel ()

User supplied non-linear function, which allows for fitting a function (linear or non-linear)
constructed by the user. This function must be put in a jython class and optionally the user could
provide an analytical calculation of the partial derivatives with respect to the parameters (otherwise
they are calculated numerically). Thisis shown in the following example for the following function
of four parameters: f(x:p) = p0/(1+(x/p1)?)™ + p3 (the so called beta-profile):

from herschel .ia. nuneric.tool box.fit inmport NonLi near PyMdel

cl ass Bet aMbdel (NonLi near PyModel) :
the full 4-parameter beta-nodel with partial derivatives
f(x:p) = pO/ (1+(x/pl)**2)**p2 + p3
#
npar = 4
def __init_ (self):
Constructor
NonLi near PyModel . __init__(self, self.npar)
sel f. set Par anet er s(Doubl e1d([1, 1,-1,1]))
#
def pyResult(self,x,p):
model = p[0]/ (1.0 + (x/p[1])**2)**p[2] + p[3]
return nodel
#
def pyPartial (self, x, p):
the partial derivatives
argl = 1.0 + (x/p[1])**2
dp = Doubl eld(sel f. npar)

#

dp[0] = 1.0/argl**p[2] # df/dpO

dp[1] = 2.0*p[0] *p[2] *x*x/((p[1] **3)*argl**(p[2] +1.0)) # df/dpl
dp[2] = -p[O] *Math. | og(argl)/argl**p[2] # df/dp2

dp[3] = 1.0 # df/dp3

return dp

def nyNane(self):
Return an explicatory nane (String). Optional.
return "beta-profile: f(x:p) = p[0]*{1 + (x/p[1])2}”*p[2] + p[3]"

Once we define the function as shown in the example then we can proceed as before and create a
model and then perform the fitting using either the Lavenberg-Marquardt or Amoeba fitters:

bm = Bet aMbdel ()

bm set Par anet er s(Doubl e1d([10.0,1.0,-2.0,5.0]))

nyfit = LevenbergMarquardtFitter(x, bnm) # see section on available fitters bel ow
or nyfit = AnpebaFitter(x, bm

result = nyfit.fit(y)

print result

5.10.6.4. Compound and Mixed Models

It is possible to add two models, e.g. if one wantsto fit a spectral line (a Gaussian) on a background
(aPolynomial). The resulting model is non-linear.

nyModel = GaussModel () # Define a Gaussian
nyModel += Pol ynoni al Model (1) # Add a Polynomial to it of order 1. Only with +=
print nmyModel .toString() # Infornmation about the nodel

More models can be added if wished.

5.10.6.5. Available Fitters

Fitter. Fitter for linear models. Y ou create afitter by providing the model assumption and the x points
of the data. With that information you compute the parameters within the model by fitting the y data

103

DP Numeric: Basic Functions for Herschel DP

points. Once the computation of those parametersis done, you can extract statistical information from
the fitter. Syntax: myFitter=Fitter (xDataPoints, model)

LevenbergMarquardtFitter. Fitter for non-linear models. The LMFitter is a gradient fitter, which
means that it goes downhill from the starting location until it cannot go down anymore. There is
no guarantee that the minimum found is an absolute or global minimum. If the chisg-landscape is
multimodal it ends in the first minimum it finds. See also Numerical Recipes, Ch 15.5. Syntax:
myFitter = L evenbergM ar quar dtFitter (xDataPoints, model)

AmoebaFitter. Fitter for non-linear models. The Amoebakitter implements the Nelder-Mead simplex
method. It comes in 2 varieties, one where the simplex simply goes downhill (temperature = 0) and
one which implements an annealing scheme. Depending on the temperature, the simplex sometimes
takes an uphill step, while a downhill steps always is taken. This way it is able to escape from
local minima and it has a better chance of finding the global minimum. No guarantee, however.
AmoebaFitter is aso able to handle limits on the parameter range. Parameters stay within the
limits when they are set. See also Numerica Recipes, Ch. 10.4 and 10.9. Syntax: myFitter =
L evenbergM ar quar dtFitter (xDataPoints, model)

5.10.6.6. Obtaining a Model Fit to 1D and 2D Data

1D Fit Example

Example 5.4 shows how a polynomial can be fitted to a set of 1D data.

104

DP Numeric: Basic Functions for Herschel DP

Doubl eld([3, 4, 6, 7, 8, 10, 11, 13]) # These are the positions of the 1D data
Doubl eld([2, 4,5,6,5,6,7,9]) # These are the data val ues at each position
The created arrays are:
print x # [3.0,4.0,6.0,7.0,
print y #1[2.0,4.0,5.0,6.0

Create sone data
X =
y =

8.0,10.0,11.0, 13.0]
,5.0,6.0,7.0,9.0]

Decide that we will fit it with a pol ynom al

nmodel = Pol ynom al Mbdel (3)

The Fitter class expects the 'x' data point positions and the nodel.
In the binom al case, a Double2d array of x,y values is required.

The Fitter class deals with non-iterative nodels only.

[Note: For non-linear nodels the fitter tool box provides

the AnpebaFitter and the LevenbergMarquardtFitter]

fitter = Fitter(x, nodel)

Now we fit the data values(y); the returned array contains the paraneters
that nake up a 3rd degree pol ynom al .

Note: the nodel that we fed into the fitter is nodified along the

way, such that it contains the conputed paraneters of the polynom al.
poly = fitter.fit(y)

Printing the fit results (truncate to 3 decinal places to fit in line)

print poly # [-6.921, 4. 463, - 0. 543, 0. 022]

..and also getting the Chi-squared. The fitter has al ready been applied
and we can use the get Chi Squared() method to determine the fit

print "Chi-Squared = ", fitter.getChi Squared()
Chi-Squared = 0.9933079890409999

The fitted pol ynom al can then be applied as a function to interpolate
between fitted points. Interpolate at 'n' uniformy spaced x val ues

100
M N(x) + Doubl eld.range(n + 1) * ((MAX(X) - MN(x)) / n)

n
u

Apply the nodel
unodel = nodel (u)

Now we can plot the data (x vs y) and the polynom al fit (u vs unodel)
Set up the plot space

pl ot = Pl ot XY()

Plot x against y in blue.

plot[0] = LayerXY(x, y, name = "Data")

Overlay a second plot showi ng the polynomal fit in green.

plot[1] = Layer XY(u, unodel, nanme = "Fit", color = java.awt.Col or.green)

Example 5.4. A 1D polynomial fit.

The final plotted display should look like Figure 5.2

105

DP Numeric: Basic Functions for Herschel DP

Herschel PlotXY =

)
=]

=]

-

| | | | |
4.0 6.0 8.0 10.0 12.0

X axis
Fit |

| —— Data

Figure5.2. [llustration of polynomial fit.

2D Fit Example

For 2D data we express the positions at which we have data by a Double2d array -- thisis basically
alist of x, y positions at which we have known data values that we will fit a 2D Gaussian to. So the
X array in our previous example is now replaced by a 2D array of data positions. They array hasthe
data values at those positions.

In Example 5.5, an array with values that provide a Gaussian with random noise added is fitted by
the Gauss2D model.

106

DP Numeric: Basic Functions for Herschel DP

We start by making a little routine that creates the data for us.

The out put contains the 'xy' positions as a Doubl e2d array and the data
values are held in in the Doubl eld array 'y2'.

def makeData():

Define sone constants

N=29 # W will create an array that is NxN
a0 = 10.0 # Anplitude of gaussian

x0 = 0.7 # x position of gaussian

y0 = -0.3 # y position of gaussian

s0O = 0.4 # Wdth

Make data with an underlying gaussi an nodel .
x = Doubl eld.range(N) / 2.0 - 2 # create x val ues
NN = N* N # the nunber of x and y positions (NxN)

xy = Doubl e2d(NN, 2) # Create enpty array of xy positions
ym = Doubl eld(NN) # Create enpty array for anplitude of pure Gaussian
y2 = Doubl eld(NN) # Create enpty array for Gaussian with noise (our

dat a) .
These have anplitude val ues only.
rng = java. util.Random(12345) #provide a random anplitude (noise)
To add to our nodel Gaussian with a seed val ue.
si = 1.0/ sO #just inverse of Gaussian width to be used
for i in Intld.range(NN):
xy[i,0] =x[i / N # Fills x positions for our data array
xy[i,1] = x[i %N # Fills y positions for our data array
xx = (xy[i,0] - x0) * si
yy = (xy[i,1] - y0) * si
ynfi] = a0 * EXP(-0.5 * xx * xx) * EXP(-0.5 * yy * yy)
Fills 1d array with anplitude val ues...
y2[i] = yni] + 0.2 * rng.nextGaussian() # ...and adds noise to it
return xy,y2

Create the array with a 2D gaussian in it using the above routine.
a = makeDat a()

The first itemin "a" has the xy positions in it

xy=a[0]

The second item has the data val ues

y2=a[1]

Define the nodel to be used in the fit
gaus2d = Gauss2DMbdel ()

Define the fitter: LevenbergMarquardt, a non-linear fitter is needed for
a gaussian fit. W could use an AnpebaFitter here also -- user preference.
fitter = LevenbergMarquardtFitter(xy, gaus2d)

A useful way to make data formats prettier for the printout of our results
F = DataFormatter()

Find the paraneters

param = fitter.fit(y2)

print "Paraneters %" % F. p(param

Paraneters [9.645 0.694 -0.300 0.413]

print "Paraneters are: gaussian height, x position, y position, w dth"
#Parameters are: gaussian height, x position, y position, wdth

Find the standard deviations of the all four paraneters...

stdev = fitter.get StandardDevi ation();

print "Stand Devs %" % F. p(stdev)

#St and Devs [0.218 0. 009 0. 009 0. 007]

...and the chi-squared for the fit

print "Chi Sq %" % F.p(fitter.getChi Squared())
#Chi Sq 3. 552

Example 5.5. A 2D Gaussian fit

5.10.7. Spectral Fitting.

This section describes how to use the spectrum fitting toolbox in HCSSto fit aspectrum. To accessthe
toolbox it will need to beloaded from the into the session. This can be done by typing in the following
in the JIDE command line interface.

107

DP Numeric: Basic Functions for Herschel DP

from herschel . i a.tool box. spectrumfit inport *

The toolbox is continuing to be developed and it is expected that new features will be added to what
is described here. Features that are certain to be added are listed in the 'To Be Added' section below.

5.10.7.1. Data format

The data that is used by the classes can be any Java or Jython object, as long as it implements the
Spectral Segment interface (e.g., extracted from a Spectrumld object).

You can create a SpectraSegment using a little helper class, Fit Data. This class takes
two Doubl eld's (representing wavelength/frequency and flux/values) and wraps them into a
Spect r al Segrent .

If you have two Doubleld arrays, x and y, then the statement:

data = FitData(x,y)

createsaSpect r al Segnent .

5.10.7.2. General Usage

In general, datato be fitted contains three kinds of features:
« abackground/continuum level

* >0ne or more spectral lines

* noise

These can be fitted using the Spect runti t t er tool.

The purpose of the Spect runti tt er isto fit models to the background and the spectral linesin
such away that when the models are subtracted from the data, the residual only contains the noise.

Although fitting spectral lines and the background does not differ mathematically, the two cases must

be handled separately. That is, you better first fit the background, subtract that from the data, and only
then fit the lines.

5.10.7.3. Fitting your data

Asthe user you interact withthe Spect r unti t t er tool. To have more control over the models (see
below) you can also interact with the class Spect r univodel .

Note that you normally must know where (approximately) you expect a spectral feature in your data
to be, plus its expected shape, and rough shape parameters. So, an initial guessis required - if this
guess is completely wrong you may end-up fitting noise rather than your spectral lines.

The Spect runfi tt er tool provides graphical information on the fitted data to assess the fits that
are made.

5.10.7.4. A Simple Fit Case

The simplest spectral fitting case involves data with one spectral line and with no background/
continuum.

Thebasics are, a) create aSpect runti t t er ; b) add modelstoit.

108

DP Numeric: Basic Functions for Herschel DP

We assume you know that you have a Spect r al Segrment which contains the spectral line has a
Gaussian shapethat islocated near x0, has an amplitude of about a0, and awidth of about sO (the exact
values of a0 and S0 are not so important). The following is an example:

X Doubl eld. range(15)

Doubl e1d([0.0,0.1,-0.1,0.05,0.1,0.2,1.0,3.6, \
2.5,1.5,0.7,0.0,0.1,-0.13,-0.01])

dat a=Fi t Dat a(x, y)

This has a peak near value nunber 7 with an

anplitude of 3.6 and a width close to 1.

x0 = 7.0
a0 = 3.6
sO = 1.0

These are our initial guesses.

We canfit thisusing the Spectrunfi tter:

sf = SpectrunFitter(data) # note that a plot of the data is
automatically drawn in a separate w ndow

see Figure 5.3
sf.addModel (' gauss', [a0, x0, s0]) # note the square brackets

and the order of the paraneters
print sf # this prints out the fitted Gaussi an paraneters

and their standard devi ations.

Fit results:

p0 = 3.3890821693817763, stddev= 0.2568383201833762
pl = 7.444866152807009, stddev= 0.09308190130219554
p2 = 1.0796490360796016, stddev= 0.09333220808910589

for the anplitude, position and width respectively.

Figure 5.3. Spectrum fit data setup.

The result of adding the model is the production of two further plots. One plot contains:
 thedata(blueline)

« theinput model as given by you (green line)

* theresulting fit (red line)

The second plot displays the residuals. See Figure 5.4 and Figure 5.5.

Figure 5.4. Datafit - datain blue, input model in green, fitin red

Figure5.5. Residuals on thefitted data

5.10.7.5. Available Models For Fitting

There are anumber of models available for fitting. In order to see the available models in the system
at any time you can use the following.

print SpectrunFitter().info()

This command provides a listing of available models that can be fit. If we pick one of these models
we can get more information on it. For example we can look to fit a polynomial -- the 'poly' model.

109

DP Numeric: Basic Functions for Herschel DP

print SpectrunfFitter().info('poly")

Thisindicates there is one constructor (only one way of calling it). The order needsto be given in one
array and initial parameter guessesin a second array.

from herschel .ia.tool box. spectrumfit inport *

from herschel . i a.tool box. spectrumfit.testdata i nport *

#There are 7 inbuilt datasets for spectrumfit checking and illustration
m = MakeData(3) # integer value represents different nodels

m addNoi se(10) # add sone noise to the data

now do fit -- the guess and final nodel fit are displayed overlayed on the data
sf = SpectrunFitter(m # setup spectrunfitter

nod=sf . addMvbdel (' poly',[3],[1.0,0.0,0.0,0.0])

3rd order poly nodel and guess for fit paraneters

sf.doFit() # fit displayed.

print sf # provides fitted paraneters with their standard devi ations

The models currently available and an illustration of their useisgivenin Table 5.1.

Table5.1. Spectrum fit model types and their use.

Name Example use -- namesin brackets should be
replaced by numerical values representing
theinitial guessfor the parameter(s)
‘atan’ mod=sf.addM odel (‘atan’,[amplitude,s ope,of fset])
'exp’ mod=sf.addM odel (‘exp’,[amplitude,exponent])
'gauss mod=sf.addM odel (‘gauss,[amplitude, position, width])
‘gaussmix’ mod=sf.addM odel (‘gaussmix',[amplitude, position, width])
‘harmonic’ mod=sf.addM odel ("harmonic',[Order,Period],[params]).
Number of parameters provided = 2*order + 1
'lorentz' mod=sf.addM odel ('lorentz',[amplitude, shift, gamma])
'pade’ mod=sf.addM odel (‘pade’,| Num,Denom],[params]).
Number of parameters provided = Num + Denom + 1
‘poly' mod=sf.addModel (‘poly',[Order],[paramg]).
Number of parameters provided = Order + 1
‘power’ mod=sf.addM odel (‘power’,[Degree],[param]).
Number of parameters provided = 1
'sinc' mod=sf.addModel (‘sinc',[amplitude, position, width])
'sine mod=sf.addM odel ('sine',[frequency, cosine amp, sine amp])
'sineamp’ mod=sf.addM odel ('sineamp’,[frequency], [two params])
'sinemixed' mod=sf.addM odel ('sinemixed',
[frequency, cosine amp, sine amp])

5.10.7.6. Multiple Line Fitting

If, in the simple line case above, the residual is only noise, you have completed your fit. If not, then
there may be another spectral line in your data. From the original data or from the residual you can
often determinetheinitial parameters of asecond line: al, x1, s1. In order to include afit to this second
line also we can simply add another model to the fitter by using the ‘addM odel' method:

110

DP Numeric: Basic Functions for Herschel DP

sf.addModel (' gauss', [al, x1, s1])

Thiswill update the fit and plots automatically. In thefirst plot you will now also see the two models
separately using the fitted parameters as black lines.

5.10.7.7. Background/continuum Fitting

Background/continuum fitting is not treated differently from the above. The only difference is the
model used to fit the background.

When being combined with spectral linefits, it is best to fit the background first then add the spectral
line model fit. If you don't, the fit of your spectral lineswill initially be quite poor.

One model to use for a background is a polynomial. For afirst order Polynomia (y = cO + c1*x):

sf.addModel (" poly', 1, [cO, cl]) # the second value is the pol ynom al order

For a higher order (n):

sf.addModel (' poly', n, [cO, cl1, ..., cn])

5.10.7.8. Fit of Line and Continuum

We can fit aline and continuum simultaneously by adding more than one model before doing the fit
(e.g., apolynomial and gaussian model). We can then do a global fit. An example is given below.

#i mport the appropriate packages

from herschel . i a.tool box.spectrumfit inport *

from herschel . i a.tool box. spectrumfit.testdata i nport *
m = MakeDat a(5) # values represent different nodels

m addNoi se(10) # add noise to the node

sf = SpectrunFitter(m

nmod=sf. addMbdel (' gauss',[4.0,30.0,1

nmod=sf. addMbdel (' gauss',[1.2,10.0, 2) #second |ine

nod=sf. addMvbdel (' poly',[3.0],[0.0,0.0,0.0,0.0]) # pol ynomi al for continuum
sf.doG obal Fit() #fits all nodels at the same tine -- residual plot also shown

) #also plots initial guess

288

The results of this are a plot of the data, initial guess and fit (in red) plus a separate plot of the fit
residuals (see Figure 5.6 and Figure 5.7).

111

DP Numeric: Basic Functions for Herschel DP

A Herschel Plotxy -0 x|

5-5IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIIIIIII|IIII

50
45
40
35
30
25
20
1.5
1.0
0.5
00
0.5

-1|:| IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII_

Q0 0 10 20 30 40 S0 &0 70 80 o0 100
X axis

Yy axis

—
—
=

—— HifiHrsDatalrane
Layer 3

handl
Layer 4

Lagyer 2
Layer 5

Figure 5.6. Fit using multiple models. In black are the individual guesses, in green thetotal initial guess
and in red thefinal fit.

112

DP Numeric: Basic Functions for Herschel DP

A Herschel Plotxy -0 x|

D-lﬁ_lllllllllllllllllll|IIII|IIII|IIII|IIII|IIIIIIIIIIII|III

0.5
04
0.3
([
0.1
00

y axis

-0.1
-02
-03
-0.4

-0.5

_Dﬁ IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|III

A0 0 10 20 30 40 S0 60 70 B0 90 100
X axis

-|III|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|Illr

—_—
[a—y

0

—— HifiHrsDataFrane

Figure 5.7. Residuals on the multiple model fit data shown in Figure5.6.

5.10.7.9. Changing Parameters

If you wish to change the initial parameters of any of the models, you can usetheset Par anet er s
method of the models. To use them you must have areference (1abel) to the model. Thisisin fact the
return value of theaddModel operation. In the example below, the label issimply 'm':

m = sf.addMobdel (...) # mis now a reference we can do things with
To change the initial parameters of the model
m set Paranmeters([...])

A new fit will be made on the fly and your plot display updated.
5.10.7.10. Removing Fitted Models

Removing models can only be done when you have a reference to the Model (as above). There are
two ways to remove models:

sf. renmoveMbdel (M

Or:

m renove()

113

DP Numeric: Basic Functions for Herschel DP

5.10.7.11. Using Fit Parameters
Once you are satisfied with afit, you can set the fitted parameters as the default for the models:

m useResul t s()

This may be useful when using the same models for afollowing dataset.

5.10.7.12. Subtracting a Fit
Y ou can subtract the model from the dataset:

sf. subtract Model (m

This also removes the model from the fitter tool.

5.10.7.13. New Data

Once you are satisfied with your models, you may want to apply them to a different dataset as well.
This can be done with the operation:

sf.setData(otherData) # this replaces the data held in the
SpectrunfFitter with the Spectral Segnment
held in the variable 'otherData'

Once again, the fit will be redone on the fly.

5.10.7.14. Functions To Be Added in the Future

>The following features are likely to be added to the system:
 add more model types

» subtract amodel from the data, continue with the residuals;

fix any of the given parametersin amodel;
* select parts of the X-axis to include/exclude in the fit;

» make an initia guessfor the model parameters.

5.10.8. Matrix Manipulations

Most of the utilities for dealing with matrices are provided by the numeric.toolbox.matrix package.
However, we must not forget that simple vectors are just matrices with just one row (or one column),
so even vector classes like Doubl eld provides tools like a dot Product method for scalar
multiplication of vectors:

X Doubl eld([1, 2, 3, 4])
y Doubl eld([1, 3,5, 7])
print x.dotProduct(y) # 50.0

Now let ustakeacloser ook to the numeric.tool box.matrix package and its special classesand function
objects for matrix multiplication and transposition. We will start right away with a short example:

X Doubl e2d([[2,4,6],[1,3,5]1)

y = TRANSPOSE(x)
z = MatrixMiltiply(y)(x)
print z

Hence, it is important not to use the Jython * ' operator for matrix multiplication. However, the '+'
operator performs element-wise addition as required.

114

DP Numeric: Basic Functions for Herschel DP

It isalso possibleto multiply amatrix by avector asfollows (since, aswe already pointed out, avector
is nothing more than a matrix with just one row or column):

a = Double2d([[1,2,3],[7,5,4],[7,4,9]1)
b Doubl eld([4, 1,7])
print MatrixMiltiply(b)(a) # [27.0,61.0, 95.0]

Warning
O The correct syntax to multiply matrix a by matrix b isMat ri xMul ti pl y(b) (a).
Another matrix class can be used to solve matrix equations. For example, if we wanted to solve the
matrix equation: A. X = B

X = MatrixSol ve(b) (a)
print x # [-0.9838709677419352, 0. 5322580645161287, 1. 3064516129032258]

Other useful tools for matrix manipulation are listed below.
DETERMINANT Yields the determinant of a square matrix given by a Double2d array.

A=Doubl e2d([[1,2],[3.4]])
print DETERM NANT(A) # -2.0

Note: This currently does not work for complex matrices.
INVERSE Returns the inverse of a square matrix.

A=Fl oat 2d([[1,2],[3.4]1)
print | NVERSE(A) # [[-2.0,1.0],[1.5,-0.5]]

Note: This currently does not work for complex matrices.
TRANSPOSE Gives the transposed matrix.

A=Int2d([[1,2],[3,4],[5,6]])
print TRANSPCSE(A) # [[1,3,5],[2,4,6]]

Y ou might find a bit confusing that some names, likedot Pr oduct , start with alowercase |etter and
have all the other initials capitalised, while other names, like Mat ri xMul ti pl y, have all initials
capitalised, and there is a fair share of names like TRANSPOSE with all uppercase letters. Y ou can
find more about these quirks in the appropriately named Section 3.21.

5.10.9. Random numbers generation

Note

@ For simplicity we will speak of random numbers throughout this section, even if we
know very well that a computer can only create pseudorandom numbers. Discussing the
subtleties of generating (pseudo-)random numbers on a computer is beyond the scope of
this section.

To create random numbers with DP wefirst haveto instantiate agenerator. There are three generators
currently available;

e Randonlni f or m generates random numbers in the range 0 <= x < 1 if invoked without
parameters, like this:

myGener at or = Randonni f or m()

It is also possible to give a maximum value different from 1 to have random numbers created in
the range 0 <= x < max:

115

DP Numeric: Basic Functions for Herschel DP

myGener at or = Randonni f or m(max)

* RandonfGauss: generates random numbers following a Gaussian distribution.

* RandonPoi sson: generates random numbers following a Poisson distribution of specified mean
value greater than zero. It isinstantiated like this:

nyGener at or = RandonPoi sson(mean)

It can only produce integer-type random numbers (i nt , short and| ong).

Inall caseswhat isbeing used under the hood isthe Donald Knuth generator (see The Art of Computer
Programming, Volume 2, Section 3.2.1) asimplemented in thej ava. ut i | . Randomclass.

Once we have a generator in place, how do we create random numbers? The handy feature is that we
can create a single scalar random number or an array of any size and dimension we like (aslong as it
fitsin memory). Just put the type of numeric value you want as input, and the output will be the same
thing, but populated with random numbers. A few examples:

myCener at or = Randonlni f or m()
print myGenerator (0.0)
0.8754230073094597

Generating random nunbers between 0 and 1

We want a floating point random nunber. ..

...and there it is (don't expect to get the

sane nunber)

Now for an array of ten doubles...

We leave it to you to see the result

O course you can create the input on the fly
What's the result of this one? Does it nake sense?

x = Doubl eld(10)
print myGener at or (x)
print myGener at or (Doubl e1d(10))

#
#
#
#
#
#
#
print nmyGenerator(Ilntld(100)) #

Y ou might have been puzzled to see a hundred zeroes scroll on your screen after executing the last
command of the example. It's not so surprising if we think that we asked the computer to produce
integer random numbers between zero and one, excluding one. The choice of possible values was
pretty limited.

If wewant to change the seed of the random number generator we can do so by theset Seed method,
which takes along parameter as an input:

myCGener at or . set Seed(54653856L)

5.10.10. Numeric Integration

Numeric integration in DP is implemented via an Integrator interface. The function to be integrated
has to be declared as a class of a RealFunction containing a method called calc which takes one
argument, the independent variable.

The following Integrators for a standard integration interval [a,b] are available:
 RectangularIntegrator

* Romberglntegrator

» Simpsonlntegrator

 Trapezoida I ntegrator

» GaussianQuad4l ntegrator

» GaussianQuad5I ntegrator

» GausslL egendrel ntegrator

All these integrators have two arguments for initialisation: the lower limit of integration (a) and the
upper limit (b). Once the integrator isinitialised and the user function is defined then to perform the

116

DP Numeric: Basic Functions for Herschel DP

integration amethod called integrate() is executed with an argument the user function. Thisis shown
in the following example:

from herschel .ia. nuneric.tool box inport Real Function

cl ass MyFuncti on(Real Functi on):
def cal c(self,x):
return x*x

f = MyFunction()

a=-3.0

b =3.0

i = Ronberglntegrator(a, b)

print i.integrate(f) # 18.0

print "Analytical answer: ",(b**3 - a**3)/3.0

The following special cases of numeric integration are also implemented:

» GaussHermitelntegrator: for integration with limits (-Inf,+Inf) of aspecial class of functions
¥ II‘ 1:2 Iy "
- . .
f e flx)dx
» GaussLaguerrelntegrator: for integration with limits [0,+Inf) of a special class of functions

J‘D xe " flx)dx

Theinput for the integrator initialisation is a.

» GaussJacobilntegrator: for integration with limits[-1,1] for aspecia class of functions
1 "y B P
f A(I=x) (I+x)" flx)dx

The input for the integrator initialisation are o and f3.

If atabular data of x,y is to be integrated then it is necessary to interpolate first and then apply a
suitable integrator. Thisis shown in the following example:

from herschel .ia. nuneric.tool box inport Real Function

x = 0.1 + 1. 9*Doubl eld. range(11)/10.0 # 11 points between 0.1 and 2.0
y = 1.0/x

f = CubicSplinelnterpolator(x,y) # interpolate first.

a=201

b =20

integrator = Sinpsonlntegrator(a, b) # use Sinpson's rule

res = integrator.integrate(f) #
print "Result: ",res
print "Analytical result: ",LO3b) - LOH a)

5.10.11. Interpolating Discrete Data

If the objectiveisto integrate discrete data, thiscan be done by meansof aFi t t er Funct i on, which
isafunction that interpolates the given data, with a specific model. For example:

117

DP Numeric: Basic Functions for Herschel DP

from herschel .ia.tool box.fit inmport FitterFunction

y are Doubl eld that represent the abscissas and val ues of our data

Fi tterFunction(x, y, Polynoni al Mbdel (3)) # Uses a Fitter
Fi tterFunction(x, y, Polynoni al Mbdel (2), FitterFunction. AMOEBA)

Uses an AnpebaFitter

nonox

#
f

g
#

If more precise fitting is needed, you can do it by yourself, and then pass the already built fitter (or
the model) to the FitterFunction:

x, y are Doubl eld that represent the abscissas and val ues of the data
nodel = Cubi cSpl i nesMdel (x)

fitter = AnrpebaFitter(x, nodel)

fitter.setSinplex(parans, range) # custom ze the fitter as you want
fitter.fit(y)

f = FitterFunction(fitter) # or f = FitterFunction(nodel)

If one of the defined interpolators suites your needs, it can be used directly, instead of a
Fi tter Functi on. For example:

are Doubl eld that represent the abscissas and val ues of the data

X, Y
f = CubicSplinelnterpol ator(x, y)

5.11

Example Programs

The HCSS distribution includes anumber of Jython example programsthat demonstrate not only basic
arrays functions but also use of filters, fitters, Fourier transforms, etc. They are currently kept at ftp://
ftp.rssd.esa.int/pub/HERSCHEL /csdt/rel eases/doc _ialialdemal/scripts. These are:

Example of the newest components

numeric_whatisnew.py of the numeric package.

numeric_demo.py Example of how to use the 1D functionality.

numeric_2D_demo.py Example of how to use the 2D functionality

Example of how to use the

convolution_demo.py convolution functionality

polyfitter_demo.py Example of how to perform polynomial fitting

5.12. Mathematical Operations on Spectra
5.12.1. Introduction

The spectrum arithmetic toolbox allows to combine Herschel spectrum data. Operations are
performed either on subclasses of spectrum datasets (Spect r unid, Spect runtd), on
cubes (Si npl eCube, Sl icedCube), or on products containing such data structures (e.g.,
HifiTimelineProduct).

Operations on Spectrainclude Selection and Arithmetic Operations.

» Selection: Provide means of selecting those spectra that can be combined. For instance HIFI cold-
|oad spectra, ON spectra, etc. Selection can be applied to datasets, such asrowsof aSpect r und,
or to tables within a product, such as datasets included in a Hifi TimelineProduct.

 Arithmetic Operations: Provide means of combining the selected spectra. Thisincludes:

« Basic arithmetic operations such as addition, subtraction, multiplication, or applications of scalar
functions.

118

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_whatisnew.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/numeric_2D_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/convolution_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/polyfitter_demo.py

DP Numeric: Basic Functions for Herschel DP

o Statistical operations such as mean, median, variance, standard deviation or percentiles for
samples/ selections of spectra.

« Datatransformations such as smoothing or frequency re-sampling.

It is planned that the arithmetic toolbox will provide generic functionality for all instruments (HIFI,
PACS and SPIRE). Instrument-specific behaviour will be pre-configured by defaults in the system
but can also be overwritten by the user.

5.12.2. Toolbox Primer: Selection

We present the power of the toolbox with afew code examples. Assume we have started ajide session
and loaded a Spect r und dataset with name 'datal from alocal pool or a database.

We might want to work only with a sub-set of the spectraincluded in our data. For a Spect r un2d
this means we have to (1) select specific rows from the data and (2) combine them into a new
dataset by applying some arithmetic operations on the selection. Task (1) is performed with the
Sel ect Spect r umtask,

from herschel . i a. tool box. spectrum i nport Sel ect Spectrum

The SelectSpectrum-task can be configured and used in many different ways. A frequent usage is to
identify all the rows of the dataset that have a specific valuein a particular column:

dsl = Sel ect Spectrum() (ds=data, selection_|l ookup={"bbtype":[3260]})

The example above selects all the rows with a value=3260 in the column named 'bbtype’. Hence, the
selection is performed by using the keyword selection_lookup in the call of the task, using what is
called a python dictionary. This py-dictionary contains the name of the attribute to look up as key
(column name) and the attribute value as value. All the rows in the resulting dataset ds1 have values
3514 in the bbtype column.

Using py-dictionaries suggests that we may combine several selections by adding further lookup
properties to the dictionary. Indeed, al the rowsin the dataset resulting from

dsl = sel ect(ds=data, selection_| ookup={"bbtype":[3260],"buffer":[1]})

ds2

sel ect (ds=data, sel ection_| ookup={"bbtype":[3260], "buffer":[2]})

have values 3260 in the bbtype column and values 1 in the buffer column (hence ds2 is a subset of
dsl). Note that the lookup values are specified as py-lists. By specifying alist of admissible values
those spectra are sel ected that match one of values found in the list. Aswill be explained below, there
are other selection models better suited for floating point values.

5.12.2.1. More on selection methods

 Lookup specific attribute value(s):
For one (or several) discrete criteria use the keyword selection_|ookup:

dsl = sel ect (ds=data, selection_| ookup={"bbtype":[3413]})

Spectra with bbtype=3413 are selected and included in the result container.

ds2 = sel ect (ds=data, sel ection_| ookup={"bbtype":[3412, 3413]})

Spectra with bbtype=3412 or bbtype=3413 are selected and included in the result container.

119

DP Numeric: Basic Functions for Herschel DP

ds3 = sel ect(ds=data, selection_|ookup={"bbtype":[3413],"buffer":[1]})
Spectra with bbtype=3413 and buffer=1 are selected and included in the result container.

* Index selection:
If you want to select specific spectra included in the container by its index, use the keyword
selection_index:

dsl = sel ect(ds=data, selection_index=[1,5,12])

The spectrawith indices 1, 5, 12 are selected and included in the result container.

* Moregenera selection model:
Use the keyword selection and use one of the selection models found in the package

herschel . i a. t ool box. spectrum sel ecti ons. nodel s
chopper Sel ecti on = RangesSel ecti onMbdel (" Chopper", [-4.4, 5.9], 0.1)

Thefirst parameter specifiesthe name of the attribute, the second parameter givesan array of centers
of the ranges and with the third parameter you specify the radius of the rangesto be considered. In
summary, this ranges selection model will identify all spectrafor which the attribute " Chopper" has
values located within adistance r = 0.1 around one of the centers [z1=-4.4,z2=5.9].

ds4 = sel ect (ds=data, sel ection=chopper Sel ecti on)

For further selection models see further down in the documentation.

5.12.3. Toolbox Primer: Average Spectra

After selecting the data, we can move to task (2), the application of some arithmetic operations
to the selected spectra. For example, if we now want to average the selection, we can invoke the
Aver ageSpect r umtask:

from herschel . i a.tool box. spectrum i nport AverageSpectrum

avg2l = AverageSpectrun() (ds=ds2)

The selection explained in task (1) can also be included in the average spectrum task, thus allowing
to perform selection and averaging in one step:

avg22 = AverageSpectrun() (ds=data, selection_| ookup={"bbtype":[3260], "buffer":[2]})

This result isidentical to the separate operations. It includes a single row with the average flux. The
resulting dataset contains exactly the same columns as the input dataset. Thus, what values should we
fill in the columns not affected by the operation? This is determined by a default action that depends
ontheinput datatype (sub-classof Spect r und inour example). For the Spect r und, the default
action consists of copying the values found in the input spectrum.

This way of processing the data is general: we always try to keep as much information as possible.
All columns and also the meta data are set in atype specific, instrument specific, or user specific way.
The output datatype is the same as the input data type.

The toolbox operations are not restricted to operations on Spectrum2d as our example may suggest.
In all the operations in the herschel.ia.toolbox.spectrum no reference is made to Spectrum2d. The
operations only refer to a specific contract (a java-interface), the SpectrumContainer-interface.
Spectrum2d also fulfills this contract. All the datastructures that obey this contract can be processed
by the arithmetic tools. The efforts to have this contract implemented for other datatypesisrelatively
small.

120

DP Numeric: Basic Functions for Herschel DP

5.12.4. Toolbox Primer: Subtract Spectra

Other arithmetic operations are available such as pair operations (subtract, divide, pair-wise add/
multiply) and scalar operations (add/subtract or multiply/divide by a scalar quantity). Here is an
exampl e that shows how to use the subtraction:

from herschel . i a.tool box. spectrum i nport Subtract Spectrum

di ff12 = Subtract Spectrum() (dsl=dsl, ds2=ds2)
Here, the datasets dsl and ds2 either must have the same number of rows, or one of them must have
only asinglerow. If they have the same number of rows, the subtraction is carried through for the flux

data on a row-by-row basis. If the second contains only one row, this row is subtracted from all the
rows in the first dataset (or the other way around).

The same task can aso be used for subtracting a scalar:

ds_nR= Subtract Spectrun() (ds=data, param=2.0)

Here the number two is subtracted from all the flux columnsin our data.

5.12.5. Toolbox Primer: Divide Spectra
The use of the Di vi deSpect r um-task isidentical:

from herschel .ia. tool box. spectrum i nport DivideSpectrum

rati 012 = Divi deSpectrun() (dsl=dsl, ds2=ds2)
ds_d2 = DivideSpectrun() (ds=dat a, par am=2)

5.12.6. Toolbox Primer: Add and Muliply Spectra

Similarly, for multiplication and addition we can import tasks that can be used in a similar fashion.

from herschel . i a.tool box. spectruminport MiltiplySpectrum
from herschel . i a.tool box. spectrum i nport AddSpectrum

These tasks work in exactly the same way.

5.12.7. Toolbox Primer: Resample and Smooth Spectra

Additional tasks included in the toolbox include smoothing, frequency resampling or extracting/
cutting the spectra. The system again provides the instance

from herschel . i a.tool box. spectrum i nport Reanpl i ngFrequency

resanpl e = Reanpl i ngFrequency()

which alows for resampling non-equidistant grids to linear grids and the other way around.
Resampling to alinear grid with given resolution (width) would look like

dat a_resanpl ed = resanpl e(ds=data, density=true, resolution=1.0)

where the resolution is given in the same units as the frequencies in the data. The density parameter
indicates whether theflux is specified asaper channel (true) or asaper frequency unit quantity (false).

121

DP Numeric: Basic Functions for Herschel DP

For the smoothing, the instance

from herschel . i a.tool box. spectrum i nport Snoot hSpectrum

smoot h = Snoot hSpect run()

isagain loaded automatically by the system and it can be used by

dat a_snoot hed = smoot h(ds=data, filter="box", wi dth=10)

5.12.8. Toolbox Primer: Statistics on Spectra

Finally, the toolbox also allows to compute the statistics for the spectra included in a spectrum
container.

from herschel . i a. tool box. spectrum i nport Spectrunftatistics

statistics = SpectrunStatistics()

There are two alternative ways to compute the statistics for the spectra included in a spectrum
container, the statistics computed on aper channel basis over al the spectraincluded in the container,
or the statistics computed for each spectrum included in the container across the channels, possibly
restricted to arange.

stats = statistics(ds=data)

The result of this operation stats is a product which contains the per channel statistics in Spectrumld
and the across channel statistics in a suitable TableDataset.

5.12.9. Summary of Toolbox Operations

Operations are available both at the task level and at the java level. The tasks are most suited for
being used from the command line. The java classes which are wrapped by the tasks might be more
helpful when devel opers want to integrate the functionality into other modules. The java classes will
be discussed in the devel oper's sections.

» SelectSpectrum (use select): Select spectra from a container and create a new spectrum container
of the same runtime type.

» AverageSpectrum (use avg): Average the spectraincluded in the container on a channel by channel
basis. Restrict the average to specific selections or define groups and apply the average on a per
group basis.

» AddSpectrum (use add): Pairwise or scalar add.

» SubtractSpectrum (use subtract): Pairwise or scalar subtract.
 DivideSpectrum (use divide). Pairwise or scalar divide.

* MultiplySpectrum (use multiply): Pairwise or scalar multiply.

» ResampleFrequency (use resample): Resample each spectrum included in the container to a new,
not necessarily linear grid.

» SmoothSpectrum (use smooth): Smooth each spectrum included in the container.

» ExtractFregRanges (use extract): Cut the spectra included in the container to given frequency
intervals.

122

DP Numeric: Basic Functions for Herschel DP

* ReplaceFregRanges (use replace): Replace spectrum information in one container by information
from another.

» SpectrumSatistics (use statistics): Compute statistics of the spectra in the container - either on a
per channel basis or across the channels.

5.12.9.1. Remarks

1. Fitting: There is a separate documentation on fitting: see the module ...

2. Datastructures: Asindicate in the primer, all the data structures that fulfill the contract a spectrum
container must have can be processed by the toolbox modules. Currently:

 Spectrumld: implements contract.
 Spectrum2d: implements contract.
* Cubes: under consideration.

e Other instrument-specific data structures (such as HifiTimelineProduct or
SpectrometerDetectorSpectrum): under consideration.

123

Chapter 6. DP Plot: Basic Plotting of
Data

Important

A Thischapter isabout the"new" plotting package (herschel .ia.gui.plot) that isautomatically
loaded by default in a DP;session; an "old" plotting package (herschel.ia.plot) isno longer
available.

6.1. Introduction

This chapter describes how to do basic 2D plotsin DP. Itisprimarily conceived asastep-by-step guide
to support you while getting familiar with the visualisation of two-dimensional data. In addition, it is
being enlarged with the final aim of documenting the complete set of functionalities of the PlotXY
package. Not all the available commands have been introduced yet; for a complete list please refer to
the related APl documentation for the herschel.ia.gui.plot package.

Four main classes are described in this chapter: the Pl ot XY class, which is the representation of a
two-dimensional plot, and its related classes Axi s, Layer XY and Annot at i on which represent
the different building blocks from which the plot is constructed. We will also cover some features of
St yl e, handling the style of aplot (e.g. type, size and colour of plot symbols).

Pages containing more than asingle plot component are created by placement of plot "layers' (created
by the Layer XY class).

Thefollowing image showsthe place of four of these classeswithin the general plot architecture, using
as an example a page of four plots (the yellow rectangles).

. PlotXY class

. Axis class
. LayerXY class
. Annotation class

Figure 6.1. Classesinvolved in plot operations.

Depending on how you work with plots, either writing scripts or designing your plots interactively,
we recommend different approaches. For writing scripts you need to use the command line interface.

124

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/gui/plot/package-summary.html

DP Plot: Basic Plotting of Data

Thisway the plot is completely defined by written commands. If you design your plotsinteractively it
will be easier to use the graphical interface to manipulate plot properties which allows for button and
pulldown menu selection of plot properties such as fonts, labels, line types and colours.

6.2. What do | need to make a simple XY plot?

6.2.1.

The 2D plotting package currently works on Numericld data which is a one-dimensiona array of
numbers of any type (Intld, Floatld or Doubleld). Two numeric arrays are input, one as x-data and
the other asy-data.

Introducing PlotXY

Theclassused for 2D plotting iscalled PlotXY . This produces a plot whose properties can be changed
via command line input or through a properties GUI. Multiple plots can be added in "layers' to an
initial base plot and the default scales for a given plot will automatically adjust to allow all pointsin
all layers of aplot to be visible, although the x and y ranges for a plot can also be set by the user.

6.2.1.1. Using PlotXY to plot one Numericld array against another

Plotting numeric 1D arrays against each other can be done in asimple call such as

a Doubl eld([1, 2, 3, 4, 5])
b Doubl e1ld([0.3,0.8,1.5,2.3,2.0])
Pl ot XY(a, b, titleText="A plot")

Wherea and b aretwo numeric 1D arraysand wegiveit atitle ("A plot"). If wewant away of labelling
the plot so we can do something to it later, we can do the following

p=Pl ot XY(a, b, titleText="A plot")
p.title.text="Better title for plot"

Here we have given the plot alabel, p, and put anew title on it with the second line.

PlotXY hasanumber of other variablesthat can be set when initiating aplot. Inthe above exampleswe
get no labelson the axes, adefault line style and colour is used and the window sizeisadefault setting.

The following, Example 6.1, illustrates some key points in the use of PlotXY for plotting 1D arrays
against each other.

125

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/numeric/Numeric1d.html

DP Plot: Basic Plotting of Data

n Doubl eld. range(20) / 10. # (1)

e EXP(n) # (2)

plot = PlotXY(n, e) # (3)

p = Plot XY(l ayers=[Layer XY(n, e)], titleText = "Plot exanple", \
style=Styl e(line=Styl e. MARKED, synbol =Styl e. TRI ANGLE, \

col or =j ava. amt . Col or. green), visibl e=Bool ean. TRUE) # (4)

| ayer0 = p.getlLayer(0) # (5)

| ayer 0. styl e=Styl e(line=Styl e. MARK_DASHED, synbol =Styl e. Cl RCLE, \
col or=java.am . Col or.red) # (6)

| ayer0. styl e=Styl e(line=Styl e. NONE, synbol =Styl e. FSQUARE, \

col or=j ava. amt . Col or.red, synbol Size=7) # (7)

plot.close() # (8)

1. nisset upto bean array with the range of numbers=0...19 divided by 10. Placing the Doubl e1d
element in front turns the integers created by the range command into a numeric array of doubles.
So we have an array of 20 numbers going from 0to 1.9

2. e isan array which contains the exponent of al the n array elements

3. this line will make a "default" plot of the exponent. It aso identifies the plot window with the
variablepl ot .

4. herewedefinemore plot variablesin asinglelinecall. After creating alayer explicitly (it was done
automatically in the previous Pl ot XY call) we define some properties of the line style and set the
plot as visible (you might wish to set aplot asinvisible e.g. when you only want to print it or save
it to file, without displaying it on screen).

5. here we get the first layer (the only one in this case) identified by itsindex 0 inside the plot p. A
second layer would have index 1, and so on.

6. here we change the layer style: dashed line and red circles.

7. another change to the layer style, plus a change to the size of the symbolsto 7 point.
8. closesthe plot window

Example 6.1. A simple Pl ot XY example

The result of running this exampleis shown in Figure 6.2.

| Note
@ PlotXY doesNOT storethe datavalues. This makesit more memory efficient but can lead
to perhaps unexpected behaviour. For example, it the user changesthe arrays"n" or "€" in
the previous example, the plot will automatically update to the new values of "n" or "€".

n+=2 # adds 2 to every value in the array "n"

If the above line is executed at the end of the sequence in the example then values along
the plotted x-axis will be shifted by 2 and automatically updated in the plots displayed.

126

DP Plot: Basic Plotting of Data

" Herschel PlotXY <25 £

i
-

Plot example (W W aern |
||
m
M|
H
Loy
] n
a3
o |
~ 3 .
| W [
e]
]
" n
[} |
T]
||
~ | m
™ |
o+ - | u
——] - [
[|
| | | | | | |
0.00 0.30 0.60 0.90 1.20 150 1.80
X (=)

Figure 6.2. A simpleplot of an exponential array.

6.3. How to setup your Pl ot XY properties

Plot properties alow the definition of items such as colours, linetypes etc. with your personal
preferences. To setup your personal propertiestry the following:

» Construct aplot object p in JDE,

p = PlotXY(n, e)

n and e being the Doubl eld arrays defined in Example Example 6.1.
* Open the plot properties window with the following command

p. props()

 Define your properties in this window and save them as default. The description how to save
properties as default is given in Section 6.3.1.

or
» Open the Property Generator (command propgen) and select the Plot tab. Here you can change

al the properties related to the plot interface and set them to default by pressing the Set to default
button.

Note
@ Properties for PlotXY are saved under the user's home directory in .hcss/user.props. The
HCSS properties path needs to have this file in it so that plot properties are restored

127

DP Plot: Basic Plotting of Data

correctly in the next session. To use the saved properties immediately, right-click on the
plot and go to "Reload Default Properties’ on the menu.

6.3.1. How to modify properties

6.3.2.

Properties can be manipulated with a graphica interface.

Do thefollowing:

* construct a plot object with any constructor, for example

p=Pl ot XY(n, e)

n and e being the Doubl eld arrays defined in Example Example 6.1

* typethe command

p. props()

Now the graphical interface for manipulation of the plot properties appears (see Figure 6.3). It consists
of atree-like structure on the left with all the objects composing the plot (like layers and axes). The
properties of the highlighted object appear in the right panel.

The buttons at the bottom have the following functions:

Apply
Refresh

Save as default

applies any changes to the plot, without closing the properties window.

reads in the properties of the visible register card (plot, layer or axis).
This button is useful if you have the plot property GUI visible and change
properties from the command line. Refresh updates the GUI afterwards.

saves the properties as default and thus updates the Pl ot XY. pr ops filein
the~/ . hcss directory in the file user.props.

