
Herschel Data Processing
HowTo Documents

version 0.7, Document Number: HERSCHEL-HSC-DOC-1199
22 March 2009

Herschel Data Processing HowTo Documents:

iii

Table of Contents
1. HowTos Preface .. 1

1.1. Introduction ... 1
1.2. Change Log ... 1

2. HIPE Introduction ... 3
2.1. Introduction ... 3
2.2. HIPE Philosophy .. 3
2.3. Installation and Startup of HIPE .. 3
2.4. Obtaining Help from within HIPE .. 4
2.5. HIPE Welcome Screen .. 6

2.5.1. Icon: Work Bench .. 8
2.5.2. Icon: Access Data ... 8
2.5.3. Icon: Documentation ... 9
2.5.4. Icon: Preferences .. 10
2.5.5. Icon: Updates ... 10
2.5.6. Icon: External Tools .. 10

2.6. HIPE Perspectives ... 10
2.6.1. Available Default Perspectives .. 11
2.6.2. The Full Work Bench Perspective .. 13
2.6.3. The Work Bench Perspective .. 14
2.6.4. Archive Browser ... 15

2.7. Changing HIPE Perspectives ... 16
2.7.1. Adjusting Individual Views .. 16
2.7.2. Adding New Views to the Perspective .. 18

2.8. Available Views And What They Allow You To Do .. 19
2.8.1. Classes .. 19
2.8.2. Console ... 19
2.8.3. Data Access ... 20
2.8.4. Editor ... 21
2.8.5. Export Herschel Data from HIPE ... 23
2.8.6. Herschel Login ... 23
2.8.7. Herschel Science Archive ... 24
2.8.8. HIFI pipeline ... 24
2.8.9. History .. 25
2.8.10. Import Herschel Data into HIPE .. 25
2.8.11. Log .. 25
2.8.12. Navigator ... 26
2.8.13. Outline .. 26
2.8.14. Packages .. 27
2.8.15. PAL Storage Manager .. 28
2.8.16. Save Products to Storage .. 28
2.8.17. Tasks .. 28
2.8.18. Variables ... 29
2.8.19. Welcome ... 30

2.9. Viewers in HIPE ... 30
3. HowTo Access and Retrieve Data from the Herschel Science Archive 32

3.1. Introduction .. 32
3.2. Retrieving Data from the Herschel Science Archive User Interface 32
3.3. Accessing HSA Data within HIPE .. 34

4. HowTo Store and Access Data ... 37
4.1. Introduction .. 37
4.2. Creating and Saving Products in a Pool ... 37
4.3. Registering and accessing other data stores .. 37
4.4. Data access via the HIPE GUI ... 38

4.4.1. Types of Stored Data ... 38
4.4.2. Using the Data Access View ... 38

Herschel Data Processing HowTo Documents

iv

4.5. Data Access via the Console View Command Line .. 44
5. Running the HIFI pipeline ... 46

5.1. Running the Pipeline ... 46
5.2. Using the HIFI Pipeline task ... 49
5.3. Running the Individual Pipelines using the HIFI pipeline task 52
5.4. Running the Individual Pipeline Tasks .. 53
5.5. Running the Pipeline step by step .. 54
5.6. Running the Pipeline step by step ... 55

6. HowTo run the PACS pipelines within HIPE .. 57
6.1. Introduction .. 57
6.2. Retrieving your data, extracting the Level 0 product .. 57
6.3. PHOT pipeline .. 58

6.3.1. Level 0 to Level 0.5 .. 58
6.3.2. Level 0.5 to Level 2 .. 58

6.4. SPEC pipeline .. 60
6.4.1. Level 0 to 0.5: ramp to frame ... 61
6.4.2. Level 0.5 to 2: frame to cube .. 61

7. How to perform SPIRE pipeline processing in HIPE .. 63
7.1. SPIRE pipeline processing .. 63

7.1.1. SPIRE photometer pipeline processing .. 63
7.1.2. SPIRE spectrometer pipeline processing. ... 74
7.1.3. Additional reading .. 86

8. How to Save and Restore Data (including Herschel Archive data, ASCII and FITS) 88
8.1. Introduction .. 88
8.2. How to save and restore data from the command line ... 89
8.3. How to save and restore products using a Local Store .. 89
8.4. How to Save Images and Tables as FITS files .. 96

8.4.1. Saving with a Task Dialog ... 96
8.4.2. Saving Using Command-line Inputs ... 96
8.4.3. How to Save TableDatasets as FITS Files ... 97
8.4.4. How to Read FITS Files .. 97

8.5. How to Create and Read ASCII Table Files ... 98
8.5.1. Using HIPE Task Dialogs to Create and Read ASCII Tables 98
8.5.2. Using Command-line Input to Create and Read ASCII Tables 101

9. How to plot in HIPE .. 103
9.1. Introduction .. 103
9.2. Simple plots from the command line ... 103
9.3. Interacting with plots using plot properties GUI .. 106
9.4. Advanced plotting ... 111
9.5. Plotting table datasets - using the TablePlotter .. 112

10. HowTo Inspect and Plot Dataset Tables in HIPE .. 113
10.1. Introduction .. 113
10.2. Steps to creating and viewing a simple TableDataset with the HIPE GUI 113
10.3. Guide to TablePlotter Controls and their functions ... 114

11. HowTo Display Spectra ... 119
11.1. Introduction .. 119
11.2. Obtaining a Spectrum from an ObservationContext 119
11.3. The SpectrumExplorer Package ... 122
11.4. Future developments ... 123

12. Spectral Arithmetic and Mathematical Operations ... 125
12.1. Introduction .. 125
12.2. Starting point -- using a dataset of a number of HIFI spectra. 125
12.3. Using HIPE to Access the Spectrum Arithmetic Tasks 127

13. The CubeSpectrumAnalysisToolbox ... 136
13.1. Introduction .. 136
13.2. Launching the CubeSpectrumAnalysisToolbox GUI ... 136
13.3. Using the GUI ... 137

13.3.1. Design ... 138

Herschel Data Processing HowTo Documents

v

13.3.2. File menu ... 138
13.3.3. Spectrum menu ... 138

13.4. Running the tasks outside of the cubetool GUI .. 142
13.4.1. Accessing the individual products ... 142
13.4.2. Details for specific tasks ... 142

14. HowTo Fit Spectral Features .. 145
14.1. How to fit spectra in HIPE .. 145
14.2. How to fit spectra from the command line .. 148

15. HowTo Display and Manipulate Images in HIPE ... 154
15.1. Introduction .. 154
15.2. Creation of a SimpleImage for Display .. 154
15.3. Viewing the Metadata and Array Data Associated with an Image Dataset 155
15.4. A Simple Display of an Image ... 156

15.4.1. Magnifying an Image ... 157
15.4.2. Image Coordinates and Pixel Intensity ... 157

15.5. Editing and Printing Images ... 157
15.5.1. Editing the Colour Look Up Table (LUT) .. 158
15.5.2. Editing the Cut Levels .. 158
15.5.3. Zoom In/Out ... 159
15.5.4. Annotation Toolbox ... 159
15.5.5. Screenshots and Printing Images .. 160

15.6. Image Transformations ... 160
15.6.1. Applying Image Transformations .. 160
15.6.2. Image Transformation Options ... 161

15.7. Image Arithmetic ... 162
15.8. Working with the World Coordinates System (WCS) .. 163

16. HowTo Do Basic Image Analysis in HIPE .. 165
16.1. Introduction to Interactive Image Analysis with HIPE 165
16.2. Setup and Display of Images for Analysis .. 165
16.3. Getting a SimpleImage a product out of the Herschel Science Archive (HSA) 166
16.4. Basic Analysis Capabilities .. 168

16.4.1. 1D Profile Plotting .. 169
16.4.2. Area Histogram ... 170
16.4.3. Aperture Photometry .. 172
16.4.4. Contour Plotting .. 175

17. How to Save/Play Back Scripts in HIPE ... 177
17.1. Introduction .. 177
17.2. How to save/ play back a script in HIPE .. 177
17.3. How to Play Back a Script from the Command Line ... 178

1

Chapter 1. HowTos Preface
1.1. Introduction

This document is intended to provide a general overview of the main interface to the Herschel Data
Processing (DP) software referred to as HIPE (Herschel Interactive Processing Environment). HIPE
provides a GUI plus command-line access to the data processing capabilities of the Herschel Common
Science System (HCSS).