Warning

O Theglobal variable HCSS_PROPS should includethisfilefor
the default properties to be written and reused.

Notethat if you set aproperty for alayer or an axis asdefault, the property set
will be used for al layers and axis and not only for the one you have chosen
in the moment of pressing the button.

Plot properties

The plot properties available for a"PlotXY" object are shown in Figure 6.3. There are four sections.

Plot This allows the size of the plot window to be determined (in terms of physical size
or pixels).
Title The plot title can be typed in here and the result will appear at one of seven positions

available in the pulldown menu (left, right or centre at either top or bottom or
customised positioning). Thetitle appears after the Apply window button is clicked.
Note that a mouse click on the title will alow click-and-drag of the title to any
position on the plot. The font type and size can be customised using the Change...
button below the title box in the properties window.

Subtitle Subtitles work in a similar way to titles except that the default positioning is below
the title and with a smaller font. Again, the subtitle can be dragged to anywhere on
the plot surface and font changed.

128

DP Plot: Basic Plotting of Data

Boxed Plot If thisisticked, then the plot is a box (otherwise only the left and bottom axes are
plotted). Thisis applied when the initial plot -- base layer -- is created.

Legend The checkbox indicates whether alegend is shown or not, while the pulldown menu
provides eight different positions at which the legend can be placed. Again, the
legend position can be changed by a simple click-and-drag.

All changes are applied by clicking the Apply button.

Herschel Property Panel

¢ 1 Piot | rPlot
7 [Layer(| |Physical Size (inch) 4.0 3.0 |
[0 cauas Iscal 99,831 36593491303 |
[v pudis |3 :
auto adjust window size
Display Size (px)
| Title Subtitle
: Visible Visible
| Position [TOPLEFT | w|| |Position [TOPCENTER (|
|l Text |Hithere | Text |
| -Boxed Plot
auto create hox axes for haselLayer
Mote: This switch only take effect when the hase laver is adding to a grid
cell.
Legend
[v] visible Position BOTTOMCENTER ||
Apply Refresh Sawve as Default

Figure6.3. The Pl ot section of the Pl ot XY propertiesdialog.

6.3.3. Layer properties

The layer properties are used to define default layer properties or to manipulate the properties of
already constructed layers. This includes the layer name and style properties. In order to work on a
given layer, the user needs to click on the appropriate layer on the left hand side of the properties
panel. This brings up the layer properties dialog. See Figure 6.4).

The layer id number is automatically assigned, in numerical order starting from zero. Layers added
to the same plot are numbered from 1 upwards. Applying a new name will update the name given in
the legend of the plot for the layer.

The Style properties are applied to a particular layer of aplot. Here iswhere we can change the colour
and form of aplot.

Chart Type The pulldown allows for either aLINECHART or aHISTOGRAM plot.

Symbol The symbol type to be used for points on a plot can be chosen from 25 possibilities
in the pulldown menu. The symbol type number is also given (SQUARE ="8").

129

DP Plot: Basic Plotting of Data

Color

Size

Stroke

Line Style

Dash Array

The colour can be changed by clicking on the coloured square and choosing from
the colour menu in the popup window.

Provides a scaling for the symbol size (in font points) used for plotting points on a
scatter plot.

Provides a scaling for the width of lines used for line plots.

Provides the options of no line (NONE), asolid line (SOLID), alinewith each point
marked (MARKED), a dashed line (DASHED) or a dashed line plot with points
marked (MARK_DASHED).

The two values that are typed in hereindicate the size of the dashes and the distance
between dashes. If adashed plot is requested.

Thelayer itself can be removed using the Remove button.

Finally, an annotation to the plot can be made using the Add Annotation button. This brings up the
an annotations properties window (see Figure 6.5).

Annotation

Position

Alignment

The actual annotation and font type can be selected here.

Placement in the plot area (x and y) and the angle (in an anti-clockwise direction)
at which the annotation is displayed.

Indicateswhere relative to the position that the annotation isto be made. Essentially,
above it, below it or centred on it (vertical) and to left, to right or centred on it
(horizontal).

Herschel Property Panel

7] Plot

v Clavero]

[pois
[v Avis

Layer
Id 0 Remove
Name llayer.0 |

RoRainE ey Add Annotation

Style
Chart Type |LINECHART [~
Symbol |8-SQUARE v
Color ||
Size 3.0 |
Stroke 05 |
Line Style [DASHED [~
Dash Array |1.0,12.0 |

Apply Refresh Save as Default

Figure6.4. TheLayer section of the Pl ot XY propertiesdialog.

130

DP Plot: Basic Plotting of Data

Herschel Property Panel

o 9 Plot :| -Annotation
¢ [Layern
[3 Avis || Text |
[v Avis i
[Annotation 0 serif.0,9
| Position

x: [0.94595999999599995 |

v |3.642947221139634 |

Angle [0.0 |
~Alignment
Vertical |TOP |- |
Horizontal |RIGHT |- |
Apply Refresh Save as Default

Figure 6.5. Dialog for adding an annotationtoalLayer .

6.3.4. AXis properties.

The Axi s properties dialog (see Figure 6.6) is used in the same way as for the layer properties. In
order to work on a given axis the appropriate "X-axis' or "Y-axis" label in the left column display of
the properties window (as in Figure 6.6). This then brings up the Axi s properties dialog.

There are two elements that can be changed in this dialog:

AXxis The user has options for where the axis s, on top/bottom (the POSITION pulldown menu),
left/right; whether it is linear or log; whether it is inverted or even invisible. Colour of the
axis can be selected by clicking on the coloured box (black isthe default) and choosing from
the colour selection popup.

The range can be set or left to be generated automatically.

Thetitle/label for the axis can chosen to be displayed either side of the axis and the font type
and sizeis selectable by clicking the "Change..." button.

Ticks Thetick positioniswith referenceto the axis. Choicesarefor either side of the axis, crossing
the axis (MIDDLE) or having no tick marks.

Grid linesfor each axis can be chosen individually.

The tick mark intervals can be chosen or done automatically. The size of major and minor
tick marks can be typed in and the number of minor tick marks per major tick mark interval
aso typed in (0 meansthere are no minor interval tick marks). Tick labels can be vertical or
horizontal on either axis. The number of decimal placesfor label valuescan also beexplicitly
given (e.g., "%.2f" gives valuesto 2 decimal places) or |eft be calculated automatically.

131

DP Plot: Basic Plotting of Data

Herschel Property Panel

7] Plot | rAis
? & Laver | Position [BOTTOM [~
0 bhce ® Linear i) Logarithmic
[v Awis
|__°‘| Annotation 0 [v] Visible
[]Inverted
Lock
Color .
Range
Autorange

Start -0.09499999995999997
End 1.59499959999959499

Title
Visible
Position [BOTTOM

Ad

Ticks
Position |[BOTTOM (|
[] Grid lines

Number IT [| Auto adjust
Interval 0.2 Auto
Values 000001,1.6,1.8, [¥] Auto

Height [0.1 |

Minor height [0.05 |

Minor number |4 |
Label

Position |BOTTOM [~
' Horizontal '@ Vertical
serif,0,11
Interval 5 3 4 5

Format |%.2f [] Auto

Labels 10,1.20,1.40,1.60,1.80,

Text [x axis |
sefif0,16
Apply Refresh Save as Default

Figure 6.6. The Axi s section of the Pl ot XY propertiesdialog.

6.3.5. How to use properties.

The result of a property setup procedure (with a defined set of properties) is given in Example 6.2
which follows on from Example 6.1. This can be used to set up properties from the command line

window of JIDE or for generating plots from within scripts.

p.props() # (1)

p[0] = None # (2)

p[0] = Layer XY(n, n*n, name="anotherLayer") # (3)
p[0].style.stroke = 5 # (4)

p[1] = LayerXY(n, 2*n*n, nane="yet AnotherLayer") # (5)
p[1] .style.stroke = 7 # (6)

1. thiscommand allows graphical interface property setup, it fires the Plot Property GUI.

2. removes the first (and only) layer of the plot. Press the Refresh button in the Properties window

to see the change

3. overlays on the graph a plot of n versus n-squared and calls it "anotherLayer”. p[0] can be used

to refer to thislayer, like you would do with an element of an array.

4. setstheline stroke for overlay plot anot her Layer

5. adds yet another layer to the plot "p"...

6. ...and changes the line stroke on this plot too!

Example 6.2. Command line control of properties

132

DP Plot: Basic Plotting of Data

The result of running above exampleis shown below.

Herschel PlotXY <25 =

Plot Example s arotherlayer
I vyetfnotherlayer
™
h_
“.
"a'_
[Fa]
Lf';_
=
o —
=
T
um
e
o
nJ._
[Fa]
,'_‘i_
=
=
L]
=
I I I I I I I
Q.00 0.30 060 0.20 120 150 1.80
X (=)

Figure6.7. Thisplot istheresult of Example 6.2.

Notethat if anew layer is added without defining either colour or line type, the current set of default
properties are used.

I colour and line type are specified in the constructor, they are used as specified.

p[2] = Layer XY(n, 8*n*n, nanme="norelLayers", synbol = Style. TRI ANGLE, \
col or = java.aw . Col or (250, 100, 0))

Note

S the backslash (\) symbol provides continuation of the command onto the next line and
should be immediately followed by a CARRIAGE RETURN.

The result of the above command line is shown below. In this case we have aso illustrated how you
can create your own colour through a mixture of red, green and blue hues (values up to 256). In
this case, theresult is an orange colour for our third plot layer.

133

DP Plot: Basic Plotting of Data

Herschel PlotXY <25 £

Plﬂt exdam pIE m— anotherlayer
IS yetAnotherlayer

maorelayers

I I I I I I I
.00 030 0.60 090 120 150 180

% (=)

6.3.6.

Figure 6.8. Adding in another layer givesthe orange curve (seetext).
Resizing a plot

Thewi dt h and hei ght properties are available to set the size of a plot in pixels. However, using
these properties on their own could cause unwanted side effects, like in the following example:

X Int1d([0, 1, 2, 3]) # Setting up sanple data
y =X

pl ot = Pl ot XY(wi dth = 600, height = 400)

layer = Layer XY(X, V)

pl ot . addLayer (| ayer)

Adding the layer causes the plot window to grow to a very large size. This can be avoided by setting
theaut oAdj ust W ndowSi ze property to O:

X Int1d([0, 1, 2, 3]) # Setting up sanple data

y =X

pl ot = Pl ot XY(w dt h=600, hei ght =400, aut oAdj ust W ndowSi ze=0)
I ayer = Layer XY(Xx, V)

pl ot . addLayer (| ayer)

Adding the layer in this case does not cause problems.

Another solutionisto set the plot size after all thelayershavebeen added, usingtheset Si ze method:

Int1d([0, 1, 2, 3]) # Setting up sanple data
X
t = Pl ot XY()

o 1l 1l

pl

134

DP Plot: Basic Plotting of Data

| ayer = Layer XY(Xx, Y)
pl ot . addLayer (| ayer)
pl ot. set Si ze(600, 400)

6.4. Manipulating Layers, Axes, and
Annotations in DP Scripts

6.4.1.

In this section we show how to manipulate plots from the command line. Such manipulations can be
placed in scripts to make plots appear the way the user requires.

In DP scriptsit is necessary to access all the properties from the command line (either bottom left of
JIDE for interactive work or in the upper pane of JIDE when doing script development).

Thereis one general ruleto do so.
1. get the object:

| ayer = p.getlLayer(layer index) oraxis = | ayer. get Xaxi s()
2. use the methods provided by the object:

| ayer . set Col or (col or)

color isajava.awt.Color,e.g., java.awt.Color.red

What about these Layers?

Any plot is built up from layers. Even a simple 2D plot as we've created above has one layer that
contains the data from the two one-dimensional arrays we have used to build it. If you need to plot
multiple sets of data you add one layer for each additional set.

As stated before the manipulation that you need to do on layers should be done through the layer
object. One such command isthe set Col or (col or) that we have used above.

Let's create a simple plot again with two layers and do some basic manipulations on the individual
layers. Example 6.3 plots two curves, one is the analytical function exp, the other curve has added
noise.

In the first three lines we generate some noise on top of the exponential function.

135

DP Plot: Basic Plotting of Data

r = Randomuni form() # (1)
rn = Doubl eld(20).apply(r) - 0.5 # (2)

n Doubl eld. range(20)/ 10
e EXP(n) # (3)
en = etrn # (4)

p = Plot XY(l ayers=[Layer XY(n, e, nane="e", color=java.awt.Color.red)], \
titleText="Exponential plot") # (5)

p[0].setStyle(Style(line = Style. NONE, synmbol = Style. FSQUARE, synbol Size = 3.5, \
color = java.awt . Col or. bl ue))

p[1] = Layer XY(n, en, nane="en") # (6)
| ayer _en = p.getLayer(1) # (7)

| ayer _en. set Li ne(Styl e. NONE)

| ayer _en. set Synbol (Styl e. FCl RCLE)

| ayer _en. set Col or (j ava. awt . Col or. r ed)

| ayer _en.setLine(l) # (8)
1. DP utility to produce random numbers between 0 and 1.
2. generates aset of 20 random double (real) numbers between -0.5 and 0.5.

3. The array e was defined in a previous example, but lets recreate it...e is an array of 20 numbers
which are €”®, €', €' etc.

4. adds the random numbersto the array e i.e. add noise to the data.

5. Plotthearray e, givethelayer aname and in thefollowing line change some of thelayer's properties
to make it a scatter plot.

6. Add the noise data to the plot as alayer with name en

7. In these four lines it is demonstrated how to make this layer a scattered layer with red circles as
symbols. Code 0 means "no line", while 14 is"filled circle".

8. reset the layer back to a line plot. Note how setting the line to "solid" (code 1) the symbols
automatically

Example 6.3. Working with layersfrom the command line.
Note

@ Please do not take the above as an example of the proper way to add noise to a function,
the'noise’ hereisjust to illustrate the layer concept.

Some of the more useful methods that work on layers are listed in the tables below. Please read
carefully the following note in order to interpret the tables correctly.

Note
@ In order to save space we do not explicitly list all the available methods, as the Javadoc
does, but adopt the shortcuts described below.

* When amethod with "X" in its name is listed, there is al'so a method with "Y", doing
the same thing for the Y axis, unless specified otherwise. For example, there is a
set Ytitl e methodinadditiontoset Xtitl e.

» Methods whose hame begins with " set " are called setters and, you guessed it, are
used to set a value. For every setter there is usually a getter , a method whose name
beginswith " get " and whose work is to retrieve avalue. The tables only list setters,
adding Get method available when the corresponding getter exists. A getter is called
without input parameters and its return value is of the same type as the input parameter

136

DP Plot: Basic Plotting of Data

will replace the preexisting

of the corresponding setter. For example, the set Xaxi s(Axi s axi s) setter hasa
corresponding get Xaxi s() getter returning an object of class Axi s .

This is not a shortcut but is worth mentioning anyway. The name of a method can
offer useful clues about its behaviour. For example, the method set Sonet hi ng

Something, while appendSonet hi ng will add

SomethingE!se to the existing Something.

Table6.1. Methodsfor handling Annotationsin layers.

addAnnot ati on(Annot ati on
annot at i on)

Addsan Annot at i on object to the layer.

addAnnot ati ons(Annot ati on[]
annot at i ons)

Adds several Annot at i on objectsto the layer.
Theinput Annotations are passed as an array.

set Annot ation(int id,
Annot ati on annot ati on)

Sets an annotation to agivenid,
replacing what was there before.

set Annot at i ons(Annot ati on[]
annot ati ons)

Replaces all the annotations with
the ones provided in the array.

get Annotation(int i) Retrieves one annotation from the layer.
. Retrieves al the annotations from the layer.
get Annot ati ons() The annotations are returned as an array.
removeAnnot ati on(int id) Removes the annotation with the specified id.

cl ear Annot at i ons()

Removes all the annotations.

Table6.2. Methodsfor handling error barsin layers.

appendEr r or X(doubl e
| ow, doubl e high)

Appends alow and high error value of x.

appendEr r or X(Or der ed1ldDat a
| ow, OrderedldData high)

Appends a set of low and high error values of x.

set Error X(Or deredldData[] error)

Setslow and high error values of x.

set Error X(Or der ed1dDat a
[ow, OrderedldData high)

Setsthe low and high error values of x.

get Error X()

Returns an array of Or der ed1dDat a
with length equal to 2.

137

DP Plot: Basic Plotting of Data

Table 6.3. Axis-related methods of the Layer class. All can equally be applied to the y-axis by replacing

X" with"Y".

set Xaxi s(Axi s axi s)

Setsthe x axisto the specified Axi s instance.

Note: the x axiswill be reinstantiated
with its default settings plus whatever is
indicated in the AXi s instance. So any
prior manipulations of the axis are lost.

set Xrange(doubl e[] range)

Sets the range of the x
axis. Get method available.

setXtitle(String title)

Sets the title of the x axis. Get method available.

set Xt ype(Axi s. Type type)

Sets the type of the x axis based on the
axistypes available. LINEAR istype O,
LOG istype 1. Get method available.

set Xy(OrderedldData[] xy)

Setsthe x and y values, passed as elements of
an "array of arrays' of sizetwo. Get method
available. Note that thereisno set Yx method!

set Xy(Or der ed1dDat a
X, OrderedldData y)

Setsthe x and y values, passed as two separate
arrays. Note thereisno set Yx method!

set Y(OrderedldDat a y)

Sets the ordinate values. Get method
available. Note thereisaget X
method but not aset X method.

shareXaxi s(Axi s axis)

Removes the x axis and uses
the given axis as a shared one.

Table 6.4. Miscellaneous setters of the Layer class.

set Nane(t ext)

Changes the name (and thus the legend)
of the layer. Get method available.

set Li ne(line code)

Changesthe plot to aline plot for the
specified layer. Get method available.

set Synmbol (synbol code)

Changes the plot to a scatter plot for the
specified layer. Get method available.

set Synbol Si ze(int size)

Sets the size of athe symbol. Get
method available (note that it returns
adoubl e rather thanani nt .

set Synbol Shape(Synbol Shape
shape)

Sets the shape of the symbol. The input
parameter is an instance of the class
Synbol Shape. Get method available.

set Col or (col our)

Sets the colour of the symbols and lines for
the specified layer. Get method available.

set Stroke(stroke)

Sets the stroke of the line for the specified layer
(only for line plots). Get method available.

setStyle(Style style)

Setsthe style of the layer. The input
parameter is an instance of the

St yl e class. Get method available.

138

DP Plot: Basic Plotting of Data

Table 6.5. Other methods of the Layer class.

addPoi nt (doubl e x, doubl e y)

Adds apoint to the layer.

addPoi nt (Or der ed1dDat a
X, OrderedldData vy)

Adds a set of pointsto the layer.

get Coor ds()

Waits for mouse click and
returns the coordinates of the
pointer. Returnsadoubl e[] .

se

get Coords(int n)

Like the previous method, but this
one does the job for n successive
clicks. Returnsadoubl e[][]

get Dat aCoor ds()

The difference with respect to the previous
two methods is that this time the coordinates
of the layer point closer to the mouse
pointer are returned. Returnsadoubl e[] .

get Dat aCoor ds(i nt n)

Like the previous method, but this
one does the job for n successive
clicks. Returnsadoubl e[][] .

getld()

Returnsani nt representing the index
of the current layer inside the Pl ot XY.

set | nLegend(bool ean)

Tr ue if the layer is shown in the legend.

i sl nLegend()

Returns Tr ue if the layer
is shown in the legend.

Not i f yWar ni ngAsExcept i onal (bool ea

n)

Tr ue if exceptional valueslike NaN
and infinity are notified as errors,
Fal se if they are only logged.

i sNot i f yWar ni ngAsExcepti onal ()

Returns Tr ue if exceptional values
like NaN and infinity are notified as
errors, Fal se if they are only logged.

139

DP Plot: Basic Plotting of Data

" “Herschel PlotXY

Exponential plot

% (=)

Figure 6.9. Plot showing the result of manipulation of layersfrom the command line.

The Layer XY class provides a much larger number of methods to specify the appearance of data
pointsin layers. Next to simpleline and scatter plots, lines and symbols can be combined and symbols
can be circles, rectangles, triangles, squares etc. which can be filled or not with a specified colour.

Lines can be solid or dashed with their own colour. Find the possible predefined symbolsinthe St yl e
class and access them for exampleby | i ne = Styl e. SOLI D.

We are not going into detail for all these methods but you should try them out with the API
documentation for LayerXY lying next to you.

6.4.2. What can | do with Axis?

Aswith Layers most manipulations of both X and Y axes can be done through the Axi s class.

6.4.2.1. Log Axes, Labels and Gridlines

Let's continue with our previous example and make some changes to the axes illustrating how we can
adjust labels, grid lines and change axes to alogarithmic scale.

140

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/gui/plot/LayerXY.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/gui/plot/LayerXY.html

DP Plot: Basic Plotting of Data

Set up our overlay plot again

r = Randonbniform() #

rn = Doubl eld(20). apply(r) - 0.5

n Doubl eld. range(20)/ 10

e EXP(n) #

en = e+rn

p = Pl ot XY(| ayers=[Layer XY(n, e, nane="e", color=java.awt.Color.red)], \
titleText="Exponential plot")

p[0].setStyle(Style(line = Styl e. NONE, synbol = Style. FSQUARE, synbol Size = 3.5, \
color = java.aw . Col or. bl ue))

p[1] = Layer XY(n, en, nane="en")

The y axis is a bit cluttered, but a couple of commands will tidy up the ness
First of all we change the format of the tick |abels..

.yaxis. tick.|abel.formt="93. 1f "

...then we display a | abel every two ticks

.yaxis.tick.Ilabel.interval =2

Now we change the axis | abe

.yaxis.title.text="1og(exp(x/10))"

This shows the y axis gridlines, TRUE = 1

.yaxis.tick.gridLines=1

Change x axi s |abe

.xaxis.title.text="index"

...and finally we adjust the range of y values that we

want the plot to have

.yaxi s. set Range([0.5, 10])

T #HHOT #O #HOT #HOT #HT H®

Example 6.4. Axes, labelsand grid lines

Itisalso possible to use TEX-like labelling for subscripts and superscripts. For example:

p. xaxis.title.text="%$x_17{2a}$"

Herschel PlotXY

Exponential plot

2.8

logiexpix/10))

0.00 0.30 0.60 0.90 120 150 1.80
index

Figure 6.10. Changing Axes, labelsand added grid lines.

141

DP Plot: Basic Plotting of Data

6.4.2.2. Multiple Axis Labels

Each layer can have at most two axes (the first layer of a plot has two axes by default). If we have
more than one layer in the plot, we can add and visualise new axes. Thisisillustrated in the following
example.

Set up our overlay plot again

r = Randonmuni form() #

rn = Doubl eld(20). apply(r) - 0.5

n Doubl eld. range(20)/ 10

e = EXP(n) #

en = e+rn

p = Plot XY(| ayers=[Layer XY(n, e, nanme="e", color=java.awt.Color.red)], \
titleText="Exponential plot")

p[0].setStyle(Style(line = Style. NONE, synbol = Style. FSQUARE, synbol Size = 3.5, \
color = java.awt . Col or. bl ue))

p[1] = Layer XY(n, en, nane="en")

Cet the layer we want to change

| ayer =p. get Layer (1)

Add a new x axis

| ayer. set Xaxi s(Axi s())

NOTE: when using Axis() to create a new axis or recreate an axis the defaul t

axis scaling/range values are taken and overwite any axis nanipul ations

that nmay have been done before.

Rel ease the lock on the new x axis

| ayer. xaxi s. set Lock(0)

Restrict the range of the plot to x values between 0.5 and 1.5

| ayer. xaxi s. set Range([0.5, 1.5])

Add a | abel to this new axis

layer.xaxis.title.text="New X axi s"

Update the en layer so that it is half the value it was

before and repl ot

| ayer.set Xy(n, en/2)

Now put the plot in a situation where the newy axis val ue range

is automatical ly cal cul at ed.

| ayer. xaxi s. set Aut oRange(1)

Example 6.5. Putting multiple axes on the same plot.
Note

@ If after the second instruction (I ayer. set Xaxi s(Axi s())) you get the error
TypeError: no public constructors for herschel.ia.imge. AXi s
it means that JIDE thinks you are referring to the Axi s classin theimage rather than the
plot package. Issuing the command f r om her schel .ia. gui.plot inmport *
should fix the problem.

Theresult of running this exampleis shown in Figure 6.11.

142

DP Plot: Basic Plotting of Data

~_ Herschel PlotXY <25 £

46

2.8

log(exp (x/10))

0.0 Q.30 0.60 0.20 120 150 1.80
index

Figure 6.11. Example of a second X-axislabel relevant to thered line plot.

Some of the more useful methods that work on axes are listed in the tables below. For a complete

reference of the methods that can be used to manipulate and tune the appearance of the axes please
consult the API documentation of Axi s.

Table 6.6. Useful ways of manipulating axes from the command line

axi s = |l ayer. get Xaxi s() Getsthe X or Y Axis object to do direct
or get Yaxi s() manipulations on the corresponding axis
set Aut oRange(f | ag) If f | ag istrue, adjusts the range of the specified

axis so that al datapoints will be shown

Set the range of the specified axisto
values between lower and upper. Note
set Range([| ower, upper]) that we no longer have two arguments
for the lower and upper limits, but one
array argument containing both values.

. Show grid lines for the specified axisif flag
setGridiines(flag) istrue, hide the grid lines if flag is false:

143

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/api/herschel/ia/gui/plot/Axis.html

DP Plot: Basic Plotting of Data

get Ti

getT

get

«Q

Table6.7. Methods for handling labels on axes.

ck() . get Label () . set Color (] ava. awt . Og(latg[hecolour of labels. Get method available.
col our)
ck(). getLabel () . set Font (j ava. awt . FOQL o tont of |abels, Get method available
font)) '
Ti ck() . get Label (). set Font Si ze(doubl e Sets the physical size of
si ze) labels. Get method available.
et Ti ck() . get Label (). setlnterval (int Setstheinterval (inticks) between

n) successive labels. Get method available.
get|Ti ck() . get Label ().setOrientation(int Setstheorientation of thelabels (0 for
n) horizontal, 1 for vertical). Get method available.
get[li ck() . get Label (). set Strings(Stri ndgRdplacesthe current labelswith the valuesin an
| abel s) array of St ri ng objects. Get method available.
Sets the position of the labels with respect
get Ti ck() . get Label (). set Posi ti on(Axi sConst ant s. Pastheaxis. Possible values are TOP or

get Ti

position

BOTTOMfor abscissaaxisand LEFT or Rl GHT
for ordinate axis. Get method available.

Table 6.8. Methods for handling ticks on axes.

get Ti ck() . set Col or (j ava. awt . Col or
col our)

Sets the colour of ticks. Get method available.

get Ti ck() . set Hei ght (doubl e si ze)

Setsthe physical height of the
major ticks. Get method available.

get Ti ck() . setl nterval (doubl e
i nterval)

Setstheinterval (in axis units)
between ticks. Get method available.

ck() . set Position(Axi sConst ants. Pos
position

Sets the position of the ticks with respect to
i ttheaxis. Possible values are TOP or BOTTOM
for the abscissaaxisand LEFT or Rl GHT
for ordinate axis. Get method available.

get Ti ck() . set Nunber (i nt ticks)

Sets the number of major ticks displayed
on the axis. Get method available.

get Ti ck() . set M nor Nunber (i nt

Sets the number of minor ticks displayed

m nors) between two major ticks. Get method available.
get Ti ck() . set Val ues(Doubl eld Setsthe values whereticks are to
val ues) be placed. Get method available.

Ti ck() . set Aut oAdj ust Nunber (bool eg

Tr ue if the number of ticks on

n) the axis is set automatically.

get Ti ck() . i sAut oAdj ust Nurrber ()

Returnst r ue if the number of ticks
on the axisis set automatically.

get Ti ck() . set Aut oVal ues(bool ean)

Tr ue if the positions of theticks on
the axis are chosen automatically.

get Ti ck() . i sAut oVal ues()

Returnst r ue if the positions of the ticks

on the axis are chosen automatically.

144

DP Plot: Basic Plotting of Data

Table 6.9. Miscellaneous setter S/getter s of the Axi s class.

getTit

set Type(Axi s. Type type)

Sets whether the axisis linear (0)
or logarithmic (1). You can also use
Axi s. LI NEARand Axi s. LOGas
input parameters. Get method available.

set Li near ()

Setsthe axisto alinear scale. Equivalent
toset Type(Axi s. LI NEAR) .

set Log()

Setsthe axisto alogarithmic scale.
Equivalenttoset Type(Axi s. LOG) .

set Col or (j ava. awt . Col or col our)

Sets the colour of the axis. Get method available.

set Aut oRange(bool ean
i sAut oRange)

Sets whether therangeis
automatically determined. Get
method i sAut oRange available.

get Ti ck() . set Gi dLi nes(bool ean)

Sets whether grid lines are displayed.
Get methodi sGri dLi nes available.

set | nvert ed(bool ean)

Sets whether values on the axis are displayed
in inverted order (e.g. right to left for abscissa).
Get method i sl nvert ed available.

set Posi ti on(Axi sConst ants. Posi ti on
position

Sets the position of the axis with respect to
the plot. Possible values are TOP or BOTTOM
for abscissaaxisand LEFT or RI GHT
for ordinate axis. Get method available.

set Range(doubl e[] range)

Sets the range of the axis. The lower
and upper limit are passed inside
an array. Get method available.

set Range(doubl e
| ow, doubl e high)

Sets the range of the axis. The lower and upper
limit are passed as separate doubl e parameters.

| e().setPosition(Axi sConstants. Po
position

Sets the position of the axis title with respect

51 t i emthe axis. Possible values are TOP or

BOTTOM(for abscissaaxis and LEFT or Rl GHT
for ordinate axis. Get method available.

set Vi si bl e(bool ean i sVisible)

Sets whether the axisis visible. Get
method i sVi si bl e available.

It isalso possible to set the Axisin one go using GUI plot' Axi s class. An example of thisis:

X Doubl eld. r ange(10)

y X* X

plt Pl ot XY()

plt[1] Layer XY(x,y)

plt[1].xaxis = Axis(text="My x-axis")

X

Warning

the given order

plt[1]. xrange=[-1.0, 15. 0]

The Axis command defaults will

plt[1] . xaxis.text " New

Users should beware that use of the Axis classin this way will take a set of axis defaullts,
such as axis ranges. If instead of the last line above the following two lines are used in

plt[1].xaxis = Axis(text="My/ x-axis")

override the previoudly set plot axis range.

If only the axis label requires changing it is better to use the following

text"

145

DP Plot: Basic Plotting of Data

6.5. Adding Error Bars to a Plot

Error bars can be added to any layer of a plot. In order to add errors to points in a layer we use the
"setErrorX and "setErrorY" methods on alayer. For example:

| ayer. set Error X(xerror_up, xerror_down)

and

| ayer.set ErrorY(yerror_up, yerror_down)

Where "up" and "down" indicate the extent of the errors with increasing and decreasing values of x
ory.

The following example indicates how we can apply error bars to the defaullt, first layer of aplot.

x = 1.0 + Doubl eld.range(10) # create x and y data arrays
y = x+5.0
yerr = SQRT(X) # associate errors with them

xerr ; SQRT(x) / x

= Pl ot XY(x,y) # create the plot

.style = Style(line=Styl e. MARKED, synbol =6, col or=j ava. awt. Col or.red) # set style
xaxis = Axis(titleText="x-axis (cm",type=Axis.LOG # nake it a |log-log plot
yaxis = Axis(titleText="y-axis (cm",type=Axis.LOG

xrange=[1.0, 11. 0] #set how | arge the plot will be in the x/y directions
.yrange=[5.0, 16. 0]

.setErrorY(yerr,yerr) #apply error bars

.setError X(xerr, xerr)

.get Legend().setVisible(0) # renove the | egend

.setTitleText("Error bar exanple plot") # give the plot atitle

T T T T TT T T TO

Example 6.6. Adding error barsto plots
The above example produces the plot shown in Figure 6.12.

It is also possible to access non default layers. For example, carrying on from the previous example
above we could add a second layer and apply error bars to that too.

x2 = 3.0 + Doubl eld.range(10) # create new x and y val ues to pl ot

y2 = x+ 4.0
y2err = SQRT(X)/4 # create new error bars for plotting
x2err = SQRT(x)/(2*x)

p[1] = Layer XY(x2,y2)

p[1].style = Style(line=Styl e. MARKED, synbol =6, col or =j ava. awt . Col or. bl ue)
p[1] .setError X(x2err, x2err) # apply different error bars
p[1].setErrorY(y2err,y2err)

Thefinal plot is shown in Figure 6.13.

146

DP Plot: Basic Plotting of Data

Error bar example plot

10

L

e

8
|

y-axis (cm)

7

I I I I I I I I | I
10 1.5 16 2.0 25 32 44 50 60 8.0 10.0

X-axis (cm)

Figure6.12. Setting errorsin aplot

147

DP Plot: Basic Plotting of Data

Error bar example plot

10

™
N

e

y-axis (cm)
8
|

7

I I I I I I I I | I
10 1.5 16 2.0 25 32 44 50 60 8.0 10.0

X-axis (cm)

Figure 6.13. Applying errorsto a specific layer of a plot

6.6. How can | annotate, decorate and save
my plot?

There are quite anumber of methods that we can use to make our plot more appealing and informative.
A number of these methods were already mentioned in the sections on layers and axes, but we are
going to put them into practice here. We continue with our example and add proper names for layers,
annotate some datapoints and put a title on top of the figure (see Figure 6.14). The example below
also shows how to extract the Layer objects from the plot in order to manipulate them directly.

148

DP Plot: Basic Plotting of Data

Set up our overlay plot again

r = Randonmuni fornm() #

rn = Doubl eld(20). apply(r) - 0.5

n Doubl eld. range(20)/ 10

e EXP(n) #

en = e+rn

p = Plot XY(l ayers=[Layer XY(n, e, nane="e", color=java.awt.Color.red)], \
titleText ="Exponential plot")

p[0].setStyle(Style(line = Style. NONE, synmbol = Style. FSQUARE, synbol Size=3.5, \
color = java.awt. Col or. bl ue))

p[1] = Layer XY(n, en, nane="en")

Get the |layer we want to change

| ayer = p.getlLayer(1)

Change the name (and the legend) for this |layer to say what we want

| ayer . set Nane(" exp+noi se")

Place sonme annotation at position 1, 2

layer[0] = Annotation(3, 6, "Noise on top of exp()", color=java.aw . Col or. bl ue)

Get the first layer of the plot...

| ayer = p.getLayer(0)

...and change its nane

| ayer. set Nane(" exp")

Set a new style

| ayer.setStyle(Style(line = Style. MARKED, synbol = Style. FTRI ANGLE, \

color = java.awt. Col or. green, synbol Si ze=7))
Gve the plot a title
.title.text = "Exanple of a |layered plot"

Save it as a PNG file for inporting as a picture into docunents etc.
. saveAsPNGE "nyPl ot . png")

Alternatively, save it as a JPEG file...
.saveAsJPGE "nyPl ot. j pg")

...or an EPS file
. saveAsEPS(" nyPl ot . eps")

T #+0T #+T #+T H#

Example 6.7. Decor ating a plot.

Note that we changed the name of both layers in the second and fifth line of the script. Changing the
name also changes the legend displayed on the plot.

For the exp+noi se layer we put an annotation at a specific point (layer coordinates) in the plot.
Please check the detailed package documentation of the Annot at i on class for methods to change
the font, the size and other properties of an annotation.

For the exp layer we have changed the appearance of the datapoints to aline with triangles on top of
it. Please refer to Section 6.4.1 for information on basic manipulation methods for layers.

149

DP Plot: Basic Plotting of Data

" Herschel PlotXY <25 =

-

L]
xample of a layered plot =
New ¥ axis exp+noise
Q.00 0.30 0.60 0.90 120 150 158
| | | | | | |
iy C oo
N E T S EIC O TR
T
D e l B .-
P
- et
G ..
L
e,
3 e
% Maoise on top of ex
3 ...
o
L=
=
e

index

Figure 6.14. The plot has been annotated and decor ated.

6.7. How can | make my plots more colourful?

Colours can be set for anumber of partswithin aplot. Methods can normally take a colour at creation
time e.g. when adding alayer to the plot you can specify the colour to be used for its datapoints or for
individual layers, labels etc. the colour can be specified with dedicated commands.

To specify acolour asan argument you haveto passaj ava. awt . Col or object. The easiest way to
dothisisto usetheir default namesase.g.j ava. awt . Col or . bl ue. If you don't want to write the
j ava. awm . bit every time you will need to import the awt package asillustrated in the ?2?. Once
imported colours can be changed as follows:

| ayer. set Col or (Col or. green)

The default names for colours are: black, blue, cyan, darkGray, gray, lightGray, green, magenta,
orange, pink, red, whiteand yellow (all preceded by Col or .). Another easy way to useacustom colour
isto specify thered, green, blue valuein rangesfrom 0to 255: Col or (red, green, bl ue).So
we could also do the following to get a similar green colour.

| ayer . set Col or (Col or (0, 250, 20))

6.8. Creating file output and printing a plot
without displaying

Sometimes you do not want to plot to the screen, but would rather write your plots directly to files.

150

DP Plot: Basic Plotting of Data

6.8.1.

* We can generate a plot using the basic constructor (p=Pl ot XY()), setting it to invisible
(p. set Vi si bl e(0)) which can later be filled by plot information such as x and y data. This
works, but will cause window flashes on the computer screen. Better is to completely render the
plot. Thelast value of "0" in the second form of the plot construction, below, indicates that the plot
will not be made visible when it is created but can be made visible at a point of the user's choosing.

Create an array with 100 doubles in it

data = Doubl eld(range(100))/10.0

Hide an unfilled plot... but still showi ng the wi ndow

p = Pl ot XY(vi si bl e=0)

Hide a conpleted plot of data versus data squared. Causes w ndow fl ashes
p2 = Pl ot XY(data, data.copy().power(2), titleText = "Title", visible = 0)

Our plot can now be made visible using

Now make the plot visible
p. set Vi si bl e(1)

» Tosavetheplot directly to file you can then use the following two methods:

p. saveAsJPE "“fil enane") # for a JPGfile
p. saveAsPNG "/ home/ nypat h/ fil ename") # for a PNG file
p. saveAsEPS("fil ename") # for an EPS file

Using batch mode

Imagine you have written a script for drawing a plot made of several layers. Normally, when you
execute the script, the plot will first be created and then redrawn each time a new layer is added. You
may want the plot to be drawn just once with all the layers already in place, rather than being updated
at each intermediate step. Y ou can do that by invoking the set Bat ch method on your plot object.
For example, hereis a script snippet where the batch mode is turned on right after creating a plot:

...previous script commands. ..

nmyPl ot = Pl ot XY()

nmyPl ot . set Batch(True) # We could also wite nyPlot.setBatch(1)
...the script goes on...

After the last plot commands you may set the batch mode back to false with
nyPl ot . set Bat ch(Fal se) or nyPl ot . set Bat ch(0), and al the layers will be drawn at
once.

6.9. Windows containing more than one plot

Morethan one PlotXY plot can be placed within asinglewindow using theset Layer method. Each
layer that a user creates can be placed in agrid which isx unitslong by y unitsin height. The layer is
given an integer identifier that indicates where in the grid it should be put.

pl ot.setlLayer(int id, LayerXY layer, int gridx, int gridy)

Following thiswe can place previously created PlotXY componentsinto each of the window positions.
We indicate their position along the width (starting from 0) then the height (starting from 0). So we
might place the 4 plots (pl ot 1, plot2, plot3, plot4)intoour composite window using
code such asin Example 6.8.

151

DP Plot: Basic Plotting of Data

Create the data

data = Doubl eld. range(100)/10.0

dat a2 = data. copy().power(2)

dat a3 = data. copy(). power (3)

dat a4 = data. copy(). power (4)

Create individual plots to

add to our conposite plot

plotl = Layer XY(data, data)

pl ot 1. set Nane("l i near")

pl ot 1. set Col or (j ava. awt . Col or. r ed)

pl ot2 = Layer XY(data, data2)

pl ot 2. set Nane(" Squar e")

pl ot 2. set Col or (j ava. awt . Col or. gr een)
pl ot 3 = Layer XY(data, data3)

pl ot 3. set Nane(" Cubi c")

pl ot 3. set Col or (j ava. awt . Col or. bl ue)
pl ot4 = Layer XY(data, data4)

pl ot 4. set Nane("4th power")

pl ot 4. set Col or (j ava. awt . Col or. or ange)
start adding in the layers in grid
positions 0,0 to 1,1

p = Pl ot XY()

p. set Layer (0, pl ot 1, 0, 0)

p. set Layer (1, plot2,0, 1)

p. set Layer(2,plot3,1,1)
p
#
#

.set Layer (3, plot4,1,0)

Let's change the col our of plotl

we use it's id nunber 'O
p[0] . set Col or (j ava. awt . Col or. bl ack)
We can al so change ot her things such
as the axis labels for just one plot
within the grid
p[0] .xaxis.title.text
p[0].yaxis.title.text

"Unit"
"Li near"

Example 6.8. Multiple plotting

The above code produces the multiple plot window shown in Figure 6.15. Alternately, layers can
simply be added to plots -- no id number is then required.

pp = Pl ot XY()

pp. addLayer (pl ot 1, 0, 0)
pp. addLayer (pl ot 2, 0, 1)
pp. addLayer (pl ot 3,1, 1)
pp. addLayer (pl ot 4, 1, 0)

152

DP Plot: Basic Plotting of Data

6.10

y axis
4000 6000 8000 100(

2000

0

y axis
400 600 800 1000

200

X axis

| —— linear

Square m— Qubic dth power |

Figure 6.15. Example of multiple plotsin a window from Example 6.8.
The properties of any one of the layersin the PlotXY window can be adjusted, e.g.,

p. props()

Mouse Interactions with Plots

We can get information from plots using amouse command. Two basic mouse commands allow point
values to be obtained from plots and nearest data points values to be found.

In order to find mouse coordinates within a given layer of a plot we can use the "getCoords" method.
This allows multiple points to be obtained and stored in an array.

#Mouse Coor di nat es:

#get nmouse coordi nates fromthe first of our
#multiple plots (click on plot |ayer 3 tines)
poi nt s=pl ot 1. get Coor ds(3) #
print points

This produces x and y coordinatesin two arrays of doubles.

x positions in a Doubl eld array
xarray = Doubl eld(poi nts[0])
y positions in a Doubl eld array
yarray Doubl eld(poi nts[1])

Similarly we can get nearest data points

153

DP Plot: Basic Plotting of Data

#Dat a coor di nat es:

#get 5 Data points (click on plot layer 5 tinmes)
dat axy=pl ot 1. get Dat aCoor ds(5) #

print dataxy

Once again, the output isin two arrays of x and y coordinates.

6.11. What about a complete PlotXY
example?

Y ou can find some demo scripts packed in a ZIP file at this address:

ftp://ftp.rssd.esaint/pub/HERSCHEL /csdt/ialia-8.3/plot_demo.zip.

154

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/ia/ia-8.3/plot_demo.zip

Chapter 7. D spl ay - Handling
| mages and Cubes

7.1. Introduction

This chapter describes how you can use | mages and Cubes to store image and cube data,
how you can visualise/display them and which basic types of analysis and/or manipulation are
applicable on them. Additional information can be found in the developer (API) documentation of
herschel.ia.dataset.image, herschel.ia.gui.image and herschel .ia.tool box.image packages.

Note
@ A number of classes must be imported manually in order to avoid a the occurence of a
strange NaneEr r or message. This can easily be done using the following statements :

fromjava.awm inport Font
from herschel . share.unit inmport *

Note
@ The herschel image packages (herschel.ia.dataset.image, herschel.ia.dataset.image.wcs,
herschel.ia.gui.image and herschel.iatoolbox.image) are automatically loaded when
starting up the default version of Herschel DP. However, these might have to be imported
by hand, in asimilar way.

Throughout the chapter, a JPEG image of NGC 6992 is used as example. This image can be fetched
fromthedoc/ i a/ docunent / unt i mages folder of your HCSS installation (click herefor alocal
link: ngc6992.jpg).

7.2. 1 mages and Cubes

Animageisaspecific kind of product, which is composed of

* the image, described by a Nuneri c2d (i.e. a 2D numeric array : this can be a Doubl e2d, a
Fl oat 2d,aLong2d, an| nt 2d, aShor t 2d or aByt e2d)

« theerrorson theimage, also described by aNuner i c2d, but optional
* the exposure of the image (idem)
« aflag, described by aFl ag (also optional)

Other information, stored inthel mage canbee.g. aWws (World Coordinate System) to do coordinate
conversions, and the wavelength at which the image was taken.

When constructing an | mage, the user usually starts by making the Wes and the Nurrer i c2d that
will be used asimage data. ThisisheldinaSi npl el nage, which isthe image format used within
the HCSS.

The following example shows how you can construct a Si npl el nage with avalid W s, without
errors and exposure, and with one pixel (55, 35) flagged out. It has 60 rows and 40 columns.

155

../images/ngc6992.jpg

Di spl ay - Handling | nages and Cubes

#

Note

3 Thereference pixel isat position (crpix1, crpix2), with the pixels starting to count at (1,1).
This correspondstor ow=col um =0.
Note

S The crval keywords for the pixel scaling, are given in decimal degreesin RA en Dec.

I nports

from herschel . share. unit inport *

#

Construction of the image data

(D

nyl mageDat a = Fl oat 2d(60, 40) #

for row in Intld.range(60):
for colum in Intld.range(40):

#

nyl mageDat a. set (row, col umm, row + col umm)

Construction of the flag (2)

nmyFl ag = Fl ag(60, 40) #

fl aggedQut = Bool 2d(60, 40)

fl aggedQut . set (55, 35, True)

nyFl ag. set Fl ag(" UNVALI D', flaggedQut)

#

Construction of the unit (3)

nyUnit = Fl uxDensity. M LLI JANSKYS #

#

Construction of the Ws (4)

myWs = Wes(crpixl = 29, crpix2 =29, crvall = 30.0, crval2 = -22.5, \
cdelt1 = 0.00028, cdelt2 = 0.00028, ctypel = "RA---TAN', ctype2 = "DEC - TAN')

#

Construction of the Sinplelmge (5)

nyl magel = Si npl el nage(description = "test inage", inmge = nylnageData, \

flag = nyFlag, unit = nyUnit, wcs

#

myWes)
Or using the InportlmageTask (6)

nyl mage2 = Si npl el mage(wes = nyWs)
i mport | mage(i mage = nylnage2, filenane = "ngc6992. | pg")

#

1

2.

where we now i nport our JPG inmage into the Sinplelnmage

The construction of aFl oat 2d : at position (row, column) the pixel valueis set to row + column

Pixel (55,35) is flagged out, using the UNVALID flag. Other flag types are possible (look in the
subsection on flags).

. Setting the unit for the pixel values. The flux associated with one count in the image (equivalent

to BUNIT in aFITSimage).

. The construction of a Ws abject. The center pixel is set tot (29,29) and corresponds to the sky

coordinate with right ascension 2h00mO00s and declination -22d30'00". For more information, look
into the subsection on V¢s.

. Construction of a Si npl el mage with the given image data and Ws, but without errors and

exposure.

. Construction of another Si npl el mage with the same Ws applied to it. The

| mport | mageTask is used to load a JPEG image. There is no flag, no error, nor exposure in
this case.

Example 7.1. Constructing a Si npl el mage

Note
@ Usingthel npor t | mageTask, datafrom * .jpeg, *.jpg, * .tiff, *.png, * fits, *.ftsor * fit

files can be loaded into an | mage. When aFITS file is imported, the information in the
header of the fileis also included.

156

Di spl ay - Handling | nages and Cubes

7.2.1.

7.2.2.

A Cube worksinavery similar way to an | mage. Theonly differenceisthat 3D datatypes should be
given as parameters, instead of 2D. This holds for the cube data, as well as for the errors, exposures
and flag. In the W s the parameters for the 3rd axis should also be specified.

Flagging out Pixels : the Fl ag Class

A Fl ag can be used to flag out pixels and specifying the reason for doing so. In the example below
it is explained how you can do this.

nmyFl ag = Fl ag(60, 40) # (1)
nmyFl ag. addFl agType(" SATURATED', "Saturated pixels") # (2)

fl aggedQut 1 = Bool 2d(60, 40)
fl aggedQut 1. set (55, 35, True)
myFl ag. set Fl ag(" UNVALI D', flaggedQutl) # (3)

fl aggedQut 2 = Bool 2d(60, 40)
fl aggedQut 2. set (50, 35, True)
myFl ag. set Fl ag(" SATURATED"', fl aggedQut2) # (4)

print nyFl ag. get Fl agTypes() # (5)

print nyFl ag. get Fl ag() # (6)
print nyFl ag. get Fl ag(" UNVALID") # (7)

1. TheFl ag you create must be of the same dimensionsasthel nmage to which you're going to attach
it. Inthiscase, itisa60*40 Fl ag.