The intended audience is for the general astronomer new to the DP system who wishes to start with
HIPE for doing standard data analysis. More specialist analysis is possible and scripting, allowing for
batch processing, can be done within the system.

For those interested in becoming more advanced in the system the "DP Basic User's
Manual" is also available from within the DP help system and on-line as PDF and HTML
documents.

1.2. Change Log
The following items have been changed or updated between document version 0.6 and 0.7 Changes
are with respect to user release 1.0 of the HCSS and DP system.

• Chapter 3: HSA interface -- updated to include the new interfaces allowed by HSA v1.5.

• Chapter 8: Save and restore from pools updated to include new views available on creating storages,
registering them and using them.

• Chapter 2: HIPE overview -- updated to include short introduction to the new views in HIPE; Import
Herschel data into HIPE, Export Herschel data from HIPE, Product Storage Manager and Save
Products to Store.

The following items have been changed or updated between document version 0.5 and 0.6 Changes
are with respect to user release 0.6.7 of the HCSS and DP system.

• PACS pipeline chapter -- complete update for photometer/spectrometer and different modes

• HowTo display spectra -- now includes SPIRE spectroscopic example.

• HIFI pipeline -- complete update for running in HIPE or via command line.

• SPIRE pipeline -- complete update to most recent photometer/spectrometer pipelines.

• Additional chapter on Spectral Cube analysis.

Changes were made in going from version 0.4 to version 0.5. The following items have been changed
or updated. Changes are with respect to user release 0.6.7 of the HCSS and DP system.

• PACS pipeline chapter -- access to calTree defined

• HowTo plot -- Tex-like features and properties interactions updated. Several typos (including in
example scripts) removed.

• HIPE overview updated to reflected changes to perspectives and views in most recent release.

• Minor updates (links, typos etc.) in Archive, DataAccess, Save and Tables HowTos.

Substantial changes were made in going from version 0.3 to version 0.4. The following items have
been changed. Changes are with respect to user release 0.6.6 of the HCSS and DP system.

HowTos Preface

2

• HIFI pipeline chapter substantially updated

• SPIRE pipeline chapter updated to include sample output products

• HowTo chapters on spectral display, image display and arithmetic , spectral arithmetic, spectral
fitting and image analysis all added.

• HowTo Access Data substantially changed to include updates in access to the Herschel Science
Archive.

• HowTo Save and Read data to and from FITS and ASCII files -- information expanded.

The following items have been changed in version 0.3 from version 0.2. Changes are with respect to
user release 0.6.5 of the HCSS and DP system.

• HIFI pipeline chapter added

• PACS pipeline chapter added

• SPIRE pipeline chapter updated to include sample output products

• HowTo plot chapter updated.

• HowTo save chapter updated, including missing image.

The following items have been changed in version 0.2 from the original version (v0.1). Changes are
with respect to user release 0.6.4 of the HCSS and DP system.

• Update of HIPE overview to new views/capabilities of the HIPE environment.

• How to Save data section added.

3

Chapter 2. HIPE Introduction
-- Using the Herschel DP Interface

2.1. Introduction
The data processing application for Herschel Data Processing, Herschel Interactive Processing
Environment (HIPE), strives to provide an integrated suite of graphical interfaces that can interact
with each other. It allows for interactively choosing your active data in your session, visualizing that
data in various ways and selecting tools that can operate on the data. Both command-line and GUI
interfaces to the user are available. High-level interactions, which can involve GUIs, are also echoed
as commands on the command-line that allow the saving of commands used in a session and the
generation of scripts from these interactions.

This section of the Data Processing (DP) HowTos manual provides a brief overview of the fundamental
elements of the user interaction framework, HIPE. Hopefully this enables you -as a user- to make the
most efficient use of HIPE.

2.2. HIPE Philosophy
HIPE tries to embrace several aspects which affects both users as well as developers:

• An integrated application - giving access to all data processing functionality in a unified graphical
interface

• One look-and-feel - where window layout, toolbars, buttons, and menus are alike.