2. You can create up to 15 different flag types. Here, you create a new flag type with the name
SATURATED. One flag typeis standard available : UNVALID.

3. In these three lines is described how you can flag out the pixel with coordinate (55,35) with the
UNLVALID flag type. Note that you have to construct aBool 2d for this and that this must be set
to Tr ue at the appropriate position.

4. The saturated pixels are flagged out in a similar way. Note that you had to add the SATURATED
flag type yourself.

5. Here you print the existing flag types for this Fl ag. In this case, these are SATURATED and
UNVALID.

6. Here you print a Bool 2d with the same dimensions as the Fl ag. All flagged pixels are marked
as Tr ue. In this case, pixels (55,35) and (50,35) are marked as Tr ue, al the othersas Fal se.

7. Hereyou print aBool 2d with the sasme dimensionsasthe Fl ag. All pixelsflagged as UNVALID
aremarked ast r ue, al othersasf al se.

Example 7.2. Constructing a Si npl el mage

Note
@ We are well aware of the fact that "unvalid" in not atrue English word. In the future this
flag type should be changed to INVALID.

Coordinate Conversions: the W s Class

A Ws makes sure you have all the information to do coordinate conversions. This only holds if the
W s isvalid. In the following example is shown how you can construct such aV&s.

157

Di spl ay - Handling | nages and Cubes

nmyl mage = Si npl el nage()
nmyl mage. set | mage(RESHAPE(Doubl eld. r ange(200*300), [200, 300]))

myWs = Ws()

myWs. set Ct ypel(" LI NEAR")
myWs. set Cdel t 1(5)

myWs. set Crval 1(200)
myWs. set Cuni t 1("K")
myWs. set Cr pi x1(0)

myWs. set Ct ype2(" LI NEAR")
myWs. set Cdel t 2(0. 05)
myWs. set Crval 2(2. 0)
myWs. set Cuni t 2(" V")
myWs. set Cr pi x2(0)

nmyl mage. set Ws(myWs)

print nyl mage. get Ws() # To see the Ws of the inmage
print nyl mage. get Ws().isValid() # To see whether the Ws is valid

Warning
O The above code will generate an image with the value 200 assigned to the NAXI S2
keyword and 300 assigned to NAXI S1. In other words, the image size will be 200 pixels
along the y axis and 300 pixels along the x axis. The coordinate values will be displayed
inthisorder (y, X) in the Image Viewer. For an explanation of why they size comes before
the x size, see Section 4.6.1 in Chapter 4.

The above example creates a coordinate system, where temperature and current are set for the axes.
The x-axisislinear (ctypel), has the reference pixel in pixel O (crpix1), which corresponds to column
=-1, hasavalue of 200 in the reference pixel (crvall), uses steps of 5 degrees (cdeltl) and has Kelvin
as unit. The y-axis on the other hand, is also linear (ctype2), has the reference pixel in row 0 (crpix2),
which corresponds to row = -1, has value 2 in the reference pixel (crval2), uses steps of 0.05 degrees
(cdelt2) and has Volts as unit.

Note
@ Rows and columns start counting from (0,0), pixels from (1,1).

To ensure the possibilty to convert pixel coordinates to sky coordinates and vice versa, you can make
use of the W s class. This can be done using the standard W s parameters, as shown in the example
below.

myWs = Ws() # (1)

myWs. set Cr pi x1(128)

nyWs. set Crpi x2(128) # (2)

myWs. set Crval 1(101. 676612741936)
nyWs. set Crval 2(0. 829427624677429) # (3)
myWs. set Ct ypel(" RA---TAN'")

myWs. set Ct ype2("DEC-- TAN') # (4)

myWs. set Radesys(" | CRS")

myWs. set Equi nox(2000. 0) # (5)

nyWs. set Cd1_1(-1. 9064468150235E- 6)
nyWs. set Cd1_2(3. 39797311269006E- 4)
nyWs. set Cd2_1(3. 39811958581193E- 4)
nyWs. set Cd2_2(1. 580446989748E-6) # (6)

1. Thecreation of a\As.

2. Thereference pixel pixel isset to pixel (128,128).

158

Di spl ay - Handling | nages and Cubes

3. Thereferenceis set at the position with right ascension 6h45'42.387" and declination 0d49'45.94".

4. The projection is set. The first axis defines the right ascension, the second axis the declination.
Both use the gnomonic projection.

5. We use the standard ICRS type and set the equinox to 2000.0.

6. Thelinear transformation matrix isset. Thisdefinesthe pixel scaling and therotation of thel mage.

7.3. Display vs. Image Explorer

7.3.1.

When only JIDE is being used, you need to use an object of the Di spl ay classto view | nages
and Cubes. In HIPE, you can explore your image just by double-clicking on it in the Variables view.
Di spl ay remains very important though, so in this section you get an overview of the functionality
of Di spl ay aswell as of the image explorer in HIPE.

Di spl ay

Let's display the | nages we produced in the previous sections of this chapter. This can easily be
done using the following:

nmyDi spl ayl
nmyDi spl ay2

Di spl ay(nyl magel)
Di spl ay(nyl mage2)

ThevariablesmyDi spl ayl and Di spl ay2 alow youtorefer tothe Di spl ays and their contents
separately. The results of these commands are shown below.

Note
@ When you create a Double2d(height, width), you create an array of pixelswhere height is
the number of rows and width is the number of columns.

159

Di spl ay - Handling | nages and Cubes

Image 'test image'

|%@@ml 30,05 | 10.000 mly 01:59:58.000, -22:30:19.15

Figure7.1. Display of " mylmagel” .

160

Di spl ay - Handling | nages and Cubes

Image 'ngc6992.jpg’
T

02:00:18.911, -22:28:41.79

Figure7.2. Display of " mylmage2".

In both cases, the image is shown in the window. Flagged pixels are shown as black pixels. On the
right hand side, you see two smaller frames. The upper one gives an overview of the image together
with the x- and y-axes, and the north- and east-axes. The lower one zooms in on the image at the
current mouse position. At the bottom of the window you see the colour bar (on which you can click
and move the mouse to change its slope) and the status bar. The numbers in the status bar are the
pixel coordinates (y,x), the intensity value and the sky coordinates (if available) at the current mouse
position. The button allow you to zoom in, zoom out, zoom to fit, return to normal zoom, and to flip
the image (along the y-axis). Also the current zoom factor is shown.

Note
S The pixel position is currently displayed as (y, x).

Y ou can add an extra parameter when initialising the Di spl ay, which decides whether the window
should be shown or not. This can be very useful in scripts, where you don't want all images to be

161

Di spl ay - Handling | nages and Cubes

shown on the screen, but where you want to look ate some images after the execution of the script.
This can be done like this:

nmyDi spl ay = Displ ay(nyl nage, Fal se)

Y ou can make the window visible, typing

nyDi spl ay. set Vi si bl e(True)

7.3.1.1. Display in more Detail

From now on we will work with nyDi spl ay2. In this section we will describe some, but not all,
methods that are applicable on Di spl ay objects. For an exhaustive list of all methods, have alook
inthe Di spl ay javadoc. To apply a certain method, you must type myDisplay2.<method>.

Table 7.1. Useful methodson Di spl ay

getlntensity(int row, int column) -> double Returns the intensity a the given pixe
coordinates (row, column)

getlntensityFromWorldCoordinates(double ra,| Returns the intensity at the given sky coordinates

double dec) -> double (ra, dec)

getUnit() -> Unit Returns the unit of the shown image

setUnit(Unit<?> unit) Sets the unit of the shown image

getZoomFactor() -> float Returns the zoom factor of the shown image

setZoomFactor(float zoomFactor) Sets the zoom factor

zoom(double row, double column, float|Zooms on the given pixel coordinates (row,

zoomFactor) column) with the given zoom factor

zoomWorldCoordinates(double ra, double dec,|Zoomsonthe given sky coordinates (ra, dec) with

float zoomFactor) the given zoom factor

zoomin() Zoomsin

zoomOut() Zooms out

getCutLevels() -> doubl €[] Returns the cut levels of the shown image

setCutL evel s(doubl e percent) Sets the cut levels according to the given
percentage

setCutL evel s(double[] minmax) Setsthe cut levels

setCutL evel s(double min, double max) Setsthe cut levels

flipY Axis() Flipsthe y-axis

isFlipped() -> boolean Returns whether the y-axisis flipped

getDepthAxis() -> int Returns the depth axis

setDepthAxis(int depthAxis) Sets the depth axis

7.3.1.2. How to use different Layer s?
It is possible to display several layersin one Di spl ay. This can be done by adding a layers to the
existing | mage, or by displaying a Cube or a Nurrer i ¢3d datatype (Doubl e3d, Fl oat 3d,...).
Adding alayer can be donelike this:

nyDi spl ay2. addLayer (nyl magel)

162

Di spl ay - Handling | nages and Cubes

This way we add mylmagel to myDisplay2, as shown on the screenshot. Y ou also see that a slider
appears in the status bar, which you can use to switch between the different layers.

Image 'test image'

QJafEfap(t] momss | [ewis sar [o

Figure 7.3. Adding layersto a Display.

Note

S When you change the zoom factor of the displayed | mage, it isimportant to know what
will happento other Layer s. If thecurrent | mage wasaddedtotheDi spl ay separately
(asanl| mage), then no other Layer s will be affected. However, if the displayed | mage
ispart of aCube, al other layersin this Cube will be affected.

7.3.1.3. How to place Annotations on an | rage?

Itis possibleto draw figures and put text, so called annotations, on an | mage, using Di spl ay. This
can be donein two different ways;;

163

Di spl ay - Handling | nages and Cubes

1. Using the command line from your DP session
2. Using the annotation toolbox
These are explained in the following two subsections.
Annotations from the Command Line in your DP session
Y ou can place these kinds of annotations on an | mage in Di spl ay, viathe command line:

* Regular text annotations, using the addAnnotation(...), setAnnotationFont(..) and
setAnnotationFontColor (...) methods

» Greek text annotations, using the addGreekAnnotation(...), setAnnotationFont(..) and
setAnnotationFontColor(...) methods

Note

@ The addGreekAnnatation(...) method converts normal charactersto Greek characters
(‘a becomes 'apha, 'b' becomes 'betd,...)

 Figures as annotations, using the addEllipse(...), addLing(...), addPolygon(...), addPolyling(...)
and addRectangle(...) methods

Note

@ The addPolygon(...) and addPolyling(...) methods need an array of doubles as
parameter. In such an array, the coordinates should be added as polygon(([x1, y1, x2,

2.

The following example shows how you can do this on the command line. Also theresulting Di spl ay
is shown.

I nports
fromjava.awt inport Font
fromjava.aw inport Col or

nmyDi spl ay2 = Di spl ay(nyl nage2)

Placing a text annotation at position (321, 224)

nmyDi spl ay2. addAnnot ati on("Vei|l nebul a", 321, 224)

Changing the font type and size of the annotations

nmyDi spl ay2. set Annot ati onFont (321, 224, Font("Dial og", 0, 32))

Changi ng the annotation col our

myDi spl ay2. set Annot ati onFont Col or (321, 224, Col or (0, 0, 255))

Adding an ellipse with center at (268.5,500.0), width = 38 and hei ght = 37,
linewidth = 3.0 and bl ack col our

nmyDi spl ay2. addEl | i pse(268.5, 500.0, 38.0, 37.0, 3.0, Color.green)
Adding a Greek text annotation at position (100, 500)

nmyDi spl ay2. addG eekAnnot ati on("a = 12.34, d = +30.30", 100, 500)
Changing the font and col our of the annotation

myDi spl ay2. set Annot ati onFont (100, 500, Font("Di al og", 0, 20))

myDi spl ay2. set Annot at i onFont Col or (100, 500, Col or(0, 0, 0))

But white is nore visible

nmyDi spl ay2. set Annot at i onFont Col or (100, 500, Col or. white)

164

Di spl ay - Handling | nages and Cubes

e

’@@@

A% ..

|4 Image 'ngc6992.jpy’ E]@ @

Iﬁm 549, 770 £9.000 | 02:00:53.914, -22:21:14.28

Annotations from the

nyDi spl ay2. annot

Figure 7.4. Adding annotationsto a Display.

Annotation Toolbox

Instead of typing all these commands, it is easier to use the annotation toolbox. This can be opened by
clicking right on the Di spl ay and choosing Annotation toolbox from the menu, or by typing

ati onTool box()

165

Di spl ay - Handling | nages and Cubes

r

< Annotation toolbox

o) (x]

| o il
' 1

h

]
L7

=

-
£
X

Change Colar...

Change Font. ..

myDisplay?. addPoldine([328.0, 157.0, 321.0, 150.0,

al

-

< [

d

Sawve |ython cocle ||

Fefresh Jvthon code

Figure 7.5. The Display annotation toolbox.

The icons, appearing in the annotation toolbox, have the following usage (from left to right and from

top to bottom) :

* select annotation

» select al annotationsin a (rectangular) region
» draw aline

 draw arectangle

o draw an ellipse

 draw apolyline

 draw apolygon

e draw with the free hand

166

Di spl ay - Handling | nages and Cubes

» add atext annotation
» remove the selected annotation(s)

* remove all annotations
Letting the mouse linger over an icon also displaysits function in atooltip.

If you indicate you want to draw a polyline or a polygon, you must select the points which should be
used as corner, by clicking the mouse on theimage. Double clicking will end the selection procedure.
The three buttons bel ow the buttons already described, change the view of the annotations :

« change the thinckness of the line

« change the colour of the annotation

 changethe font of the text annotation

The jython code needed to get the same effect via the command lineg, is generated in the lower part

of the annotation toolbox. If you change the size of atext annotation, thiswill not be reflected in the
jython code.

Note

@ The lower part, concerning the jython code, will only be availaible if you open the
annotation toolbox viathe command line, and not if you open it by choosing the annotation
toolbox via the menu, which appears when right clicking on the image.

7.3.1.4. Other Functionalities available via the Menu

If you right-click on theimage, you will seethe apopup menu appears from which various possibilities
can be chosen. These are :

* editing the colours
* editing the cut levels
e zooming infout
* opening an annotation toolbox
* creating a screenshot
* printing the image
« flipping the y-axis
Editing the Colours
When you choose Edit colors, you will see a popup window appearing, where you can change
« the colour agorithm

* the colour map

167

Di spl ay - Handling | nages and Cubes

* theintensity scale

The popup window is shown below.

4/ Image Colors o) X,
—Color map—— — Intensity——
—agoritm— |] | [Josaw
Red Lasritt
Linear 5cale
v Smooth Log
() Logarithmic | | smooth 1 Negative
() Square Root | | |mooth? NegativeLog
. Smooth3 Null
:OH|stugram | | |Staircase !
Stairs v
Resel‘ Clusa‘

Figure 7.6. Colour editting of image displays.
The same popup window will appear when typing
nyDi spl ay. edi t Col ors()

Editing the Cut Levels

When you choose Edit cut levels, a window appears showing a histogram with the current cut levels
and various possibilities to change the cut levels:

* you can play with the slider bar using the mouse
 you can cut away the outer parts of the histogram by specifying the percentage you want to keep

 you can apply amedian filter

Either which possibility you choose, the histogram as well as the image will be adapted.

The popup window is shown below.

168

Di spl ay - Handling | nages and Cubes

% Edit Cut Levels =) [X]

Pixzel Value Distribution

Frequercy

Pizel Value

0 Cur Levels = (9, 255) 255

AutoSet: | 90.0% || 95.0% || 98.0% || 99.0% || 99.5% || 100.0% |

‘ Reset H Median Filter || Close |

Figure 7.7. Editting cut levelsin displayed images.
The same popup window can be opened, typing

nmyDi spl ay. edi t Cut Level s()

Zooming in/out

Instead of using the buttons in the status bar to zoom in/out, you can choose Zoomin or Zoom out in
the menu that appears when right clicking on the image.

Annotation Toolbox
Thiswas already explained earlier in this chapter.

Printing and creating a Screenshot
When you choose Create screenshot, the current view or the image can be saved as *.JPG, *.PNG
or *.BMP. By current view we mean the image as you see it displayed, including the annotations.

When saving the image you save the whole image, but without the annotations. When you choose
Print image, you can print the image (without the annotations) on paper, or print it to afile.

Flipping the y-axis

Instead of pressing the button with the arrow in the status bar, you can choose Flip y-axis from the
menu that appears when right clicking on the image.

7.3.2. Image explorer

The image explorer is a HIPE-integrated version of Di spl ay. It can be opened by double-clicking
on an Image or a Cube in the Variables view. If no data is loaded however, only a popup window

169

Di spl ay - Handling | nages and Cubes

appears, warning you about the situation. In that case, no explorer will be opened. Otherwise, the
explorer will open in the Editor. Y ou will notice that it looks very similar to Di spl ay, including the
image panner, image zoom, color bar and status bar. The same popup menu will appear when right
clicking on theimage, asfor Di spl ay.

Unlike for Di spl ay, you do not have direct access to the explorer. This means that you cannot use
the explorer on the command line.

7.4. Visualisation, Analysis and Manipulation
of | mages

7.4.1.

A large set of functionalities is available on the command line in HIPE and most of them
are also available in a GUI-driven environment. In the past, this environment used to be the
| mmgeAnal ysi sTool box, but now we're making efforts to integrate everything into HIPE. Thus,
in this section, you will find how you can do everything, as integrated into HIPE (if available). Here
isalist with all available functionalities:

8.

9.

. Profile plotting

. Aperture photometry
. Histograms

. Contour plotting

. Mosaicking

. Smoothing

. Clamping/clipping

Cropping

Rotating

10.Scaling

11.Trandlating

12.Transposing

13.Flagging saturated pixels

14.Getting the cut levels

15.Image arithmetics

In the following subsections, we will elaborate on all of these functionalities.

Profile Plotting

Profi | eTask alows you to determine the intensity of the pixels along a straight line on a given
| mage. This can be convenient to see whether thereisagradient in intensity in your image. Y ou can
do this on the command line in HIPE, or viaa HIPE-integrated GUI.

170

Di spl ay - Handling | nages and Cubes

On the command line

The only input parameters are

» theimage (I mage i mage)

« the begin and end of the straight line either in pixel (Doubl es begi nX, begi nY, endX and
endY) or in sky coordinates (St r i ngs begi nRA, begi nDec, endRA and endDec)

To make a profile plot, smply type

profil ePixel = profile(inmge = nylmage2, begi nX = 236.0, beginY = 378.0, \
endX = 557.0, endY = 232.0)
profil eSky profile(image = nyl mage2, begi nRA = "02: 00: 15. 119", \
begi nDec "-22:24:07.16", endRA = "02:00: 38. 462", endDec = "-22:26:34.08")

Both output products (pr of i | ePi xel and pr of i | eSky) will appear in the Variables view in
HIPE.

Viathe HIPE-integrated GUI

If you select my| mage2 from the Variables view and then click on profile in the Tasks view, atask
dialog opens in the Editor in HIPE. In the upper part, the | mage (nmyl nage?2) is shown. Here you
must click afirst time to fix the begin of the straight line. As you move the mouse over the image,
you will see astraight line being updated, as well as the corresponding profile plot in the lower part of
the task diaog. If you click a second time on the image, the straight lineis fixed, and a new variable
pr of i | e appearsin the Variables view and the corresponding command is echoed to the Console.

When you press the clear button, the straight line will be removed from the image and the intensity
plot in the lower part of the task dialog will be cleared.

You can also drag the straight line across the image and manipulate it from the moment you have
fixed it (by clicking a second time). You will see that the profile plot in the lower part of the task
dialog will be updated. To get the adapted output product in the Variables view however, you must
press the Accept button again. If you hit this button accidentaly, before finishing drawing the straight
line, a popup window will appear to warn you about this. If you click OK, you can continue drawing
the straight line.

171

Di spl ay - Handling | nages and Cubes

{1 HIPE - Herschel Interactive Processing Environment g

File Edit Run Window Help

. teEsBQ
| Editor X (o] 29 variables x m[&nsks X (o)
 profile x v B
= = = — = Applicable
0 b o ocal r

9 mymage2 - @ simpleFitsWriter
9 mylcs % By Category

o [T

@@@h—o@ 203, 856 02:01:00.204, -22:27:02.90

e]| e

Profile

L

.

L gh
<50 0 50 100 150 200 250 300 350 400 450 500 550 600
Pixels

1

Intensity [TLa.

El Console x)
HIPE> del(profiled)
HIPE> del(profiles)
HIPE> profilel = profile(image=myImage2,beginX=127.0,beginY=324.0,encX=693.0,endY=222.0)
HIPE>

180 of 1733 NB .

Figure 7.8. Using the profile task on an image.
I nspecting the result

The resulting product, pr of i | e, can be inspected by double-clicking on it in the Variables view.
An explorer will be opened in the Editor, showing a table with the parameters (begin and end of the
straight line in pixel and - if available - sky coordinates) and an intensity plot of the pixels along the
corresponding straight line. The datain this product can also be inspected on the command line:

Returns a Doubl eld with the pixel coordinates of begin and
end of the straight line

profil e. get Begi nPi xel Coordi nat es()

profil e. get EndSPi xel Coor di nat es()

Returns a Stringld with the sky coordi nates of begin and
end of the straight line

profil e. get Begi nSkyCoor di nat es()

profile. get EndSkyCoor di nat es()

Returns the intensity plot as a Doubl eld

172

Di spl ay - Handling | nages and Cubes

profile.getProfile()

Returns the unit of the intensity

profile.getlntensity()

Thisiswhat the profile explorer lookslike :

{3 HIPE - Herschel Interactive Processing Environment)

File Edit Run Window Help

* ‘tesseq
7| Editor X (0] i Variables _n|| &Tasks x -0
& profle | @ Profile explorer ¥ - B
I Applicatle
oip i @ localtoraWie
0 myimage2 = @ simpleitsWriter
o mylcs % By Category
Begin 0, (127.0,324.0) o [y
Begin (R4 Deo ((Z0007.197, 225,016 o profle2
End (x,) (69.3 0,222.0) : o profie3
nd RA Deg (020048351, -22:26.44) P
Intensity piot)
300 eI
bl .
— 200~ -

= I

Intensity [
8 =
T T
L L

%)
=
T
1

o By

] RO YOS TP TS FPPLETAPU AP PR OV Y
50050100 150 200 250 300 350 400 450 500 550 600

Pixels

El Console x ﬁ\
HIPE> profile3 = profile(image=myInage2 beginX=320.0,heginY=239.0,endx=528.0
HIPE> profiled = profile(image=myImage2,beginX=288.0,heginY=229.0,endx=483.

HIPE>

1280 1733 MR el

Figure 7.9. Profile explorer appearance.

7.4.2. Aperture Photometry

Another kind of analysisyou might want to do on an | mage is aperture photometry. This can be done
in several ways:

» with acircular target aperture and an annular or arectangular sky aperture

» with acircular target aperture and afixed value for the sky intensity

173

Di spl ay - Handling | nages and Cubes

In all cases, you can perform the cal culations on the command line in HIPE or via a HI PE-integrated
GULI.

7.4.2.1. Aperture Photometry with a circular Target Aperture and
an annular Sky Aperture

If you want to do aperture photometry for a circular target, you can choose to estimate the
sky using an annular sky aperture, centered around the target. This can be done using the
Annul ar SkyApert ur ePhot onet r yTask.

On thecommand line
Theinput parameters you need are :
» theimage (I mage i mage)

 the target center either in pixel (Doubl es center X and centerY) or sky coordinates
(Strings center RAandcent er Dec)

e the target radius either in pixels (Doubl e radi usPi xel s) or in arcsec (Doubl e
radi usArcsec)

« theinner and outer radii of the annular sky aperture either in pixels (Doubl es i nner Pi xel s
and out er Pi xel s) or arcsec (Doubl es i nner Ar csec and out er Arcsec)

« thekind of pixels (entire/fractional) used (Bool eanfracti onal (optional - per default: Tr ue))

* the sky estimation algorithm (I nt eger al gori t hm
To perform aperture photometry, just type

The target center specified in pixel coordinates, the radii in pixels

and using fractional pixels

phot Pi xel s = annul ar SkyApert ur ePhot onetry(i mage = nyl nage2, centerX = 430.0, \
centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
fractional = 1, algorithm= 4)

The target center specified in sky coordinates, the radii in arcsec
and using entire pixels
phot Sky = annul ar SkyAper t ur ePhot onetry(i mage = nyl nage2, \

centerRA = "02: 00: 29. 214", centerDec = "-22:33:37.32", radiusArcsec = 5.04, \
inner Arcsec = 20.16, outerArcsec = 40.32, fractional = 0, algorithm= 4)
Note
@ You can only specify distances in arcsec (here r adi usArcsec, i nner Arcsec

and outerArcsec, if the pixel scaling is the same in both directions
(mylmage2.getCdelt1() = mylmage2.getCdelt2()). Moreover, the | nrage must have a
valid Ws.

Note
@ All distances must be specified in the same unit, so either pixels or arcsec.

Y ou have the possihility to choose between five sky estimation algorithms : average, median, mean-
median, synthetic mode and the algorithm used by Daophot. Here is how you can choose between
these options on the command line :

174

Di spl ay - Handling | nages and Cubes

Using the average sky estimation algoritm

phot Aver age = annul ar SkyApert urePhot onetry(i mage = nyl mage2, centerX = 430.0, \
centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
al gorithm = 0)

Using the nedian sky estimation algorithm

phot Medi an = annul ar SkyApert ur ePhot onetry(i nage = nyl mage2, centerX = 430.0, \
centerY = 467.1, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
al gorithm= 1)

Using the nean-nmedi an sky estinmation al gorithm

phot MeanMedi an = annul ar SkyApert ur ePhot omret ry(i mage = nyl mage2, centerX = 430.0,\
centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, \
outerPi xels = 40.0, algorithm= 2)

Using the synthetic nmode sky estimation algorithm

phot Synt heti cMode = annul ar SkyAper t ur ePhot onet ry(i mage = nyl mage2, \
centerX = 430.0, centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, \
outerPi xels = 40.0, algorithm= 3)

Using the Daophot sky estimation algorithm

phot Daophot = annul ar SkyAperturePhot onetry(i mage = nyl mage2, centerX = 430.0, \
centerY = 467.0, radiusPixels = 5.0, innerPixels = 20.0, outerPixels = 40.0, \
al gorithm = 4)

All these output products will appear in the Variables view in HIPE.

Viathe HIPE-integrated GUI

If you select myl mage2 from the Variables view and then click on annular SkyAperturePhotometry
in the Tasks view, atask dialog opens in the Editor in HIPE. In the upper part you see the image on
which you can mark the target center, if the Coordinates combo box is set to Mouse interaction. If you
click on the | mage, acircle (with aradius of five pixels) will indicate where you have marked the
target. Y ou can drag thiscircle over theimageif you want it to be elsewhere. If you set this combo box
to Pixel coordinates or Sy coordinates, you must specify the appropriate coordinates in the foreseen
fields that will appear.

The next thing you should do, is specifying the target radius and the inner and outer radius of the
annular sky aperture in the Apertures part of the task dialog. But first you must indicate - using the
Radius combo box - which unit you're going to use (pixels or arcsec).

In the Sky estimation part of the task dialog you can choose either to use fractional or entire pixelsto
do the calculations, and indicate which sky estimation agorithm you want to use.

If you are happy with all filled out parameters, you must press the Accept button in order to start
the calculations. If something goes wrong, you are warned with an appropriate error message. For
example, if you choose to mark thetarget center viamouseinteraction but forget to click ontheimage,
a popup window will appear.

At this point the apertures will be drawn on the image, the result will appear in the Variablesview and
the corresponding command will be echoed to the Console.

Clicking the Clear button will make the apertures disappear from the | mage.

Figure 7.10. Sky aperture photometry task.

I nspecting the result

175

Di spl ay - Handling | nages and Cubes

The resulting product, phot , can be inspected by double-clicking on it in the Variables view. An
explorer will be opened in the Editor, showing a table with all parameters, and a results table with
all calculated values (total flux, number of pixels, intensity per pixel and error on the flux for the sky
and the target, with and without the sky). Thisisthe normal output, all other software packagesyield
for aperture photometry.

Besides that, you also have two plots as output :
» acurve of growth
e asky intensity plot

The curve of growth shows the target flux (without the sky) for avarying target radius, while the sky
intensity remains the same. The sky intensity plot shows how the calculated sky intensity changes
if the outer radius is fixed and the inner radius varies. Both plots can be used as diagnostics to see
whether you have chosen decent values for the radii.

Y ou can a'so inspect this output product on the command line :

Returns target center in pixel (as Doubl eld) and sky coordinates (as Stringld)
phot . get Tar get Cent er Pi xel Coor di nat es()
phot . get Tar get Cent er SkyCoor di nat es()

Returns the radii in pixels as Doubl es
phot . get Tar get Radi usPi xel s()

phot . get | nner Radi usPi xel s()

phot . get Qut er Radi usPi xel s()

Returns the radii in arcsec as Doubl es
phot . get Tar get Radi usAr csec()

phot . get | nner Radi usAr csec()

phot . get Qut er Radi usAr csec()

Returns the sky estination algorithm
phot . get Al gori t hm()

Returns the kind of pixels used as a String
phot . get Pi xel s()

Returns the results table as a Tabl eDataset and as a Doubl e2d
phot . get Tabl e()
phot . get Doubl e2dTabl e()

Returns the total flux (Doubleld), nunber of pixels (Double),

intensity per pixel (Double) and error on the flux (Double) for the target,
including the sky

phot . get Tar get Pl usSkyTot al ()

phot . get Tar get Pl uxSkyPi xel s()

phot . get | nt ensi t yPer Tar get Pl usSkyPi xel ()

To return the sane for the sky and the target without the sky, sinply replace
"Target Pl usSky" with "Sky" or "Target"

Returns the curve of growth as a Tabl eDat aset and the correspondi ng radi us
and flux as Doubl elds

phot . get CurveOf Growt h()

phot . get G- owt hRadi us()

phot . get Gr owt hFl ux()

Returns the sky intensity plot as a Tabl eDataset and the correspondi ng radi us
and intensity as Doubl elds

phot . get Skyl nt ensi t yPl ot ()

phot . get Skyl nt ensi t yRadi us()

phot . get Skyl ntensity()

176

Di spl ay - Handling | nages and Cubes

Thisis how the explorer looks like :

{3 HIPE - Herschel Interactive Processing Environment =

File Edit Run Window Help

o bessaa
7] Editar X (oo)|®. '\ [Co)|d- %\ 8
'-_l Aperture .. explorer ¥ v @N\
i I Anplicable
i [- @ localstorel|
[urve of arowth o myimage? L @ simpleFitsWy
& myles 1% By Categary
g il
Parametery 0 T E s L) LA LA A R
Target center (x,4) 1430,0, 467.0) ::: ;
Target center (RADec) (02:00:29.214, -22:22:37 32) "m W
Target radius [pixels 5.0 o b
Target radius [arcseq] 5.04 : i E
Inner raius [pixels| 20.0 T B
Inner racfus [arcset] 20,16 é i Bl
Quter raius [pixels] 40.0 i i 8
Outer raclus [arcsec] 40.32 il 3 ol 3
Sky estimation algorithm Daophat) W E RF
Pixel type fractonal Rl g Lot Lo Mol
Unit na Thrzi 4 s i somunn s BN B WK WG
Radiug [pizels] Racius [pizels]
Results table
Area Total (n.a) # pixels Per pisel (n.a) |Error (n.a)
Target 17258.60872...78.53981633...[219.7434311.../131.3720241...
Background 222379.0750..3769.911184. 49.15928941 .. 16.348606029...
Target (bg substr) 13397.64716.../78.53981633...|170.5841417 .. |128 8545048,
&l Console % (-0
e R B) BT I
HIPE> del(profile2)
HIPE> del(profile3)
HIPE> del(profiled)
HIPE> result =
annularSkyAperturePhotometry (image=myImage2, centerX=430.0, centerY=467.0, radiusPixel1s=5.0,innerPixels=20.0,
uterPixels=40.0,fractional=1,algori thm=4)

15807 1733 B)

Figure 7.11. Annular sky aperture measurement.

7.4.2.2. Aperture Photometry with a circular Target Aperture and a
rectangular Sky Aperture

The immediate neighbourhood of the target is not always the best location to estimate the sky. Then
you better take a rectangular region a bit further away from the target. This can be done with the
Rect angul ar SkyAper t ur ePhot onet r yTask.

On thecommand line

Theinput parameters are :

» theimage (I mage i mage)

* the target center either in pixel (Doubl es center X and centerY) or sky coordinates
(Strings center RAandcent er Dec)

177

Di spl ay - Handling | nages and Cubes

e the target radius either in pixels (Doubl e radi usPixels) or arcsec (Doubl e
radi usArcsec)

* the position of the corner of the rectangle with minimal row and column, either in pixel (Doubl es
nmi nXand i nY) or in sky coordinates (St r i ngs m nRA and i nDec

« thedimensions of therectangle either in pixels (Doubl es wi dt hPi xel s andhei ght Pi xel s)
or arcsec (Doubl es wi dt hAr csec and hei ght Arcsec)

» thekind of pixels (entire/fractional) used (Bool eanfracti onal (optional - per default: Tr ue))

* the sky estimation algorithm (I nt eger al gori t hm

To perform aperture photometry, just type

The target center is specified in pixel coordinates, the target radius in pixels
phot Pi xel = rectangul ar SkyApert urePhot ometry(i mage = nyl nage2, centerX = 501.0,\
centerY = 266.0, radiusPixels = 5.0, mnX =553.0, minY =132.0, \
wi dt hPi xel s = 120. 0, hei ghtPixels = 47.0, algorithm= 4)

The target center is specified in sky coordinates, the target radius in arcsec
phot Sky = rectangul ar SkyApert ur ePhot onet ry(i nage = nyl mages2, \

center RA = "02: 00: 34. 388", centerDec = "-22:25:59.87", radiusArcsec = 5.04, \

m nRA = "02:00:38.179", minDec = "-22:28:14.89", wi dthArcsec = 120.96, \

hei ght Arcsec = 47.376)

Note

@ The same remarks hold as for Annul ar SkyAper t ur ePhot onret r yTask.
Note
3 The target center and the corner of the rectangle with minimal row and column must be

specified in the same coordinates (pixel/sky).

Note
3 Choosing the kind of pixels and the sky estimation algorithm can be done as for the
Annul ar SkyAper t ur ePhot onet r yTask.

All these output products will appear in the Variables view in HIPE.

Viathe HIPE-integrated GUI

You can do the caculations via a HIPE-integrated GUI, just Ilike for the
Annul ar SkyAper t ur ePhot omretryTask (select rectangularSkyAperture instead of
annular SkyAperture in the Tasks view). Specifying the target center, the target radius, the kind of
pixels and the sky estimation algorithm is done exactly the same way. To draw the rectangle on the
| mage, just pressthe mouse, drag it acrossthel nage and releaseit when it satisfiesyou. Afterwards
you can move or manipulate this rectangle.

Starting the caculations and clearing the image is done as for the
Annul ar SkyAper t ur ePhot onet r yTask.

178

Di spl ay - Handling | nages and Cubes

L3 HIPE - Herschel Interactive Processing Environme

File Edit Run Window Help

Gy
L

| Editor X (=]

8 rectanqul.hotometry X \@ Ageriure . explorer
=

a

@@@Wm 80, 381 39,000 02:00:25 673, -22:29:07.46
Target cener:
Coordinates ‘ Mouse interaction v|
Aertur
Radius |P\xe\s v
Target aperture Sky aperture
’rTarget radius [pikels] 5.0 ‘ When pressing and cragaing the mouse, the ractangle wil be updated until the mouse is released
Sky estimation
Fixels |Framur|a\ pixels v‘
Agarithm |Daophol v‘
Clear || Accept
slcCess g
sats O
£l console x [-o)
T MS T T T T TR

a|

HIPE> del(profiled)

HIPE> result =

annularSkyAperturePhotometry (image=myImage2,centerX=430.0, centerY=467.0, radiusPixels=5.0,innerPixels=20.0,out
erPixels=40.0,fractional=1,algori thn=4)

HIPE> resultl =

rectangularSkyAperturePhotometry (image=myInage2,centerX=501.0,centerY=266,0,minX=553.0,minY=132.0,widthPixels
=120.0,heightPixels=47.0,radiusPixels=5.0, fractional=1,algori thm=4)

HIPE> E

29 Variables x

Le5sEQ
[=n][d@Tasks x (o)
(7]
= Applicable

eip

@ myimage2
@ mes

@ result

o [0

Figure 7.12. Rectangular aperture photometry task.

I nspecting the result

162 of 1733 NB .

The resulting product, phot , can be inspected by double-clicking on it in the Variables view.
An explorer will be opened with great resemblance to the explorer for the result of the
Annul ar SkyAper t ur ePhot onet r yTask. Only the sky intensity plot is missing, of course.

To inspect this output product via the command line, you can use the same commands as for the
Annul ar SkyAper t ur ePhot onret r yTask, except for thosereferring to the annular sky aperture.

To obtain information about the rectangular sky aperture, you can use these commands :

Returns the dinensions of the rectangle in pixels
phot . get W dt hPi xel s()
phot . get Hei ght Pi xel s()

Returns the di nensions of the rectangle in arcsec
phot . get W dt hAr csec()
phot . get Hei ght Arcsec()

179

Di spl ay - Handling | nages and Cubes

Returns the corner of the rectangle with mninmal row and
colum in pixel and sky coordi nates

phot . get Upper Lef t Cor ner Pi xel Coor di nat es()

phot . get Upper Lef t Cor ner SkyCoor di nat es()

Thisiswhat the explorer looks like :

{3 HIPE - Herschel Interactive Processing Environment =

File Edit Run Window Help

0 55 EQ
7| Editor X [n)[i variables x,) el Tasks x (0]
‘-‘_l Aperture .. explorer % & giﬂpncab\e
oip
& myimage2 ter
o mylies 1% By Catenary
 rasut
Parameterg @ resultl
(Curve of growih
Target center (x, 9 (501.0, 266.0)
Target center (RADec) (02:00:34.388, -22:25:59.87)
Target radius [pixels] 5.0
Target radius [arcsec] 5.04
Upper left cornar (x,\) (553.0, 132.0) i
LUpper left carner (x,\) (02:00;38.179, -22:28:14.89) wmE
Wicth [pixals] 1200 s
Wichh [arcsac] 120.96000000000001 s R0
Height [pixels| 47.0 ; g e
Height [arcsec] 47.376 = ":
Sky estimation algorithm Daophat é u
Fixel ype Fractional LmiE
Unit n.a 1000 -
i :‘_
Results tahle G121 456789 mnen
Radiug [pizels]
Area Total (n.a) # pixels Per pivel (n.a) |Error (n.a)
Target 19295.74264.../78.53981633...245.6810258..,/138.9091165...
Background 27509375 56400 41.63434437...|7.743926831...
Target (bg substr) 16025.78888... 78.53981633...1204.0466814...144.2070200...
& console ¥ (-0
dnAlTarsKVAper tUrePROTOMETrY (Thdde=fmyLnade y enTerx=g ,, entery=4o I'.Il ISPTXEls= ,, fNaf
erPixels=40.0,fractional=1,algori thi=4)
HIPE> resultl =
rectangularSkyAperturePhotometry(image=myImage2 , centerX=501.0,centerY=266.0,minX=553.0,minY=1
=120.0,heightPixels=47.0, radiusPixe1s=5.0,fractional=1,algori thm=4)
HIPE>

122071733 MB L)

Figure 7.13. Results of using the rectangular sky aperture photometry task.

7.4.2.3. Aperture Photometry with a circular Target Aperture and a
fixed Sky Value

Sometimes you might have already determined a good value for the sky, so you want to use that. This
can be done with the Fi xedSkyAper t ur ePhot onet r yTask.

On the command line

180

Di spl ay - Handling | nages and Cubes

Theinput parameters are :
» theimage (I mage i mage)

« the target center in pixel (Doubl es cent er X and cent er Y) or sky coordinates (St ri ngs
cent er RAand cent er Dec)

* thetarget radiusin pixels (Doubl e r adi usPi xel s) or arcsec (Doubl e r adi usAr csec)
* the sky intensity value (Doubl e sky)

« thekind of pixels (entire/fractional) used (Bool eanfracti onal (optiona - per default: Tr ue))
To perform aperture photometry, just type

The target center is specified in pixel coordinates, the target

radius in pixels

phot Pi xel s = fixedSkyAperturePhotonetry(i mage = nyl nage2, centerX = 499.0, \
centerY = 566.0, radiusPixels = 5.0, sky = 48.0)

The target center is specified in sky coordinates, the target radius in arcsec
phot Sky = fi xedSkyAperturePhotonetry(i mage = nyl mage2, centerRA = "02: 00: 34. 242", \
centerDec = "-22:25:59.87", radi usArcsec = 5.04, sky = 48.0)

Note
@ Thetarget radius can only be specified if thel mage hasavalid W s and the pixel scaling
is the same in both directions.

In the HIPE-integrated GUI

Also for this task, a HIPE-integrated GUI can be used to do the calculations. Simply select
fixedSkyAperturePhotometry in the Tasks view. In the task dialog that will open in the Editor, you can
specify the target center and target radius just like for the other aperture photometry tasks. Finaly,
you also need to enter the value you wish to use for the sky intensity. This is to be specified in the
same unit as the one for the | nage.

When pressing the Accept button, the cal culationswill be done : the result will appear in the Variables
view and the corresponding command will be echoed to the Console.

181

Di spl ay - Handling | nages and Cubes

{1 HIPE - Herschel Interactive Processing Environment g

File Edit Run Window Help

o e B
| Editor X _ o]/ 39 variables x -0 M Tasks X)
@ fixedSkyA.hotometry X v Ba
- = Applicable

o0n - @ loc er

9 mymage2 @ simpleFitsWriter

9 mylcs % By Category

Ll photsky)

9 result

' -.r i ToR ? s o . Sy
ALl : 3 i sl ard * 5 i 4 " - & " hs
Ba @)]] 267,761 79.000 02:0053.726, 22255853
Target center
Coordinates |Mnuse interaction v|
Apertur
Raius ‘ Plels v‘
Target apertur Skyvalu
Target radius [pikels] 5.0 | {\480 \‘
M Accept
Infa
BUccess o
statls [
progress
v
&l Console x (=g
ky=48.0) g

HIPE> photSky = fixedSkyAperturePhotometry(image = myImage2, centerRA = "02:00:34.242",
centerDec = "-22:25:59.87", radiusArcsec = 5.04, sky = 48.0)
HIPE> 2

U
Figure 7.14. Fixed sky aperture photometry task.
I nspecting the result
The resulting product, phot , can be explored by double clicking on it in the Variables view. The

explorer that will be opened in the Editor looks again very similar to the ones for the other aperture
photometry products, as you can see here:

182

Di spl ay - Handling | nages and Cubes

L HIPE - Herschel Interactive Processing Environment =
File Edit Run Window Help

o ‘tessEQ
| Editor X _ o]/ 39 variables x - {@Tasks X _n
© fiedsikyA. hotomeiry | @ Aperture . explorer X v A

90

9 mymage2

9 myWes

@ photSky

[Curve of growt] o [

Target center (x,y) (499.0, 266.0)
Target center (RADec) (02:00:34.242, -22:25:59.87) s
Target radius [pixels] 5.0 b
Target radlus [arcsac] 504
Sky value (fixed) 48.0
Pixel type Fractional
Unit na
Resuts tabld l:
larea Tofal(na) i pixels Per pixel (na) [Erar na) O
Target 19539.88100... 78.53981633...[246.7894919...|139.785 1244 LN
Target (og substr) |15769.96982... 78.53081633..200.7894919... 138,785 1244, Redivs pixels
£l Console x

)

importImage(image = myImage2, filename = "/Thome/sara/testimages/ngc6992.jpg")

HIPE> result = fixedSkyAperturePhotometry(image={description="ngc6992.jpg", meta=[type,
creator, creationDate, description, instrument, modelName, startDate, encDate,
wavelength], datasets=[image],

history=None},centerX=501.0,centerY=267.0, radiusPixels=5.0,sky=48.0)

SyntaxError: ('invalid syntax', ('<strings', 1, 55, 'result =
ixedSkyAperturePhotometry (image={description="ngc6992.jpg", meta=[type, creator,
creationDate, description, instrument, modeTName, startDate, endDate, wavelength],
datasets=[image],

history=None},centerX=501.0,centerY=267.0, radiusPixels=5.0,sky=48.0) "))

HIPE> importImage(image=myImage2, filename="/Thome/sara/testimages/ngc6992.jpg")

HIPE> result =

ixedSkyAperturePhotometry(image=myInage2 , centerX=499.0,centerY=266.0, radiusPixe1s=5.0,s
ky=48.0)

HIPE> photSky = fixedSkyAperturePhotometry(image = myImage2, centerRA = "02:00:34.242",
centerDec = "-22:25:59.87", radiusArcsec = 5.04, sky = 48.0)

HIPE> 5

.
Figure 7.15. Results of using the fixed sky aperture photometry task.
You can also inspect phot viathe command line. Y ou can use the same commands as for the other

aperture photometry tasks, except for those referring to the sky aperture. To obtain the sky intensity
value, type

phot . get SkyVal ue()
phot . get | nt ensi t yPer SkyPi xel ()

7.4.3. Histograms

Severa tasks have been written to make a histogram of an | nage, or of aregion you are interested
in. Such aregion of interest can be bounded by acircle, an ellipse, arectangle or a polygon.

On thecommand line

For all these tasks, the following input parameters must be specified :

183

Di spl ay - Handling | nages and Cubes

» theimage (I mage i mage)
« thecut levels (Doubl es | owCut and hi ghCut)

* the number of bins (I nt eger bi ns)

For the tasks with aregion of interest, the appropriate parameters must be specified :

bounded by acircle:

* the center of the circle in pixel (Doubl es center X and cent erY) or sky coordinates
(Strings center RAandcent er Dec)

e the radius of the circle in pixels (Doubl e radi usPi xels) or arcsec (Doubl e
radi usArcsec)

bounded by an ellipse:

« the center of the ellipse in pixel (Doubl es cent er X and cent er Y) or sky coordinates
(Strings cent er RAandcent er Dec)

« the dimensions of the ellipse in pixels (Doubl es wi dt hPi xel s and hei ght Pi xel s) or
arcsec (Doubl es wi dt hAr csec and hei ght Ar csec)

bounded by arectangle :

« the position of the corner of the rectangle with the minimal row and column in pixel (Doubl es
m nXand i nY) or sky coordinates (St r i ngs m nRA and i nDec)

« the dimensions of the rectangle in pixels (Doubl es wi dt hPi xel s and hei ght Pi xel s) or
arcsec (Doubl es wi dt hAr csec and hei ght Ar csec)

bounded by a polygon :

« the vertices of the polygon in pixel (Doubl eld edgesPi xel , storedasx1,y1,x2,y2,...)or
sky coordinates (St ri ngld edgesSky, stored as RA1, Dec1, RA2, Dec?2,...)

To make a histogram, just type

Making a histogram of an inage
i mageH st ogram = i nageH st ogran{i mage = nyl nage2, lowCut = 0.0, \
hi ghCut = 255.0, bins = 10)

Making a histogram of a region bounded by a circle

circl eHi stogranPi xel = circleH stogran(i mage = nyl mage2, centerX = 417.5, \

centerY = 240.0, radiusPixels = 217.6, lowCut = 9.0, highCut = 255.0, bins = 10)
circl eH stograntky = circl eHi stogran(i mage = nyl nage2, centerRA = "02: 00: 28. 319", \
centerDec = "-22:26:26.15", radiusArcsec = 219.3, lowCut = 9.0, \

hi ghCut = 255.0, bins = 10)

Maki ng a hi stogram of a regi on bounded by an ellipse

el l'i pseHi st ogranPi xel = ellipseH stogram(i mage = nyl mage2, centerX = 360.0, \
centerY = 237.0, widthPixels = 642.0, heightPixels = 229.1, lowCut = 9.0, \
hi ghCut = 255.0, bins = 10)

el i pseHi stograntky = el lipseH stogran(i mage = nyl mage2, centerRA = "02:00: 24. 138",
\
centerDec = "-22:26:29.22", widthArcsec = 647.136, hei ght Arcsec = 230.9, \
lowCut = 9.0, highCut = 255.0, bins = 10)

Maki ng a hi stogram of a regi on bounded by a rectangle
rect angl eHi st ogranPi xel = rectangl eH stogran(i mage = nylmage2, mnX = 211.0, \

184

Di spl ay - Handling | nages and Cubes

mnY = 127.0, w dthPixels = 471.0, heightPixels = 175.0, lowCut = 9.0, \
hi ghCut = 255.0, bins = 10)
rect angl eHi st ograntSky = rectangl eH st ogran(i nage = nyl mage2, m nRA = "02: 00: 13. 308",
\
m nDec
| owCut

"-22:28:20.17", heightArcsec = 474.8, w dthArcsec = 176.4, \
9.0, highCut = 255.0, bins = 10)

Maki ng a hi stogram of a regi on bounded by a pol ygon

pyEdgesPi xel = Doubl eld([133.0, 206.0, 247.0, 333.0, 620.0, 233.0, 487.0, 112.01])
pol ygonHi st ogr anPi xel = pol ygonHi st ogran(i mage = nyl mage2, \

edgesPi xel = pyEdgesPi xel, lowCut = 9.0, highCut = 255.0, bins = 10)

pyEdgesSky = Stringld([])

pol ygonHi st ogr anSky = pol ygonHi st ogran(i nage = nyl nage2, \

edgesSky = pyEdgesSky, lowCut = 9.0, highCut = 255.0, bins = 10)

Note

3 For each task, al dimensions must be specified in the same unit.
Note

S The dimensions can only be specified in arcsec if thel nage hasavalid W s and the pixel
scaling is the same in both directions.

Inthe HIPE-integrated GUI

To run a histogram task from a HIPE-integrated GUI, you must open itstask dialog (in the Editor) by
selecting the appropriate task in the Tasks view. In al task dialogs, filling out the parameters it quite
straightforward. Only the drawing of the figures needs more explanation.

Todraw acircle, an ellipse or arectangle you must pressthe mouse, drag it, and release it when you're
satisfied with the result. Drawing the polygon can be done by clicking on the image. Double clicking
means fixing the last vertex of the polygon. Afterwards you can always move/manipulate this figure.

Y ou also noticethat the cut levelsare already filled out for you. These values are the cut level s of your
| mage and only serve asinitial guess, in order to avoid empty histograms.

When you press the Accept button, the histogram will be made. Y ou will see it at the bottom of the
task dialog, anew variable will appear in the Variables view and the corresponding command will be
echoed to the Console. If you now adapt your figure, only the histogram at the bottom of the task dialog
will be updated. To transfer this to the Variables view, you need to press the Accept button again.

Thisis how the task dialog for the | mageH st ogr anifask lookslike:

185

Di spl ay - Handling | nages and Cubes

5 i £ i e |]
© HIPE - Herschel Interactive Processing Environment |18/ x|
File Edit Run Window Heln
0 tes5eQ
7| Editor % [0]| i€ Variables (o] dTasks x (0]

& imageHistogram X 3 (mage fis... explorer v A)
= Applicable
rlnput 9 M L@ o

@ip ‘-651m|._ Write

Image # myimage? s
9 mylmage2 By Cateqol
Cutlevels (min, ma) o 7550 Mo mWMSG I
Bins 0 o photsky
@ result
rOutput

Variable name for histogram; |histogram

rlnfo

>

SlCCess

stals [

-«

progress

El Console x

HIPE> importInage(image=myImage2,filename="/Thome/sara/ testimages/ngc6992.jpg")
HIPE> result =

fixedSkyAperturePhotometry (image=myInage2,centerx=499.0,centerY=266.0, radiusPixels=
ky:48.0)

HIPE> photSky = fixedSkyAperturePhotometry(image = myImage2, centerRA = "02:00:34.2
centerDec = "-22:25:59.87", radiusArcsec = 5.04, sky = 48.0)

HIPE> histogram = imageHistogram(image=myImage2, TowCut=0.0,highCut=255.0,bins=10) P
HIPE

{

rs|t)

B7 of 1733 MB [}

Figure 7.16. | mage histogram task.

Thetask dialogs for the other histogram tasks look very similar :

186

Di spl ay - Handling | nages and Cubes

L3 HIPE - Herschel Interactive Processing Environment g

File Edit Run Window Help
o bessoQ
| Editor X [<8)

@ cirdeHistogram x

141, 1057 I 02:01:14.828, -22:28:05.02
Parameter:
Cut levels (rin, ma) [s0 [[2s5.0 |
Bins [0 |
Clear | | Accept
scass +
statls 0
progress
80000 [T T T I T
70000 - =
60000
50000
b
o e
g 30000
U

20000

10000

0

_ro00p e Lo b b b o b b
0 20 40 80 80 100 10 140 180 180 200 220 240

Values [n.a]

.
Figure 7.17. Circle histogram task.

I nspecting the result

The resulting product, hi st ogr am can be explored by double-clicking on it in the Variables view.

Y ou will see atable with the number of binsand the cut levels, and - if "drawing" afigurewasrequired
- the parameters specifying this figure. Also the histogram itself it shown.

Thisis how ahistogram explorer will look like :

187

Di spl ay - Handling | nages and Cubes

L HIPE - Herschel Interactive Processing Environment =
File Edit Run Window Help

Gy
L

[,/ Editor X (=g 28 variables x
& Image his... explorer x
@ fistogram
[3ristogram1
Nurber of bins 10 g ‘rﬁwmagel
Cult levels (rin, max) (9.0, 255.0) o myics
Center (1)) (417.5, 240.0) @ ghotsky
Center (RADec) (020028319, -2226:26.15) o il
Radius [pixels] 217 .56206011159207
Radius [arcsec] 218.30255659248482
W00 e T T T
000F B
60000
50000
g 4000
g 3000
9}
20000
10000
0
.lmgcl\\w\\h\\hlw\w
0 20 40 €0 80 100 120 140 160 180 200 220 240
Value[na]
El Console x m
HIPE> importImage(image=myInageZ, fiTename="/Thome/sara/testimages/ngc6992.jpg") £
HIPE> result =
fixedSkyAperturePhotometry(image=myInage2 , centerX=499.0,centerY=266.0, radiusPixels=5.0, sky=48.0)
HIPE> photSky = fixedSkyAperturePhotometry(image = myImage2, centerRA = "02:00:34.242", centerDec
= "-22:25:59.87", radiusArcsec = 5.04, sky = 43.0)
HIPE> histogram = imageHistogranm(image=myImage2,TonCut=0.0,highCut=255.0,bins=10)
HIPE> histograml =
circleistogran(image=myInage2,1owCut=9.0,highCut=255.0,bins=10,centerX=417.5,centerY=240.0, radiu
sPixels=217.56206011159207)
HIPE> 5

68 of 1733 MB .

Figure 7.18. Circle histogram task output.

You can aso explore hi st ogr amviathe command line, using the following commands :

Returns the nunber of bins as an integer (int)
hi st ogram get NbCOf Bi ns()

Returns the cut |levels as a double
hi st ogr am get LowCut ()
hi st ogr am get Hi ghCut ()

Returns the histogram as a Tabl eDat aset

hi st ogr am get Hi st ogr an()

Returns the values and frequencies of the histogramas a Doubl eld
hi st ogr am get Val ues()

hi st ogr am get Fr equenci es()

Returns the unit for the intensity

hi st ogram get Uni t ()

FortheCi r cl eHi st ogr anTfask you can also use

188

Di spl ay - Handling | nages and Cubes

Returns the center of the circle in pixel (Doubleld) and
sky coordi nates (Stringld)

hi st ogr am get Cent er Pi xel Coor di nat es()

hi st ogr am get Cent er SkyCoor di nat es()

Returns the radius of the circle in pixels and arcsec as doubl e
hi st ogr am get Radi usPi xel s()
hi st ogr am get Radi usAr csec()

For theEl | i pseHi st ogr aniTask you can use

Returns the center of the ellipse in pixel (Doubleld)
and sky coordi nates (Stringld)

hi st ogr am get Cent er Pi xel Coor di nat es()

hi st ogr am get Cent er SkyCoor di nat es()

Returns the di nensions of the ellipse in pixels as double
hi st ogram get W dt hPi xel s()
hi st ogr am get Hei ght Pi xel s()

Returns the di nensions of the ellipse in arcsec as double
hi st ogram get W dt hAr csec()
hi st ogr am get Hei ght Arcsec()

For the Rect angl eHi st ogr anTask you can use

Returns the corner of the rectangle with mininal row and colum in
pi xel (Doubl eld) or sky coordinates (Stringld)

hi st ogr am get Upper Lef t Cor ner Pi xel Coor di nat es()

hi st ogr am get Upper Lef t Cor ner SkyCoor di nat es()

Returns the dinensions in pixels
hi st ogram get W dt hPi xel s()
hi st ogr am get Hei ght Pi xel s()

Returns the di mensions in arcsec

hi st ogram get W dt hAr csec()
hi st ogr am get Hei ght Ar csec()

For the Pol ygonHi st ogr anTask you can use

Returns the vertices of the polygon as a Tabl eDat aset
hi st ogr am get Edges()

Returns the vertices of the polygon in pixel coordinates
as a Tabl eDat set and Doubl e2d

hi st ogr am get EdgesPi xel Coor di nat es()

hi st ogr am get EdgesPi xel Coor di nat esDoubl e2d()

Returns the vertices of the polygon in sky coordi nates as a Tabl eDat aset
hi st ogr am get Edges SkyCoor di nat es()

7.4.4. Contour Plotting

Y et another way to inspect | mages, is to make contour plots. This can be done by specifying one
(Cont our Task), or severa (Manual Cont our Task) contour values, or to let them be calculated
automatically (Aut onat i cCont our Task).

189

Di spl ay - Handling | nages and Cubes

On thecommand line

If you know in advance, you want to plot only one contour value, you can use the Cont our Task.
The only input parameters are :

» theimage (I mage i mage)

* the contour value (Doubl e val ue)

To run thistask, simply type

contours = contour(image = nylmage2, value = 100.0)

If you want to specify multiple contour values yourself, use the Manual Cont our Task. This task
takes the following parameters asinput :

» theimage (I mage i mage)

« alist of contour values (Doubl eld val ues)

The commands you need, are

Construction of the list of contour val ues
val ues = Doubl eld()
val ues. append(100. 0)
val ues. append(120. 0)

Cal cul ating the contours
contours = manual Cont our Task(i mage = nyl mage2, val ues = val ues)

Another option isto specify the minimum and maximum contour value, the number of contour levels
and the distribution (linear, logarithmic or In), using the Aut onmat i cCont our Task. Thetask will
then determine the corresponding contour values and cal culate the contours. Theinput parametersare :

theimage (I mage i mage)
« the extreme contour values (Doubl es mi n and max)

« the number of contour levels (I nt eger | evel s)

the distribution of the contour levels (I nt eger di st ri buti on)

The command is

For a linear distribution of the contour |evels
contoursLin = automati cContour (i mage = nyl mage2, |evels
max = 255.0, distribution = 0)

Il
>

mn=0.0, \

For a logarithmic distribution of the contour |evels
contoursLog = automati cContour (i mage = nylmage2, levels = 2, mn = 0.0, \
max = 255.0, distribution = 1)

For a |In distribution of the contour |evels
contourLn = automati cContour(image = nylmage2, levels = 2, mn
max = 255.0, distribution = 2)

I
e
©
—

190

Di spl ay - Handling | nages and Cubes

All these results will appear in the Variables view.

Inthe HIPE-integrated GUI

Plotting contours for one or severa value is fully integrated into HIPE, as well as the the
Aut omat i cCont our Task.

If you want to plot only one contour value, you can open the task dialog for the Cont our Task by
double clicking on contour in the Tasks view. In this task dialog you must only fill out the contour
value you areinterested in. Here is a screenshot of the task dialog :

{3 HIPE - Herschel Interactive Processing Environment =

File Edit Run Window Help

O Be55Bq
7| Editor X (]| £ Variables (o] dTasks x (o]
& contour X\ manuglContour . |[Ea)
[Applicable
rlnput o comours Fol iter
@ comoursl Ititer
@ (omours? 1% By Category
@ contours3
Image™ : @ myimage2 [contoursd
@ mylmage2
valie: (1000 Hiilo mytes
@ vals
 values
rOutput

\ariable name for cantours: |contours

rlnfo

>

SLCCess

stalls §

<

progress;

& Console x (o]

herschel.1a. task.SignatureException: herschel.ia.task.SignatureException: Error in
name values: value array([100.0, 120.0], double) with type org.python.core.PyArray
incompatible with type java.util.Arraylist

HIPE> contours3 = automaticContour(image=myInage2,levels=2,min=0.0,max=255.0,distri
HIPE> contoursé = automaticContour(image=nyInage?, Tevels=2,min=0.0,max=255.0,distrij

HIPE> c=manualContour (image=myImage2, values = vals.getArray())1

13907 1733 MB L)

Figure 7.19. Image contour task.

Another option is to specify multiple contour values, by double-clicking on manual Contour in the
Tasksview. Inthetask dialog that opensin the Editor, you can add the contour valuesyou areinterested
in, to alist. It is aso possible to remove values from the list (by selecting the value in the less and
press the Remove button) or to clear the whole list (by pressing the Clear button). This is how the
task dialog looks like :

191

Di spl ay - Handling | nages and Cubes

(] HIPE - Herschel Interactive Processing Environment <2>
File Edit Run Window Heln

T 2
| Editor X (o] £¢ Variables % _ 0| diTasks % _0
® manualContour X v B A
= Applicable
rinput W = @ fiherSpectrum
Image @ myimage2 Oip (5 Category
O mymage2
Catourvalues 1000 | Ade |1 [H]o myus
100.0 &
Remove | Clear |
@ Accept
rInfo
unknown .
stals [
progress. | 0% |
& Console [-n]
UI—EE.LIUIIUH.LE LIEM.II}JLIUII TTIS LT g dlE e dlE TAVETETTY
datasets=[image], history=None}, va]ues contourVeﬂues)
SyntaxError: ('invalid syntax', ('<strings', 1, 44, 'contours =
manualContour (image={description="ngc6992.3pg", meta=[type, creator, creationDate,
description, instrument, modelName, startDate, endDate, wavelength], datasets=[image],
history=None},values=contourValues)))
e

5507 1733 MB o0

Figure 7.20. Manual setting of contour levelswith theimage contour task.

To let the contour values be automatically calculated, just double-click on automaticContour in the
Tasks view. In thetask dialog that will open by doing this, you must specify all input parameters. The
cut levels of the Image are used as initial guess for the extreme contour values. A combo box allows
you to use the distribution of the contour values. The task dialog is shown here :

192

Di spl ay - Handling | nages and Cubes

© HIPE - Herschel Interactive Processing Environment _}iii ;X
File Edit Run Window Help
(] LossBq
| Editor % [-0] 29 Variables % _n|| & Tasks %
- . - [
@ automaticContour X @Agph(ame
nput o 0000 e
. 0ip = @ simple
Imade B 0 myimage2 @ByCaegor\/
Nurnber of contour levels |Z ‘ O mylics
Extreme contour values (min, max) |0 0 HZSS 0 |
Distribution |Log v|
rOutput
Variatile name for contours: |contours
nfo
SLCCess &
stalls [
prograss,
@ Accept
El Console x ﬁ‘
HIPE> myWes = Wes(erpixl = 29, crpix2 = 29, crvall = 30.0, crval2 = -22.5, .
0.00028, cdelt? = 0.00028, ctypel = "RA---TAN", ctype2 = "DEC--TAN")
HIPE> myImage2 = SimpleImage(wcs = myWcs)
HIPE> importInage(image = myImage2, filename = "/Thome/sara/testimages/ngc6%
HIPE> contours = E
automaticContour (image=myInage2, levels=2,min=0.0,max=255.0,distribution=1) |

5607 1733 MB

Figure 7.21. Automatic contour level setting with the image contour task.

If you press the Accept button, the contours will be calculated and appear in Variables view and the
corresponding command will be echoed to the Console.

I nspecting the result

The resulting product, cont our s, can beexplored - asall Pr oduct s - with the product viewer, but
thisis not of much use. Y ou want to plot your contours on your image. This can be done by opening
your | mage (by double-clicking on it in the Variables view) and then dragging contours from the
Variables view to the image explorer. The contours will be plotted instantaneously on the | mage.
Thiswill all be donein green for the moment. Theideaisto use different coloursfor different contour
levelsin the future.

If the the contours are calculated for an | mage with a valid Wes and you drag it on an | nage
with avalid W s, the plotting will be done based on the sky coordinates. In al other cases, the pixel
coordinates will be used.

You are not obliged to drag your contours over the | mage for which they were calculated. This can
be convenient if you want to compare | mages at different wavelengths.

193

Di spl ay - Handling | nages and Cubes

{3 HIPE - Herschel Interactive Processing Environment. =
File Edit Run Window Help

o tessEQ
7| Editor X [-0] 29 Variables x 0| Tasks x -0
& mylmage2 X - B
I Applicabla
|mage Viewer By cortours| L @ localstorWriter
3 & Te 4 o0 @ simplefitsWriter
: 0 mymage2 % By Catequry
@ myWes

W

@@@m 2813, 2342 86.000 I 02:00:14.988, -22:25:44.43

& console % (0]

MLFE> MyWCs = WCS(LTRTXL = 29, CIPTRE = 29, CTVdall = 3U,U, CTVdlZ = =£Z4,7, CUETLl = U, UUUZG,[,
cdelt2 = 0.00028, ctypel = "RA---TAN", ctype2 = "DEC--TAN")
HIPE> myImage2 = SimpleImage(wcs = myWcs)

8o 17338 | e

Figure 7.22. Output of the contour task.

7.4.5. Mosaicking

Thistask is not yet integrated in HIPE, so it isonly available from the command line. The only input
parameters you need, are

* alist with images you want to combine (Ar r ayLi st <l mage> i nages)

» oversampling (Bool ean over sanpl i ng) - optiona (per default : Tr ue)

On the command line
To combinen | mages, say image_1,..., image_n, to amosaic, you must type

lnports
fromjava.util inmport Arraylist
from herschel . i a.tool box.inage i nport MsaicTask

194

Di spl ay - Handling | nages and Cubes

7.4.6.

Making an ArrayList with the |Inages
i mges = Arrayli st ()
i mages. add(i nage_1)

iﬁﬁges.add(inage_n)

Making an oversanpl ed npsaic

nosai cOver sanpl edl Mbsai cTask() (i mages i mages, oversanple = 1)

nosai cOver sanpl ed2 Mbsai cTask() (i mages i mages)
Maki ng a non-oversanpl ed npsaic
nosai cNonOver sanpl ed = Mbsai cTask() (i nages = i nages, oversanple = 0)

I nspecting the result

Theresult, nosai ¢, isaSi npl el mage and can be treated like any other | mage.

Smoothing

Four different smoothing algorithms are available :

* average smoothing

* median smoothing

* boxcar smoothing

* gaussian smoothing

These can be executed on the command line or viaaHI PE-integrated GUI. They all take the following
parameters asinput :

» theimage (I mage i mage)

* the width of the filtering window/boxcar/gaussian (wi dt h)

Theparameterswi dt h must bean odd positivel nt eger for mean and median smoothing, apositive
I nt eger for boxcar smoothing and a positive Doubl e for gaussian smoothing.

On thecommand line

The commands for the four different tasks are very dike:

Mean snoot hi ng
snoot hedMean = neanSnoot hi ng(i mage = nyl mage, width = 3)

Medi an snoot hi ng
snoot hedMedi an = meanSnoot hi ng(i mage = nyl nage, wi dth = 3)

Boxcar snoot hi ng
boxcar Smoot hed = boxcar Snoot hi ng(i mage = nyl mage, wi dth = 4)

Gaussi an snoot hi ng
gaussi anSnoot hed = gaussi anSnoot hi ng(i mage = nyl mage, width = 2.5)

Viathe HIPE-integrated GUI

In al tasks dialogs (to be opened by double clicking on meanSmoothing, medianSmoothing,
boxcar Smoothing or gaussianSmoothing in the Variables view) have an empty field where you should
enter the value for the parameter wi dt h.

195

Di spl ay - Handling | nages and Cubes

{1 HIPE - Herschel Interactive Processing Environment g

File Edit Run Window Help

ﬁ Editor X (D]

@ meansmoothing %

o

rinput

image* . &
with: [3 |

rOutput

Variable name for smoothed: |smoothed

rlnfa
unknown 8
stals [
progress. | 0% |
& Console x (-0

ndDate, wavelength], datasets=[image], history=None},width=3)
yntaxrror: (“invalid syntax', ('<strings', 1, 44, 'smoothed =

zanSmoothi ng (image={description="nyc6992.jpg", meta=[type, creator,
reationDate, description, instrument, modelName, startDate, encDate,
avelength], datasets=[image], history=None} width=3)"))

29 Variables %

0ip
O myimage2
O myics

‘tesseq
i Tasks % _0
= Applicable +

- @ annularSkyAperturePhatometry
- @ automaticContour

- @ boxCarSmoothing

@ circleHistogram

- ® clamp

- @ comour

- @ crop

- @ cullevels

- @ ellipseHi
- @ fixedt
~ @ flagSauratedPixel
- © gaussiansmoathing
- @ imageAls

- @ imageAdd

- @ imageCei

- @ imag
- @ imaj

el ultiphy
- @ imagePower

- @ imageRound

- ® imagesqrt

- © imagesquare
- @ imageSutract
- @ importim

- @ local5

ter
- @ manualContour

edianSmoothing
alyganHistagram

- @ profi
~ @ rectangleMistogram

- @ ractangularkyAperturePhatometry
- rotae

- @ scale

= @ simpleFitsWriter

Figure 7.23. Application of theimage smoothing task.

I nspecting the result

1410f 1733 MB ;

All these tasks have an | nage as output. This has the same settings (Wcs, errors, flag, exposure) as
the input image. You can explore it using Di spl ay, or by double-clicking on it and thus opening

an image explorer.

7.4.7. Clamping/Clipping

Clamping or clipping an Image means that all intensities below a certain value | ow are set to this
value, and that all values above another value hi gh are set to that value. This means that you need

only these parameters for clamping :
» theimage (I mage i mage)
 thelower value (Doubl e | ow)

* the upper value (Doubl e hi gh)

196

Di spl ay - Handling | nages and Cubes

On thecommand line
To clamp an | mage between 20.0 and 100.0, simply type

cl anped = cl anp(i mage = nyl nage2, |ow = 20.0, high = 100.0)

By running this task, the clamped | nage will appear in the Variables view.

Inthe HIPE-integrated GUI

Opening thetask dialog in the Editor by double clicking on clampin the Tasksview, will show you that
you must fill out the lower and upper intensity between which the | mage must be clamped. Pressing
the Accept button, will start the clamping, after which the resulting clamped | mage will appear inthe
Variables view and the corresponding command will be echoed to the Console.

Inthefuturethe cut levelsof thel mage will be used asinitial guessfor thelower and upper intensities.

{3 HIPE - Herschel Interactive Processing Environment =
File Edit Run Window Help

=

7| Editor X (0] i Variables x
damp X
rlnput o dampadimage
0p
© mymage2
Image" . @ mymage? @ myWcs istogram
ow: ‘1200 | eturePhotametry
high: ~ [100.0 |
rOutput

Variable name for clampedimage: |clampedimage

rlnfo

SLCCess £

stalls [

progress

&l Console % m

rEdLTUNUALE, UESCITPLTUM, [TISUTUNENT, MOUETNANE, Sidrdte, ENuvdate,
avelength], datasets=[image], history=None},width=3)"))
[PE> clampedImage = clamp(image=nyImage2,ow=20.0,high=100.0)

UlarSkykperturefhotometry

[PE> Display(clampedImage) Bl

[PE> clampedImagel = clamp(image=nyInage2,low=120.0,high=100.0) :Z;'r‘;';ms.w
[PE> Display(clanpedInagel) - © sourceEracior
[PE> - @ translate

- @ transpose
i

v

122071733 MB i

Figure 7.24. Application of theimage clamping task.

197

Di spl ay - Handling | nages and Cubes

7.4.8.

I nspecting the result

Theresult, cl anped, isanew | mage, with the same settings asthe input | mage.

Cropping

The size of an Image can be reduced through cropping. The user must only specify these parameters::

» theimage (I mage i mage)

» fromwhichrow (I nt eger r owl) towhichrow (I nt eger r ow2) the image should be cropped

 from which column (I nt eger col um1) to which column (I nt eger col utm?2) the image
should be cropped

On the command line

To crop an Image for row = 40,..., 120 and column = 30,..., 150 simply type

cropped = crop(inmage = nyl mage2, rowl = 40, row2 = 120, columl = 30, \
colum2 = 150)

In the Variables view cr opped will appear as new variable.

Inthe HIPE-integrated GUI

For the moment you can use the cropping task with the default task dialog. This can be opened by
double-clicking on crop in the Tasks view. Y ou have to specify the bounding rows and columnsin the
foreseen fields. In the future, this task dialog will be reworked, such that you can draw the bounding
rectangle onthe | nage.

When you press the Accept button, the cropped | mage will appear in the Variables view and the
corresponding command will be echoed to the Console.

198

Di spl ay - Handling | nages and Cubes

{1 HIPE - Herschel Interactive Processing Environment g
File Edit Run Window Heln

hosEEQ
7| Editor % [0]| i€ Variables % _n|| & Tasks % _0
 oop X + |[1E Aoplicable g
- @ annularSkyAperturePhatometry
rinput @ cropped - © automaticContour
O croppedimage - @ boxCarSmoothing
O croppedimagel @ circleHistogram
image®: @ mylmage2 O (roppedimage2 - @ clamp
e | 0 | (- @ comour
@ip - @ (rop
columnl ; |30 | © mymage2 - @ ailevels
. 0 myWcs - @ ellipseHi
ow2: 120 | [t
column2 ; |150 | - @ flagSaruratedPise
- © gaussiansmoathing
- @ imagedls
Output - @ imageAdd
- @ imageCei
Variable name for croppedimage: |croppedimage
rlnfo
SUCCess -
stalls [
progress;)
- @ imageMuttiply
- @ imagePower
- @ imageRound
Clear || Accept - © imagesart
- © imagesquare
- @ imageSbtract
El console x [-0] - @ importm
: 7 ™ ; 7 d i - @ locals ter
parameter with name column2: value 100.3 with type org.python.core.PyFloat i - 0 manlCantow
with type java.lang.Integer s
i |-:unHisI-:ng'an-1
HIPE> cropped = crop(image = myImage2, rowl = 40, row2 = 120, columnl = 30, - g prafi .
: - rectangleHistogram
HIPE> D1 Sp] ay(c I"OppEd) , - @ ractangularkyAperturePhatometry
HIPE> croppedImage3 = crop(image=myInage2,rowl=40,columnl=30,ron2=120,colum - 0 rotate
- @ scale
- © simpleFitsriter =

12507 1733 MB o0

Figure 7.25. Application of theimage cropping task.
I nspecting the result
The resulting | mage, cr opped, isan | mage with the same settings (errors, FI ag, exposure), cut

out of theinput | mage between the specified rows and columns. The W s isadapted, in order to have
the same sky coordinates for the same position inthe | mages.

7.4.9. Rotating

An Image can also be rotated over a given angle. If the y-axis points down (up), a positive rotation
angle means a clockwise (counterclockwise) rotation. Y ou have to specify three parameters :

» theimage (I mage i mage)
» therotation anglein degrees (Doubl e angl e)

« thetype of interpolation (I nt eger i nt er pol ati on) - optiona (per default : linear)

199

Di spl ay - Handling | nages and Cubes

Y ou can choose between four types of interpolation :

* Rot at eTask. | NTERP_BI LI NEAR = O : interpolates one pixel to the right and one down
(default)

* Rot at eTask. | NTERP_NEAREST = 1: direct pixel copying
* Rot at eTask. | NTERP_BI CUBI C=2: interpolation via a piecewise cubic polynomial
* Rot at eTask. | NTERP_BI CUBI C_2 = 3 : variant of bicubic interpolation that can produce

sharper result than bicubic interpolation

In the case you use one of the bicubic interpolation algorithms, you must also specify the number of
bits to use for theinterpolation (I nt eger subsanpl eBi t s - optional (per default : 16)).

On thecommand line

To rotate an image via the command line, just type

Use the default interpolation (linear)
rotatedDefault = rotate(i mage = nyl mage2, angle = 30.0)

Use direct pixel copying

rot at edNearest1 = rotate(i mage = nyl nage2, angle
i nterpol ati on = Rot at eTask. | NTERP_NEAREST)

rot at edNearest2 = rotate(i mage = nylnage2, angle = 30.0, interpolation = 1)

30.0, \

Use bicubic interpol ation

rot at edBi cubi cl = rotate(i mage = nyl nage2, angle
i nterpol ati on = Rot at eTask. | NTERP_BI CUBI C)

r ot at edBi cubi c2 rotate(i mage = nyl mage2, angle 30.0, interpolation = 2)

r ot at edBi cubi c3 rotate(i mage = nyl mage2, angle 30.0, \
i nterpol ati on = Rot at eTask. | NTERP_BI CUBI C, subsanpl eBits = 18)

rot at edBi cubi c4 = rotate(i mage = nylnage2, angle = 30.0, interpolation = 2, \
subsanpl eBits = 18)

30.0, \

Theresult will appear as avariable in the Variables view.

In the HIPE-integrated GUI

If you double-click on rotate in the Tasks view, atask dialog will open in the Editor. There you must
fill out the rotation angle (in degrees) and via a combo box, you can choose the type of interpolation
to be used for rotating. If you select one of the bicubic interpolation types (Bi-cubic or Bi-cubic2), the
Sub-sampling Bits field becomes editable, so you can enter the number of subsampling bits.

When you press the Accept button, the result appears in the Variables view and the corresponding
command is echoed to the Console.
I nspecting the result

The result, r ot at ed, is an Image with the same settings as the input Image, but rotated over the
given angle. The result is shown here:

200

Di spl ay - Handling | nages and Cubes

{1 HIPE - Herschel Interactive Processing Environment g

File Edit Run Window Help

tes5EQ

¥ Editor X (o] it Varia %\ [_p] dTasks '\ [_p
3 rotatedBicubicl x v ||| @ circeHistogran=
- @ clamp
Image V i
ge Viewer Oip - @ contour
O myimage2 8¢
O myics
LB rotatecBicubicl

L . '
YYD Pivel masked o 02.00:07 488, 22161832

 rotateclBicunic2
 rotatedBicubic3
@ rotatedBicubic4
 rotatedDefault
O rotatedimage
 rotatedimagel
o rotatedimage2
O rotatedimage3 i
© rotatecearest - 0 imagebxpl0 g

- @ imageExphl

geSauare 8
- @ imageSubtract @
- @ impontimage |
=@ local

El Console ¥ m‘
name column2: value 100.3 with type org.python.core.PyFloat is incompatible with type . i
java,lang.Integer - o apos

B100f 1733 MB [}

Figure 7.26. Image rotation task.

7.4.10. Scaling

An | mage can be magnified in the x- and y-directions independently using the Scal eTask. Also
here interpolation is hecessary, just like for rotating, so the input parameters for thistask are :

* theimage (Image image)

« the magification factor along the x- and y-axes (Doubles x and y)

* thetype of interpolation (Integer interpolation) - optional (per default : linear)

The interpolation types are the same as for rotating : Scal eTask. | NTERP_BI LI NEAR,
Scal e. | NTERP_NEAREST, Scal eTask. | NTERP_BI CUBI C and

Scal eTask. | NTERP_BI CUBI C_2. Also here, the number of subsampling bits (I nt eger
subsanpl eBi t s) must be specified if you choose to use bicubic interpolation.

201

Di spl ay - Handling | nages and Cubes

On thecommand line

To perform scaling, you must type

scal ed = scal e(i mage = nylmage2, x = 0.5, y = 2.0, \
i nterpol ati on = Scal eTask. | NTERP_BI LI NEAR)
Note
@ The parameters i nt er pol at i on and subsanpl eBi t s are to be used exactly the

same way as for rotating.

In the HIPE-integrated GUI

If you double-click on scale in the Tasks view, a task dialog opens in the Editor, where you have
to specify the magnification factorsin the x- and y-direction. Parameters for the interpolation can be

specified as the same parameters for rotating.

If the Accept button is pressed, the scaled Image will appear in the Variables view and the

corresponding command is echoed to the Console.

I nspecting the result

The result, scal ed, is an | mrage with the same settings as the input | mage, but stretched
independently along both axes. The W s is adapted in a way that each source has the same sky

coordinatesin both | nages. An exampleis shown here:

202

Di spl ay - Handling | nages and Cubes

{1 HIPE - Herschel Interactive Processing Environment g
File Edit Run Window Heln

: b@EEBEQ
¥ Editor % =
3 sciledimage X

rlmage Viewer

x

faa)

W .II"“I i |

’_ { i 1 { = i i
@@@Wm 6192,3731 68,500 | 02,00:52.29, -22:25:16.14
r

Figure 7.27. Application of the image scaling task.

7.4.11. Translating

Y ou can tranglate an Image based on pixel or sky coordinates, so the required input parameters are :
» theimage (I mage i mage)

« thetrandlation vector in pixel (Doubl es x andy) or sky coordinates (St ri ngs r a and dec)

On the command line
To do the trandation via the command line, simply type

Transl ati on based on pi xel coordinates
transl at edPi xel = translate(i rage = nylnmage2, x = 50.4, y = -5.3)

Transl ati on based on sky coordi nates
transl atedSky = transl ate(i nage = nyl mage2, ra = "00: 01: 00", dec = "00:20:00")

203

Di spl ay - Handling | nages and Cubes

The result will appear in the Variables view.

Note
@ For the moment you can specify the pixel and sky coordinates at the same time. This
should be prohibited in the future.
Inthe HIPE-integrated GUI
For the moment, the default task dial og is opened when double clicking on translatein the Tasks view.
When the Accept button is pressed, that | mage is translated and appears in the Variables view and
the corresponding command is echoed to the Console.
I nspecting the result

Theresult, t r ansl at ed, isan | nage that looks the same asthe input | mage, but has as different
W s, which takes the translation into account.

7.4.12. Transposing

Transposing an | mage can be donein several ways : flipping horizontally/vertically/(anti)diagonally
and rotating over 90, 180 or 270 degrees. This can be done on the command line, or inaGUI in HIPE.
The only parameters that need to be specified are:

» theimage (I mage i mage)

* thetransposition type (I nt eger t ype - per default : 0)

The possible transposition types are

e TransposeTask. FLI P_VERTI CAL (0) : flips top and bottom

e TransposeTask. FLI P_HORI ZONTAL (1) : flipsfrom side to side

» TransposeTask. FLI P_DI AGONAL (2) : flips bottom left to top right

» TransposeTask. FLI P_ANTI DI AGONAL (3) : flipstop left to bottom right
e TransposeTask. ROTATE 90 (4) : rotates over 90 degrees

e TransposeTask. ROTATE 180 (5) : rotates over 180 degrees

» TransposeTask. ROTATE 270 (6) : rotates over 270 degrees

On thecommand line
To transpose an Image, type

Flip vertically
flippedVerticallyl
flippedVertically2

transpose(i mage
transpose(i mage

| mage2, type
| mage2, type

TransposeTask. FLI P_VERTI CAL)
0)

= ny
= ny
Thetransposed | mage appearsin the Variables view.

Inthe HIPE-integrated GUI

If you double-click on transpose in the Tasks view, a task dialog is opened in the Editor. Here you
can choose via a combo box which tranposition type you want to use.

204

Di spl ay - Handling | nages and Cubes

{1 HIPE - Herschel Interactive Processing Environment g
File Edit Run Window Heln

[Be55BQ
7| Editor % [0]| 46 Variables _ 0| i Tasks % _0
 lranspose X v [[-@ : - &
= - @ camp
rlnput flippedverticallyl) '
Input Image # mynage2 lippedyertically2 L8 o
0 o
Type Flip horizomtal v |[][® myimage2 ® oram
o o mycs 0 ertreP hotometr
At @ flagSaturatedPixels
- @ gaussianSmoothing
- @ imagedhs
Variable name for transposedimage: transposedimage
rlnfo
sucCess -
stalls [
progress
Clear || Accept
oth-\ln;\
El console x m Histogram
T NIBIGLCHJ.IIIUAJUL =LT WIDIGLE\I ==)‘J.IIIHAJEL, Ta="vou, VL., Vv ,UUH- LA R A" F Y = -
del(translatedImagel) - @ rectangleHistogram
- @ rectangularsloyaperturePhotometry
del(translatedImage2) B
del(translatedImage) 9 sale
flippedverticallyl = transpose(image = myImage2, type = TransposeTask.FLIP - 0 simplef
f1ippedvertically? = t image = myInage2, type = 0 i
Tppeavertical Iy = ranspose(mage = mylmages, type =) Wiramiie
- 0 transpose
1% By Caregary v

Figure 7.28. Application of theimage transposing task.
I nspecting the result

The output, t r ansposed, looks exactly the same as the input | mage, but differently oriented, or
flipped. The Ws is adapted, in order to make sure that corresponding points have the same sky
coordinates both in the input and the output | mage.

7.4.13. Flagging saturated Pixels

You can flag out pixels with their intensity above a certain value, with the SATURATED flag type.
This can be done with the FI agSat ur at edPi xel sTask, by specifying these parameters :

» theimage (I mage i mage)

« the cut off value (Doubl e val ue)

On thecommand line

To flag the saturated pixels, type

205

Di spl ay - Handling | nages and Cubes

flagged = fl agSat ur at edPi xel s(i mage = nyl mage2, val ue = 100. 0)

The resulting | mage will appear in the Variables view.

In the HIPE-integrated GUI

By double-clicking on flagSaturatedPixels in the Tasks view, atask dialog is opened in the Editor.
There you need to enter the cut off value, above which pixels are said to be saturated.

After having pressed the Accept button, the flagged | mage appears in the Variables view and the
corresponding command is echoed to the Console.

I nspecting the result

Theresult, f | agged, lookslikeacopy of theinput | mage, except that pixelswhose value lies above
the given cut off value, are flagged out with the SATURATED flag type, as shown here :

{3 HIPE - Herschel Interactive Processing Environment =
File Edit Run Window Help

(8]

L

I
@@@Wm 1886, 715.4 51.000 | 02:00:49.980, -22:27:17.64
3

Figure 7.29. Application of theimage flagging task.

206

Di spl ay - Handling | nages and Cubes

7.4.14. Getting the Cut Levels

Using the Cut Level sTask, you can determine the cut levels of an Image, either using the
percentage method or applying amedian filter. Y ou have to specify the following parameters

» theimage (I mage i mage)

« the method used for determining the cut levels (I nt eger et hod)

The method can be
e Cut Level sTask. PERCENT = 0 : percentage method

e Cut Level sTask. MEDI AN _FI LTER=1: median filter

If you choose the percentage method, an extra parameter must be given avalue :

« the percentage (Doubl e per cent) - per default : 99.5

On the command line

To calculate the cut levels of an | nage, you must type

Percent age net hod
per cent Cut Level s1
per cent Cut Level s2

Cut Level sTask. PERCENT)
0, percent = 98.0)

cut Level s(i mage
cut Level s(i mage

nyl mage2, nethod
nyl mage2, nethod

Median filter
medi anl cut Level s(i mage
medi an2 cut Level s(i mage

nyl mage2, nethod = Cut Level sTask. MEDI AN_FI LTER)
nyl mage2, nethod = 1)

Theresult appears in the Variables view.

Inthe HIPE-integrated GUI

When double-clicking on cutLevelsin the Tasks view, atask dialog will be opened in the Editor. There
you can indicate viathe Method combo box which method you want to use to determine the cut levels.
When selecting Percent, the Percent field will become editable, so you can change the default value
for the percentage.

After pressing the Accept button, the cut levelswill be calculated and they will appear as one variable
in the Variables view. The corresponding command will be echoed to the Console.

207

Di spl ay - Handling | nages and Cubes

{1 HIPE - Herschel Interactive Processing Environment g

File Edit Run Window Help

hosEEQ
| Editor X [0]| i€ Variables % _n|| & Tasks % _0
@ cutlevels X v ||[E Aoplcace =
- @ annularSky&perturePhotometry
rlnput oip ~ @ automaticContour
2 O myimage2 - @ boxCarSmoothing
Input Image § mylmage2 - @ dircleistogram
Method [NedienFiter v - 0 danp
- @ comour
Percent |99.5 | L@ mop
- @
rOutput -

- @ ellipseHistogram
turePhotametry
Variable name for cutlevels: |cutlevels | ~ @ flagSauratedPixel

- @ gaussiansmaothing
- @ imagedhs

rifo - @ imageAdd
- @ imageCei
nknown . geDivice
statls [- @ imageExp
5 - @ mageExpl0
- @ imageExphl
RIO0rEs: | th | ~ @ imageFloor
- @ imageHistogram
- @ Imag
M Accept - : mag
- @ mag
- @ imagehodulo
- @ imageMuttiply
Gl m - @ imagePower
HIPE> myImagez = S1'mp1eImageO - ® imageRound
HIPE> - @ imagesqn
: : q ; ; - @ magesquar:
importInage(image=myImage2, filename="/Thome/sara/testimages/ngc6992. jpg") - 0 magesubtract
HIPEs - @ importim
- @ locals ter

- @ manualContour
~ @ meansmoothing
diansmaathing
alyganHistagram

- @ profi
~ @ rectangleMistogram

- @ ractangularkyAperturePhatometry
- rotae

- @ scale

- © simpleFitsriter

10
Figure 7.30. Application of theimage cut levelstask.
I nspecting the result
Theresult, cut Level s, isadouble array. To gain access to the low and high cut, type

The | ow cut
| ow = cut Level s[0]

The high cut
hi gh = cut Level s[1]

7.4.15. Image Arithmetics

The last functionality on Images we describe in this chapter, isimage arithmetics. These options are
available:

+ addition/subtraction/multiplication/division of two | mages pixel-to-pixel, or based on their W's

* addition/subtraction/multiplication/division of an | mage and a scalar

208

Di spl ay - Handling | nages and Cubes

* taking the modulus of an | mage w.r.t. another | mage, pixel-to-pixel, or based on their Ws
* taking the modulus of an | nage w.r.t. ascalar

* taking the absolute values of all intensity values

* rounding/flooring/ceiling al intensity values

 changing all intensity valuesin an Image according to a power/logarithmic/exponential scaling

All these tasks return an | mage as output.

7.4.15.1. Addition/Substraction/Multiplication/Division/Modulo

Addition, subtraction, multiplication, division and modulus calculation of two Image can be done
pixel-to-pixel, or based on their Wcs. In that case, you need to specify the following parameters :

» theimages (I nages i nagel and | nage2)

* thereference frame for the calculation (I nt eger ref)

The possible values for the ref parameter are
* I mageArit hneti csTask. Pl XEL =0: pixel-to-pixel calculation

* I mageArit hneti csTask. WCS =1: W s-based calculation

If you want to use a pixel instead of asecond | mage, omit thei nage2 andr ef parametersand add

 thescalar (Doubl e scal ar)

On thecommand line

To do the calculations for two | mages, nyl nil and nmy| n2, the commands are

Addi ng (pixel -to-pixel)
sum = i mageAdd(i magel = nylnml, inmage2 = nyln2, ref = ImageArithneti csTask. Pl XEL)

Subtracting (pixel-to-pixel)
difference = i mageSubtract (i magel = nylml, inmage2 = nyln2, ref = 0)

Mul tiplying (based on Ws)
product = i mageMul tiply(imagel = nylnml, inmage2 = nyln2, \
ref = I mageArithneti csTask. WCS)

Dividing (based on Ws)
quotient = inmageDi vide(inmgel = nylml, inmage2 = nyln2, ref = 1)

Modul o
remai nder = i mageMbdul o(i magel = nylnl, image2 = nyln2, ref = 0)

Note

3 If added or subtracted | mages have the same unit, the sum/difference will use that same
unit, otherwise the calculation will be done in counts.
Note

g The product, quotient and remainder will have the composed unit as unit.

209

Di spl ay - Handling | nages and Cubes

To do the calculations for an Image and a scalar, the commands are

Addi ng
sum = i mageAdd(i nagel = nyl nage2, scal ar = 200.0)

Subtracting
di fference = i mageSubtract (i magel = nyl mage2, scal ar = 200.0)

Mul tiplying

product = inageMul tiply(i magel = nyl nage2, scalar = 1.2)

Dividing

product = inageDi vi de(i magel = nyl nage2, scalar = 0.5)

Modul o

remai nder = i mageMdul o(i nagel = nyl nage2, scal ar = 200.0)
Note

@ The result has the same unit asthe input | mage.

In the HIPE-integrated GUI

If you double click on imageAdd, imageSubtract, imageMultiply, imageDivide or imageModulo in
the Tasks view, the corresponding task dialog opens in the Editor. In the modifier for 1st addend,
minuend, multiplier or dividend, parameter i magel isgiven asvalue. The combo box for 2nd addend,
subtrahend, multiplicand or divisor allows you to choose whether to use a second | mage or ascalar
asinput.

If you choosefor asecond | mage, asecond combo box (Reference) appears, allowing youto chooseto
do the calculation either pixel-to-pixel or based onthe W 's. Also the second | mage must be dragged
from the Variables view to the task dialog.

If you choose to use a scalar, the second combo box disappears and a field appears where you can
give the value for the scalar.

When you pressthe Accept button, theresulting | mage isconstructed and will appear inthe Variables
view. The corresponding command is echoed to the Console.

7.4.15.2. Absolute values

The only parameter that needs to be specified is

» theimage (I mage i mage)

On thecommand line
To take the absolute value of al intensity valuesin an | nage, simply type

abs = i mageAbs(i mage = nyl mage)

In the HIPE-integrated GUI

Double-clicking on imageAbs in the Tasks view, will open the default task dialog. Y ou only need to
drag the | mage you want to use asinput to the foreseen modifier. If you press the Accept button, the

210

Di spl ay - Handling | nages and Cubes

resulting | mage will appear in the Variables view and the corresponding command will be echoed
to the Console.

7.4.15.3. Rounding/Flooring/Ceiling

If you want to round, floor of ceil al intensity values, you only have to specify

» theimage (I mage i mage)

On the command line

The commands are

Roundi ng
rounded = i mageRound(i mage = nyl mage2)

Flooring
floored = i mageFl oor (i mage = nyl nage2)

Ceiling
ceiled = imageCeil (i mage = nyl mage2)

In the HIPE-integrated GUI
Thecorresponding default task dial ogs can be openedin the Editor by double-clicking onimageRound,

imageFloor or imageCeil in the Tasks view. It looks exactly the same as the task dialog for the
| mmgeAbsTask.

7.4.15.4. Power/Square/Sqrt

You can aso change all intensity values according to a power scale. For all three available tasks, you
must specify

» theimage (I mage i mage)

For the | magePower Task, you also haveto give

« the power (Doubl e n)

On the command line

To run the tasks on the command line, you have to type

Power

power ed = i nagePower (i mage = nyl mage2, power = 1.5)
Square

squar ed = i mageSquar ed(i mage = nyl nage2)

Sgrt

sqrt = imageSqrt (i mage = nyl nage2)
Inthe HIPE-integrated GUI

You can also run these tasks in a GUI in HIPE. Then you must double-click on imagePower,
imageSguare or imageSgrt in the Tasks view. This will open the default task dialog in the Editor,
to which you can drag the | mage you want to use as input. For the | magePower Task, afield is
foreseen where you can give the power.

211

Di spl ay - Handling | nages and Cubes

7.4.15.5. Logarithmic/Exponential
Instead of using a power scaling to adapt the intensity value, you can aso use a logarithmic or
exponential scaling. For all thesetasks (I mageLogTask, | nageLogl0Task, | rageLogNTask,
| mmgeExpTask, | mageExpl0Task and | mageExpNTask), you must give

» theimage (I mage i mage)

For thel mageLogNTask and | mageExpNTask, you also haveto give

* n(Doubl e n)

On thecommand line

The commands are

Log

| og = i magelLog(i mage = nyl nage2)

Logl0

1 0g10 = i magelLoglO(i mage = nyl nage?2)
LogN

| ogN = i mageLogN(i mage = nyl mage2, n = 8.0)
Exp

exp = i mageExp(i nage = nyl mage2)

Expl0

expl0 = i nageExpl0(i mage = nyl mage2)
ExpN

expN = i mageExpN(i mage = nyl mage2, n = 8.0)

In the HIPE-integrated GUI

To open the task dialog in the Editor, you must double-click on imageLog, imagel.og10, imagelLogN,
imageExp, imageExpl0 or imageEXpN in the Tasks view. An | mage can be dragged from
the Variables view to be used as input. In the task diaogs for the | mageLogNTask and
| mageExpNTask afield isforeseen to enter the value for parameter n.