• A customizable layout - allow the user to decide which windows are relevant and how these windows
are layed-out on screen.

• User guidance - including command-line echoing of main graphical functionality, allowing the user
to learn the scripting language by interacting with the system interactively.

• Extendible application - allow the developer to add new bells-and-whistles which are automatically
integrated

2.3. Installation and Startup of HIPE
HIPE is part of the Herschel Data Processing system and can be installed with the software installer
(see Herschel Science Centre website, or installer script). Software can be run on a server or individual
workstation running Windows XP, Linux or Solaris. The minimum recommended system is Windows/
Linux 32-bit w/1GB RAM or 64-bit W/Lin/Mac w/1GB RAM; Browsers for use with the systemm
(including download) IE 6+ , Netscape 7+, Mozilla (Firefox) 1.5+, Safari (Mac). The system is Java
based and requires Java 1.6. General Java scripts can be run on the system. Installation instructions
are provided at the bottom of the FTP page.

Once the software is installed, HIPE can be started by several means. Using Windows, Herschel
software can be started under the "Start" menu after a standard installation. Alternatively, HIPE can
be started from a command line.

hipe

While HIPE is being launched a splash screen is shown (see Figure 2.1).

http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/docsDpInstallInfo.shtml#user_release

HIPE Introduction

4

Figure 2.1. HIPE startup splash screen.

2.4. Obtaining Help from within HIPE
Help can be obtained via the Help pulldown menu available at the top of the HIPE screen at any time
and with any view the user has. There are three types of Help available (see Figure 2.2").

Figure 2.2. HIPE help available.

• Contents: This provides a general view of the help information available to the user. Selection
provides a new tab in the default browser of the user showing a hierarchical set of complete DP
documentation with more advanced documentation appearing towards the bottom of the screen (see
Figure 2.3).

• Working in HIPE: This provides access to similar documentation, also from within the user's
default browser. In this case, however, Chapter 2 of the HowTos manual which provides an
overview of how to interact with HIPE, is opened (see Figure 2.5).

• Release Notes: This provides a similar view again, except this time the page automatically opened
is that containing the news of the most recent additions/changes to the system (see Figure 2.4).

HIPE Introduction

5

Figure 2.3. HIPE general help contents.

Figure 2.4. Help with HIPE interactions.

HIPE Introduction

6

Figure 2.5. HIPE release notes.

Navigation through the help documentation is via standard mouse clicks on the links that appear in
the browser window.

2.5. HIPE Welcome Screen
Following launch a Welcome screen is displayed which includes six icons appearing on the HIPE
startup screen. Access to the setup for analysis (Work Bench), a data access area (Access Data), general
help (Documentation) and interactions with external tools (External Tools) are currently available.
Later editions will allow for software update searches (Updates) and HIPE preference selection
(Preferences). Placing the mouse over each of the icons on the screen provides a small description that
appears along the bottom of the HIPE window (see Figure 2.6).

HIPE Introduction

7

Figure 2.6. Information on 'Welcome' screen icons. See bottom strip of the HIPE screen for the explanation
of each icon the mouse is placed over. In this case the Access Data view is stated as being accessible via
the icon the mouse is hovering over.

Note that a tool bar exists at the very top right of all window displays of HIPE. This tool bar and its uses
are discussed in the section on HIPE perspectives (see Section 2.6). However, just to note here that
the Welcome screen can always be returned to by using the 'Help' pulldown menu to 'Welcome' (see
Figure 2.7)
. The Welcome screen is also available using the first icon in th elist to the top right of the HIPE

screen ().

Figure 2.7. HIPE Welcome screen access.

HIPE Introduction

8

2.5.1. Icon: Work Bench

Clicking on the icon takes the user to the workbench perspective (for information on
perspectives in HIPE see Section 2.6). The default view of the workbench is shown in Figure 2.8.
This is the main work area for doing data analysis. Here we can look at data values, plot spectra and
images, create scripts for batch processing and run analysis tools. The contents of the workbench can
be updated with various "Views" available under the Window pull-down menu (see Section 2.8 on
available Views).