7.5. Visualisation, Analysis and Manipulation
of Cubes

A Si npl eCube containsone or more 3d images and worksin avery similar way to Si npl el mage.
A 3-dimensional datatypes should be given asinputs. For example:

= Si npl eCube()

= Doubl e3d(3, 4, 5, 20.5) # produces a cube of 3x4x5 all with values 20.5
.setlmage(d) # include cube of information into our SinpleCube

the depth of this cube is given by the first integer, 3

The cube can be displ ayed using

show = Di spl ay(s)

The depth axis can be changed by the set Dept hAxis nethod, e.g

show. set Dept hAxi s(2)

where the depth would now be the third di nension

of the image available , or 5

In each case the cube is shown as

i mage | ayers. The current |ayer viewed is determ ned by a slider

to the bottomright of the display screen. Myving the slider left or right
shows the image stored in each of the |layers along the depth axis

See Figure 7.31

HH 0 QO

B T T TS

212

Di spl ay - Handling | nages and Cubes

Image ‘Unknown'

I |
@@@ﬁ|—9.0?14285?14285?1 | I [<]T i [

Figure 7.31. Display of a cube. Note the slider to bottom right allowing the various images at different

depthsto be viewed.

213

Chapter 8. Introduction to Tasks

This chapter aims to be an introduction for users to the Task framework. Writing Tasks allows us to
create modular and reusable code for data reduction and analysis, easier to distribute and to be used
by people other than the author.

8.1. The Task framework

When we weretalking about OOPin Chapter 3, we used as example avery real and tangible object like
an airplane. However, we mentioned that objects can also represent more abstract concepts. Dealing
with astronomical data presents us with such asituation. When reducing or otherwise treating our data
we go through a succession of self-contained operations. Data enter each of these "boxes" in acertain
state and exit in amodified state. We might want to have a general template to represent such boxes,
with a way to specify input and output parameters and check for their consistency. It would aso be
great to have some form of history to track what we have been doing to a given set of data, without
the need to write it in a separate place or try and sgueeze the information in the file name. Another
handy tool would be a command to get help on that particular "box", to know at a glance what it does
and what kind of parameter it expects.

The Task framework providesit all. Here we can see many concepts of OOP in action: reusable code

(that of the Task class) to create modular pieces of software (our tasks) easy to plug together into
more complex structures. In the following sections we will learn how to write a Task in Jython.

8.2. My first Task
8.2.1. Before the Task

Before writing a Task we should have something to turn into a Task. Paste the following code into
your HIPE Editor view and then execute it with the double arrow button in the HIPE toolbar.

214

Introduction to Tasks

8.2.2.

Average function
Takes a Tabl eDat aset as i nput
Returns a Doubl eld (1D array of real nunbers)
in which each row is the average of the val ues
in the input table colums
Routine for cal cul ating the average
def average(table):
colums = tabl e. col umCount
divider = 1.0 / colums
result = Doubl eld(tabl e.rowCount)
for colum in Intld.range(col ums):
resul t. add(tabl e. get Col um(col umm) . dat a)
return result. multiply(divider)

Routine for creating the initial table
def createTabl e():
Create array x (0.0, 1.0, 2.0, 3.0, 4.0)
x = Doubl eld. range(5)
colums =5
Create an enpty table with a nane
tabl e = Tabl eDat aset (description = "A test table")
lterate for the the number of colums to fill up the table
Using " "%" %colum " creates a string nane for the
tabl e-col um which contains the integer value contained in
the variable name that appears after "% . In this case
colum | abels are just 0 1 2 3 4.
for colum in Intld.range(col ums):
table["%" % col um] = Col um(x)
X =x+1
Return the result, a table called 'table’
return table

Routine for checking it out!!
def testAverage():
Create the table
tabl e = createTabl e()
Get the average and put it into an array called 'result’
result = average(table)
Print the result (a 1D array)
print "Result:', result

Example 8.1. Beforethe Task

The above code has three functions in it. The important one is aver age, which does the "useful"
bit of computation, giving the average of each column of a TableDataset. The cr eat eTabl e
function simply creates the input TableDataset for aver age, whilet est Aver age just cals the
two functions above and prints out the result.

Y ou can see how the above works by the following. The bracketsindicate it is a function.

t est Aver age() # Result: [2.0,3.0,4.0,5.0,6.0]

What makes a Task?

In the current implementation, atask has two components:

» Sgnature. Someone's signature is something by which we can unambiguously identify that person
(leaving forgery aside). In the same way a Task's signature, consisting of its name and the number
and type of input parameters, is away to identify the Task with no ambiguity.

» Execution. This component is made of three methods, i.e. object member functions. First we have
the preamble, which checks the actual input parameter values. The execute method, as its name
suggests, contains the algorithm performing the useful stuff. Finally, the postamble checks the
output parameter values. The preamble, execute and postamble are empty by default (no input or

215

Introduction to Tasks

8.2.3.

output parameters) and the developer usually writes only the execute method to perform a given
agorithm.

Note

@ Once parameters (input or output) receive a value, they are automatically reset to their

default values after the Task has been executed. Note in particular that also output
parameters are reset, so to keep a Task output for further inspection it has to be assigned
to avariable upon execution, like this:

result = nyTask()

One more thing to note is the possibility to define new default values for Task parameters. If we have
anyl nput integer parameter for our ny Task Task, we can set its new default value to 42 like this:

nmyTask. set AsDef aul t (" nmyl nput"”, 42)

Now equipped with this knowledge we can turn our average algorithm into a Task.

An Example of a Task: Average

To turn our average algorithm into a Task we need to wrap the algorithm into a suitable piece of code.

We will name the task itself Aver age (aTask isaclass, it is callable from the command line, and
generaly class names are capitalised nouns). In our Aver age class we have no needs other than
setting up asignature and calling the average function as part of its execution.

One change from our function to our classis that we will explicitly have two parametersin the class
definition. One (in a similar way as the function) is our input table, but for the class we declare a
second parameter to hold the result of computing the average. As a requirement, we would like to
change our original average function aslittle as possible.

In the next paragraphs we explain (with code and comments) what packages are necessary to import,
how to define the Task (creation code), the method to perform a function (execute) and how we use
and test the Task (with different parameter access methods).

8.2.3.1. Importing definitions

For our given code we need to import definitions that are used by our task:

I nmport task framework cl asses.
from herschel .ia.task.all inport * # ©

Some explanation about the import:

© Hereweimport al the task framework classes we need. Task and TaskParameter classeswill be
automatically imported with theal | import statement.

Note that the preferred way to import the needed classes from the task framework isthe so called 'al’
import statement:

from herschel .ia.task.all inport *

8.2.3.2. Creation

First the code for the creation method called __i nit __ in python:

cl ass Average(JTask): # @
Creation nethod

def __init__(self,name = "averageTable"): # @
p = TaskParaneter("tabl e", val ueType = Tabl eDat aset, mandatory = 1) # ©

216

Introduction to Tasks

sel f. addTaskParaneter(p) # ©

p = TaskParaneter("result", val ueType = Doubl eld, type = QUT) # ©
sel f. addTaskPar anet er (p)

And some explanations about the code...

© HerewedefineaclassAver age which hasJTask asaparent class. In other words, Aver age
inheritsfrom JTask. Note that Jt ask isapython file and has no JavaDoc therefore.

® Thisline declaresthe creation method used by any instance of the Aver age class. sel f asthe
first argument represents the instance that we are currently working on. The nane argument is
the default value indicated (which the user can of course overwrite).

Therest of the code is the definition of the signature for the task Aver age and is asfollows:

® Thisline creates a parameter whose name ist abl e, datatype is Tabl eDat aset . Thisisa
mandatory parameter, i.e. an input parameter which must have a value before the algorithm is
performed. The preamble will verify that the user has set a value for this parameter and will
eventually warn the user that the execution of the task cannot take place.

O Herewe add the parameter to the signature of this task.

© Weproceed inasimilar way for our second parameter (as mentioned above) which will hold the
result of our computation. The only difference for the second parameter isthet ype = OUT
statement which means that this parameter will hold an output value. As a side note the mode of
parameters can be | N, OUT or | O(both input and output), the default being | N.

8.2.3.3. Execution

First we examine the code for the execution method called execut e as predefined in the JTask
base class. This simply follows on from the previous set of code that initiated the task and should be
added to the end of it:

Execute nmethod itself
def execute(self): # @
self.result = average(self.table) # @

O Thisisadeclaration stating that we definethe method execut e. Actually weredefinethe empty
execut e method of JTask. This method has a parameter sel f which refers to the task we
are currently working with, rather than to any other parts of the current A session.

® Thisline means 'take this instance table value, perform the average operation on it and deliver
the result to this instance result’. So in one line we perform the whole operation using our own
actual parameters.

Together with the signature defined in the previous section we have set up our Task. The complete
script should look like the Task Average (below). We now load thisinto our session.

File: Average.py

Inmport task framework cl asses.

from herschel .ia.task.all inport *

from herschel .ia.task.JTask i nmport JTask

cl ass Average(JTask):

#Cr eati on net hod

def __init__(self,name = "averageTable"):
#
p = TaskParaneter("tabl e", val ueType = Tabl eDat aset, mandatory = 1)
sel f. addTaskPar anet er (p)
p = TaskParaneter("result", val ueType = Doubl eld, type = QOUT)
sel f. addTaskPar anet er (p)

Execute nmethod itself does the running of 'average'

def execute(self):
self.result = average(self.table)

Example 8.2. The Average Task

217

Introduction to Tasks

8.2.3.4. Usage

Below is the command line code to input into the HIPE Console view for testing our Aver age task.
First we instantiate the Aver age class creating an object called avg:

avg = Average()

We are using the default name of aver ageTabl e for our Task. To change the name we would have
written for instanceavg = Average("Si npl e average of table data set") oravg
= Average(name = "M ne").

Wecan now formulate atableusingthecr eat eTabl e routinein the set of threefunctionswe created
at the outset.

tabl e = createTabl e()

The interesting part comes when we use the following:

print avg(table)

We have executed the Task and printed its result. To make sure that it indeed executed successfully,
we can look at thest at usMessage:

print avg.statusMessage
A more direct way to execute our Task would be
print avg(createTable())

On the other hand, we could do everything in along-hand fashion, doing one little step at atime:

avg.table = table

avg()
result = avg.result

print result

Here we tell our average task that itsinput is called 'table’. The second line runs the task itself and we
assign the result from this to a variable called 'result’ in the third line. Finaly, thisresult is printed.

8.2.3.5. Getting help on Tasks

If you stumble upon atask you have never used before you will probably want some way of finding
out about is parameters, whether they are mandatory or not, and so on. Taking our Average task as
example, if you type

info('Average') # Note it's 'Average' with single quotes

you will be greeted by the following window:

218

Introduction to Tasks

B avg:refresh rate 5000
Task: null

Mame: null -

Usage:

Keyword style

result = null@able=table, result=result, status=status, statusMessage=statusMessage, progress=progre!
Positional style T
result = null@able, result, status, statusMessage, progress, views)

Inputs :

Mame: table

Type: herscheliadataseLTableDataset 1
Optionak false

Default value: null

Current value: null

Outputs:

Mame: result

Type: herschelianumericDoubleld

Optionak true

Default value: null

Current value: null

] Il LA

Figure 8.1. Getting help on a Task.

It may appear fairly intimidating, but it provides alot of useful information to users once they get past
the initial shock. In particular, look at the sections called | nput s: and Qut put s: . They list the
input and output parameters, which are most of what is needed in order to use a Task. In particular,
here we see that we have one input parameter called t abl e, that it's a Tabl eDat aset and is
mandatory (Opt i onal : fal se). Similarly, we see that the Task will output asingle Doubl eld.
Theinformation about st at us, st at usMessage, pr ogr ess andvi ews, found inthelower part
of the help window (not shown in the picture) is of limited interest to users.

What appears in the help window also depends on what developers originally put into the Task. For
example, in our case we have the hardly reassuring Task: nul |l and Nanme: nul | messages at
the very top of the window. But if we give anameto our Task likethis

avg. set Nane("My first Task")

we will see that after a short while the new information will appear in the help window.

8.2.3.6. Adaptations in the Preamble to a Script

The adaptation to the input of our Average script can be made in a preamble to the task, such asin
the following script. Note that here we import the t ask classes one by one, just to show in detail
what is needed.

219

Introduction to Tasks

lmporting JTask cl asses
from herschel .ia.task.all inport *
Other needed inports
from org. python. core i nmport PyLi st
And here is our AdaptAverage cl ass
cl ass Adapt Aver age(JTask) :
Creation nethod
def __init__(self,name = "Runni ng Average")
p = TaskParaneter("vector1", val ueType = PyList, mandatory = 1)
sel f. addTaskPar anet er (p)
p = TaskParaneter("vector2", val ueType = PyList, mandatory
sel f. addTaskPar anet er (p)
p = TaskParaneter("result", val ueType = Doubl eld, type \
=] OJT)
sel f. addTaskPar anet er (p)
Create an internal JTask variable 'table' which is our table data set
self.__dict__['table'] = Tabl eDat aset ()
In the preanble we do the adaptation from2 vectors to one table
def preanbl e(sel f)
JTask. preanbl e(sel f)
self.table["0"] = Col um(Doubl eld(sel f.vector1))
self.table["1"] = Col um(Doubl eld(sel f.vector?2))
Execute nethod itself
def execute(self)
self.result = average(self.table)

1)

Example 8.3. The Adapt Average Task

In thisexample, thef rom or g. pyt hon. core inport PyLi st statement allows us to work
with Python array lists (vectors). The task now takes two Python arrays and produces a table from the
arrays with each array forming a column of the table. We then can run our aver age script on the
table created in the preamble.

An interna instance variable is declared in the creation method with the statement:
self. dict_ ['table'] = Tabl eDataset().

Rewriting the preamble method. One should note that we first invoke the preamble from our parent
task (JTask) to guarantee that our needed parameters do have a suitable value before putting them
into the table.

The following short script can be used to test this adapted version of our averaging routine.

def test():
sanplel = [1.0, 2.0, 3
sanple2 = [3.0, 4.0, 5
avg = Adapt Aver age()
lnvocation using positional paraneter
print 'Result:', avg(sanplel, sanpl e2)

0, 4.0]
0, 6.0]

Input of the following command

test()

provides the following printed result

Result: [2.0,3.0,4.0,5.0]

8.2.3.7. Positional and Keyword Arguments in Tasks

Note
@ It should be noted that positional or keyword arguments can be used with tasks but NOT
amix of the two.

For example, the last line of our ‘test' script effectively runs the following (try replacing the last line
of the test() routine):

220

Introduction to Tasks

Positional arguments

print 'Result:', AdaptAverage()(sanplel, sanple2)

Keyword argunents

print 'Result:', AdaptAverage()(vectorl=sanplel, vector2=sanpl e2)
Since 'vectorl and 'vector2' are the two argunments for the

Adapt Aver age t ask.

Mixing of the two modesisONLY allowed following al positional arguments. For example:

print 'Result:', AdaptAverage()(sanplel, vector2=sanpl e2)

But once keyword arguments start to be used then they must continue to be used. For example the
following code snippet will resultinacompiling error when added to the 'test' program and recompiled.

print 'Result:', AdaptAverage()(vectorl = sanplel, sanple2)

If this is added to '"test' and "test' is then reconpiled we get the
followi ng syntax error.

SyntaxError: (' non-keyword argunent follow ng keyword',

('<string>, 6, 49, ''))

A similar syntax error occurs if the AdaptAverage() task was run on a single line outside of the 'test'
routine.

8.2.3.8. The Tr ansf or ner example

Yet another JTask example. This one takes an array and transforms it into the first column of a
TableDataset. As before, the code comeswith at est Tr an() function to check what the Task does.

from herschel .ia.task.all inport *
from org. python. core i nport PyLi st

cl ass Transformer(JTask):
Creation nethod

def __init__(self, name = 'Vector Transformer'):
p = TaskParaneter(nanme = "input", valueType = array(lnteger), mandatory = 1)
sel f. addTaskPar anet er (p)
p = TaskParaneter(name = "result", val ueType = Tabl eDat aset)
p.type = QUT

sel f. addTaskPar anet er (p)
Execute net hod
def execute(self)
self.result = Tabl eDat aset (description = 'Integrated vector as colum zero')
r = Doubl eld(l en(self.input))
index = 0
for data in (self.input)
r[index] = data
index = index + 1
self.result['0"] = Colum(r)

def testTran():
sanpl e = [10, 20, 30, 40]
Turn it into a table data set
transform = Transf orner()
tabl e = transforn(sanpl e)
print "Printing the table"
print table
print "Printing the first colum of the table"
print table['0']
print "Printing just the data in the first colum"
print table['0'].data

Example 8.4. The Transformer Task

221

Introduction to Tasks

8.3. Guideline on How to Work With GUIs
Within Tasks

8.3.1.

8.3.2.

8.3.3.

This section describes how to handle GUI's and/or a dialog related to a task, how to check whether a
certain task supportsthe use of adialog and/or GUI, aswell as describing how to apply them.It should
be emphasised that the devel oper of a task needsto implement adialog or GUI inthetask. Thissection
simply provides guidance to the user for using tasks that have dialog or GUIs included within them.

The use of task parameters handled via a dialog

Inthe casewhereatask includesalong or complex set of parametersadedicated dial og can be provided
by the original developer of the task. Such a component is handled by a boolean parameter called
"dialog" which the user can invoke using

result = Task() (di al og=1)

Such acall resultsin a pop-up window which can be completed by selecting for example the "accept"
button, which will close the GUI.

Note that all tasks in the future will include a boolean-parameter called "dialog”. In cases where all
the available input parameters are of the type String or Number (i.e. those the framework can handle
for setting up adialog) a dialog-popup will be provided, otherwise an exception is thrown.

The use of more enhanced GUIs

In case you have a more complex task or you want to re-execute a task several times using different
inputs, aGUI might be introduced. Such acomponent is handled by a boolean parameter called "gui”:

task = MyTask()

task.gui = 1 # gui interaction mght include an task.execute()
result = task.result # another gui interaction

result2 = task.result

Such a command sequence is very useful as it increases transparency. For example, the GUI might
show the state of the parametersby including afield for each parameter and aplot or imagerepresenting
the quality of the resulting output.

To summarise: the user of atask appliesits views by the use of related the bool eans (task parameters).
In case of aone-time user interaction such aboolean iscalled "dialog" and otherwiseitiscalled "gui”.
Note that in case more GUI components are involved additional booleans could be introduced, the
task specific documentation should include thisinfo.

Example Task Handled by a Dialog

The following provides an example interaction between a user (USR) and the system (HCSS) for the
use of atask "dialog".

USR: Asksto set up parameters of atask viadialog: result = MyTask()(dialog=1)
HCSS: looks for the default dialog provided by the task developer
a) diaog isfound and displayed

b) dialog is not found in which case the framework (ia.task) triesto provide the user with an automatic
dialog for the task signature

HCSS: display the dialog

222

Introduction to Tasks

8.3.4.

USR: set/adjust parameter values AND approve those (for example, by selecting an "accept" button)
HCSS: close the dialog, run the task, return to the command line

Justification:

Theuser isgiven the possibility to setup thetasks signature viaa GUI whichislaunched on hisrequest.

Note: in case b) failsit will notify the user that adialog cannot be provided by the framework and was
not previously defined by the task developer

Example Task Controlled by a GUI

In this case we have atask that can be controlled viaa GUI. The following shows atypical use case
for auser (USR) interaction with the system (HCSS).

USR: Asksto run atasksviaa GUI:

mytask = MyTask()

mytask.gui = 1

HCSS: display the GUI interface provided by the task developer

USR: (possibly) insert parameter values

USR: execute the task (for example by selecting the "execute" button)

HCSS: run the task, update GUI to (possibly) show result in a plot of image or text field
USR: retrieve data within HIPE by calling:

result = task.result

USR: possible further analysis of result in HIPE session

USR: repeat steps 3 to 7 to compare results using diff. parameter settings, or close the GUI
Justification:

The GUI can provide more functionality: setup signature, allow task to execute, seeresultsin aimage/
plot. The user isableto retrieve the task output -- for further analysisin DP -- as described above, i.e.
the result can be fed back into HIPE by requesting "resl = mytask.result". In this scenario the GUI
lives next to HIPE.

223

Chapter 9. Other DP Packages: What
Is Available?

9.1. Introduction

To use the various packages within HCSS the user needs to import them into the HCSS session. This
can be done automatically using the import.py file (see ??7?), editable by the user, for packages that
are used frequently. Whether in the import.py or viaa J DE command line, all packages are imported
viacommand lines of the type

from herschel .ia. nuneric inport *

There are several packages available within the HCSS. In this chapter we provide an overview of
the main DP packages only. There are also a number of external library sets that are imported into
DP when it is initiated (these will be described in a later update to the manual.) A full listing of
classes (programs) available in the HCSS system is given in ftp://ftp.rssd.esa.int/pub/HERSCHEL/
csdt/rel eases/doc/api/index.html.

A number of DP packages have aready been discussed in some detail. The DP numeric package was
discussed in Chapter 4, the DP plot package in Chapter 6 and the DP display package is described in
Chapter 7. lllustrations of how to use parts of several other HCSS packages are also shown in earlier
chapters.

The contents of these sub-packages are also briefly described in this chapter.

9.2. Overview of JavaDocs Documentation for
DP Packages

The javadoc is normally started up as three frames in a web browser asillustrated in Figure 9.1 The
upper left frame contains the packages index which is a clickable list of all packages in the system.
Thetitle in that frame represents the HCSS build number for which this documentation is valid. The
lower |eft frame contains the classes index which is a clickable list of all classes. The selection of
classes shown in this frame depends on the package that was selected in the packages index frame.
The Main frame contains overview information on the system and packages or shows the javadoc for
a selected class.

Lecation Edit View Go Bookmarks Tools Setings Window Help

T ‘A WIR] Ay

: 3

€L § -
ety b

& Location: \[O fplasto esalntpub HERSCHE Licsdireleases/doc/apifindex. html ;J |
i * iid 273 ¥

Build 273 —] T Package Class Tree Deprecated Index Help Deed -

Al Chases I FREV MEXT FRAMES MO FRAMES

g herschel acces Packages

herache ac -

herschel This package contains the user intecface layer of

herse herschel .access the data access package and represents the main

herzchel com API

herachel com api e = — : 11 the olases

s bl 61 3¢ 1S herschel .access.db r,hlf _c:’esa z E:ﬁ:.r:.EedconHaJm B he classes

herschel cem 3t it at interact with the database

Perachel com aplmiky

ASTArrayiritislizer

Classesiindex™

h
STTupleDereft

Figure 9.1. Web browser page of JavaDocstop level frame.

herschel .access.net

herschel . com.apa

herschel. com.api. cus
herschel . com.apa.ilt

Main frat

|This access subpackage contsins the networking

herachel com api param * layer of the telemetry and dats frame interface
herschel cem apiphs * 1— . 1
s T pretes herschel .access. util This access subpackage contains components to help
— build applications using the access package.
+ 1 " .
Al Claases Provides the interface to the persistent Core
ASTArrayDereference :| herschel. con Classes that unite the warious ACSS subsystems

Defines the API of the persistent Core Classes
é;n:ite the waricus HCSS subsystems.

.Dcflmo the API of the ILT-specific Core Claszses.

224

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Other DP Packages: What is Available?

Click in the Packages index frame to select a package and update the Classes index frame to show
those classesfor the selected package. Click the Classesindex frameto show the javadoc of aparticular
classin the Main frame.

The Main frame contains a kind of navigation bar at the top where the view in this frame can be
selected. The figure above shows the overview of all the packages. Other views are: Package, Class,
Tree, Deprecated, Index, and Help. These views will be explained in more detail below. In the
overview the Package and Class views are disabled, they become available when a package or class
is selected. Figure 9.2 shows the dightly expanded navigation bar for the Class view.

Overview Package [[JELTg Tree Deprecated Index Help

PREV CLASS MEXT CLASS FRAMES MNO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONETR | METHOD

Figure 9.2. Navigation bar on the class view of JavaDocs.

Note that the navigation bar provides the possibility to browse through packages and classes with
NEXT and PREVIOUS and provides direct access to the specific parts of the class documentation e.g.
constructors (start class/program) or methods (which can be thought of as sub-routine components of
programsthat can be applied). It isa so possibleto switch between FRAMES and NO FRAMES. With
NO FRAMES only the Main frame of thejavadoc will be shown and index framesbecome unavailable.

9.3. Package view

Each package has a page that contains a list of its classes and interfaces, with a summary for each.
This page can contain four categories. Interfaces summary, Classes summary, Exceptions and Error
summary. Not all categoriesareaways present. At the end thereisthe package description and possible
links to specific and/or related documentation.

Figure 9.3 showsthe her schel . i a. dat aset package which contains a number of interface and
classes e.g. Dataset and TableDataset. You can see that the Classes index frame provides a clear
separation of interfaces and classes and the Main frame shows the interface and class summaries and
provides a brief package description with links to package specific info at the bottom (The image of
the Main frame has been manipulated to shows the categories available without too much cluttering
the picture). Y ou can navigate to theinterface and class detail ed documentation by clicking the names
in the summary tables or in the Classes index frame.

225

Other DP Packages: What is Available?

- - - -
E* Location: || 8] kip:ilocalhost'-rikhess-curmnt-goesiaplind e him 3 |'»
|) HCSS Javadoo® | @ How io read javados
TTT TR T Can AT Ii *
Feerachel b cal irgd 3 . Pt bd IFF =
Prertel i lassloscer overview [[FIHENCE Class Tree Deprecated Index Help
I'lersr.hulu.dmsluderm PACY FACKAODE RNENT PACKADE FAAMES NSO FAAMES
berschil Bdessoader impl |
berschal b datasat K
Ferachel i dataset demo
brerschel b deme Package herschel.ia.dataset
Ferschel i @fm
Frar s R o This packege provides a uniform spprosch for helding, srnotating, quantifying and
herschel b frameswank attributing data as ia defined in the herschel.ia.nuneric package
Feerschel i framewark api
herschel iy framewark sxampl Ses:
Description -
Pt sl i e il g 5|
* |
- Interface Summary
herscheliadatases Algorathn Intecface for backwards compatibiliby.
Fiterfaces tatable I.'.n annotatable uh]:::t is an object that can give a hunan readable |
Afporithm description of itsslf
Wm Attributabhle An Attributable object is an object that has the notion of neca daca
Afribuabls
Composite Corposite & container of named Datassts
Datasal tahle yid arotatah] i 4t - AT
Dataseflisior s taset B
Dsfallimnper
Iamaric Paramedor ||:1'.'i- Summary
Farameter . Abst tData taVisit Abskrsct implemsntastion of DatasstVistor and DatsWisitor
Farzmelferlisfor Fhran sethndDataVisitor . - oo o
GEranNTae T
e #bhstractiatasetVisitor #bstract implementation of Dataset¥Wistor interface
Absbrac] DalasslArd Dabshfailor Arrayllataset -E.‘Fne-c:i.al dataszet that containz a ::i.m:j'l.e Data n'bj::l:
Abrstract Defaselizitor .
ArrayCotused EonleanParancter # Pacanster with a Eoolean walue
?‘mpm“" Colun & Column iz & the vertical cut of a table For which all
t"" deDataset cella hawe the same signature
DafasetLid An CompositeDabaset is & Datasek that conkains ceco or moce
Diate Farameter Compositelataset nzoed Datasets
Dt Par it
LonipParagmeaber Datasetlitel Tempocary placeholder for some uwbkilities
Metalala o . .
Frockicl Dateiaranstor & Paranster with o Date walue
HrirgFaremeler DoubleParanabar & Paramete it z
TetdeDatassat
LomgParamnete
Package herschel ia.dataset Description
Thia package provides a uniform approach for holding, arnotating. quantifying and
stkcibuting data as is defined in the herschel.ia.nuneric package. Acktual storage 1=
taken care of by the herschel.ia.io package
Introduct ion
For & general discussion of this packsge, plesse resd the top decumsntation.
Hoke that this packege is & library, not an spplication One could argque that any usec of
this library is a code deweloper. This is partially true, as the cods will be vaed by
end-uaers a3z well Moat end-usera however will access the variocus elements in Jythom
=ccipting language. As a result the design of this package 1s geared towassd usage in Jythan
as wall as in Java.
Basic elements
This packege can be split into the following cekegories:
et :
- T Produce Collection of data=sets, meta-data and the h:i._-ltnqr of the P:nd.u.ct i
(-] Datazets & Algorithm r

Figure 9.3. Package description page in JavaDocs.

226

Other DP Packages: What is Available?

9.4. Class view

Each class and interface has its own separate page in the Main frame. Each of these pages has three
sections consisting of a class/interface description, summary tables for constructors and methods, and
detailed descriptions of constructors, methods and attributes. The information shown in the classview
isrestricted to the public API (Application Programming Interface).

Each summary entry contains the first sentence from the detailed description for that item. The
summary entries are al phabetical, while the detailed descriptions are in the order they appear in the
source code. This preserves the logical groupings established by the programmer.

Figure 9.4 is taken from the Main frame of the TableDataset class and shows the class description
together with its hierarchy. You can see that the TableDataset implements a number of interfaces
and also has one known sub-class i.e. SpectrumDataset. The second part of the figure shows a more
detailed description of the class usage. This description is provided by the programmer in the source
code.

herschel . 1a.dataset
Class TableDataset

java.lang.chject
L herschel.ia.dataset.abstractAnnotatable
thrnchul.in.dntasut."[‘ﬂhluﬂatnﬂut

All Implemented Interfaces:

arnotatable, Attributable, Dataset
Direct Enown Subclasses:

SpectrumDataset

public class TableDataset
extends herschel ia dataset AbhstractAvnotatable
implements Dataset

A TableDataset 13 a tabaular collection of Columns. It 1z optimized to work on array Data
as specified in the herschel. ia numeric package,

This spprosch is convenisnt in many cases. For example, one has sn event list, and each
algorithm is adding a new field to the svents (i.e. a nev column.

The orthogonal approach (adding rows) is therefore expensive and therfore currently no
mechanizm is implemented to add rows to the table

Jython usage:
creation:

eALC10N:
¥ x=TableDataset (description="This i= my tables")

F x[rTime"] =columnidata=t ime muant ity=SRECONDS
§ x["Bnergy"]=column{data=energy, gquanticty=ELECTRONM

Figure 9.4. The class view of TableDataset showing a brief description and a short example of its usage.

Scrolling down in the Main frame brings you to the summary section which is shown in Figure 9.5.
The constructor summary shows all public constructors for this class with their specific argument
list. To see detailed information on the constructor click the name of the constructor that you need.
Constructors are methods that create objects of a particular type. The code example in the description
section above shows you how to create a TableDataset on the jython command line.

227

Other DP Packages: What is Available?

Constructor Summary

TableDataset ()

Constructs an empty table.

TableDataset (java.lang.Scring description)
GConstructs a TebleDataset with a description.

TableDataset (TableDataset copy)
Constructs a TableDataset that is a deep copy of specified arqument.

Method Summary

Column

__gatitem (int index)
Jython only(!) wrapper for abbreviated access to a column by
Lndesx.

Column

__getitem (java.lang.Ztring key)
Jython only(!) weapper for abbreviated access to & column by
TLENE .

vold

_ =metitem (inrt index, Column valus)

Jython only({!) wrapper for abbreviated replacement of a
column by indes.

vold

__metitem__ {java.lang.String key, Colunn valus)
Jython only{!) wrapper for abbreviated addition/replacement
of a column by name

void

accept (DatasetVisitor visitor)
Boccepts a wisitor of this Dataset,

void

add (Column column)
Deprecated. and replaced by
addcolumn(herschel .ia.dataset. column) .

vold

void

add(java.lang.string name, Column column)
Deprecated. znd replaced by

addcolumn{herschel .ia.datagst. Column) .

addColumn (Column column)
Adds the specified column to this table, and creates a dummy
name for this column, such that it can be accessed by get (int).

vold

addColumn (java.lang.sString name, cColumn column)

&dds the specified column to this table, and attaches a name
to it

vold

addRow (java.lang.object[] array)
Bdds the specified array as 2 nev row to this table.

Dataset

apply (Algorithm algorithm)
Bpplies the specified algorithm on a dataset.

protected
java. lang.String

contentsTofString ()

Figure 9.5. Page showing the constructor mechanism (how to create a TableDataset) and the associated set
of methods (what you can do with the TableDataset you created).

The method summary shows all public methods for this class in aphabetical order. For detailed
information on a specific method, click its name. In this method summary there are anumber of things
to note. The return values of the methods are in the left column while the method signature and a
summary line is in the right column. The summary line can be preceded with a deprecation note.
Deprecation means that this method should not be used anymore because it is marked to be removed
from future releases. The deprecation comment normally provides the alternate or new method to
be used instead. An overview of al deprecated methods in the whole system is available from the
navigation bar at the top of the Main frame.

228

Other DP Packages: What is Available?

Sometimes method names can start and end with two underscore characterslikein __getitem _
above. These methods are special constructs which alow you to use the specific jython syntax to
access and manipulate objects from this class.

9.5. Tree view

There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each hierarchy
page containsalist of classesand alist of interfaces. The classes are organised by inheritance structure
starting with java.lang.Object. Theinterfaces do not inherit from java.lang.Object. When viewing the
Overview page, clicking on"Tree" displaysthe hierarchy for al packages. When viewing a particular
package, class or interface page, clicking "Tree" displays the hierarchy for only that package.

9.6. Deprecated view

The Deprecated API page lists al of the API that have been deprecated. A deprecated API is not
recommended for use, generally due to improvements, and a replacement API is usually suggested.

Warning
O Be warned that deprecated APIs may be removed in future implementations.

9.7. Index view

The Index contains an alphabetic list of all classes, interfaces, constructors, methods, and fields.

9.8. DP Packages And Documentation

The following short paragraphs outline the packages currently available within the Herschel DP
system. A full listing of the classes (programs) availablein these packagesis provided in Javadoc form
at ftp://ftp.rssd.esaint/pub/HERSCHEL /csdt/rel eases/doc/api/index.html.

9.8.1. herschel.ia.dataflow

herschel.ia.dataflow - a package for handling processing threads. Particularly useful for Quick Look
Analysis (QLA) and Standard Product Generation (SPG). It can be used in interactive sessions too.
Allows the user to connect scripts from process modules as is typicaly required for a set of data
reduction steps. Dataflow also supports event-based processing as well as threads.

Sub-packages:
herschel .ia.dataflow.data.process ...classes for handling the processes used in a dataflow session.

her schel.ia.datafl ow.example.indicator_control.monothread ...classes used to illustrate the control of
adataflow.

herschel .ia.dataflow.example.indicator _control.multithread ...ditto but for multiple threads.
herschel .ia.dataflow.template ...class to allow template dataflow to be created.

herschel .ia.dataflow.util ...contains a class for identifying dataflows.

9.8.2. herschel.ia.dataset

herschel.ia.dataset - a package for dedling with TableDataset , ArrayDatasets and
CompositeDatasets . These datasets contain information to which an algorithm can be applied. The

229

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Other DP Packages: What is Available?

9.8.3.

9.8.4.

9.8.5.

9.8.6.

9.8.7.

package contains classes that deal with the set and handling of these datasets and also the handling of
products (which can contain multiple datasets). An example product may be one that contains several
tables plus metadata that describes the table contents which might have similarities to FITS header
information.

Sub-packages:

herschel .ia.dataset.demo - contains classes that demonstrate the use of datasets and construct a user-
defined SpectrumDataset.

herschel.ia.demo

herschel.ia.demo - package containing classes for use in a DP demo of end-to-end processing. See
sub-package her schel.ia.demo.endtoend and demo script.

herschel.ia.doc

herschel.ia.doc - currently a place holder for a documentation package.

herschel.la.document

herschel.ia.document - tools to generate documentation of dynamic as well as static DocBook
documentsin different formats: PDF, HTML, JHelp.

herschel.ia.help

This package contains the utilities and classes needed for providing the help facilitiesin an DP/JIDE
session. Access to the on-line help is discussed in Chapter 3 of this manual.

herschel.ia.image

herschel.ia.image - package containing classes for handling images. The Display capabilities from
this package were discussed in Chapter 8. The following classes exist in the package.

 Display - an image display implementation based on JSKY . User gets 800x600 window for image.
Can handle, 1D, 2D and 3D image representations. Allows standard display capabilities such as
annotation, rescaling, coordinate display.

* Histogram- currently abasic histogram capability. The histogram isbased on the valuestaken from
an imageDataset.

» ImageDataset - a special form of a composite dataset that presents an image. Has layers which are
image data, mask data, error data. World Coordinate System (WCS) information isheld as metadata
in the ImageDataset.

 Layer - constructs a layer of an ImageDataset.

 Rotate - allows rotation of an ImageDataset. Four different types of interpolation are possible. The
W(CS coordinates of the image are also rotated with the image.

» Scale- allowsthe scale of animageto be changed. Four different types of interpolation are possible.
» Trandate - moves an ImageDataset. The WCS is also adapted.
» WCS- associates a World Coordinate System to an ImageDataset

Sub-package:

230

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc_ia/ia/demo/scripts/productgeneration_demo.py

Other DP Packages: What is Available?

9.8.8.

9.8.9.

herschel.ia.image.gui - classes that handle GUIs. These should ONLY be caled from within the
Display program.

herschel.ia.inspector

This package containsthe classes and utilitiesfor providing the dataset and session inspectorsavailable
in JDE (see Section 2.3.5).

herschel.ia.io

herschel.ia.io - This is a package that provides a means of accessing local archives where Products
can be saved or loaded from. Products are combinations of data and information and can be likened
to the contents of asingle FITSfile.

Sub-packages:

herschel.ia.io.fits- A FITS implementation that can write Productsto a FITSfile and read such FITS
files back into the system. Allows the production of aFITS archive.

herschel.ia.io.ascii - Allowstheinput/output to and from ASCI| filesfrom within the DP environment.

herschel.ia.io.dbase - Allows data/products to be put into objects that can be stored in databases
(Versant databases are currently available for use with the HCSS). See Chapter 12 for information
about the setup and use of databases with DP.

9.8.10. herschel.ia.jconsole

herschel .ia.jconsole - Package containing the classes used in running JIDE, a GUI for running/editing
of DP/Jython scripts. Allows control of the JIDE setup and accessto classesthat setup the components
of the GUI interface (in herschel.ia.jconsole.gui).

9.8.11. herschel.ia.numeric

herschel.ia.numeric - This package is discussed in some detail in Chapter 4 and Chapter 5
Sub-packages:

herschel.ia.numeric.toolbox - Provides a large set of numeric classes available within Herschel DP.
These include mathematical functions (trigonometric functions, polynomials), Fourier transforms,
fitter functions, interpolation and matrix functions. NOTE: toolbox classesar eautomatically loaded
when starting DP.

herschel.ia.numeric.toolbox.basic - Provides the classes that allow basic mathematical manipulation
of numeric arrays, e.g., trigonometric functions, mathematical product, variance etc.

herschel .ia.numeric.toolbox.filter - Provides the classes BoxCar Fi | t er, Convol uti on and
Gaussi anFil ter.

herschel.ia.numeric.toolbox.fit - Provides the classes that allow the fitting of data with numerous
models (iterative fitters, sine mode fitters, polynomia model fitters etc.).

herschel.ia.numeric.toolbox.interp - Provides the classes that alow the interpolation of data
These include Cubi cSplinel nterpolator, Interpolator (a genera interpolator),
Li near | nt er pol at or and Near est Nei ghbor | nt er pol at or.

her schel .ia.numeric.toolbox.matrix - Provides the classes that allow the manipulation of Doubl e2d
arrays holding matrices. It includes the classes Mat ri xDet er mi nant, Matri xI nver se,
Mat ri xSol ve.

231

Other DP Packages: What is Available?

herschel.ia.numeric.toolbox.util - Provides the single class Mor eMat h which has methods for
mathematical manipulation of single numerical elements (integers, doubles, bytes etc.).

her schel .ia.numeric.toolbox.xform - Provides the classes FFT, Hanmi ng and Hanni ng for Fourier
transforms and Hanning/Hamming smoothing of data.

9.8.12. herschel.ia.plot

herschel.ia.plot - This package provides accessto the DP plotting utilities available with DP (callable
from JIDE). Thisincludes PlotXY and access to plot properties. The use of the plotting capabilities
in Herschel DPis discussed in Chapter 6.

9.8.13. herschel.ia.task

herschel.ia.task - This package provides the tools needed to create a DP "task" which auser can then
incorporate when constructing his’her own DP software package. This can be used by a user to set up
a script which has an associated "signature" (parameter setup). In setting up atask, parameter checks
can be performed and a history of the processing can be made.

This package is discussed in Chapter 8.

9.8.14. herschel.ia.ui

herschel.ia.ui - Providesthe programs dealing with the GUI interfaces available within Herschel DP.
The setup and use of GUIs and incorporation of Java.

232

Chapter 10. 10 of DP Variables,
Tabular ASCIlI and FITS Files

10.1. Introduction

This chapter describes how to save to disk and restore DP variables and how to read and write tabular
ASCII and FITS datafiles within DP. Illustrations are provided that run in the HIPE environment.

10.2. Saving and Restoring DP Variables

Some or al of your DP variables can be saved to disk and restored later in the same session, or even
adifferent session. DP variables types that can be saved are:

» simple scalar values, lists and strings (1, [1,2,3], "astring")

* numeric arrays (Intld, ... Complex3d)

datasets (TableDataset, ArrayDataset, CompositeDataset)

products (Product) - which contain one or more datasets, a history of how they were created and
meta-data describing their contents.

These can be saved from and brought back into a DP session using the save and restore
commands. Thisisillustrated in Example 10.1.

a=1
b=[1, 2, 3]
c="Hello world"

x=I nt 1d. r ange(3)

y=Conpl ex2d([[1+2j,3+4j,5+6j], [O0+1j,2+3j,4+5]]])
z=Doubl e3d(4, 2, 3)

z[0,0,:]=x

z[3,1,:]=x+1

u=Arr ayDat aset (dat a=x. copy(), descri pti on="Denp array dataset")

--- save sone of the above vari abl es
save("xyz.sav","x,y, z")

--- save all variabl es
save("al | .sav")

--- make all variables invalid
a=b=c=u=x=y=z=None
print a,b,c

--- restore Xx,y,z
restore("xyz.sav")
print x,y,z
x=y=z=None

print x,y,z

--- restore al

restore("all.sav")
print a,b,c

print x,y,z

print u

Example 10.1. Using save and restore

233

1O of DP Variables, Tabular ASCII and FITS Files

10.3. Getting Started with ASCIl Import/
Export

Assuming you have successfully started HIPE, then thefollowing packages should already be available
within the standard DP setup:

herschel . i a.io. asci
herschel . i a. dat aset

10.3.1. Basic ASCII Table Import/Export Tool Usage

Thetool to read and write tabular ASCI| filesiscaled Asci i Tabl eTool . Inyour session, you may
have multiple instances of thistool - each with adifferent configuration to suit the format of the input/
output tables being used.

In general, create the ASCII tool with default settings

ascii = Ascii Tabl eTool ()

asci i isnow known in your session as a table import and export tool. You can apply methods on
asci i toload and save tabular information from and to an ASCII file.

Let us set up a TableDataset to export. Input the following lines into the HIPE console view:

tabl e = Tabl eDat aset ()

tabl e["x"] = Col um(Doubl eld([1.0, 2.0, 3.0]))
table["y"] = Col um(Doubl eld([4.0, 5.0, 6.0]))
table["z"] = Col umm(Doubl e1d([7.0,8.0,9.0]))

We can now export it to an ASCI|I file with the following command:

ascii.save("tabl e. output”, tabl e)

If we now look inside the file, "table.output”, we'll see something like this:

X,Y,Z
Doubl e, Doubl e, Doubl e

The first two lines show the name and data type of each column. The third and fourth lines show the
units and description of the columns. Here they are empty because we did not set any.

To load the data back into HIPE the command is

| oadedTabl e = ascii.load("tabl e.output")

You can look at the new TableDataset by typing pri nt | oadedTabl e, to see that it is the same
ast abl e, as expected.

You can change the behaviour of the tool to allow various formatting changes with the following
attributes:

parser=yourParser Changes the line parsing behaviour at import.

234

1O of DP Variables, Tabular ASCII and FITS Files

formatter=yourFormatter

Changes the line formatting behaviour at export

template=yourTemplate

Specifies how to interpret raw cell data.

For example

ascii.parser = CsvParser()

indicates to use the CsvParser, while

ascii.formatter = CsvFormatter(delimter =

L&)

indicates that we want to use a non-standard delimiter (ampersand rather than a comma).

10.3.1.1. Import Parsers

A parser controlshow to break-up alineinto table cell data. All parsers share the following attributes:

Lines containing expression are ignored. By
i Onore=expression default the expression skips lines starting with
9 Pres a hash, possibly preceded by one or more
whitespaces:
. First number of lines can be skipped by specifying
skip=value avalue>0. Default is0,
trim=0[1 Whether to strip lines from leading and trailing
- spaces, default is O (false).

Thefollowing lines make the parser skip thefirst twenty lines and removes|eading and trailing blanks.

ascii.parser.skip

20
ascii.parser.trim=1

10.3.1.2. Comma-Separated-Variable

Parser

The Comma(Character)-Separated-Variable Parser named CsvPar ser breaks up aline into cells
using adelimiter symbol. The delimiter character can be part of one or more cell-data itself.

In addition to the common attributes of any parser, a CsvParser gives you control over the following

extra attributes:

delimiter=character

The character used to distinguish cells within a
line of data. Default is a comma character ','.

guote=character

Thecharacter used if cell-datacontainsadelimiter
character. Default is a double quote character ™.

This example skips 2 lines and makes the delimiter symbol a semi-colon. The * character is used to

indicate cells containing the delimiter symbol.

ascii.parser = CsvParser (skip=2,delimter=";", quote="*")

10.3.1.3. Fixed-Width Parser

The Fi xedW dt hPar ser breaks up a line into cells by interpreting every cell to be of a fixed

number of characters.

235

1O of DP Variables, Tabular ASCII and FITS Files

In addition to the common attributes of any parser, a FixedWidthParser gives you control over the
following extra attributes:

An array n elements, where n is the number of
Sizes=array columns, and each element specifies the width of
that cell.

Thisexample usesaFi xedW dt h parser that expects three columns in the table with widths 10, 20
and 10 characters respectively - and in that order.

ascii.parser = Fi xedW dt hPar ser (si zes=[10, 20, 10])

10.3.1.4. Regular Expression Parser

The RegexPar ser breaks up alineinto cells by interpreting every cell to be separated by a set of
characters given by a standard regular expression.

The following short example uses a RegexPar ser that expects a vertical slash separator with one
or more spaces either side.

asci i . parser=RegexParser(delimter="\s*\|\s*")

10.3.1.5. Export Formatters

A formatter controls how to format a row of cells into a line of ASCII. All formatters share the
following attributes:

commented=0[1 States whether comments will be allowed in the
. output or not, default=0 (false).

commentPrefix=string Prefix used for all comments, default="#".

Whether to precede the actual data with header
_ information, default is O (false). This header may
header=0|1 : . L

contain name, type, units and description of each
column

In the following example, first indicate that a header is to be added to the output table, then allow
commentsin the output and finally indicate how comments are prefixed in the table.

ascii.formatter. header=1
ascii.formatter.coment ed=1
ascii.formatter.coment Prefix="$$$ "

10.3.1.6. Comma-Separated-Variable Formatter
Please read its counterpart CsvPar ser (see Section 10.3.1.2) for parameters and defaults.
The default comma(character) separated variable formatter hasa',’ delimiter and a'# quote character.
formatter = CsvFormatter()

Thedelimiter and quote characters can be changed, e.g. the & symbol isuseful for creating latex tables

236

1O of DP Variables, Tabular ASCII and FITS Files

formatter = CsvFormatter(delimter="& , quote='<")

10.3.1.7. Fixed-Width Formatter

Please read its counterpart Fi xedW dt hPar ser (see Section 10.3.1.3) for parameters and defaults.
Take default width for table cells
formatter = Fi xedW dt hFormatter()

Set the width of 3 columns of cellsto specific sizes

formatter = Fi xedWdt hFornatter(sizes=[5, 12, 3])

10.3.1.8. Table Template

Many tabular ASCII files contain only raw data. Though the human eye may interpret cell-data being
astring or arational number, the computer needs some more information.

The Tabl eTenpl at e alows you to specify such information. The only mandatory argument for a
table template is the number of columns that are expected. Its optional attributes are:

names=arr Specifies names that will be attached to the
&y columns.

Specifiesthetypesof all columns. If not specified,
tVDeS=arT the template assumes that al columns are of
yp &y type String. Allowed types are: Bool ean,

I nt eger, Fl oat, Doubl e and St ri ng.
units=arr Specifies the units of all columns. Uses Sl units,

& and units that are accepted for use with Sl.
descriptions=array Specifies comments for all columns.

Thefollowing table templateindicates atable with 4 columns with associated names character/number
types and associated units

asci i . tenpl at e=Tabl eTenpl at e(4, \
names=[" Frame", " Energy", "Foo","Bar"], \
types=["Integer", "Doubl e", "Doubl e", "Doubl e"], \
uni ts=["s","eV","N m-1","kg L-1"])

10.3.2. Examples of How to Import/Export ASCII Tables
in DP

Section 10.3.1 introduced the various import and export capabilities of the Asci i Tabl eTool . We
can put these together toillustrate how auser can import and export ASCII tables of virtualy any type.
The example below provides an illustration of how to handle ASCII tables in the DP environment.
A number of ASCII tables are created and reimported. These can be viewed by opening them within
HIPE window (or within any other text editor). In order to run the program the user will also require
aninput file, which is given below and can be downloaded from here. Remember to renamethefileto
asci i _denp_dat a. t xt , and to delete any blank lines at the end, otherwise you will get an error
when reading its contents.

Sanple file, using default settings of Ascii Tabl e object
tabl e=Asci i Tabl eTool (). | oad("ascii_deno_data.txt")

237

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/ia/ia-7.2/manual/um/chap10_example1_input.txt

1O of DP Variables, Tabular ASCII and FITS Files

Frame, Count s, Val i d, Conment s
I nt eger, Doubl e, Bool ean, String
s, ev,,

—
—
=
o

1,1.0

2,5.0

3,0.0,fal se i nconpl ete data
4,0.0,fal se, mssing data

5, 1. 234567E- 8, t r ue,

--- inport a table that conplies to default settings
asci i =Asci i Tabl eTool ()

tabl e=ascii .| oad("ascii_deno_data.txt")

--- export a table using defaults settings:
ascii.save("tabl e. out1", tabl e)

--- export using Fixed Wdth fornmat, with header info:

ascii.formatter=F xedW dt hFormatter(si zes=[8, 16, 8, 30])
ascii.save("tabl e. out2", tabl e)

--- inporting it back requires Fixed Wtdh parser
asci i . parser =Fi xedW dt hPar ser (si zes=[8, 16, 8, 30])

tabl e=ascii .| oad("tabl e. out2")

--- export using Fixed Wtdh fornat, only raw data:

ascii.formatter. header=0

ascii.save("tabl e. out 3", tabl e)

--- inporting a raw "fixed width" table that has only data. So we
have to define the tenpl ate oursel ves:

ascii.tenpl at e=Tabl eTenpl at e(4, nanes=[" Frane", "Counts", "Val i d",\
"Comrents"], types=["Integer", "Double", "Bool ean","String"])

tabl e=ascii .| oad("tabl e. out 3")

--- saving current state of Ascii Tabl eTool :
ascii.save("table.tenpl ate")

--- quick save table with default settings, equivalent to

#"tabl e. out 1":

Asci i Tabl eTool ().save("tabl e. out 4", tabl e)
-- reloading state:

m ne=Asci i Tabl eTool ("tabl e. tenpl ate")
tabl e=mi ne. | oad("t abl e. out 3")

m ne. save("tabl e. out 5", t abl e)

--- saving with comments

tabl e. descri pti on="Sanpl e description can be found here"
m ne. fornatter. header =1

m ne. fornatter. coment ed=1

m ne. fornatter.coment Prefix=";

m ne. save("tabl e. out 6", t abl e)

Example 10.2. ASCII demo data

Finally, we also present an example of the use of the RegexPar ser for importing tables.

from herschel .ia.io.ascii inport *

#instantiate the table tool

ascii = Ascii Tabl eTool ()

regul ar expression |ooks for vertical slash between spaces
asci i . parser=RegexParser (delimter="\s*\|\s*")

#6 colums will be read

ascii.tenplate = Tabl eTenpl at e(6)

now | oad it

cat = ascii.load("test_ascii_space.dat")
#get the nunber of data elenents in the first colum
n = len(cat["Col umQ"]. dat a)

#Now print out the colums we have read into "cat"
for i in range(n):
print cat["ColumQ"].data[i],cat["Columl"].data[i],\
cat["Colum2"].data[i],cat["Col um3"].data[i],\
cat["Colum4"].data[i],cat["Col um5"].data[i]

BRI R

238

1O of DP Variables, Tabular ASCII and FITS Files

The data file for the above script is the follow ng which shoul d
be called "test_ascii_space. dat":

HUHHR
112 |3] 4
2] 3] 4] 5
3| 4|15 |6
415161 7]

| 51 6] 7] 8

6 | 71819
a | b | 8] 9
HUHH Y

The result from above script should | ook like this:
BHHHHRR

1 2 3 4 None None

4 5 None None

5 6 None None

6 7 None None

ne None None None None

6 7 8 None

None None

gg#ww
@@mg

o o

10.4. Overview of FITS IO

In the next few sections we describe how to write and read Products (which contain one or more
datasets, a history of how it was created and meta-data describing the contents - the latter two are
typical FITS header components) to and from FITS files within the DP environment.

Note
@ FITS stands for Flexible Image Transport System, a format adopted by the astronomical
community for datainterchange and archival storage.

10.4.1. Getting Started With FITS IO

Assuming you have successfully started HIPE, the facilities needed to create products as well as to
create FITS files should already be available in your session.

10.4.1.1. Basic FITS IO Tool

The tool to write and read Productsto and from FITSfilesisFi t SAr chi ve. In your HIPE session,
you may have multiple instances of this tool -each with a different configuration.

In general, we can set up aFITSfilefor archiving, export DP productsto it and retrieve back a product
fromaFITSfile.

A generic FITS reader is available. This generic reader can parse FITS files that were created by
applications other than the HCSS software.

from herschel .ia.io.fits.FitsArchive inport *

fits=FitsArchive(reader =STANDARD_READER)
product=fits.load("input.fits")

nmyDi spl ay3 = Di spl ay(Doubl e2d(product["Pri maryl mage"] . data))

#whi ch takes the data fromthe FITS file, puts it into a 2D array
#and displays it.

Example 10.3. Using FITS Archive

239

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/dataset/index.html

1O of DP Variables, Tabular ASCII and FITS Files

The HCSS pr oduct can be manipulated in the DP system in a similar way to DP-produced arrays.
In the above example, a2D FITSimageis displayed after having been imported.

A DP product containing data and meta data can be saved into a FITS file using the following

fits.save("output.fits", product)

In particular, you can save aSi npl el mage in FITS format:

fits = FitsArchive()

nmyl mage = Sinpl el nage(descri ption="An i mage", i mage = Doubl e2d(50, 100), \
err or =Doubl e2d(50, 100), exposur e=Doubl e2d(50, 100))

fits.save("nyl mage.fits", nylmage)

Warning
o The above code will generate a FITS file with the value 50 assigned to the NAXI S2
keyword and 100 assigned to NAXI S1. In other words, the image size will be 50 pixels
along the y axis and 100 pixels along the x axis. The coordinate values will be displayed
in this order (y, x) in the Image Viewer. For an explanation of why they size is specified
before the x size, see Section 4.6.1 in Chapter 4.

10.4.2. Parameter Name Conversion and FITS Header

The current implementation of the FITS archive converts long, mixed-case parameter name, defined
in the meta data of your product, into a FITS compliant notation. The latter dictates that parameter
names must be uppercase, with amaximum length of eight characters. Clearly, we do not want to force
all our parameters to have names that fit within such a FITS specific restriction.

The FITS Archive uses lookup dictionaries that convert well known FITS parameter names into a
convenient and human readable name. Currently the following dictionaries are in use:

Common keywords (ftp://ftp.rssd.esa.int/pub/HERSCHEL /csdt/rel eases/doc/iali offits/dictionary/
DictionaryHeasarc.map) widely used within the astronomical community, which
are taken from HEASARC (http://heasarc.gsfc.nasa.gov/), Standard (ftp://ftp.rssd.esa.int/
pub/HERSCHEL /csdt/rel eases/doc/ialio/fits/dictionary/DictionaryStandard.map) FITS keywords,
and HCSS keywords (ftp://ftp.rssd.esa.int/pub/HERSCHEL /csdt/releases/doc/ialioffitg/dictionary/
DictionaryHcss.map) containing keywords that are not defined in the above dictionaries.

For example the following Meta datais transformed into a known FITS keyword:

product . met a[" sof t war eTaskName"] =St ri ngPar anet er (" FooBar ")

Providing the following FITS product header via direct translation using the lookup dictionaries.
HIERARCH key.PROGRAM='softwareTaskName'

PROGRAM = 'FooBar'

A full demonstration of FITS 1O is available in the example below. The script creates a product with
several (nested) datasets, storesit into a FITSfile, and then retrievesit again.

240

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHeasarc.map
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHeasarc.map
http://heasarc.gsfc.nasa.gov/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryStandard.map
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryStandard.map
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHcss.map
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/dictionary/DictionaryHcss.map

1O of DP Variables, Tabular ASCII and FITS Files

first we will get some unit definitions for our exanple
from herschel . share.unit inport *
fromjava.lang. Math inport PI

--- construction of a product. note this is only for denonstration
purposes. For nore infonation, please see the dataset and numeric
chapters of the manual (chapters 5 and 6).

poi nt s=50

x=Doubl eld. r ange(poi nts)

x*=2*P| / poi nt s

eV = Energy(). ELECTRON_VOLTS

#Create an array dataset that will eventually be exported

s=Arr ayDat aset (dat a=x, descri pti on="range of real\

val ues", uni t =eV)

degK = Tenperature().KELVIN

#provi de some netadata for it (header information)

s. neta["t enper at ure"] =LongPar anet er (1 ong=293, \

description="room t enper at ure", uni t =degK)

#we can store the array in a FITS file

#after making it a Product

p=Product (descri pti on="FI TS denonstrati on", creat or="You")
#add sonme neta data

p. met a[" sanpl eKeywor d"] =St ri ngParaneter ("First FITS file")
p. met a[" obser vati onl nst runent Mode"] =Stri ngPar anmet er (" Uni t Test")
#add the array of data to the product

p["nyArray"]=s

store in FITS file

fits=FitsArchive()

fits.save("sdenon.fits", p)

and restore it
scopy = fits.l|load("sdeno.fits")

#create a tabl edataset for export

t =Tabl eDat aset (description="This is a table")
t["x"]=Col um(x)

t["sin"]=Col um(data=SI N(x), description="sin(x)")

and a conposite dataset with an array and a table in it

c=Conposi t eDat aset (descri pti on="Conposite with three datasets!")

c. net a["exposeTi ne"] =Doubl ePar anet er (doubl e=10, descri pti on="dur ati on")
c["chil dArray"]=s

c["chil dTabl e"] =t

c["chil dNest"] =Conposi t eDat aset ("Enpty child, just to prove nesting")

and finally, a product that has the conposite dataset,

tabl edatset and array dataset.

p=Pr oduct (descri pti on="FI TS denobnstrati on", creat or ="deno. py")
p. creat or =" You?"

p. nodel Name="denonst r ati on"

p. met a[" sanpl eKeywor d"] =\

Stri ngPar anet er (" Exanpl e keyword not in FITS dictionaries")
p. met a[" obser vati onl nst runent Mode"] =Stri ngPar amet er (" Uni t Test")
p["nmyArray”] =s

p[" nyTabl e"] =t

pL"nmyNest"] =c

save our product
fits.save("deno.fits", p)

... load it back into a new variable, n,...
n=fits.l oad("deno.fits")

... and show it!

print n

print n["nmyArray"]

print n["myNest"]

print n["myNest"]["chil dNest"]

#we can al so get information on the netadatal/keywords
BXaMple 1843 TS 1O from within Herschel DP
#and | ook at a specific piece of netadata

print n.meta["startDate"]
41

1O of DP Variables, Tabular ASCII and FITS Files

10.4.3. Caveats

For more information see the FITS 10 general documentation (ftp://ftp.rssd.esa.int/pub/HERSCHEL/
csdt/rel eases/doc/ialioffits/index.html).

10.4.3.1. FITS header character limit

A FITS header card is limited to 80 characters. Within those limitations the Fi t sAr chi ve will
try to store the abbreviated FITS keyword, parameter value, and in the comment area optionally
a quantity and description. The latter two might be truncated due to these limitations. Also a
St ri ngPar amet er with along value can be truncated.

10.4.3.2. Corrupted FITS file after unzipping

The Herschel Science Archive provides an option to download observations as a TAR (zipped) file.
Windows users often extract such a file with the WinZip program and find that their FITS files are
corrupted.

Thedefault settings of WinZip triesto be smart and convertstext filesto DOS format, which meansthat
thelinefeed (LF, or \ n) character is replaced by line feed and carriage return (CR, or \ r) character.
Obviously this should not be done to binary files.

WinZip seems to determine whether afiles is an ascii file by reading the first few characters of the
file if thisislookslike plain text, it will do the conversion. Unfortunately al (binary) FITSfiles start
with theword "SIMPLE". Hence the FITSfileisinterpreted as text file and conversion and therefore
corruption takes place.

The above is the result of running WinZip with default settings. Fortunately WinZip provides a way
to disable the conversion. The steps below describe the procedure for WinZip 12.0.

» Select in the menu Options -> Configuration...
» Go to the Miscellaneous tab

» De-select the TAR file smart CR/LF conversion option (see Figure 10.1).

242

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/io/fits/index.html

1O of DP Variables, Tabular ASCII and FITS Files

Wiew I Toolbar | Folders | Syskem |Exp|u:urer Enhancementsl Passwnrdsl E-rmnail

—Skart-up
™ mext time start with the Wizard interface

| | Aukomatically show the Open Archive dialog box

—Shaow Add dialog when dropping files on:
¥ an archive in Explorer

V¥ an open WinZip window

—iCheck For Updates

™ Check automatically every:

week j

& ask before checking, once a week

" Do not check For updates

Check For Update Mow |

Restore all caution messages |

Miscellaneous

~Okher
¥ windaws Explorer-style Extract dialog box
e TAR File smart CR/LF canversion
lj.ﬁ.lwaxs have WinZip on kop
|_ Beep after long archive operations
MV Use Recycle Bin For move operations
v Prompt when Yiew butkon is pushed
v Desktop theme/screen saver installer
r Shaw camments when opening Zip files
v Display status dialog For long oper ations
v Prompt before running WinZip jobs
V' Stare extended kime stamps in Zip files

¥ sStore Unicode filenames in Zip fFiles

Mumber of files in recent File lisk; |‘5‘ j

Program to create self-extracting Zip files
(Make Exel:

IC:'I,F‘ru:ugram FileshwWinZip) WZ3EPESZ . EXE] |

o |

Cancel Help

Figure 10.1. The Configuration dialogue window in WinZip.

Note

K

It seems that 7-Zip does not cause this problem. If using another compression software,
please consult its documentation. Y ou may want to inform the Herschel Editorial Board

of your findings so that they can be included in this section.

243

Chapter 11. Using Time in the DP
Environment

11.1. Introduction

This note describes which and how Time is defined within HCSS and how to deal with it.
Unfortunately, there are several ways in which time can be represented. The standard for the HCSS
DPisaFi neTi me - which is the number of microseconds since the beginning of 1 January 1958.
This provides the kind of accuracy needed to represent time on a space mission.

However, there are several other time representations and it is often the case that conversions between
times/dates is necessary. In particular, it is noted that the standard Java commands lead to date
measurements with respect to 1 January 1970. This chapter indicates how to deal with times within
DP and converting between the various times, particularly between datesand Fi neTi ne's.

11.2. Time Definitions
11.2.1. System time in DP

There are many ways to access the system time within DP. See also the description of the Java class
"Date" for adiscussion of dlight discrepanciesthat may arise between " computer time" and coordinated
universal time (UTC).

The Java Dat e classis deprecated and is being replaced by a more flexible Si npl eDat eFor nat
capability within Javathat allows the user to express dates more conveniently. A Dat e object is still
obtained and can be turned into aFi neTi e (see below) once created.

Two possibilities for creating a"Date" object are:

To get the current time in mlliseconds:

The difference, nmeasured in milliseconds, between the current

time and mdni ght, January 1, 1970 UTC.

print java.lang.SystemcurrentTimeM I Ilis()

To get the nunmber of mlliseconds since

January 1, 1970, 00:00: 00 GMI represented by a Date object.

d = java.util.Date()

#printing this gives the current time and date at the | ocation of the
#system on which the java is being run.

print d

#We can al so get the nunber of milliseconds since Jan 1, 1970 using
#t his Java Date

print d.getTime()

Example 11.1. Current Time

Note that whilethe unit of time of the return valueisamillisecond, the granularity of the value depends
on the underlying operating system and may be larger.

If we want to get the number of milliseconds since 1 January 1970 for any other date then we can use
a non-default form of the Java Date capability where the year, month, day, hour, minute and second
are provided.

* Year format -- year (A.D.) - 1900. So the year 2006 = 2006 - 1900 = 106
» Month format -- number of the month, beginning from January = 0. E.g. March = 2.
» Day -- just day number in the month.

» Hours, minutes, seconds -- on the 24-hour clock.

244

Using Time in the DP Environment

NOTE: Thisisthetime on our computer system.

#Format of date is year (in units of true year - 1900), nonth (nunber 0...11),
#day, hour, minute, second. So the follow ng gives us the nunber of mlliseconds
#bet ween the begi nning of 1 January 1970 and 3:15: 00 pm on 23 COctober 2004.

d = java.util.Date(104, 9, 23, 15, 15, 0)

print d # should i ndeed show we have 3: 15pm on 23 Cct ober 2004

print d.getTime() # provides the nunber of milliseconds between this

#date and 1 Jan 1970.

The following sample code shows how to use Si mpl eDat eFor mat to create a"Date" object.

sinpl eDate = java.text.Si npl eDat eFor mat ("yyyy. M dd HH:. nm ss z")

#set up how you want to set up your input Date format. In this

#case we could input "2006.01.14 01:00:00 CST" for la.m on 14

#January 2006. z -- indicates the tinme zone (default is the zone for the
#conput er system bei ng used).

si npl eDat e. appl yPattern("dd/ M yy HH: mi')
#change the pattern to a different format

startTime = sinpl eDate. parse("13/01/06 14:06")
#create the data object "startTi ne"

print startTinme
#...and see what this |ooks |ike

Allowed choices for the dataformat are available from Java documentation of the SimpleDateFormat
capability.

11.2.2. International Atomic Time (TAIl) and Fi neTi nme

TAI isaninternational standard measurement of time based on the comparison of many atomic clocks.
TAI is the basis for Coordinated Universal Time (UTC). Fi net i me is based on TAI as measured
from 00:00:00 1 January 1958.

11.2.3. Coordinated Universal Time (UTC)

UTC , World Time, is the standard time common to every place in the world. UTC is derived from
International Atomic Time (TAI) by the addition of awhole number of "leap seconds' to synchronise
itwith Universal Time 1 (UT1), thusallowing for the eccentricity of the Earth’'s orbit and the rotational
axistilt (23.5 degrees), but still showing the Earth'sirregular rotation, on which UT1 is based.

11.2.4. DecMec Time [PACS only]

The commands DPUSelectTime and DPUW riteTime are selecting and setting a start time which is
written to the TMP1 and TMP2 fields of the Dec/Mec headers. This is used in coordinating the
activities of the mechanical devices on board PACS. It is possible to construct an absolute time by
adding counters (CRDC) to the start time considering an offset between setting and writing the start
time.

This offset is expected to be a number with an uncertainty depending on the system load. It might
require acalibration file. Currently this offset is not considered.

In case the commands and are not given the TMP1 and TMP2 fields are zero. To avoid software
confusions the time will be related to afixed date (1.Jan 1970, 0:00).

During construction of the SpuBuffer the time is computed from the TMPL, TMP2 entriesin the Dec/
Mec header and the CRDC counter. Thistime is used during construction of the DataFrameSequence
and the associated Tables holding the SPU science data.

Between the Dec/Mec time and the packet time (see PusTmBinStruct) we have an offset. Therefore
the association between HK and science datawill be within an accuracy of 2 seconds.

245

Using Time in the DP Environment

11.3.
Data

11.4.

Time in Instrument House-Keeping (HK)

The most convenient method of obtaining time stamped HK information is the use of the
"herschel .binstruct” package. The use of thisisillustrated in Chapter 12.10 where HK datais obtained
from a database and then read/converted for use within the DP environment.

When dealing with HK timeinformation directly, itisimportant to know that telemetry packets contain
the time as defined within the "PUS Data Field Header". The field represents the on-board reference
time of the packet, referenced to TAI, expressed in spacecraft time units - CCSDS Unsegmented Time
Code (CUC) units. CUC units are multiples of 1/65536 sec from 1 January 1958 in TAI time. CUC
units cannot be expressed in whole microseconds but can be converted to the FineTime standard (see
below).

CUC timeiswritten for HK by the data processing unit (DPU).
Current PusTBi nSt r uct methods related to time:

long getTime()

Returns the packet time of the Pus telemetry packet.

boolean isTimeSynchronized()

Returnstrue if the telemetry packet is synchronized, false otherwise.
java.util.Date getTimeAsDate()

Returns the packet time as a Date object.

FineTime getTimeAsFineTime()

Returns the packet time of the Pus telemetry packet as FineTime.

Time conversion

11.4.1. Time conversion in HCSS

It can often be the case that we need to convert between FineTime (TAI) and Date (UTC). Coordinated
Universal Time is expressed using a 24-hour clock and uses the Gregorian calendar. FineTime
representsa TAI time (epoch 1958), whereasthe Java Date classis used to represent UTC, by resetting
the system clock whenever aleap second occurs and don't need to handle leap seconds. Converting
between Java dates and the FineTime standard requires the use of the DateConverter() class. Long
integers can also be directly converted to FineTimes and are interpreted as representing the number of
microseconds since 00:00:00 1 January 1958. In Example 11.2 we illustrate how to create a FineTime
from along integer and convert back and forth between FineTime and Java Dates.

from herschel .ccmutil inmport *
from herschel . share.fltdyn.time inport *

FineTine to Date

Enter a tinme in seconds (a long integer - put letter "I"
at the end of the nunber)

¢ = FineTi ne(14360944497154001) # convert to a FineTine

Prints corresponding date and tine

print DateConverter.fineTi meToDat e(c)

Date to a FineTine

d = java.util.Date() # gets today's date and tine

Prints correspondi ng Fi neTi me

print DateConverter.dateToFi neTi ne(d)

Example 11.2. Time conversion between Dat e and Fi neTi e

246

Using Time in the DP Environment

11.4.2. CucConverter

Converts between Spacecraft Elapsed Time, in CCSDS Unsegmented Time Code (CUC) format and
FineTime (TAI). This implementation is for the Herschel CUC format, which is corrected on-board
the spacecraft to TAI (epoch 1 Jan 1958). This representation uses 32-bits for seconds and 16 bits
for fractional seconds. CUC times are multiples of 1/65536 sec and cannot be expressed as an exact
multiple of 1 microsecond (the resolution of FineTime). However, the following relations hold for
‘coarse’ and 'fine' valuesin the allowed range:

long coar se(FineTimet)

Return the number of whole seconds since the epoch 1 Jan 1958.

long cucValue(FineTimet)

Return the number of 1/65536 fractional seconds since the epoch 1 Jan 1958.

int fing(FineTimet)

Return the fractional part of the number of 1/65536 seconds since the epoch 1 Jan 1958.
FineTime toFineTime(long cuc)

Return a new FineTime constructed from a48-bit CUC time.

FineTime toFineTime(long coar se, int fine)

Return anew FineTime constructed from CUC coarse & finefields.

from herschel . share.fltdyn.time inport *

d=CucConverter.toFi neTi me(50000000000000L)

#Converts the long integer - representative of a CUC tinme -
#into a FineTine. The FineTinme is stored in d.

e = CucConverter.coarse(d)

#provi des the nunber of whole seconds since 1 Jan 1958
#and stores it in e.

print e

247

Chapter 12. Accessing and Retrieving
Data

This chapter hastwo main sections: First the section Section 12.1 dealswith the Product Access Layer
(PAL) and Product Pools. A particularly useful concept isthat of alocal product pool (or local store)
which is a product pool that you can create on your local (e. g. laptop) computer and allows you to
work offline if need be (see ?7?). In addition it provides guidance on how to query these data pools
with the Product Browser tool. The section Section 12.2 describes how to set up and use a database
created with the Versant Database System. We note that products in a Versant database can aso, in
principal, be accessed viathe PAL as aremote pool.

12.1. The Product Access Layer and Product
Pools

The Product Access Layer (PAL) consists of several elements that allow a user to create, access or
guery Product Pools. Product Pools are data storage areas that could be on your local laptop, (alocal
store) or might be a remote pool. Examples of a remote pool are, i) the future Herschel Archive,
ii) products accessed from a Versant database, or iii) a pool which you can share with others on a
remote computer. Perhaps the most convenient component of the PAL is the Product Browser. This
isagraphical visualisation tool, and will be covered in Section 12.1.10. We will show an examplein a
moment of how to launch thisfrom a JIDE session. The browser is also easily launched within HIPE.

12.1.1. Available Product Pools

The implementation possibilities are unlimited (using an object-oriented database such as Versant,
relationa databases such as Oracle, MySQL), but that is beyond the scope of this project.

With the release of the Product Access Layer, two main pools are available (L ocal Store and DbPool),
plus some mechanisms for setting up or accessing remote pools:

» A LocalSorefor storing and accessing Products in your local system (default is FITS format)

A DbPool for accessing Products from a remote object database, such as a Versant database.

A SerialClientPool allows you to read/write or access a remote pool. When used in conjunction
with a Pool Daemon (which runs on the mechine of the remote pool) this can make the remote pool
immediately available to your session.

» A CachedPool isaway to cache everything retreived from a pool. It is useful if the pool you are
working with is normally aremote on-line pool, and you want to work offline.

» HsaReadPool: This is a pool that alows access from an HCSS session to the Herschel Science
Archive (HSA).

 HittpClientPool: A networked pool similar to SerialClientPool.

In the next few sections we will discuss and provide examples of pools mainly in the context of Local
pools, but most of these examples can be generalized to any kind of pool. In later sections we will
decribe these other kinds of pools and some other useful concepts that refer to them.

12.1.2. Local Pools

We will in this subsection discuss Local pools. However much of this information presented here is
applicable generally to any kind of pool.

248

Accessing and Retrieving Data

12.1.2.1. The Default Local Pool directory and how to change it

By default, datais stored in adirectory with the user-supplied store name in the following directory

users_hone_di rectory/. hcss/ | store/

This can be changed by changing the property hcss. i a. pal . pool . I store. dir.
For example, in MS Windows we can do this using the following statement in our J DE session:

hcss.ia. pal . pool .| store. dir=${user. hone}/. hcss/ al ternate_store/

Or in LINUX with:

hcss. i a. pal . pool .| store.dir=~/.hcss/alternate_store/

12.1.2.2. Registering Local Pools

The storage location pointed to by hcss. i a. pal . pool .l store.dir can contain severa
pools, which in the specific implementation of local store are subdirectories in that location. After
importing the PAL classeswith from her schel . i a. pal i nmport *,we create astorage object
with st or age=Pr oduct St or age() . We obtain a reference (pooll) to a pool from the pool
manager using the statement pool reference = Pool Manager. get Pool (pool nane),
where poolname is a string. Then the pool reference is registered by st or age. r egi st er (pool

r ef er ence) . With the command pri nt Pool Manager . get Pool Map() we can see which
pools are currently registered.

A practical example where we open two pools would look like this:

from herschel .ia.pal inport *

storage = Product St orage()

pool 1 = Pool Manager . get Pool (' defaul t')
pool 2 = Pool Manager . get Pool ('test')

st orage. regi ster(pool 1)

st orage. regi st er (pool 2)

print Pool Manager . get Pool Map()

In case there is already a pool with that name in the default directory, it is registered and becomes
accessible. If it doesnt exist, the pool is created as soon aswe store aproduct there. This can be verified
by inspecting the respective directory before and after.

At this point we have created a storage and opened two pools. Note that when writing to the storage,
the dataiswritten to the first pool that was registered. If you want to write to a different pool you can
create and use another storage for writing, where you register the desired pool. The same pool can be
registered with more than one storage at the same time. Here an example where we make the pool
"t est" accessiblefor saving products.

ot her St orage = Product St or age()
ot her St or age. r egi st er (Pool Manager . get Pool ('test'))

We should also note that storage can also be obtained withtheLocal St or eFact or y, however this
is discouraged by developers who strongly recommend using the PoolManager.

12.1.2.3. Saving products in pools

Letsfirst create some products to play with. In this case we will create two products containing one
table dataset each. First the table datasets are created from random numbers.

RandonmGauss()
1000

249

Accessing and Retrieving Data

tbl 1 = Tabl eDat aset (descri pti on=' Test Dataset 1')

tbl1['time'] = Col um(Doubl eld. range(n))

tbl 1[' signal '] = Col umm(Doubl eld(n). appl y(r))

tbl1["error'] = Col um(Doubl eld(n).apply(r) * 0.3)

prodl = Product(creator="'ThatsMe', description="Test Product 1')
prodl[' Tablel'] = thl1

Well do the same for a second product:

tbl 2 = Tabl eDat aset (descri pti on=' Test Dataset 2')

tbl2['time'] = Col um(Doubl eld. range(n))

tbl 2['signal '] = Col umm(Doubl eld(n). apply(r))

tbl 2["error'] = Col um(Doubl eld(n).apply(r) * 0.5)

prod2 = Product (creator="'ThatsMe', description='Test Product 2')
prod2[' Tablel'] = tbl2

Now we have two products, pr od1 and pr od2, at our disposal. Their contents can be verified by
launching the dataset inspector. Any product can be saved in our storage using the following statement:
urn = Storage. save(product), where product is the product to be saved and urn is the
resulting "Uniform Resource Name" that is a unique identifier of the product within the storage. This
URN can be used directly to retrieve the product from the storage, however typically the URN is not
remembered, but rather re-obtained by a query to the storage. Thiswill be shown later.

L ets save our two products using:

urnl
urn2

st or age. save(prodl)
st or age. save(prod2)

To see how the URN looks just use:

print urnl, urn2

Asthey arewritten by default to thefirst registered pool of storage, they will end up in the pool named
default. Lets store one of the products also in the pool named test using:

ot her St or age. save(prodl)

Aswewill recover the URN of thisproduct later by aquery, wedont bother to storethe URN right now.

12.1.2.4. Finding out what is in storage: Starting the Product
Browser

If we have followed all previous examples, there should be now 3 new products in our storage that
have listed as creator ThatsMe. Two of the products should be in the first pool named default, while
the third product should be found in test.

Wewill examinefirst the simpler way to examine the contents of the storage using a GUI tool called
the Product Browser. It is launched with the statement: uri = br owsePr oduct (st or age) ,
where storage is the storage we want to access and uri contains a list of references that result from
our query. In our example we would type:

result = browseProduct (storage)

which brings up the GUI.

In the field "Creator:" type That sMe to restrict the selection to the files we created in our example
and hit the "Submit" button. The Query result panel in the middle left should now show atable with 3
rows, onefor each product. Clicking on one of the rows will highlight it and bring up adiagram of the
product contents on the panel to the right, where we can verify that our products contain attributes,

250

Accessing and Retrieving Data

metadata and datasets. The string to theright of the Pisthe URN. Clicking subsequently on the 3 rows
shows how the URN changes for each product. We can see that the pool names default and test are
part of the string, which shows that indeed two products ended up in the first and onein thelatter. The
Product Browser can be used to bring the URN for a given product into the JIDE session, i.e. make it
available on the command line. Lets click on the squares to the left of the result table so that they are
marked and the corresponding entries appear in the Download panel below. Upon clicking Apply, a
list of the selected URNS becomes available in the variable result.

The statement:

print result

will show the list of the URNs we have selected. Note that after changing the selection and hitting
"Apply" again, the pri nt result command will give a different result corresponding to your
selection. The "OK" button will update "result" as well and close the GUI.

The object "result" contains now alist of references to our products. We can obtain the same result
"GUI-free" by creating a query on the command line and applying thisto our storage:

queryl=Query("creator == 'ThatsMe'")
res = storage. sel ect (queryl)
print res

Now "res" contains the list of references. Printing "res’ should give the same result as the previous
first example with the Product Browser.

If we want to execute an unconditional query to find all productsin our storage, we can use:

query2=Query(" True")
res2 = storage. sel ect (query?2)
print res2

In case we have used the default storage before, there may be other products here that would now
show up inthelist.

12.1.2.5. More On Storage Queries: Other kinds of Querie and
more examples of command line queries

The Product storage can handle three types of queries:

« Attribute query is a (fast) query on meta data that all Products contain: creator, creationDate,
startDate, endDate, instrument, model Name. Thisis akin to querying a standard set of FITS header
keywords.

» Metadataquery isa(semi fast) query on meta data that can be different from Product to Product,
depending on what was placed in the product by the person creating it in thefirst place. Thisisakin
to doing aquery on any FITS keywords (if present).

 Full query is adata mining query that allows querying on all data elements in Products, using the
general methods provided for Products and datasets as well as the additional methods provided in
specialisations of those datasets and Products.

All query types have the same syntax, but a different purpose as described above. Setting up a query
isasfollows:

#Si npl e query

query = Query(expression)

#More advanced queries

query AttribQuery(product-class, variable, expression)
query Met aQuer y(product -cl ass, variabl e, expression)

251

Accessing and Retrieving Data

query = Ful | Query(product-class, variable, expression)

where the parameters to the query are:

e product-class: redrictcs a family of products. AIll Product classes have
her schel . i a. dat aset. Product asthebaseclass. Y ou canrestrict the query to asub-family
of Product. For example, if all HIFI Calibration Product classes stem from Hi f i Cal Pr oduct
you can limit your search by specifying that class.

» vari abl e:isastring denoting the variable name of the product that will be used in the expression.
e expressi on: isastring holding the query expression, which is limited to the query type.

It isworthwhile mentioning that the syntax of the expression above uses the same syntax as you would
usually use when inspecting the contents of numerical datain a JIDE session, (see eg Chapter 4) so
thereis no additional syntax to learn.

e Query Example

query = Query("instrument ==H FI and band == 1a")
a sinple query should be the default formused by npst users.

» AttribQuery Example
query = AttribQuery(Product, 'product', \
' product.creator=="M" and product.instrument="H FI"")
* MetaQuery Example
This type of query allows to inspect any part of the meta data of the product specified in the first

argument.

query = MetaQuery(HifiCal Product, '"h', 'h.meta["keyl"].value < 123 and \

h. neta["key2"].value == "Hello world"")
Note
@ In order to obtain a numerical value (rather than, e.g., the string equivalent) it is

necessary to stipulate that the meta key "value" is required, hence the need for the
stipulation of query on 'h.meta["key1"].value' rather than 'h.meta["key1"]'

* FullQuery Example

A datamining query exploitsthefull interface of the product in question. Numeric functions defined
in the basic toolbox are allowed:

query = Full Query(Product, 'p', 'p.creator=="M" and (ANY(p.spectrumdata < 2) \
or ALL(p["nyTable"]["myColum"].data > 5)"')

Note
3 Note that the ANY function used above is one of the standard numerical function
provided for DP, and simply checks whether the expression provided in its argument
istrue for any of the elements in that argument. See the DP User's Reference Manual
for more information.

12.1.2.6. Retrieving products from storage

The list of references obtained by our query with either the Product Browser or the
command line alows to load the product back from the storage using product =

252

Accessing and Retrieving Data

storage. | oad(res[index].urn). product,whereindexistheindex of thelist entry to be
retrieved. Following our example and assuming we still have the result resfrom our queryl, wewould
retrieve and plot the first product in our list by:

pl = storage. |l oad(res[0].urn).product

The Table Dataset would be extracted and plotted with:

tl pl. get (' Tablel')

pl = PlotXY(t1['time'].data, t1['signal'].data,\

styl e=Styl e(line=Styl e. MARKED, synbol =Styl e. TRI ANGLE))
pl.setErrorY(tl['error'].data,t1['error'].data)

In order to help know which index in the referencelist isthe one we are intere sted in without opening
every product and inspecting it, we could sort the refer ence list by metadata entries. For example, to
make the reference to the latest product appear last:

Met aConpar ator . sort(res, ["creationDate"])

This sorts the reference list by "creationDate", with oldest first. Other metada ta items, or multiple
metadata items are also possible). However, beware: it cha nges the contents of the original variable,
"res", rather than making anew list.

The Java "Collections" package (this must be imported into our session) can also be used for smple
reference list manipulation. For example to reverse the order:

fromjava.util inport Collections
Col | ecti ons. reverse(res)

12.1.2.7. Deleting Products from Storage

Now we want to clean up our storage again, as this was just an exercise. In theory we could go into
the relevant directory, identify the products by their filename and delete the respective FITS files.
After that we would need to re-build the index. This would work for the Local Store, we used in our
example, but in other implementations like the DbPool that would not be an option.

To remove our test products within the PAL context, we first need to identify them again by obtaining
their URNs and use the method . r enove() on the storage. In our example we can remove the first
two itemsin our list asfollows:

queryl = Query(creator == ThatsM)
res = storage. sel ect (queryl) storage.renove(res[0].urn)

st orage. renove(res[1].urn)

We can verify now with:

print storage. sel ect (queryl)

Trying to remove the third product in the previous list will result in an error, as we have no write
permission to the pool test through this storage. We will need to access this pool through the other
storage which was created by registering test as the first pool.

253

Accessing and Retrieving Data

resl = otherStorage. sel ect(queryl)
ot her St or age. renove(res1[0] . urn)
print storage. sel ect (queryl)

print otherStorage. sel ect (queryl)

The last two statements verify that the operation was successful and affected both storages because
the pool test isregistered in both. Both queries result in an empty list.

12.1.2.8. Updating/Repairing Storage

If the storage index becomesinconsistent, for examplein the case of files being deleted or added in the
directory, the index can bere-built using pool . r ebui | dl ndex() , where pool isa pool reference
obtained from the pool manager as shown above. For example the index of Pool1 can be rebuilt with:

pool 1. rebui | dl ndex()

There should be no attempt to accessthis pool during the operation, which can take awhile depending
on pool size.

12.1.3. DbPool

Used to access Products stored in aremote object (Versant) database. Here's an example:

Access to Products fromthe default

obj ect database of |ogical nane

' hcss. test. dat abase' .

pool = DbPool . getlnstance()

Access to Products from an

obj ect database of | ogical

name 'hifi.test. database'.

pool = DbPool . getlnstance("hifi.test.database")

Note that thisis an early implementation that needs to be tested thoroughly, so it is recommended to
use DbPools only around test databases, or databases that are used for casual development purposes
such that if dataislogt, it isnot abig problem.

It isrecommended for performance purposesto cache productslocally. To do this, wrap a CachedPool
around a DbPool as follows:

pool = CachedPool (DbPool . get | nstance())

12.1.4. HsaReadPool

The HSA read pool isan implementation that allows you to access and download observationsheld in
the Herschel Science Archives. By default, the whole observation context is downloaded when using
this pool (level 0, 0.5, 1 and 2, plus auxiliary products):

archi ve = HsaReaPool ()
store = Product St orage(archi ve)

12.1.5. CachedPool

The cached pool is an implementation that allows you to cache everything (including queries and
their results!) retrieved from any remote pool. Any remote pool, regardless of whether it isan Oracle,
Versant or whatever implementation, can therefore be cached as follows:

254

Accessing and Retrieving Data

pool = CachedPool (renot ePool)

Registering a cached remote pool allows you to work offline.
12.1.6. Setting up and Accessing Remote Pools
12.1.6.1. PoolDaemon

If you have apool that you wish to share with someone then you can start a Pool Daesmon that allows
a person access and indicates whether they have read/write/query access. The PoolDaemon can be
started from a command line in your system.

java herschel .ia. pal . pool . seri al . Pool Daenon [<host Port >(=4444)
[<pool nane>(=%${ hcss. i a. pal . def aul t pool } =st dpr od)
[<l oadAccess>(=true) [<saveAccess>(=true)]]]]
Exanpl es
java herschel .ia. pal . pool . seri al . Pool Daenon
java herschel .ia. pal . pool . seri al . Pool Daenon 4567
java herschel .ia. pal . pool . seri al . Pool Daenon 4567 st dprod
java herschel .ia. pal . pool . seri al . Pool Daenon 4567 stdprod true true

This makes the pool available on port number 4567.

12.1.6.2. Accessing Remote Pools Using the SerialClientPool

SerialClientPool (prototype) and PoolDaemon can be used to access remote poals.

Serial ClientPool can be used for accessing a remote product pool. Usage:

a Pool Daenmon i s runni ng at

host =t he. host . domai n

por t =4567

pool . i d=f oo

create a store and register the pool:

st or e=Pr oduct St or age()

store.register(Serial dientPool ("the. host.domai n", 4567, "f00"))

A simple mechanism to allow read/write/query access to remote pools. This remote pool can be a
Versant one (making happy all those who cannot run a Versant client such as the MacOS X fellows,
or those who do not have a Versant licence), or alocal store of a colleague.

Note that wrapping it up in a CachedPool ensures that you do not have to download a product twice.

12.1.7. Special Imports into Pools

We can import/store files of various typesin pools. Here, we give some specific examples.

12.1.7.1. Putting a Directory of FITS Files Into a Pool

It is possible to take any set of FITS files (e.g. from the Herschel Science Archive) and place these
into apool. We can iteratively place all FITS filesfrom adirectory into a pool which can be accessed
viaa browser and queried using the mechanisms described in this chapter.

fromjava.io inport File
| store=Local StoreFactory.getStore("newdir") # or any |local store nane
st or age=Pr oduct St or age()
storage.regi ster(lstore)

Istore.ingest(File("C /testdata/"), 0)

255

Accessing and Retrieving Data

#or any directory nane
to | ook at what you have use the Product Browser

a=br owsePr oduct (st or age)

In the above example alocal storeis placed in the default area (.hcss directory under the user's home
directory) of the user's computer. It is directly accessible in the same way as other pools from there.
This method does, however, not reproduce any hierarchy to the pool. It isa"flat" pool.

12.1.7.2. Placing Image (PNG) Files in a Pool and/or FITS File

Image data can be stored in a pool by placement in a Product with a suitable name, and saving this
product in pool or inaFITSfile:

Obtain bytes from PNG i nage
bytes = ...

Create a product with PNG data
p = Product ()
p["png"] = ArrayDataset (bytes)

Save it in a PAL pool

pool = Pool Manager . get Pool (" myPool ")
storage = Product St orage()

st or age. regi st er (pool)

st or age. save(p)

Save it directly in a FITS file
fits = FitsArchive()
fits.save("nyPng.fits", p)

Theimage can be placed in abyte array for storage in a dataset that can be placed in the pool.

Obtain bytes from PNG i nage

(it depends on how you generate the PNG i mage of a plot)
fromjava.awm . i mage inport Bufferedl mage

fromjava.io inport ByteArrayQutput Stream
fromjavax.image inport |magel O

i mmge = Bufferedl nage(<i nage nane>) # inplenenting java.awt.imge. Render edl mage
stream = Byt eArrayQut put St rean()

I magel O. write(i mage, "png", stream

bytes = Byteld(streamtoByteArray())

12.1.8. Common Problems

Why do | keep getting 'IndexError' or ‘'lllegal ArgumentException: <query> could not be
evaluated correctly’ messageswhen | run my query on my PAL Product Storage?

Y ou could get these message for one of the following reasons:

1. Your query string (the third argument of a query, eg 'p.creator==..") is ssmply not consistent with
the jython syntax and could not be correctly interpreted by the internal jython interpreter the PAL
uses. Check your query string by evaluating it on the jython command line. If your query uses a
‘handl€' to a product (eg the 'p' in aquery 'p.metd..]" is ahandle), then create a dummy product of
the type you want to query on the command line to test the query against.

2. It could be possible that the query references some data that does not exist in *any* of the products
that match the product type you have passed in that query. If you see in the details of the error
message something along the lines of '<something> does not exist', then this may be the case for
you.

256

Accessing and Retrieving Data

For example, consider the following MetaQuery:

query =MetaQuery(Product, 'p', 'p.neta["tenperature"].val ue==10)
resul t set =st or age. sel ect (query)

The query first starts creating a shortlist of all products in the storage matching type 'Product’. It
then runs the query string on each product in that shortlist. If any of those products don't contain
the information referenced in the query string, an error is raised.

There are two waysto avoid this:

» Beasspecificasyou can when it comesto specifying the product typeinaquery. If you know the
product type you want to query is of type 'CalHrsQDCFull', then specify that. Running queries
using the most general product type of 'Product’ is not recommended.

* Run atwo-stage query, using the containsKey() operator to check whether a component exists
firg, e.g.

Get a sub-set of products that contain the netadata 'tenperature’
queryOne= Met aQuery(Product, 'p', 'p.nmeta.containsKey("tenperature")")
resul tset One = storage. sel ect (queryOne)

Run the original query on this subset

queryTwo =MetaQuery(Product, 'p', 'p.neta["tenperature”].val ue==10)
resul tset Two = storage. sel ect (queryTwo, resultSetOne)

Accessing the Results of a Query

The results set can be accessed in the following way

resul tset Two. t oArray() [O] . pr oduct
resul tset Two. t oArray()[1] . pr oduct

Why ismy PAL query so slow?

One of the possible reasonsisthat you are executing a FullQuery, and full queries by their very nature
are the most intense of queries and are therefore the slowest.

FullQuery executions should be run as the last stage of a multi-stage query operation. Below is an
example of how to search a storage for products of type '‘MyProduct' that are created by a developer
called 'timo', but contain a specific value in the product data itself.

Stage one: Find all products of type MyProduct with creator 'tino'

attquery = AttQuery(MProduct, 'p', p.creator=="tinm')

resul tset = storage. sel ect (attquery)

Final stage: Find all products in selection generated from previ ous queri es,
that has a value 10 in the colum 'mycolum' in dataset 'nydataset’

full query = Full Query(Product, 'p', 'p["nydataset"]["nycolum"].data[5]==10")
storage. sel ect (ful l query, resultset)

There can be as many intermediate queries between the first stage and final stage involving
AttribQuery or MetaQuery, but FullQuery's should be left to last.

12.1.9. Storage Product Versioning
12.1.9.1. Versioning

To save a set of versions of a particular edition of a Product:

257

Accessing and Retrieving Data

edition = Product ()

storage. save(edition) # version 0 of Product saved
Modify edition

storage. save(edition) # version 1 of Product saved

To get the latest version of the Product edition, or thelist of versionsfor that edition, you need to have
available at least one, arbitrary, version. With this, you can recover the latest version of that Product,
and thelist of all versions of the Product in the storage. For example:

| at est =st or age. get Head(pr oduct Ref Of AnyVer si onOf Edi ti on)

ver si ons=st or age. get Ver si ons(pr oduct Ref Of AnyVer si onCf Edi ti on)

Y ou can get information on the current version of each product, aswell astag information, asfollows:

print storage.versioninglnfo

12.1.9.2. Querying Product Versions

The default query isto search for just the latest version of a Product edition:

query=Attri bQuery(Product, "p", "1")
storage. sel ect (query) # Just the | atest versions

If you want to get al versions of editions that match a query, use the extended query constructors,
setting the fourth argument to true (or 1):

query=Attri bQuery(Product, "p", "1", 1)
storage. sel ect (query) # Al versions of Product editions that match

(Note that with this extended query, the specia products containing versioning information,
VersionTrackProduct and TagsProduct, are also returned if they match the query.)

War ning: make sure that you use the meta.containsKey() checks when performing Full or Meta-data

gueries, asthe presence of versioned products may affect those queries, or worse, result in an exception
if the metadata being queried for is not present in any product version.

12.1.9.3. Tagging Products in a Store

To save a product with a given tag:

st or age. saveAs(nyproduct, "nytag")

saves nyproduct to URN=product: 123, and links tag 'nytag’ to that URN
st orage. | oad(" nytag")

returns a ProductRef to product at URN=product: 123

To assign atag to an existing product in the storage:

st or age. set Tag("nytag", urn)

Y ou can assign multiple tags to the same product:

st or age. set Tag("nytagl", urn)
st or age. set Tag("nytag2", urn)
st or age. set Tag("nytag3", urn)

Y ou can re-assign tags from one product to another:

258

Accessing and Retrieving Data

st orage. set Tag("nytag", urnl)
st or age. set Tag("nytag", urn2)

Note that the above steps removes the tag mytag from urnl, and re-assigns it to urn2. A given tag
maps to only one URN.

Y ou can also remove tags from the system:
st orage. renoveTag(" mytag")
And check if agiven tag exists:

print storage.tagExists("nytag")

12.1.9.4. Turning Off Product Versioning

If Product versioning is not wanted or required, you can turn off the use of versioning within your
session by using.

hcss. i a. pal . versi on = none

12.1.9.5. Using the New Versioning Mechanism Against Existing
Pools

Y ou can use the new versioning mechanism against pools with previously existing data. Although it
is highly recommended to use the mechanism against new pools with no data.

If you wish to use the mechanism against pools with existing data be aware that existing products in
your pool do not have versioning information. So if you modify such products, and then save them:

p = ol dstorage. | oad("myurn"). product
/Il modify p
ol dst or age. save(p)

The PAL does not know what version the modified product belongs to, and therefore saves the
modified version of the product as the first version of awhole new version track.

It is therefore recommended to use the new versioning mechanism against a clean ProductStorage,
devoid of any products, or as the next best thing, migrate your products to a fresh pool asfollows:

st or age. regi st er (newpool)

st or age. regi st er (ol dpool)

p = storage.load("urn:123"). product

storage. save(p) # saves the product with versioning information, to newpoo

And then use the newpool for future sessions (archive or remove oldpool).

Note also that a tool for copying pools, which reads all products and saves them back again, by
preserving their hierarchy, will be placed in the HCSS at a later date. Thiswill allow migration from
old to new poolsto be done more easily.

12.1.10. The Product Browser

After all thetheory it isnow timeto entertain ourselveswith agraphical tool, the Product Browser. We
will start by describing how to start the browser from JIDE, before moving on to a short description
of the current browser features.

259

Accessing and Retrieving Data

To start the browser, open a HIPE session and execute the following script:

st or age=Pr oduct St or age()
pool =
st orage. regi st er (pool)

result = browseProduct (storage)
Use the popped up GUI

Local St or eFact ory. get St or e("devel ")

to explore and sel ect products.

The result variable will not be popul ated until you push
either 'Ok' or 'Apply' in the Product Browser.
print result
Note
Alternatively, execute the script herschel /i a/ pal / browser/

browser Start. py

12.1.10.1. A visual tour of the browser

The following image shows a screenshot of the product browser user interface. The screenis divided

into four areas:
1. Query area: enter query parameters.

2. Result area: view the result.

3. Result inspection area: inspect a selected product.

4. JIDE basket area: collect the productsto be returned to J DE.

%; Product Browser - D_|A_PAL_BROWSER_1_4

Attributes Meta Data
Creator: Creation Date: from [2008-06-21T00:00:00.000 | Key Type Comp Value ad
Instrument: to [2006-08-227000000.000 | || [string | | X
Model Hame: Applicable Date: from |
Type: @ to
Data Mining
[Variable = pl: | |
Search
Product Class: ‘[:Iass herschel.ia.dataset.Product |v‘ reload @ Search) Refine lII
Query result: 21 results listed : Product
Site URM Class [a [Creation Date - Start Date : C herschel.hifi.cal hrs.Hrs [zimple.default] (3)
[|simple default |herschel hifi calInstrumer| ¥ Site 2AT17:45:17. 656 |2006-06-21T17:49.17 656 |1~ 4 Attributes (7)
simple.default herschelia.palMapContes e ey class 21T17:49:17.696 |2006-06-21T17:49:17.656 * type=Unknown
simple.default herschelia.pal.MapConte; % 21T17:49:17.556 |2006-08-21T17:49:17.556 = creator=Unknown
simple.default |herschel hifi.cal Hifi ¥ 1d 21T17:459:17.656 |2006-08-21T17:45:17 A56 = creationDate=2006-06-21T17:49:17 466
simple.default herschel hifical.hts Hrs | ¥ Creation Date 21T17:48:17 466 |2006-06-21T17:49:17 466 |]= * instrument=Unknown
imple.default [herschel hifl.cal.companel o giart pate 21T17:49:17.446 |2006-08-21T17:49:17 446 * modelName=Unknown
[v|simple.default |herschelhifi.cal.compone w 2ATI74917.376 |2006-08-21T17.49.17. 376 * startDale=2006-08-21T17.49:17 466
simple.default herschelhifi.cal.campong End Date 21T17:48:17 366 |2006-06-21T17:49:17 366 * gndDate=2006-06-21T17:49:17 466
[v|simple.default |her: ifi.cal.componed ¥ Instrument 21T17:49.17 366 |2006-06-21T17.48:17 366 ? Meta Data (1)
[lsimple.default h ¥ Model Name 21T17:47:33.276 |2006-08-21T17:47.33.276 * |a=t_vers_pi=undefined
simple.default hiers et hifi.cal cormpane T 21T17:47:33.076 |2006-06-21T17:47:33.076 ¢ P D- herschel hifi cal component HrsProduct! [simple defaott3] i)
L |simple.default |herschel hifi.cal.compaone yne 21T17:47:33.076 |2006-06-21T17:47:33.076 o Aftributes (7) Dataset Inspector
= i & Creat -06- =]
[lsimple.default herschel hifi.cal.compone reator 21T17:47:33.066 |2006-08-21T17:47:33.066 i~ ¢ Meta Data (3) Add to JIDE Basket
4 1l ¥ URN v * wersion=1 S
7 Product Storage * date=\ved Jun 21 17:49:17 CEST 2006
THECrmna orsd * narne=HrsProduct]
asket: 4 results liste ¢ P 1 - herschel hifi.cal component HrsProductt Tsimole default-41 (03
] Site URN Class Ief Creation Date Start Date o A Atributes (7) Dataset Inspector
[vlsimple default |herschel hifical.componentHrsPr. | 5|2006-D6-21T17.49:17 376 |2006-06-21T17.49:17.376 |20 Meta Data (3) Remave from JIDE Basket
[v|simple default |herschel hifi.cal.hrs Hrs 0[2006-06-21T17:49:17 466 |2006-06-21T17:49:17 466 |20 * wersion=2 —[%
vsimple default [herschel iapal MapContest 2|2006-06-21T17:48:17 556 |2006-06-21T17:48:17 556 (20 * date=\ed.Jun 27 17:49:17 CEST 2006
[elsimple default [herschelhiflcal.componentHrsPr.. | 4[2006-06-21T17:49:17.366 |2006-06-21T17:48:17.366 |20 * name=HrsProduct!
¢ P 2- herschel hifi.cal component HrsProduct [simple.defaulta] (03
o Attributes (7)
s Meta Data (3)
@ * wersion=2
* date=wed . un 21 17:49:17 CEST 2006
* narne=HrsProduct]
4] i I
| Ok | | Apply ‘ | Cancel | ‘ Help |

Figure12.1. The Product Browser

260

Accessing and Retrieving Data

The following sections describe first atypical use case and then each areain more details.

12.1.10.2. Simple use case

1

2.

Specify attributes of a product in the query area (A)

Click on the "play" button to execute the query

. Review the resultsin the result area (B)

. Optional: if there are too many results, refine the query by specifying meta data and/or data mining

queries, and press the "Refine" button.

. Inspect selected resultsin the result inspection area (C)
. Transfer the results of interest from the area (B) and (C) to the JIDE basket (D)

. Click "ok" or apply and process the selected resultsin JDE. The results are availablein the return

variable of the browseProduct() method (in the browser start example above it iscaled "result").

12.1.10.3. A: Query area

The query areais divided into three input areas. Attributes, Meta Data, and Data Mining.

1

2.

Attributes queries search commonly defined attributes only.

Meta data queries search on additional meta data specific to a product. The user needs detailed
knowledge about a product to specify meta data queries. However, the result inspection area (C)
may be used to see available meta data for a product.

. Datamining queries allow to specify free form queries in the Jython query language. Refer to the

documentation of the ProductStorage for further information on this topic.

Note that all attributes and meta data parameters are joined by the AND operator.

Note for power users: for simple OR-Operations you can use the JIDE basket (D). First, do a query
for the first term (e.g. Creator="Andr€") and add the results to the J DE basket. Then, do a query for
the second term (e.g. Creator="Marc") and add the results to the JIDE basket.

For more complex OR-queries you can use Data Mining queries, although they might become very
slow. Complex OR-Queries on meta data level are currently not supported.

12.1.10.4. B: Result area

Thistable displays all products that match a specific query.

Check/Uncheck a product to moveit to or remove it from the JIDE basket.

Y ou have several possibilities to rearrange the products:

* Click on atable header to sort ascending or descending.

 Right click on atable header to pop up a context menu where you can hide/unhide a column.

» Drag and drop a column header to rearrange the column order.

» Click between two column headers to resize a column.

261

Accessing and Retrieving Data

Please note that the current version of the browser does not store your settings between two sessions.
Thisis one of the high priority features for the next version.

Currently the browser supports the following columns:

» Site (URN): the data store of the result.

* URN Class (URN): the class of the product as encoded in the URN.

* 1d (URN): the unique id within the data store.

» Create Date (Attribute): self-explaining.

» Start Date (Attribute): self-explaining.

» End Date (Attribute): self-explaining.

 Instrument (Attribute)self-explaining.

* Model Name (Attribute)self-explaining.

» Type (Attribute)self-explaining.

* Creator (Attribute)self-explaining.

* URN (URN)convenience column for copy & paste. If you triple click into acell of this column you
can select and copy the urn to your operating system clipboard. Thisis one way to use the browser

independently from JDE.

* Product Storage: experimental only. Might be of use if the browser support multiple storages.

12.1.10.5. C: Result inspection area
Select any entry in the query result area (B) or in the JIDE basket (D) to inspect its attributes, meta
data and children in the result inspection area C. The selected product or context will be displayed
in ahierarchical tree structure.

There are currently five types of nodes:

e P: aProduct contains the rea data and can be examined with the data set inspector. To open the
data set inspector you can either double or right click on the 'Product..." node.

» C: aContext contains other Contexts or Products.

* A:apredefined set of Attributes common to all products and contexts.

M: Meta data that is specific to each type of products.
» V:old Versions of aproduct or context.

To add/remove products and contexts to or from the JIDE basket you can right click and select the
appropriate action: Add to/Remove from JIDE Basket.

First note for power users. The current implementation of the tree supports only contexts that are
inherited from ListContext or MapContext. Thisis due to missing generic meta information about the
children of an ordinary context.

Second note for power users: The current implementation of the tree does not support the description
attribute of a product. Thisis due to a missing getter-method in ProductRefs.

262

Accessing and Retrieving Data

12.1.10.6. D: JIDE basket area

The JIDE basket collects the products and contexts of interest. Clicking on"Ok" or "Apply" will make
the content of the basket availablewithin JIDE. "Ok" will closethe browser, "Apply" will keep it open
for further usage. Note that the results are sorted the same way as in the JIDE basket.

Now you can further analyse the results in JDE. Note that the ProductBrowser will return a list of
ProductRefs rather than a list of Products. A ProductRef is a small object that stores a pointer to a
Product, without loading the Product into memory.

result = browseProduct (storage)

This will print the list of ProductRefs

print result

This will print the first ProductRef in the list.
print result[O0]

This will print the first Product in the list.
print result[0].getProduct ()

12.2. Databases
12.2.1. Introduction

If you want to work with databases, which is one of the main ways in which test and (later)
observational data are to be stored within the HCSS, then you will need to have a Versant Database
System availableto you. For most large sitesyour system manager will haveinstalled aVersant license
which allows the setup and use of databases at your home institution. Y ou can also install a database
capability on your own computer/laptop. Unix and Windows versions are available.

Most users will not need to set up adatabase but rather just accessfor reading stored data. In this case,

Section 12.2.2 may be skipped.
Note
@ Versant is commercia software and procurement has been done centrally for Herschel.
Please contact the Herschel software administrator at your institute for more details on
how to proceed.

Alternatively you can contact the following people:
HIFI:

 Albrecht de Jonge

* Peer Zaad

PACS:

» Ekkehard Wieprecht for PACS/IMPE

* Wim de Meester for PACS/KUL

SPIRE:

» Steve Guest

Some notes on Versant database setup are availablein Section 1.4. For further information please also
consult the Known issues with Versant Databases document.

263

mailto:A.R.W.de.Jonge@sron.rug.nl
mailto:peer@sron.rug.nl
mailto:ewieprec@mpe.mpg.de
mailto:wim@ster.kuleuven.ac.be
mailto:S.Guest@rl.ac.uk
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/devel/versant.html

Accessing and Retrieving Data

12.2.2. Starting Up A Database:

The following command is the only one required to set up a database within the HCSS and make it
available for use.

> db_admin -i <dbnanme>@host> #initializes directory

Database names should be given in the format: t ony_hcss@ i n- sron- 02. sron. rug. nl .

The database now being used should be in the properties file (use "propgen™ to check this out - Just
put "propgen” on the command line and hit the "General” tab at the top. The database currently in use
is on the second line down. Change if needed).

Now we can fill the database.

12.2.3. Schema Evolution

On occasions, new database formats need to be created for the HCSS. In such cases, it is necessary
to perform a schema evolution on old databases to update for use in current DP environment For
development purposes, it may of course be acceptable to simply create a new database, if thereisno
datato be preserved.

Schema Evolution is supported for databases created by versions of the HCSS back to HCSS-v0.1.3
(build number 168) athough, in principle, it should be possibleto go back to HCSS build number 162.

Schema evolution is necessary when anew version of the HCSSis installed that has a higher schema
version than the database. The schema version of the CCM can be found by examining the file
'%ICSS_DI R% doc/ SCHEMA_VERSI ON inthe HCSSdistribution and isdisplayed against rel eases
in the HCSS downl oad web page.

If it is determined that a schema evolution is needed then the user is referred to the manager of the
system and document DBA procedures.

12.2.4. Providing Database Access for a DP Session

Database access can be changed during a DP session without the need to exit JDE. After editing
properties or saving changes made using the propertiestool (propgen), the user can usethe new settings
immediately within an ongoing DP session.

There are two methods for changing propertiesto alow database access.

12.2.4.1. Properties File Setup for Database Access

There are two ways of setting up your propertiesto alow accessto a particular database during a DP
session. First, the file hess.props (on Windows) or the file myconfig (on Unix) can be edited.

On Windows, the hcss.props file is usually in the top directory of the user (e.g., C. \ Docunent s
and Settings\ <user name>).

On Unix, the myconfig fileisin the directory ~/ . hcss.

The following three lines should be placed in the file being edited if they are not already there.

var . dat abase. server = servernane
var . dat abase. devel = dbnane@{var . dat abase. server}
hcss. access. dat abase = dbnane@{var. dat abase. server}

where servernameisthe name of the server where the database islocated (e.g. lin-sron-02.sron.rug.nl)
and dbname is the name of the given database to be used in the DP session.

264

http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/versant/dba-procedures/index.html

Accessing and Retrieving Data

12.2.4.2. Using the Propgen Tool

Alternately, the propgen tool can be used to indicate the server and database to be used. The propgen
tool can be started from a terminal prompt assuming the HCSS system has been installed and it has
been setup to run on the system.

At aterminal prompt, the command
> propgen

will start up the propgen tool (see Figure 12.2). Using the tabs at the top of the propgen screen, the
user should click on the tab marked "General ".

Now edit the variables var.database.server (input servername) and var.database.devel (input
dbname@${ var .database.server}) at the top of the tabbed page.

Property Generator

File Variables Help

=10l x|

Product Generation | SPG |"Lstore | BB Type | W_SCAN_OLA | HRS_NEWOLA | WBS_OLA | Variables |
TM Ingestion (inst Apids) | Th Ingestion (SIC Apids) TM Ingestion (EGSE Apids) | Jythoninterpreter | repld | PAL Managers | PAL
Jeonsole | MIB_ | MPS | Task | Component - printing etc |” TCHand 0OL Ingest | TestControl | Tingestion
Access r AUX processors r hinstruct r Calsdh r CCM r cus r DDS Client r dataflow r image r DBASE If General r Document manual generation
Database Server (var.database.server) @icedb.sron.rug.nl 0 READ Set to default
Database name (var.database.devel) iIt_fm_a_prop_devi{var.database serer} Set to default
Build directory {var.hcss.dir) Coliathifillibihess Set to default
Test harness directory {var.hcsstest.dir) $ivar-hess.diry Set to default
Scratch directory for hcss (var.hcss workdir) Citermp Set to default
nstrument usedivar.hcss.instrument) HIFI w | Setto default
Port humber{var.router.port) 9877 Set to default
MPS top level data directoryvar.mps.datadiry fhomefhscidata Set to default
\Store factory herschelversant store. ReplStareFactordmpl Set to default
CCM factory herschelversant.com.CGareFactordmpl Set to default
CUS Factory herschel.cus.compiler.CusFactarlmpl Set to default
Test harness database name F{username}_testhivardatabase serer} Set to default

Read details from HCSS_PROPS

Figure 12.2. The pr opgen window.

Most properties that can be changed using the property generator are created automatically in the DP
environment. Thefirst screen 'General’ allows the identification of adefault database and server name
to be set up.

12.2.5. Changing the Database to be Accessed

The database to be accessed for information can be changed by changing a configuration property
called 'hcss.access.database’.

Configuration. set Property("hcss. access. dat abase", " <dat abase nanme>")

12.2.6. Browsing a Database

In order to know what you might want out of a database, you need to be able to browse through the
database contents. The Test Execut i onBr owser task allows the user to do just that. Input of the
following short example allows the user to view the database connected to. In dealing with databases

265

Accessing and Retrieving Data

we use the her schel . access package and the sub-package her schel . access. util . The
first two lines of the small script shown below import these packages. These need to be imported into
our session before using the browser to display the contents of a Test Execution database.

Warning
O For large databases this can take up considerable amount of memory (and time) and is
therefore only recommended for relatively small databases at present.

i mport herschel .ia.task. Task

from herschel . access inport *

from herschel . access. util inport *

Used in this node, the browser is not set up to allow nouse sel ection
Test Execut i onBr owser . di spl ay()

Successful execution of this command will bring up a separate window displaying information on
the data contained in the database. This includes information on the script used to create data, the
observation ID (scroll to thefar right of the window) and the time (local) for when the datawas placed
in the database.

At afuture date, afiltered display of a database is expected to be possible (see bottom left of current
TestExecutionBrowser window). It is also expected that selection and download following a mouse
click will become available.

12.2.7. Getting Data Frames From a Database

Once connected to a database and knowing the date or observation id of your data (see previous
section), we can retrieve both data frames and housekeeping data from the database. In this section
we discuss the basic means for obtaining dataframes from a database. Here we are handling RAW
dataframesfor which thereisno directly associated meta-data, although housekeeping dataisavailable
from the period of time during which the data was taken (see next section).

There are two main methods for obtaining dataframes.

» Command line access

» Through a DataSelector GUI

When accessing dataframes it is particularly useful to use the navigation property available in DP.
This speeds up the accessing of dataframesin adatabase. In order to do this, start the propgen tool (see

Section 12.2.4.2) and then go to the "Access' tab. Near the bottom of the window, change navigation
value from false to true (click on the cell containing the word "false" and pulldown to "true").

12.2.7.1. Command Line Access to Data Frames
The basic idea for command line accessisto
+ Create ameans to access data frames
* Indicate which data you want to get (e.g., by observation identification, obsid)
» Go search for it in the database
» Actualy get the frames and put them into an array (or table).
The following example illustrates how the above is done within a DP environment. In this example,
an observation made up of several frames is placed in a table with each column of the table being a

single 1D spectrum. Something similar could also be set up for multi-dimensional data. In these cases,
each "column” of atable would have an N-dimensional object.

266

Accessing and Retrieving Data

from herschel . access. util inport *

from herschel . access inport *

Create a tabl edataset for the data frames to go into

t abl e=Tabl eDat aset ()

Start nmeans by which we will access the datafranes

in the database

df access=Dat aFr aneAccess()

Provide an id for the frames we are | ooking for

In this case the observation has an identification nunber of 1844

df access. set Qbsi d(1844)

Find the data in the database (navigate/query)

This just provides a set of references

to where data franes fitting the criteria reside in the database

dat a=HcssConnect i on. get (df access)

|If there is sonmething found, |length of the references > 0

if len(data) > 0

Then | oop around and get all the franes associated with the obsid
for j in range(len(data))

df = data[j]
Now actual |y get each franes and put themin a real 1D array
dat ad = Doubl eld(df. get Franme())
And we nake each franme into a colum in a table
so that table[0] is the first colum and contains
the first 1D spectrum of the observation, value for each channe
The columm | abel is the string value of j, i.e., 0, 1, 2, 3..
tabl e[str(j)]=Col um(dat ad)

Example 12.1. Basic command line method for getting data frames from a database

Warning

O Using HcssConnect i on. get () meansthat all the dataframesin the observation are
passed into the user's JIDE session at one time. Care should be taken since this could lead
to large amounts of data being requested and the JIDE session running out of memory.
Thiswill usually then require the user to quit the current session and unsaved work islost.

Example 12.1 brings in a set of spectraasatable. To see what isin the table we can

Get general overview

print table

See what is in the first colum

print tabl e[0]

See just the data for the first colum. No quantities, columm headings etc
print table[0].data

A plot of table[0].datawill show a channel versus value 1D spectrum.

12.2.7.2. From Database to ASCII File

Following on from the previous section. If we want to have the spectra be placed in an ASCII table
output file, then we can add the following code to our example:

Set up an output table

m ne=Asci i Tabl eTool ()

Add a description to our table

tabl e. descri pti on="Sanpl e spectra"

Make sure there is a header on the output - see Ascii Tabl eTool help
m ne. formatter. header =1

Make sure that comments are all owed

m ne. formatter. comment ed=1

Indicate the prefix for cooments in the file

m ne. formatter. comment Prefix=";

Provide a nane for the ascii output file and save the data
m ne. save("sanpl e_spectra", tabl e)

267

Accessing and Retrieving Data

Being a little more sophisticated, we can add in a prompt and & so iterate around to obtain several
observations from a database and place them in ASCII files. The next example provides a basic Java
Swing component to prompt the user for a starting and ending obsid. The data is then passed onto
appropriately named ASCI| tablefiles.

I nmport Java swing for GU conponents
i mport javax.sw ng as sshw ng
from herschel . access. util inport *
from herschel . access inport *
The data will be placed in comma-delinited tables.
Pronpt the user for first obsid using a JAVA Sw ng conponent
i nput _obsid = sshw ng. JOpti onPane. show nput Di al og\
("Enter first obsid in list: ")
start_obsid = int(input_obsid)
Pronpt again for |ast obsid
i nput _obsid = sshw ng. JOpti onPane. show nput Di al og\
("Enter last obsid in list: ")
end_obsid = int(input_obsid)
for i in range(start_obsid, end_obsid+1):
t abl e=Tabl eDat aset ()
df access=Dat aFr aneAccess()
df access. set Obsi d(i)
dat a=HcssConnect i on. get (df access)
if len(data) > O:
for j in range(len(data)):
df = data[j]
dat ad = Doubl eld(df. get Frane())
tabl e[str(j)]=Col um(dat ad)
m ne=Asci i Tabl eTool ()
tabl e. descri pti on="Sanpl e spectra"
m ne. formatter. header =1
m ne. formatter. cooment ed=1
m ne. formatter. conment Prefix=";
m ne. save("sanpl e_spectra_"+str (i), table)

Example 12.2. Database to ASCI| tablesfor multiple spectra

Theinner loop in the above example allows usto get each frame in an observation in turn and place it
into atable "column". The outer |oop takes the tables formed for each observation id and places them
in an ASCII file caled sanpl e_spectra_<obsi d>. t xt . These are comma-delimited ASCI|
tables viewable in any text editor.

12.2.7.3. Downloading Dataframes from a Database Using a GUI

A somewhat more sophisticated method of accessing adatabase from within aDP session involvesthe
use of aGUI interface such asaDataSelector tool. Thisisavailable viathe ProcessConnect command.
The next example provides a downloadable script that uses just such an interface for obtaining HIFI
dataframes and is given as an example of how to include GUI components to download dataframes
from a database.

268

Accessing and Retrieving Data

from herschel . hifi.generic inport *
from herschel .ccm api inport *
import java.lang.reflect
i mport javax.sw ng as swi ng
The followi ng defines a class we can then run in a DP session
class Hifids:
def __init__ (self):
Connect the processor so that we get data output to 'a'.
sel f. pc = ProcessConnect ("pc")
Now set up place for output of datafrane
sel f.out = self.pc. get Connector ("df-output")
Create an array which will hold H FI data frames - up to 1000 of them
self.a = java.lang.refl ect. Array. newl nst ance(Hi fi Dat aFr anme, 1000)
Provi de passage for the datafranes into 'a'.
sel f. out. pass(self.a)
Now setup a user GUI for the process connector and a conpletion button
self.win = sw ng. JFrane()
sel f.w n. cont ent Pane. | ayout =j ava. awt . Fl owLayout ()
sel f.w n. cont ent Pane. add(sel f. pc. get JConponent ())
choose = swi ng. JButton("Finished", size=(65,70), \
acti onPer f or red=sel f . dat aChoi ce)
sel f. w n. cont ent Pane. add(choose)
sel f.w n. pack()
sel f.w n. show()

def dataChoi ce(self, event):
This subroutine creates a table when the GU's "Finished" button is clicked.
t abl e=Tabl eDat aset ()
tabl e. descri pti on=("Data output")
Allow the table (output) to be seen within the session, not just the class.
gl obal table
for j in range(1000):
if (self.a[j] !'= None):

datad = Doubl eld(self.a[j].getFranme())

table[str(j)] = Col um(dat ad)
...and gets rid of the pop-up window to finish.
sel f.w n. di spose()

Example 12.3. An example GUI interfaceto a database

M

To use the program, download it into your JIDE session and hit the button. Now, whenever
you want to run the program during the rest of your DP session, type the following (e.g., at the | A>>
prompt)

Hifids()

Warning
O The above example script handles HIFI dataframes only for now, but is used as an
illustration.

This brings up a window similar to that shown in Figure 12.3 - showing the "play" tab screen. You
can browse the database with the button (bottom left), choose between dataframes or source packets
under the "data' tab and get the data under the "play" tab. Dataframes associated with particular
APID, building block ID or observation ID can be chosen (see Figure 12.4). A timeframe can also
be indicated.

269

Accessing and Retrieving Data

(=3

Finished

Figure 12.3. The Dataselector tool Pl ay tab.

Once the dataframes have been identified, they can be obtained by hitting the play button under the
"play" tab. This is the single arrowed button to the left. The buttons on under this tab have similar
functionsto those on aDVD player! Once play is complete, hitting the Finished button exits the GUI
and places the dataframes in atable available to the DP session of the user.

(=3

) Packets
® Data frames

Finished

Browse

Figure 12.4. The Dataselector tool Dat a tab.

Output for this program is placed in a TableDataset, called table, where one column holdsasingle 1D
spectrum. Thistableisthen available for use in the user's DP session.

12.2.8. Accessing Housekeeping (HK) Data

Assuming you have access to a database whose schema is compatible with the version of the software
you are running (see above for information regarding schema evolution) then the HCSS package
binstruct can be used to access housekeeping information. Housekeeping packets are dealt with in a
somewhat different way to dataframes, but there are some similaritiesin structure.

12.2.8.1. Accessing HK Information For a Given Obsid

The following example illustrates basic housekeeping packet access for an observation with an obsid
of 1400. The end product is a table with two columns, time in the first column and the housekeeping
parameter value (raw) in the second column. Although an example relative to HIFI is given, this can
be adapted to dealing with HK data from the SPIRE and PACS too.

270

Accessing and Retrieving Data

|l mport packages needed
from herschel . access inport *
from herschel . access. util inport *
from herschel . bi nstruct inport *
from herschel . pus inport *
Look to access HK packets associated with obsid = 1400
pk = Packet Access(1400)
Connect to the default database to find the packets
hk_set = HcssConnecti on. get (pk)
Create an enpty Java array list - needed for the
Packet Sequence routine bel ow.
arrList = java.util.ArrayList()
Loop around addi ng the housekeepi ng dataset into our array
for x in range(len(hk_set)):
arrList.add(hk_set[x])

We can | ook at our array

print arrlList

...but to get something sensible we need packets in a tinme order.
pseq = Packet Sequence(arrList)

Get a listing of the paraneter types contai ned

print pseq

Find packets in the sequence which contain information on

tenperatures within the focal plane unit

seq_FPU_Tenp = pseq. sel ect (TypeEqual s(" FPU_Tenper at ures"))

Find out what paraneters are contained in the sel ected packets

by obtaining the housekeepi ng paranmeter nanmes fromthe first

sel ected packet in the sequence

par _FPU Tenp = seq_FPU_Tenp[0] . get Par anet er sCont ai ned()

Print out to the DP session the names of all the paranmeters contained
print par_FPU Tenp

Choose the FPU Tenperature paraneter you want to get info on

...and get a time ordered set of housekeeping data for it

The output file plot_fpu_hk is a Tabl eDataset with one colum for tine
(a Finetime of mcroseconds since 1 January 1958)

and one for the value of the paraneter (RAWrather than engi neering
val ue). Here we choose the paraneter FPU b_body_top for the table

out put and get the converted val ues (in degrees K)

pl ot _fpu_hk = seq_FPU_Tenp. get Convert edMeasures(["FPU_b_body_t op"])

time = Doubl eld(pl ot _fpu_hk[O].data/1000000.0) # puts time into seconds
data = Doubl eld(pl ot _f pu_hk[1] . dat a)

HH O HHHH

Now we can plot the tinmeline of the HK data over the

time period of the observation (obsid=1400) by plotting the table
p = Plot XY(time, data, style=Style(line=8, color=Col or. bl ack))

G ve a |layer/legend nane...

p[0] . name="ti me plot"

...and add a title

p.title.text="FPU t enperat ure"

Example 12.4. Basic HK packet access

12.2.8.2. Accessing HK Data For a Given Time Period

We may be interested in looking at HK data for longer periods of time, e.g., over an extended period
covering several observations within the same database. Thisis particularly useful when looking for
trendsin instrument data.

In the next example we show how HK data can be obtained for a set of parameters over a given time
period entered as Java Dates. The exampleis specific to use with HIFI databases but providesageneral
illustration how HK data can be obtained from a HCSS database.

Note

@ Care needsto be taken that time periods being sampled are not too long since the HK data
isheld in memory and days of HK data can lead to an "OutOfMemory" error.

271

Accessing and Retrieving Data

I nport needed packages for handling databases and HK data
from herschel . access inport *

from herschel . access. util inport *

from herschel . bi nstruct inport *

from herschel . pus inport *

And this allows us to deal with tines.

from herschel . share.fltdyn.time inport *

First we enter a start and stop tinme for HK i nformation.
We enter Java Dates, given as year (-1900), Mnth (-1),
day, hour, mnute, second.

Qur start_tine is therefore 01:10: 00 on 25 Cctober 2004
start_tine = java.util.Date(104, 9, 25, 1, 10, 0)

stop_tine is 01:15:00 on the sane day

stop_tinme = java.util.Date(104, 9, 25, 1, 15,0)

Need to convert final nunbers into a FineTine used in database.
start_1 = DateConverter.dateToFi neTi ne(start_tine)

Date/time of start for plotted data

prod_date = DateConverter.fineTi mreToDate(start_1)

Ditto for stop tine

stop_1 = DateConverter. dateToFi neTi ne(stop_ti ne)

end_date = DateConverter.fineTi neToDat e(stop_1)

Initialize some paraneters

pk=0

hk_set = 0

Get object ready for sorting packets

pseq = Packet Sequence()

Set up the query for accessing packets of HK data
Here we ask for packets with an APID of 1026, which carries
HFI HK data. The database identified by the user's
properties is accessed for packets of this type

between the given start and stop FineTi nes

pk = Packet Access(1026,start_1,stop_1)

Now we know where to | ook, we can get the packets!
First we create an array with the packets in
hk_set = HcssConnecti on. get (pk)

...then we | oop over the array to get the contents and
put packets into our packet sequence
for x in range(len(hk_set)):

pseq. add(PusTnSour cePacket (hk_set [x] . get Contents()))

Now we get the paraneters in the packets that we can plot.
seq_H FI _HK = pseq. sel ect (TypeEqual s("H FI _HK rev_3"))

Let's pick out sone of them

menoni cs = ["HF_AHL_MXMG V', "HF_AV1_MXMG V']

...and get their converted (physical unit) neasurenents.
"plot_H FI_HK" is a Tabl eDataset with a first colum neasuring tinme

HH*

and the next 2 colums hol ding the HK paraneter val ues

at those times. W can now plot any of the paraneters versus
time, or against each other, by picking out the appropriate
colum of the table.

lot_H FI _HK = seq_HI FI _HK. get Convert edMeasur es(menoni cs)

H H HH

e

This is what to do to set up the plot. Since tine
is in mcroseconds we convert it to
seconds first.

H*

CGet the first colum and divide by 1 million
time = plot_H FlI _HK[0] .data/1000000. 0

Let's neasure tine on the plot fromthe beginning of the observation....
We subtract the initial tine value
plot_time =time - time[O0]

W will plot the two voltages contained in colums 2 and 4
h_voltage = plot_H FI _HK[1].data

v_voltage = plot_H FI _HK[2].data

Now pl ot the data

272

Accessing and Retrieving Data

p = Plot XY(plot_tine, h_voltage, style=Style(line=8, color=Col or. bl ack))

Resize the wi ndow
p. hei ght = 400
p. wi dt h=600

Change the | egend

p[0].name = "H M xer Plot"

Change the axis |abels...
p.xaxis.title.text="Tinme (hours)"
p.yaxis.title.text="M xer voltage [V]"

...and add a title

p.title.text="Plot of Mxer Voltages. Start: "+str(prod_date)+\
"End: "+str(end_date)

Now we can al so overlay the second voltage trend in bl ue.
p[1] =Layer XY(pl ot _ti me, v_voltage, nane= "V M xer Plot", \
styl e=Styl e(col or=Col or. bl ue))

The kind of output one can expect from this example is shown below.

£ Herschel PlotXY FEX
= Uaue
Plot of Mixer Voltages. Start: Mon Oct 25 01:10:00 CEST 2004End: Mon Oct 25 01:15:00 CEST 2004
¥
X |
O
9 1
o
59 |
X
=z

I ! I I I I ! I
[40 &0 120 160 200 240 280

Time (hours)

Figure 12.5. Sampletimeline plot of HK data.

12.2.9. Removing a Database

Removal of a database that you have created can be done at a terminal prompt (not within the jide
session).

>> renovedb -rndir nydat abase

273

Appendix A. Data Reduction Tutorial
-- contributed by Russ Shipman

A.l. Introduction

Thisisaquick start tutorial for getting ataste for the Data Processing. The purpose of this tutorial is
to relay the flavour of the Herschel Data Processing software. This tutorial is written for Calibration
Scientists and Instrument Engineers who require deeper access to the HCSS software. This tutorial
should also provide areasonable starting place for astronomers who simply want to have more control
over the processing of their data.

The tutorial will focus on a number of general tasks listed below. Each topic will progress from the
basi c functionality to more complicated constructions. The tutorial will not (cannot?) shy away from
the fundamental nature of the software and therefore avoids using any "Helper" functions which may
hinder a deeper understanding of how the software works.

One last point. | am not a software developer. | am sure there are may subtleties which | have failed
to appreciate. The only comfort | may give to the reader isthat | am using JDE at the same time as
writing this tutorial so each line of code presented here actually runs.

Thistutorial has the following outline:

» Reading aFITSfile stored locally on disk. Section A.2.

» Understanding and interpreting data types. Section A.3.

» Numerical operations on datawithin . Section A.4

Displaying the results. Section A.5

Fitting models to data. Section A.7
 Writing scripts and procedures. Section A.6

» Saving the work and exporting the datato a FITSfile Section A.8

A.2. Getting Data into Your Session

This section walks through an example of reading a FITS image or spectrum from afile on alocal
disk. More information of accessing FITS data structures may be found in User Manual Chapter 10.

Thefirst step in retrieving a FITS data structure is to set up the access the FITS archive class.

from herschel .ia.io.fits.FitsArchive inport *
from herschel . share. util inport Configuration

#You will need to have access to the test data. For this we nust set up the
directory where the

#data are stored on you system

di r=Confi guration. getProperty('var.hcss.dir') + '/doc/ial/deno/data/"'

#The first part of this is where HCSS is installed on your system the second part
is the path to the test data.

#

#note the unix systax for directories. |If you are working on a Wndows nachi ne the
actual directory nane

#will | ook very strange, but the HCSS systemwi |l take care of that.

274

Data Reduction Tutorial --
contributed by Russ Shipman

#

#Now create an instance of the class FitsArchive

fits = FitsArchive()

#Not all FITS files are created equal. The npbst general FITS structure can be
#found in the STANDARD READER. Apply the STANDARD READER to our FitsArchive.

fits.reader = fits. STANDARD READER

#now the instance fits is able to read a generic fits file. This will return

#a "product".

#You will need to have access to the test

fitsproduct = fits.load(dir+"test.fits")

First, for more information the concept of PRODUCTS is described in Section A.3 below. From the
exampl e above you can see the flavour of Herschel Data Processing at alow level. We have accessed
agenera FITS utility for reading and writing FITS files. The utility has a method load specifically
for reading FITS data.

OK, now it is your turn. Choose your favourite FITS file (image, spectrum, cube, table, etc) load it
into your session. Be sure to specify the entire path to the file. The next section shows how to look
into the product within your session and see its structure.

A.3. Products and Data Wrappers

Herschel data are carried about in structures called products. Products are software onions; they are
made up of layers and each layer has its own description of the contents (e.g. labels of columns of
tables, etc.), specific actions which can be taken with that layer and a history describing how the
product was created. The software onion hasthe great benefit of being ableto do all that itsinner layers
can do as well as the new items which are provided by the outer layer. Thisis called inheritance.
Peeling away all the layers, will give adata structure containing actual data, be it an array or asingle
number.

To seewhat I'm talking about, let's go through the steps to create a product from double floating point
seguence of numbers ranging from 0 to 9.

#Create our data:

range(10) gives the sequence of nunbers fromO to 9
Doubl eld puts these nunbers into a 1 dinensional double presision floating
poi nt array

x = Doubl eld. range(10)

#Wap the Data x in an Array

array=ArrayDat aset ()

array. set Dat a(x)

array. set Descri pti on("Dat a- Oni on")

#Now wrap the Array in a Product

pr od=Pr oduct ()

prod. set Descri pti on("Product - Oni on")

prod[" Dat aset - Oni on"] =arr ay

To see what Dataset |nspector shows instantiate the |nspector
ds=Dat aset | nspect or ()

Now tell the inspector what it should | ook at..
ds. register(prod, "prod")

#

Registering items one by one is not very useful, and also not the intention of the Datasetlnspector
which should show all the datasets and products within your Jide session. For this you should make
use of the special Datasetlnspector button provided to you by Jide itself (or alt-D).

This will bring up a window which shows two fields and initially two tags: Datasets and Products.
Open the Productstag by double clicking on the word Products. The Products branch will be expanded
to show all the products currently available in your session.

Double clicking on the name of a product within the Datasetlnspector will give you details about it.
Specifically, the tree will be expanded with two more branches on Meta data and another Dataset.
The Meta data for the fitsproduct is the FITS header and has a clear connection to the data within the

275

Data Reduction Tutorial --
contributed by Russ Shipman

product. The Primaryl mage contains the actual dataarray. By clicking on Primarylmage, you can see
the values of the elements and the dimension of the array itself.

Significantly more information about datasets and products can be found in User Manual Chapter 4.

Since a Product is a high level all-encompassing object, the data within the product still must be
extracted. Both the data and the header are extracted in the following steps:

#Retrieve the 1st data field of a product using "default" and put it into a
#vari abl e naned fitsdata.

fitsdata=fitsproduct.default

#The FITS header is contained in the MetaData of the product. Put it into a
#variable called fitsheader

fitsheader=fitsproduct. getMeta()

The Session Inspector (Alt-1) gives a dightly different view into the session. It will show all the
variables which are currently defined within your Jide session whereas the Datasetlnspector only
shows Datasets and Products. There will be a number of tags within the session inspector: Variables,
Functions, Classes, and Packages. Openthe"Variables' tag and look for the variables named "fitsdata
and "fitsheader". The variable "fitsdata’ is a 4 dimensional array. Not what | expected, but the FITS
header does say that it should be that way. | want a simple Doulbeld array which is the proper length
of just my data.

#Now |l et's deal with those extra 3 annoyance di nensi ons.

from herschel . i a. nuneric. tool box. basi c i nport Reshape

#

Reshape with no paraneters takes an "any" di nensioned array and
turns it into a 1 dinmensional array.

t o1D=Reshape()

Now apply it

spect runmrt 01D(f i t sdat a. dat a)

By the way the sane results are possible by:

spect rum=Reshape() (fit sdat a. dat a)

An extremely useful featureisthe._class _method. This method works on every object within Jide.
The result of this method is the name of the class of the object. | wanted "spectrum” to be a one
dimensional array. Let'sfind out what it is:

print spectrum _ class__

This will give the type of value we now have which should be a "herschel.ia.numeric.Intld". This
is saying that our spectrum at this point is an integer array. When examining the FITS header, this
is exactly what the FITS file contains. In the next section, we'll go through the steps to apply the
calibrationinformation contained in the FITS header in order to create afloating point array, frequency
scale and velocity scale.

A.4. Numerical Calculations

We now have a Doubleld array of spectral data (That is what is present in the test.fits file provided
with this tutorial). However, the values themselves are not so interesting without the frequency scale.
This still has to be constructed from the fits header. So let's gather al the fits header information we
need and put it into variables which we have some experience with. Please note that at this point, |
heading back into a more traditional realm of processing and increasing the complexity since ALL
parameters and values are contained in fitsheader.

#Extract FI TS header information into variabl es

#

bscal e = fitsheader. get (' BSCALE'). val ue
bzero = fitsheader. get (' BZERO). val ue
crpix = fitsheader.get('crpix1l').value
crval = fitsheader.get('crvall').value

276

Data Reduction Tutorial --
contributed by Russ Shipman

restfr = fitsheader. get (' RESTFREQ). val ue
cdeltl = fitsheader.get('cdeltl').val ue

al trpi x= fitsheader.get(' ALTRPI X'). val ue

altrval = fitsheader.get(' ALTRVAL') . val ue

deltav = fitsheader.get (' DELTAV). val ue

#We will also need the length of the data vector

naxi s1 =l en(spectrun

#The len command is a built in Python conmand,

#Now create the frequency and velocity vectors

frequency=(Doubl eld. range(naxi s1)-crpi x)*cdeltl + crval + restfr

The velocity is recorded in the header as m's, | want this in km's
vel oci t y=((Doubl eld. range(naxi sl)-al trpi x)*deltav + altrval)/1000. 00
#Now convert the integers values of the spectrumto doubl es.
spectrum = spectruntbscal e + bzero

#

| do believe that numerical operations are about the simplest part of HCSS. That is, however, my
personal opinion.

It is now timeto view the result of our efforts. That is the topic of the next section.

A.5. Plotting

Plotting is easy and, although the system is still under development, is highly advanced. The simplest
way to create aplot is the following:

from herschel .ia.gui.plot inport *
Sinmplest way to plot:

Pl ot XY(vel ocity, spectrum

#

On this plot many items can be set or changed, via the properties window which activated by aright
button click on the mouse. However, if you want to have multiple plots in your JIDE session, you
should rather work on an instance of PlotXY instead of the main CLASS itself.

mypl ot = Pl ot XY(vel ocity, spectrum

The above line produces the plot shown.

277

Data Reduction Tutorial --
contributed by Russ Shipman

T — e
L]
ol
(o]
B S
v
et
=
ol
l:; —]
1
=
':I —
1
I I I I I I I I I I
-280 -210 -140 =70 0 70 140 210 280 3&0
X axis
| —_— lawero |
Simple plotting example.
FigureA.l.

If you have multiple data sets to display on the same plot, these are added as layers. Layers give you
significant control over your plot since they can be added and removed. Say for example you want to
overlay the same data but offset by a small amount. Thisis done with;

nmypl ot[1] = Layer XY(vel ocity, spectrumt0. 1)

#but adding 0.1 was not enough to see both data sets. So renobve the Layer and
#add it again.

nypl ot . renovelLayer XY(1)

nmypl ot[1] = Layer XY(vel ocity, spectrum + 0. 4)

With the properties dialog box, it is possible to fully annotate the spectrum and axes aswell as change
line styles and plot symbols. The end result of all the work can be saved and restored for reuse.

| have a plot of my data as a function of velocity. | would also like to add an axis for the frequency
itself. Thisis possible as another layer. One important point to keep in mind, layers can always be
changed. If the first rendering of the layer is wrong the plot does not need to be thrown away and
restarted. So let's build this other layer in steps.

#C ear out the layer 1 again. W could nove on to other |ayers, but there
#is no real need yet.

nypl ot . renovelLayer XY(1)

#Create anot her |ayer of the spectrumas a function of frequency.

nypl ot [1] =Layer XY(f r equency, spect rum

278

Data Reduction Tutorial --
contributed by Russ Shipman

y axis

I I | I I I I
0.0 4010 80107 1.210° 16810 2010 2410

¥ axis

—_— lawr) — Lawrl |

Not what | expected example.

FigureA.2.

Thisis arather disturbing plot. Believe it or not, but thisiswhat | had asked for, to plot on the same
scal e another data set with numbers both around 2.6 E11 and 200. | don't have to throw anything away .
| only need to tell the plot that | want this layer (1) to have its own axis and not to have the two axes
locked together.

#G ve layer 1 a dummy axis.

nmypl ot [1] . xaxi s=Axi s()

#Currently the scales of the axes (0 and 1) are | ocked together.
#To unlock Axis 1

nmypl ot [1] . xaxi s. | ock=0

#Still the scales are off, so rescale

nmypl ot [1] . xaxi s. aut oRange=1

#The range for layer 1 is OK but not |layer 0

nmypl ot [0] . xaxi s. aut oRange=1

279

Data Reduction Tutorial --
contributed by Russ Shipman

X axis
= 800 10" o 602 10" 2504 10"
| | |

o | | | | | |

g -

(]

o
@ S
=

[

'::; —

|

=

'-::; —

|

| | | | [[| | | |
~280 -210 -140 -70 O 70 140 210 280 350
X axis
—— laywr0 —— lawprl |

FigureA.3.

Things are looking better. They are not yet perfect, but better. As can be seen in the last plot, both
plots of the same spectrum at least show up in the same window, but one is the inverse of the other.
Velocity to frequency is aflip. Also, the scale on the frequency axis does not have enough precision
in the display to show anything other than 2.6e+011. The final problem isthat there are no meaningful
labels or annotations, just place markers. These can all be fixed asfollows:

The axis for layer 1 can be easily flipped.
nypl ot [1] . xaxi s. i nverted=1

The fix for the scale on layer 1 requires a change to the data i.e., the frequency scale itself. But this
means are-making of Layer 1. OK, I'll remove layer 1 (again) and add in anew layer 1.

#First change the units to GHz.

freqGiz = frequency/ 1e9

#Now renove | ayer 1

nmypl ot . renovelLayer XY(1)

#Now add the new |l ayer 1

nmypl ot [1] =Layer XY(f reqGHz, spect rum

#give the layer its own axis, otherwise the followi ng steps will always use the sane
axis

nmypl ot [1] . xaxi s=Axi s()

nmypl ot [1] . xaxi s. | ock=0

280

Data Reduction Tutorial --
contributed by Russ Shipman

nmypl ot [1] . xaxi s. i nvert ed=1

nmypl ot [1] . xaxi s. aut oRange=1

#Add real titles to Axes
nmyplot[0].xtitle="LSR Velocity (knm's)'
nmyplot[1].xtitle="Rest Frequency (CHz)'
nmyplot[0].ytitle=" Antenna Tenperature (K)'
#And a few itens about the tick narks.

nmypl ot [0] . xaxi s. get Ti ck() . set I nterval (50.0)
nmypl ot [1] . xaxi s. get Ti ck() . set I nterval (0. 05)
nmypl ot [0] . yaxi s. get Ti ck().setInterval (0. 1)

Rest Frequency (GHz)

28050 26045 26040 28035 28020 280,25 280,20 260,15 260.10 280.05 280.00

Antenna Temperature (K)
-0% 04 -0z -02 -01 00 01 02 0z 04

I I I I I I I I I I I I I
-250 -200 -150 -100 -50 O 50 100 150 200 250 300 350

LSR Velocity (km/s)

| —— Lawro —— lawrl |

Not what | expected example.

FigureA.4.

With the dialog box, you can change fonts and placement of all the titles and labels. For now | will
just write the resultsto a PNG file (as I've been doing for all the figures so far) and move on.

A.6. Writing a Task

If the calculations are general or you do the same steps again and again, you will likely want to put
make your steps available for later re-use. This can be done either by saving as a script, or by writing
a Task which will perform your script but allow different parameters.

281

Data Reduction Tutorial --
contributed by Russ Shipman

In the previous section, we saw that currently there are quite a few steps needed to plot two axes on
asingle plot. Let'stry to make that part into a Task.

As | think about making a task, there are multiple ways a task can behave with respect to plotting
multiple axes. The most straight forward in my mind, is passing a plotting task two x-axis vectors and
on y-axis vector. The plot task then puts al three together in one plot. Another approach would be to
pass aplot of an x-y pair (x axis vector and y axis vector already in a plot, and simply add the second
x-axis. The second approach, if it can be done, is using the fact that plots are just objects themselves,
they can be passed around and modified. I'll stick with passing a plotting task the three vectors | need.

First import the necessary libraries.

I nmport task framework cl asses.

from herschel .ia.task.JTask i nport JTask

from herschel .ia.task i nport TaskParaneter

from herschel .ia.task.api inport SignatureEntry
from herschel .ia.gui.plot inport *

Tasksarejust CLASS definitions, but using a particular sent of methodsto define theinput and output
parameters which has some user support built in. We'll see these |ater.

Tasks consist of two parts, a preamble and an execute. Remember that Jython definitions are highly
sensitive to spacings, so be sure to indent consistently within a definition (or loop). For ease of
understanding, | show the entire Task below.

cl ass Pl ot 2XY(JTask):
#Creati on net hod

#
def __init__(self, name="Pl ot 2XY"):
#
#This is the preanble. Here | amdefining the input paraneters
#and what type they are. | define:

xaxi sl as Doubl eld, xaxisl is the nane of the paraneter to beused below in
the execute part.
y as Doubl eld (for the y-axis)
xaxi sl al so as Doubl eld, this is also indicated as nmandatory.
#
p=TaskPar anet er (" xaxi s1", val ueType=Doubl eld, nandat or y=1)
sel f. addTaskPar anet er (p)
p=TaskPar aneter ("y", val ueType=Doubl eld, mandat or y=1)
sel f. addTaskPar anet er (p)
p=TaskPar anet er (" xaxi s2", val ueType=Doubl eld, nandat or y=1)
sel f. addTaskPar anet er (p)
#
#assunme 2nd axis is not inverted, but allow that to be changed
#i nvert becones another parameter with initial value of 0 (False)
#
p=TaskParaneter ("i nvert", Fal se, nandat or y=0)
sel f. addTaskPar anet er (p)

This task will return a nodified Pl ot XY object.
for the task, the paraneter nane is "plot" which will be the output.

H H HH

p=TaskPar anet er (" pl ot", val ueType=PI ot XY)

This shoul d be made the out put of the task
p. set Type(p. OUT)
sel f. addTaskPar anet er (p)

#

#Now define the execute part

#

def execute(self):

Go through all steps needed to nmake two axis on a single plot.
Note the notation self.nane is the way to use paraneters initiated above in
the task.

H o HHH

sel f.plot = PlotXY(self.xaxisl1,self.y)
sel f.plot[1] = Layer XY(sel f.xaxis2,self.y)

282

Data Reduction Tutorial --
contributed by Russ Shipman

Create the 2nd axis as separate fromthe first
sel f.plot[1]. xaxi s=Axi s()
sel f.plot[1]. xaxis. | ock=0
sel f. plot[1]. xaxi s. aut oRange=1
sel f. pl ot[0]. xaxi s. aut oRange=1
#
Now check if invert = 1, invert the 2nd axis
#
if self.invert:
sel f.plot[1].xaxis.inverted=1

Here iswhat this task produces.

X axis
S60.47 260.40 280.33 280.26 260.19 260.12 260.05 259.98

=

T L

[

o |
9 S -
-

[

'::I — —

|

=

'::I — —

|

I I I I I I I I I I
-2B0 -210 -140 =70 0 70 140 210 28O0 3&0
X axis
—— laywr0 —— lawprl |
Figure A.5.

A.7. Fitting a Model

Fitting of modelsis of general interest, whether it isfitting a straight line or fitting a complex model.
As can be seen, the spectrum has some serious problems: an unruly baseline to say the least. If | have
reason to believe that the data are still salvageable, | could try to clean them up.

Thefirst that | will try isto fit apolynomial to remove the drop from negative velocities and zero the
spectrum in general. Fitting involves two conceptually different steps. The first is the model to befit,

283

Data Reduction Tutorial --
contributed by Russ Shipman

polynomial, sinusoid, whatever. The second concept is how to fit this model. Some models are linear
and the fit is a straight forward matrix inversion. Others have to be done iteratively.

from herschel .ia. nuneric.tool box.fit inport *

#

#'11 choose a 5th order pol ynom al nodel to snooth out

the general trend in the spectrum

pol ynodel =Pol ynoni al Model (5)

#now set up the fitter to use the nodel we've just defined.
linfit=Fitter(velocity, pol ynodel)

#just apply the fitter to the spectral data.

#Note that linfit knows that it is fitting a polynom al of 5th order
#to an array of velocity values. So at this stage the independent
#variable is not necessary.

paranms=linfit.fit(spectrum

lets take a | ook

print parans

And create a "data" array with the fit.

basel i ne=pol ynodel . resul t (vel oci ty, par ans)

#let's plot things and have a | ook

pl ot =Pl ot 2XY() (vel oci ty, spectrum frequency, 1)

pl ot [2] =Layer XY(vel oci ty, basel i ne)

¥ axis
2 E04 10" o602 10 2 /00 10
| | |
- | | | | | | |
g -
(]
N _ -
[]
% o —
—
[}
'-':; — —_
|
=1
'::I:; p— I

| | | | I I | | | |
-280 -210 -140 -¥0O 0 70 140 210 2BO 350

¥ axis

— lawrd —— Lawrl —— Lawr?2

A 5th order polynomial basdline fitted to the data.

284

Data Reduction Tutorial --
contributed by Russ Shipman

y axis

-0.27 -0.18 -0.05 000 009 0.18 0.27
I

#| can even correct the spectrum now.

spect ruml=spect rum basel i ne

pl ot c=Pl ot 2XY() (vel oci ty, spectrunt, frequency, 1)
#

¥ axis

2604 10" 2.602 10" 2.600 10*

I I I I I I I I I
-280 -210 -140 -70 W] 70 140 210 280

¥ axis

Layer O Layer 1 |

Spectrum after removal of polynomial baseline.

#Now we should try to renpve a sinus to nmake the spectrum
#f 1 at .

#1've already done this once and know that | cannot

#get a good fit of a single frequency over a w de range
#so | need to select out part of the spectrum The

#line | amiterstested in should be around 30 knmi's. So |

#can sel ect the spectrumfromsay -40 to 80 km's and still have
#significant ripples to fit a sinus.
#

#The fol |l owi ng >and < neke bool ean arrays

gl=vel ocity > 10

g2=vel ocity < 60

#now identify the indices which correspond to the bool ean
g=vel oci ty. where(qgl. and(qg2))

ps=Pl ot 2XY() (vel oci ty[q], spectruml[q], frequency[q], 1)

350

285

Data Reduction Tutorial --
contributed by Russ Shipman

X axis
© 5026 10" ° 8024 10"
| |

0.16
|

0.08
|
——

0.00
|

y axis

-0.08
I

-0.16
|

-0.24

| | | | | | | | |
10 1z 20 25 20 35 40 45 50 55

X axis

—— laywr0 —— lawprl |

Closeup of spectrum.

#now we are ready for the fitting

#First identify the nodel which should be a sine nodel.

si ne0=Si neModel ()

#and the fitter

| evO=Levenber gMarquardtFitter (vel ocity[q], si ne0)
anoeba=AnpebaFi tter(vel ocity[q], si ne0)

#for our sine nodel we need an inital guess at the paraneters
#Qur sine wave goes through 1 period in about 30 kmi's, so
the initial guess at the frequency is 1./30.0,the anplitudes
are around 0.1

#

par anD=Doubl e1d([1./30.0, 0.1, 0. 1])

| ev0. set Par anet er s(par anD)

| ev0. set Tol erance(0. 000001)

#

anoeba. set Si npl ex(par anD, Doubl e1d([0. 01, 0.1, 0.1]))

#

#

paran2=| ev0.fit(spectruml[q])

par anB=anpeba. fit (spectrunl[q])

ps[3] =Layer XY(vel oci ty[q], si ne0. resul t (vel oci ty[q], paran?))
ps[4] =Layer XY(vel oci ty[q], si ne0. result (vel ocity[q], paranB))

286

Data Reduction Tutorial --
contributed by Russ Shipman

X axis
2 6026 10" 2 6024 10"
| |
| | | | | | |
ot
> | |
|
[Wa]
[—
E F
] | |
M
[—
2 I \ N
<
O ’ "
T
. |
s] "
|
=
[|
iy

| | | | | | | | | |
10 15 20 25 30 35 40 45 50 55

X axis

Layer 0 Layer 1 Layer 3 Lawyer 4 |

Sinefit to the spectrum.

print paran2 , paranB

spectrunfi xed=spectruniq] -si ne0.resul t(vel ocity[q], paranB)
#

#

of f = SUM spectrunfixed)/|en(spectrunfixed)

spect runfi xed=spect runfi xed- of f

pgood=PI ot 2XY() (vel oci ty[q], spectrunfi xed, frequency[q], 1)

60

287

Data Reduction Tutorial --
contributed by Russ Shipman

X axis

26026 10" 2.6024 10"

y axis
~0.24 -0.18 -0.12 -0.06 0.00 0.06 0.12

| | | | | | | | | | |
0 15 20 25 320 35 40 45 50 55 60

¥ axis

Layer 0 Layer 1l |

Sine removed from the spectrum.

A.8. Saving Data and Session

Of course is also possible to save the work you have done. To save al the variables defined in the
entire session just use the save command.

#Saving all variables, datasets and products in a file: mysave.save
save(' mysave. save')

#OR save only the velocity and spectrum

save(' nmysave. save','velocity, spectrum)

#

We can also save the corrected spectrum as afits file. First we should make the onion again. At the
core of the onion was our array of data.

#Create a corrected array of fluxes
spectrumcorr = spectrum - baseline - sine0.result(velocity, paranB)

Let's put this result into a HCSS defined spectrum with a column for fluxes, frequencies (or
wavelengths) and velocities.

nmyspec=Spect rumld()

288

Data Reduction Tutorial --
contributed by Russ Shipman

nmyspec. set Fl ux(spectrum corr)
nyspec. set (' Wave' , frequency)
nyspec. set (' Vel ocity', velocity)

Now | want to update the header information to reflect the changesI've madei.e. al thefit parameters.

Add fit information to header key words.
Make a copy of the original header
newheader =f i t shead. copy
#First the polynomal fit
for i in range(6):

newheader . set ("poly"+ i.toString(), Doubl ePar anet er (parans[i]))
#The the sine fit
for i in range(paranB.length()):

newheader . set ("sine"+i .toString(), Doubl ePar anet er (paran8[i]))
Add the new header to the netadata of of the spectrum dataset
nyspec. set Met a(newheader)

Now, this dataset can be wrapped into a product.

#Create a product fromthe spectrum dat aset
nmyspect rum pr od=Pr oduct ()
nmyspect rum prod(" Spectrum Dat aset", nyspec)

And saved asa FITSfile.
#now save is as a FITS file

fits.save('corr_spectrumfits', myspectrum prod)

That'sit. A later version of his Tutorial will demonstrate how to save into a Pool from the Product
Access Layer.

289

Appendix B. Example User's Property
File

An example properties file to be placed in the file ${ HOVE} / . hcss/ nyconfi g for UNIX users
or C:\ Docunment s and Settings\<user>\hcss. props for Windows users.

Note

@ ${HCSS_DI R}/ confi g/ devel . pr ops isthefilewhich contains the system default
properties, whereas ${ HOVE} / . hcss/ nyconfi g is the file which contains your
properties.

For most users, the first few lines are the most important ones.

var. hcss. workdir=C.//tenp

hcss. access. ccm = herschel . versant. ccm

hcss. access. query. navi gat e=true

hcss. access. dat abase = ilt_gm 9%{var. dat abase. server}

dbname = ilt_gm9

dbfactory = herschel .versant.store. StoreFactoryl npl

hcss. pg. uselLi st = true

hcss. pg. xm . listLocati on = {${var. hcss. dir}/config/defns
${var.hcss.dir}/../../config/defns}

#****add ol d nyconfig

HCSS Properties File - location SRON

#

Author: Craig Porrett

#

#To show queries submitted by access

#hcss. store.verbosity = 1

Cenera

var . dat abase. server = @i n-sron-02.sron.rug.n

var . dat abase. devel =t ony_hcss${var . dat abase. server}

dbfactory = herschel .versant.store. StoreFactoryl npl

dbnanme = tony_hcss

hcss. cus. dat abase=t ony_hcss@{ var. dat abase. server}

hcss. cus.instrument = HF

hcss. cus. tabl edir = ${user. dir}/ CUS/ cust abl es

var. hcss.dir=C:/ialhifi/libl/hcss

#var. hcss. workdir = ${user. hone}/

#changed by Peer on 27-09-2002

#var. hcss.dir = ${user. hone}/ hcss_builds/l atest_build

#var. hcss.dir = /Users/users/hcssbl d/ hcss_builds/latest_build

Access

hcss. access. dat abase = ${var. dat abase. devel }

hcss. access. test . dat abase = ${var. dat abase. devel }

hcss. access. connecti on = herschel . access. db. Local Connecti on

hcss. access. network = socket

r
r

hcss. access. socket . host = | ocal host
hcss. access. socket. port = 8050
hcss. access. url = http://lin-sron-02.sron.rug.nl:5019/servlets/

hcss. access. packet processor HI FI
hcss. access. i nst runent nodel Engi neeri ng
hcss. access. factory. query = herschel . access. db. Ver sant Quer yFact ory
hcss. access. router. host = | ocal host
hcss. access.router. port = 9877
hcss. access. query. al | pks = select selfoid from
her schel . versant. ccm TnSour cePacket | npl
hcss. access. query. al Il df s = sel ect sel foid from herschel . versant.ccm Dat aFr anel npl
CCM
hcss. ccm test. dat abase = ${var. dat abase. devel }
following fromKevin's enail on 29th Jan. 2004 siteid = 1 for hifi-icc
this following fromthe |ICD
hcss.ccmsiteid = 1
hcss. ccm mi ssion. config = denoconfig
hcss. ccm m ssi on. dat abase = ${var. dat abase. server}
Formatter

290

Example User's Property File

formatter package needs to be changed to use the var.hcss.dir system
hcss. formatter. directory.root = ${var.source.dir}

MB

var. m b. defns = ${var. hcss. di r}/data/ m b/ def ns

var. mb.data = ${var. hcss. dir}/data/ m b/ exanpl e-m bs/ exanpl e- 1
var. m b.aux = ${var.n b. dat a}/ auxi |

var. mb.raw = ${var.m b. data}/ascii-tabl es

hcss. m b. dat abase = ${var. dat abase. devel }

#hcss. m b. dat abase = hcssbl d_hcss

hcss. m b. datadir = ${var.m b. raw}

hcss. mib. tablelist = ${var. m b. aux}/tablelist

hcss. mi b. tc_command_durns = ${var. m b. aux}/tc-durns

hcss. mib.tmparamlist = ${var.m b. aux}/t npar ans

hcss. mb.test_tc_command_|ist = ${var.m b. aux}/tcnds
hcss.mb.test_tmparamlist = ${hcss.mb.tmparamlist}

hcss. mi b. t abl edefs = ${var. m b. def ns}/t abl e-def ns/

hcss. mi b. dbroot = hcss_mi b_root

hcss.mb.uplink_id = 1

hcss. mb.test_uplink_id = 1

hcss. m b.downlink_id = 1

hcss. mb.test_downlink_id = 1

hcss. m b. errorsonly = fal se

hcss. m b.logfile = m bchecker. | og

hcss. m b. readal | cnmds = true

hcss. m b.tc_command_| i st = xxx

TM | ngest

hcss. t mi ngest. dat abase = ${var. dat abase. devel }

hcss. tmi ngest. port = 9877

TM Proc

Store

hcss. store. test. dat abase = ${var. dat abase. devel }

#i a datafl ow

herschel . i a. dat af | ow. maxbuf fersi ze = 50

pcss needed for ia denp 28th January

hcss. mb.cus_file = gencus_scripts. out

hcss. mib.instrument = H FI

#hcss. ccm mi ssion. config = denpconfig

#hcss. ccm mi ssi on. dat abase = hcssbl d_hcss@ i n-sron-02. sron. rug. nl
bi nstruct

hcss. binstruct.ip_filename = instr_props.ip

hcss. bi nstruct.tm versi on_map=TnVer si ons. t bl

hcss. bi nstruct. m b=C: /i al/ bi nstruct

hcss. bi nstruct. services = herschel . binstruct. m b. M bAscii Services
hcss. bintruct. m b_source = ascii

JConsol e

hcss. jython. user.inport=${user. hone}/iltscripts_gmreports.py
hcss. j consol e. buffer. si ze=320000

hcss. jconsol e. pronpt = "Tony's | A>>"

hcss. jconsol e.width = 900

hcss. j consol e. hei ght = 600

291

Appendix C. Jython Operators

Thefollowing tables shows al the various operators you can use in Jython. For compl eteness we have
also listed one operator introduced in the latest development version of Jython (2.2 alpha) but absent
from the stable version (2.1).

Thislist and the associated operator descriptions have been largely taken from the Python Reference
Manual, which you can find online at http://docs.python.org/ref/.

Table C.1. Jython unary arithmetic operators

Operator Operator description Example

Unary plus: yields its numeric|pri nt +5

* argument unchanged. #5

Unary minus. vields the
- negation of its numeric
argument.

print -5
-5

Invert: yields the bitwise invert
~ of its plain or long integer
argument.

print ~5

Table C.2. Jython binary arithmetic operators

Operator Operator description Example

Sum: yields the sum of itsjprint 2 + 2
arguments. # 4

Subtraction: yields thejprint 2 - 3
difference of its arguments. # -1

+

Multiplication: yields the|print 3 * 2
product of is arguments. # 6

print 5/ 2
Division: yields the quotient of |# 2

its arguments. print 5.0/ 2
2.5

Floor divison (Jython 22|print 5 // 2
alpha only): yields the result of |# 2

the f1 oor () function applied|print 5.0 // 2
to the quotient of itsarguments. |# 2. 0

11

Modulo: yields the remainder
% from the divison of its
arguments.

print 5 %2

Power: yields its left argument
** raised to the power of its right
argument.

print 5**2
25

Table C.3. Jython shifting operators

Operator Operator description Example

Left shift: a << b shiftsplain|jprint 5 << 1
or long integer a by b bits. # 10

Right shift: a >> b shiftsplain|print 5 >> 1
or long integer a by b bits. # 2

<<

>>

292

http://docs.python.org/ref/

Jython Operators

Table C.4. Jython binary bitwise operators

Operator

Operator description

Example

&

Bitwise AND: yields the bitwise
AND of its plain or long integer
arguments.

print
4

5&6

Bitwise XOR: yields the bitwise
exclusive OR of its plain or long
integer arguments.

print
3

576

Bitwise OR: yields the bitwise
inclusive OR of its plain or long
integer arguments.

print
7

Table C.5. Jython comparison operators

Operator

Operator description

Example

<

Lessthan:a < b yiddstrueif
aislessthanb.

pri nt
1

5<6

Greater than: a > byieldstrue
if a isgreater than b.

print
0

Equal to: a == byieldstrueif
a andb areequal.

print
#0

Greater or equal to:a >= b
yieldstrueif a is greater than or
equal to b.

print
0

Lessor equal to:a <= byields
trueif a islessthan or equal tob.

print
1

I = (preferred) or <>

Not equal to: a != b yields
trueif a isnot equal to b.

print
1
print

Table C.6. Jython boolean operators

Operator

Operator description

Example

and

Boolean AND: yields Tr ue if
both arguments are true, Fal se
otherwise.

print
#0

1 and O

or

Boolean OR: yields True if
at least one argument is true,
Fal se otherwise.

print
#1

not

Boolean NOT: yields Tr ue if
the argument is fase, Fal se
otherwise.

print
0

not 1

293

Appendix D. Demo script

D.1. Introduction

Thisis a collection of many (but not all) of the available scripts all over the system. The collection

is organized by package.

D.2. Demonstrations illustrating specific

functionality

Demo Files

si npl e. py

hel p_deno. py

sessi on_i nspect or. py
| oggi ng_deno. py

save_restore_deno. py
numer i c_what i snew. py
nuneri c_deno. py
nuneric_2D deno. py
nuneri c_r eshapi ng. py
nuneri c_shifting. py
nuneric_slicing. py
convol uti on_deno. py
fit_denol. py
fit_denn2. py
fit_denon3. py
fit_denod. py

fft_deno. py

Overview of Jython capabilities

Demonstration of help facility

Demonstration of session inspector facility.
Demonstration of jconsole's message logging facility.

Demonstration of the save and restore of data feature in
Jeconsole.

Demonstration of how to use the new functionalities of the
numeric library from Jython.

Demonstration of how to use the 1D functionality of the
numeric library from Jython

Demonstration of how to use the 2D functionality of the
numeric library from Jython

Demonstration of how to use the reshaping functionality of the
numeric library from Jython

Demonstration of how to use the shifting functionality of the
numeric library from Jython

Demonstration of how to use the dlicing functionality of the
numeric library from Jython

Demonstration of how to use the convolution functions in the
numeric library

1) Demonstration of how to perform fitting from the numeric
library

2) Demonstration of how to perform fitting from the numeric
library

3) Demonstration of how to perform fitting from the numeric
library

4) Demonstration of how to perform fitting from the numeric
library

Demo of FFT functionality

294

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/simple.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/help_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/session_inspector.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/logging_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/save_restore_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_whatisnew.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_whatisnew.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_2D_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_reshaping.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_shifting.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/numeric_slicing.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/convolution_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fit_demo1.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fit_demo2.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fit_demo3.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fit_demo4.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fft_demo.py

Demo script

boxcar _deno. py

gaussi an_filter_demo. py

i nterpol ate_deno. py
mat ri x_deno. py
dat aset _deno. py

asci i _deno. py

fits_deno. py

i mgeExanpl el. py

i mmgeExanpl e2. py

t ask_exanpl e. py
task_array. py

t ask_stop. py

Test Pl ot XY. py

Test Axi s. py

Test Layer XY. py

Test Annot at i on. py
Test Styl e. py

Test Conposi t ePl ot . py

Test Menory. py

Boxcar filtering demo

Gaussian filtering demo

Demonstrates iterpolation
Demo of matrix functions
Demonstration of how to use datasets and create products

Demonstration of Import/Exporting of ASCII tables, the the
datafileascii_demo_data.txt is also required to run this demo

Demonstration of Import/Exporting of FITS data

Demonstration of general image functionality, the the image
file ngc6992.jpg is also required in your home directory to run
this demo

Shows how to create an image from asimple numeric 2d array.
Demonstration of how to write atask

Demonstration on how to pass an array to atask.
Demonstration on how to stop atask.

Demonstration of the new PlotXY capabilities

Demonstration of how to use PlotXY Axis

Demonstration of how to use PlotXY Layers

Demonstration of how to use PlotXY Annotations
Demonstration of how to use PlotXY Styles

Demonstration of how to compose Plots(XY)

Demonstration of how PlotXY use memory efficiently

295

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/boxcar_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/gaussian_filter_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/interpolate_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/matrix_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/dataset_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/ascii_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/ascii_demo_data.txt
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/fits_demo.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/imageExample1.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/ngc6992.jpg
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/imageExample2.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/task_example.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/task_array.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/task_stop.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestPlotXY.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestAxis.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestLayerXY.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestAnnotation.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestStyle.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestCompositePlot.py
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/demo/scripts/TestMemory.py

Appendix E. Naming Conventions

for Java and Jython users and developers. Version 0.3, 6th December 2006

Element

Description

Naming convention

Class

UM section 3.14.1

Defines the state and behaviour
of something. Classes are
defined as declaring variables
(fields) and functions (methods)
associated with the objects of
that class.

Names should be nouns and
written in mixed case starting
with an upper case letter. Do
not use underscores to separate
words.

Dat aFr aneGener at or,
Fi t sArchi ve

Interface

UM section 3.14.2.1

Defines a collection of
method definitions and constant
values. It can laer be
implemented by classes that
define this interface with the
i mpl enent s keyword.

Names have the same
convention as class names but
are preferably adjectives. Try to
end thenameswith-ableor -ible;

Sortabl e, Accessible,

Savabl e

Variable

An item of data named by an
identifier. Each variable has a
type, suchasi nt or Fr ane, and
ascope.

Names should be mixed case
starting with a lower case letter.
Do not use underscores to
separate words.

f r ameBuf f er Count er,
nSanpl es, l'ine,
det ect or No

Instance Variable

UM section 3.14.1

A variable that is part of an
object.

For the rationale of this naming
convention see HSCDT/TNO09

Names should start with an
underscore, otherwise follow
the general conventions for
variables (see above).

not be changed during execution.

on ESA Livelink _packet Type,
_isVisible
Local Variable A variable that is part of a|Names follow the naming
function or method. convention of normal variables.
count er, | engt h,
pi xel Nane
Constant A variable whose value that can|Names should be all uppercase

using an underscore to separate
words:

MAX_| TERATI ONS

Boolean variable and method

A logical type/function that can
only have or return the values
‘true’ or ‘false. Methods have
parentheses () while variable
haven't.

Names should start withis-, has-,
can-, or should-.

i sVisi bl e,
hasChanged(),
canHandl e(),
shoul dAbort

Parameter

296

http://www.rssd.esa.int/llink/livelink/fetch/2000/414493/10737/2557707/14323/Coding_standards_for_the_FCSS_development.pdf?nodeid=28008&vernum=-2

Naming Conventions

UM section 3.14.1

Element Description Naming convention
An argument to a function or a|Names follow the naming
method. convention of normal variables.
nane, packet
Property A platform independent|Names should be all lower
_ implementation of environment|case and start with 'hcss. The
UM section 1.5 variables and settings. hierarchical parts should be
separated with adot.
hcss. binstruct. service
Method A function definedinaclass. |Names should be verbs and

written in mixed case starting
with a lower case letter. Do
not use underscores to separate
words.

get Name(), | oad()

Function

UM section 3.12

A jython function is a collection
of code lines to perform a
specific task under one name.
Functions take arguments and
provide one output. They are
like methods, except they are not
inside a class. A function can
also be an instance of the Task
class.

Names follow the same
convention as method names in
classes.

resanpl e(), readTm()

Numeric function

UM section 5.4

Parameterless Java functions
provided by the
herschel.ia.numeric toolboxes.
For these function only one
instance is needed. Other
numeric functions follow the
same convention as classes.

Names are in al uppercase with
an underscore to separate words.

UNI Q MEDI AN,
IS FINITE

Task

UM chapter 8

A Task is a class which can be
caled as a function. Tasks do
input and output parameter type
checking and provide history to
Products.

Names follow the same
conventions as for classes. Task
names should end with the word
"Task'.

Di spl ayDat aFr aneTask,
Resanpl eTask

Package

UM section 3.14.4

Defines a collection of related
classes and interfaces in Java.
Packages provide the namespace
in Java and Jython.

Names should be in lower-
case |etters and digits, don't use
underscores.

herschel .i a. nuneric

Package names should be short
so that the fully qualified
package name doesn't become
excessively long.

Abbreviations and acronyms should not be all uppercase when used as a name:

297

Naming Conventions

GOOD BAD
export AsH m () export ASHTM.()
saveAsJpeg() saveAsJPEQX)
Qol Packet OCLPacket

Using al uppercase for the abbreviations in base names will give conflicts with the naming
conventions given above. A variable of this type would have to be named hTM., j PEG etc. which
obviously is not very readable. Another problem isillustrated in the examples above: when the name
is connected to another, the readability is seriously reduced, since the word following the acronym
does not stand out asit should.

The term compute can be used in methods where something is computed and might take considerable
time to execute.

conmput eAver age(), matrix.conputel nverse()

Give the reader the immediate clue that this is a potential time consuming operation, and if used
repeatedly, he might consider caching the result. Consistent use of the term enhances readability.

The 'n' prefix should be used for variables representing a number of objects, note that the names are
plural.

nPoi nts, nLi nes, nSanples

The notation is taken from mathematics where it is an established convention for indicating a number
of objects. Note that Sun uses the numprefix in the core Java packages for such variables. Thisis
probably meant as an abbreviation of number of, but asit looks more like number it makesthe variable
name strange and misleading. If "number of" is the preferred phrase, number O prefix can be used
instead of just n. The numprefix must not be used.

The 'No' suffix should be used for variables representing an entity number.
t abl eNo, enpl oyeeNo

The notation is taken from mathematics where it is an established convention for indicating an entity
number.

Reserved words: the following words are reserved by Java as |language keywords and can not be used
for variables, methods or class namesin Java.

abstract, continue, for, new, synchronized, assert, default, goto,
package, this, boolean, double, if, private, throws, break, do,
i npl enents, protected, throw, byte, else, inport, public, transient,
case, enum instanceof, return, try, catch, extends, interface,
short, void, char, finally, int, static, volatile, class, final,
| ong, super, while, const, float, native, swtch.

Java code example

package herschel .ia.nunmeric; // herschel.ia.nunmeric: PACKAGE
public final class Conplexld // Conplexld: CLASS
impl enents Serializable // Serializable: | NTERFACE
{
private transi ent double[][] _internal; // _internal: |NSTANCE VAR ABLE
/1 witeCbject: METHOD
private void witeObject(ObjectQutputStreamos) { // os = METHOD PARAMETER
os. defaul tWiteObject();
os.witelnt(length());
if (length()==0) return;

298

Naming Conventions

for (int i=0,n=length();i<n;i++) { // i = LOCAL VARI ABLE
os.witeDouble(_re[i]); os.witeDouble(_infi]);
}

Jython code example

herschel . i a. dataset.gui = PACKAGE; Dataset!|nspector = CLASS
from herschel . i a. dataset.gui inmport Datasetl nspector

Pl = CONSTANT

fromjava.lang. Math inport PI

testName = VARI ABLE

testNane = "chop_freq_test 2909 1832 1902 "

| oad = METHOD

t2 = fits.load(nyDir+test nane+" PHOTF. fits"). defaul t

MAX = NUMERI C FUNCTI ON

maxSt ep = MAX(step[step. where(step < Oxffff)])

start EndTi nes = FUNCTI ON;, step, maxStep, tine... = FUNCTI ON PARAMETERS
def startEndTi nes(step, maxStep, tine, startTine, endTine):
for i in range(0, nmaxStep): # i = LOCAL VARI ABLE
tenp=(step. where(step == i +1))

endTi me[i] = tinme[MAX(tenp.tolntld())
return endTi ne
|l en = FUNCTI ON
upper = len(startarr)

299

	A Basic User's Manual
	Table of Contents
	The Herschel Common Science System and Data Processing (DP)
	1. Brief Overview
	2. Availability of DP and Operating Systems
	3. Related Documentation
	4. Versioning
	5. What's New and Previous Versions of DP User's Manual
	6. List of Contributors

	Chapter 1. HCSS Downloading and Installation
	1.1. Introduction
	1.2. Platform
	1.3. Minimum System Requirements
	1.4. Pre-Installation Requirements
	1.5. User Installation Procedure
	1.6. DP Property Initialisation

	Chapter 2. Using JIDE or the JIDE View in HIPE
	2.1. Introduction
	2.2. DP Scripting Using the Editor View of HIPE
	2.2.1. File Menu
	2.2.2. Edit Menu
	2.2.3. Run Menu
	2.2.4. Exiting HIPE
	2.2.5. Window and Help Menus

	2.3. DP Scripting Using JIDE
	2.3.1. File Menu
	2.3.2. Console Menu
	2.3.3. Edit Menu
	2.3.4. Run Menu
	2.3.5. Help Menu

	2.4. Quitting JIDE
	2.5. Standard Settings for JIDE and HIPE
	2.6. DP working directory and file access
	2.7. Getting Command-line Help in JIDE or HIPE
	2.8. Programming Loops in JIDE and HIPE
	2.8.1. Loop Performance on Arrays
	2.8.2. Using the Editor view with loops

	2.9. Multiline Statements in the Console View of HIPE or JIDE
	2.10. Pausing during script execution and debugging in JIDE (ONLY)
	2.11. Background script execution in JIDE and HIPE
	2.12. Running Scripts from a Shell Command Line
	2.13. Errors and Exceptions in DP
	2.13.1. Overview of the Libraries Used in a DP Session
	2.13.2. The Error Traceback Mechanism
	2.13.2.1. The way Jython presents error messages
	2.13.2.2. The way JAVA presents error messages

	2.13.3. The HCSS exception and logging mechanism
	2.13.3.1. Exceptions Thrown From HCSS Classes
	2.13.3.2. The HCSS logging mechanism

	Chapter 3. Some DP Basics & Beginning Jython
	3.1. Basics
	3.2. Comments
	3.3. Variables
	3.4. Numbers and basic arithmetic
	3.5. Boolean values
	3.6. Strings
	3.7. Type conversions
	3.8. Lists and Dictionaries
	3.8.1. Setting up and Accessing Lists
	3.8.2. Slicing Lists
	3.8.3. Setting Up and Using Dictionaries
	3.8.4. Nested Dictionaries

	3.9. Augmenting Values and Lists
	3.10. Lists and Jython Tuples
	3.11. Basic programming statements
	3.11.1. if/elif/else
	3.11.2. for
	3.11.3. while
	3.11.4. Loop control: break and continue

	3.12. Printing to the screen and files
	3.13. Defining and Using Functions
	3.14. Importing modules
	3.15. Object Oriented Programming
	3.15.1. Classes and Objects
	3.15.1.1. A Note about Terminology

	3.15.2. Interface, Implementation and Encapsulation
	3.15.2.1. Interfaces, the Java Way

	3.15.3. Inheritance
	3.15.4. Packages and Namespaces
	3.15.5. Advantages of OOP
	3.15.6. Concluding Remarks

	3.16. Defining a Class in DP
	3.17. Writing Scripts - Programming in DP
	3.18. Some Useful Extra Items on Scripts
	3.19. Interactivity in Jython Scripts
	3.19.1. Basic Interactivity
	3.19.2. A Little Bit of Swing
	3.19.2.1. showMessageDialog
	3.19.2.2. showInputDialog
	3.19.2.3. showConfirmDialog

	3.20. Useful Java bits
	3.21. Jython and DP Quirks
	3.21.1. Two functions for one goal
	3.21.2. Long Names versus Short Names
	3.21.3. Naming conventions
	3.21.4. Miscellaneous quirks

	Chapter 4. Handling Array Data Objects, Datasets and Products
	4.1. Introduction
	4.2. Getting started
	4.3. Types of Array Data Objects
	4.3.1. DP Numeric Array Access and Slicing

	4.4. Creating a Simple 1D DP Numeric Array
	4.5. Creating and Handling Complex Array Data Objects
	4.6. Creating and Accessing Multi-Dimensional Array Data Objects
	4.6.1. A note on array ordering

	4.7. Adding Attributes to Create an Array Dataset
	4.7.1. Dataset Attributes and Metadata

	4.8. Creating and Viewing a TableDataset
	4.8.1. Row-wise appending of TableDatasets
	4.8.2. Assigning Units
	4.8.2.1. Manipulating Units
	4.8.2.2. Converting Units to Strings and Back Again
	4.8.2.3. Derived Units
	4.8.2.4. Conversion to SI and Other Units
	4.8.2.5. Physical Constants
	4.8.2.6. Unit Compatibility
	4.8.2.7. Unit Equivalence

	4.9. Creating and Accessing a Composite Dataset
	4.10. Spectrum Datasets
	4.10.1. Spectrum1d and SpectralSegments
	4.10.2. Spectrum2d
	4.10.3. Expanding Spectrum1d and Spectrum2d Datasets
	4.10.3.1. HIFI Extensions
	4.10.3.2. SPIRE extensions to Spectrum1d
	4.10.3.3. PACS Spectrum1d and Spectrum2d extensions

	4.11. Image and Cube Datasets
	4.12. Assigning a World Coordinate System (WCS) to SimpleImage and SimpleCube
	4.13. Wrapping it all up: Products
	4.13.1. Mandatory Parameters in Products
	4.13.2. Setting Date Information
	4.13.3. Additional Metadata
	4.13.4. Inserting and Getting Datasets from a Product

	4.14. The Dataset Inspector
	4.14.1. The TablePlotter
	4.14.1.1. Introduction
	4.14.1.2. Invoke TablePlotter
	4.14.1.3. Layout of the TablePlotter
	4.14.1.4. Controls and Functions

	4.14.2. The Over Plotter
	4.14.2.1. Introduction
	4.14.2.2. Invoke Over Plotter
	4.14.2.3. Layout of Over Plotter
	4.14.2.4. Controls and Functions

	4.14.3. The Power Spectrum Viewer
	4.14.3.1. Introduction
	4.14.3.2. Power Spectrum Generator

	Chapter 5. DP Numeric: Basic Functions for Herschel DP
	5.1. Introduction
	5.2. Getting Started
	5.3. Basic Numeric Array Arithmetic
	5.4. Numeric Functions and Lambda Expressions
	5.5. Selection, Data Filtering and Masking Methods
	5.6. Array Access and Slicing
	5.7. Making sense of logical operators
	5.8. Advanced Tips for Improved Performance
	5.9. Type Conversions
	5.9.1. Explicit conversion
	5.9.2. Implicit conversion

	5.10. Function Library
	5.10.1. Basic Functions
	5.10.2. Integral Transforms
	5.10.3. Convolution
	5.10.4. Boxcar and Gaussian Filters
	5.10.5. Interpolation Functions
	5.10.6. Basic Fitter Routines
	5.10.6.1. General Approach
	5.10.6.2. Available Linear Models
	5.10.6.3. Available Non-Linear Models
	5.10.6.4. Compound and Mixed Models
	5.10.6.5. Available Fitters
	5.10.6.6. Obtaining a Model Fit to 1D and 2D Data
	1D Fit Example
	2D Fit Example

	5.10.7. Spectral Fitting.
	5.10.7.1. Data format
	5.10.7.2. General Usage
	5.10.7.3. Fitting your data
	5.10.7.4. A Simple Fit Case
	5.10.7.5. Available Models For Fitting
	5.10.7.6. Multiple Line Fitting
	5.10.7.7. Background/continuum Fitting
	5.10.7.8. Fit of Line and Continuum
	5.10.7.9. Changing Parameters
	5.10.7.10. Removing Fitted Models
	5.10.7.11. Using Fit Parameters
	5.10.7.12. Subtracting a Fit
	5.10.7.13. New Data
	5.10.7.14. Functions To Be Added in the Future

	5.10.8. Matrix Manipulations
	5.10.9. Random numbers generation
	5.10.10. Numeric Integration
	5.10.11. Interpolating Discrete Data

	5.11. Example Programs
	5.12. Mathematical Operations on Spectra
	5.12.1. Introduction
	5.12.2. Toolbox Primer: Selection
	5.12.2.1. More on selection methods

	5.12.3. Toolbox Primer: Average Spectra
	5.12.4. Toolbox Primer: Subtract Spectra
	5.12.5. Toolbox Primer: Divide Spectra
	5.12.6. Toolbox Primer: Add and Muliply Spectra
	5.12.7. Toolbox Primer: Resample and Smooth Spectra
	5.12.8. Toolbox Primer: Statistics on Spectra
	5.12.9. Summary of Toolbox Operations
	5.12.9.1. Remarks

	Chapter 6. DP Plot: Basic Plotting of Data
	6.1. Introduction
	6.2. What do I need to make a simple XY plot?
	6.2.1. Introducing PlotXY
	6.2.1.1. Using PlotXY to plot one Numeric1d array against another

	6.3. How to setup your PlotXY properties
	6.3.1. How to modify properties
	6.3.2. Plot properties
	6.3.3. Layer properties
	6.3.4. Axis properties.
	6.3.5. How to use properties.
	6.3.6. Resizing a plot

	6.4. Manipulating Layers, Axes, and Annotations in DP Scripts
	6.4.1. What about these Layers?
	6.4.2. What can I do with Axis?
	6.4.2.1. Log Axes, Labels and Gridlines
	6.4.2.2. Multiple Axis Labels

	6.5. Adding Error Bars to a Plot
	6.6. How can I annotate, decorate and save my plot?
	6.7. How can I make my plots more colourful?
	6.8. Creating file output and printing a plot without displaying
	6.8.1. Using batch mode

	6.9. Windows containing more than one plot
	6.10. Mouse Interactions with Plots
	6.11. What about a complete PlotXY example?

	Chapter 7. Display - Handling Images and Cubes
	7.1. Introduction
	7.2. Images and Cubes
	7.2.1. Flagging out Pixels : the Flag Class
	7.2.2. Coordinate Conversions: the Wcs Class

	7.3. Display vs. Image Explorer
	7.3.1. Display
	7.3.1.1. Display in more Detail
	7.3.1.2. How to use different Layers?
	7.3.1.3. How to place Annotations on an Image?
	Annotations from the Command Line in your DP session
	Annotations from the Annotation Toolbox

	7.3.1.4. Other Functionalities available via the Menu
	Editing the Colours
	Editing the Cut Levels
	Zooming in/out
	Annotation Toolbox
	Printing and creating a Screenshot
	Flipping the y-axis

	7.3.2. Image explorer

	7.4. Visualisation, Analysis and Manipulation of Images
	7.4.1. Profile Plotting
	7.4.2. Aperture Photometry
	7.4.2.1. Aperture Photometry with a circular Target Aperture and an annular Sky Aperture
	7.4.2.2. Aperture Photometry with a circular Target Aperture and a rectangular Sky Aperture
	7.4.2.3. Aperture Photometry with a circular Target Aperture and a fixed Sky Value

	7.4.3. Histograms
	7.4.4. Contour Plotting
	7.4.5. Mosaicking
	7.4.6. Smoothing
	7.4.7. Clamping/Clipping
	7.4.8. Cropping
	7.4.9. Rotating
	7.4.10. Scaling
	7.4.11. Translating
	7.4.12. Transposing
	7.4.13. Flagging saturated Pixels
	7.4.14. Getting the Cut Levels
	7.4.15. Image Arithmetics
	7.4.15.1. Addition/Substraction/Multiplication/Division/Modulo
	7.4.15.2. Absolute values
	7.4.15.3. Rounding/Flooring/Ceiling
	7.4.15.4. Power/Square/Sqrt
	7.4.15.5. Logarithmic/Exponential

	7.5. Visualisation, Analysis and Manipulation of Cubes

	Chapter 8. Introduction to Tasks
	8.1. The Task framework
	8.2. My first Task
	8.2.1. Before the Task
	8.2.2. What makes a Task?
	8.2.3. An Example of a Task: Average
	8.2.3.1. Importing definitions
	8.2.3.2. Creation
	8.2.3.3. Execution
	8.2.3.4. Usage
	8.2.3.5. Getting help on Tasks
	8.2.3.6. Adaptations in the Preamble to a Script
	8.2.3.7. Positional and Keyword Arguments in Tasks
	8.2.3.8. The Transformer example

	8.3. Guideline on How to Work With GUIs Within Tasks
	8.3.1. The use of task parameters handled via a dialog
	8.3.2. The use of more enhanced GUIs
	8.3.3. Example Task Handled by a Dialog
	8.3.4. Example Task Controlled by a GUI

	Chapter 9. Other DP Packages: What is Available?
	9.1. Introduction
	9.2. Overview of JavaDocs Documentation for DP Packages
	9.3. Package view
	9.4. Class view
	9.5. Tree view
	9.6. Deprecated view
	9.7. Index view
	9.8. DP Packages And Documentation
	9.8.1. herschel.ia.dataflow
	9.8.2. herschel.ia.dataset
	9.8.3. herschel.ia.demo
	9.8.4. herschel.ia.doc
	9.8.5. herschel.ia.document
	9.8.6. herschel.ia.help
	9.8.7. herschel.ia.image
	9.8.8. herschel.ia.inspector
	9.8.9. herschel.ia.io
	9.8.10. herschel.ia.jconsole
	9.8.11. herschel.ia.numeric
	9.8.12. herschel.ia.plot
	9.8.13. herschel.ia.task
	9.8.14. herschel.ia.ui

	Chapter 10. IO of DP Variables, Tabular ASCII and FITS Files
	10.1. Introduction
	10.2. Saving and Restoring DP Variables
	10.3. Getting Started with ASCII Import/Export
	10.3.1. Basic ASCII Table Import/Export Tool Usage
	10.3.1.1. Import Parsers
	10.3.1.2. Comma-Separated-Variable Parser
	10.3.1.3. Fixed-Width Parser
	10.3.1.4. Regular Expression Parser
	10.3.1.5. Export Formatters
	10.3.1.6. Comma-Separated-Variable Formatter
	10.3.1.7. Fixed-Width Formatter
	10.3.1.8. Table Template

	10.3.2. Examples of How to Import/Export ASCII Tables in DP

	10.4. Overview of FITS IO
	10.4.1. Getting Started With FITS IO
	10.4.1.1. Basic FITS IO Tool

	10.4.2. Parameter Name Conversion and FITS Header
	10.4.3. Caveats
	10.4.3.1. FITS header character limit
	10.4.3.2. Corrupted FITS file after unzipping

	Chapter 11. Using Time in the DP Environment
	11.1. Introduction
	11.2. Time Definitions
	11.2.1. System time in DP
	11.2.2. International Atomic Time (TAI) and FineTime
	11.2.3. Coordinated Universal Time (UTC)
	11.2.4. DecMec Time [PACS only]

	11.3. Time in Instrument House-Keeping (HK) Data
	11.4. Time conversion
	11.4.1. Time conversion in HCSS
	11.4.2. CucConverter

	Chapter 12. Accessing and Retrieving Data
	12.1. The Product Access Layer and Product Pools
	12.1.1. Available Product Pools
	12.1.2. Local Pools
	12.1.2.1. The Default Local Pool directory and how to change it
	12.1.2.2. Registering Local Pools
	12.1.2.3. Saving products in pools
	12.1.2.4. Finding out what is in storage: Starting the Product Browser
	12.1.2.5. More On Storage Queries: Other kinds of Querie and more examples of command line queries
	12.1.2.6. Retrieving products from storage
	12.1.2.7. Deleting Products from Storage
	12.1.2.8. Updating/Repairing Storage

	12.1.3. DbPool
	12.1.4. HsaReadPool
	12.1.5. CachedPool
	12.1.6. Setting up and Accessing Remote Pools
	12.1.6.1. PoolDaemon
	12.1.6.2. Accessing Remote Pools Using the SerialClientPool

	12.1.7. Special Imports into Pools
	12.1.7.1. Putting a Directory of FITS Files Into a Pool
	12.1.7.2. Placing Image (PNG) Files in a Pool and/or FITS File

	12.1.8. Common Problems
	12.1.9. Storage Product Versioning
	12.1.9.1. Versioning
	12.1.9.2. Querying Product Versions
	12.1.9.3. Tagging Products in a Store
	12.1.9.4. Turning Off Product Versioning
	12.1.9.5. Using the New Versioning Mechanism Against Existing Pools

	12.1.10. The Product Browser
	12.1.10.1. A visual tour of the browser
	12.1.10.2. Simple use case
	12.1.10.3. A: Query area
	12.1.10.4. B: Result area
	12.1.10.5. C: Result inspection area
	12.1.10.6. D: JIDE basket area

	12.2. Databases
	12.2.1. Introduction
	12.2.2. Starting Up A Database:
	12.2.3. Schema Evolution
	12.2.4. Providing Database Access for a DP Session
	12.2.4.1. Properties File Setup for Database Access
	12.2.4.2. Using the Propgen Tool

	12.2.5. Changing the Database to be Accessed
	12.2.6. Browsing a Database
	12.2.7. Getting Data Frames From a Database
	12.2.7.1. Command Line Access to Data Frames
	12.2.7.2. From Database to ASCII File
	12.2.7.3. Downloading Dataframes from a Database Using a GUI

	12.2.8. Accessing Housekeeping (HK) Data
	12.2.8.1. Accessing HK Information For a Given Obsid
	12.2.8.2. Accessing HK Data For a Given Time Period

	12.2.9. Removing a Database

	Appendix A. Data Reduction Tutorial -- contributed by Russ Shipman
	A.1. Introduction
	A.2. Getting Data into Your Session
	A.3. Products and Data Wrappers
	A.4. Numerical Calculations
	A.5. Plotting
	A.6. Writing a Task
	A.7. Fitting a Model
	A.8. Saving Data and Session

	Appendix B. Example User's Property File
	Appendix C. Jython Operators
	Appendix D. Demo script
	D.1. Introduction
	D.2. Demonstrations illustrating specific functionality

	Appendix E. Naming Conventions
	Java code example
	Jython code example