The current default work bench is a somewhat slimmed-down version of the full work bench. Either
perspective on the system can also be be provided via use of the "Window" menu. Selection of the
"Show Perspectives" and either "Full work bench" or "Work bench" provides the two main default
perspectives for when doing work in HIPE.

Figure 2.8. HIPE default view of the workbench perspective.

2.5.2. Icon: Access Data

The icon opens up a replacement window in HIPE that provides access to data held in databases
both locally or at a remote site (for example the Herschel Science Archive). It also allows the import
of FITS and ASCII table files into and out of a DP session.

The access tools allow the user to search and do queries on stored data and its attributes in order to
make it accessible within the processing session.

HIPE Introduction

9

Four icons appear that allow import/export to databases, direct access to the Herschel Science Archive
or import/export of FITS or ASCII table files (see Figure 2.9).

Figure 2.9. HIPE default view of the workbench perspective.

Clicking on the "Herschel Archive Browser" icon opens up the Herschel Archive perspective, while
the Data Access icon takes the user to the Product Access Layer perspective (see Section 2.6 for
information on these perspectives). The means for actually bringing data into the system is described
in detail in the HowTo Access Data.

For FITS and ASCII I/O the other icons produce perspectives that allow for this which are based on
the default Work Bench plus the simple FITS archive tool or ASCII archive tool respectovely. These
are discussed more thoroughly in the HowTo save and restore data (ASCII and FITS).

At the bottom of the screen is a large back-arrow button that allows the user to return to the original
"Welcome" screen.

2.5.3. Icon: Documentation

The icon allows access to the complete DP release documentation tree. After clicking on this
icon, documentation is provided via a web browser and uses the Eclipse software system which comes
with the HCSS build. The user is able to get the top-level How-To information that explains such
basic functionality as accessing data in a database, displaying images and spectra, plus basic image
and spectral analysis for Herschel (also see Section 2.4).

Links are also provided to documentation that explain the scripting capabilities and use of the
commands on the command-line of a console window. This allows the user access to the full power of

HIPE Introduction

10

the system as well as the creation of his/her own batch mode processing. The scripting language has
great similarity to the Jython scripting language and borrows many of the items from that language.
This is contained in the "Basic User's Manual".

User task commands, numerical package and product storage information is also available in the User's
Reference Manual (URM). The URM provides a short inrtroduction to any of the commands available.
Help for a given command displays the URM contents for that command.

Developer documentation for the complete system is available. These are in JavaDoc format (described
in Chapter 9 of the "Basic User's Manual"). Any of these commands may be used at the console
command line or within scripts produced for the DP system.

2.5.4. Icon: Preferences

The icon functionality is NOT IMPLEMENTED YET. Clicking on this item will change
Herschel DP system preferences for the user.

At the bottom of the screen is a large back-arrow button that allows the user to return to the original
"Welcome" screen.

2.5.5. Icon: Updates

The icon functionality is NOT IMPLEMENTED YET. Clicking on this item will (in future)
allow the user to search for software updates available from the Herschel Science Centre.

At the bottom of the screen is a large back-arrow button that allows the user to return to the original
"Welcome" screen.

2.5.6. Icon: External Tools

The icon takes the user to a set of icons linking to Virtual Observatory tools, including VOSpec,
VOPlot and Aladin. Included in this listing is the Herschel Science Archive (HSA) browser, as
Herschel components are VO-compliant. The HSA also uses a VO-like interface with HIPE. Clicking
on any of the icons launches the external VO tool. Help and assistance with these tools are provided
separately from within the tools or associated administrative website, except for the HSA browser
interface which is described in this manual.

At the bottom of the screen is a large back-arrow button that allows the user to return to the original
"Welcome" screen.

2.6. HIPE Perspectives
When going to the workbench or using the welcome icon link to the data access capabilities of HIPE,
the user is presented with a "perspective". A "perspective" is a presentation of the system that is made
available to the user through a set of "views" (basically separate windows within the environment that
provide particular capabilities). The following section discusses the views the user can have, but in
this section we describe perspectives and in particular the default workbench perspective. We also
discuss how the user can control a perspective to make it as simple or as complex as wished.

HIPE is built-up from several graphical elements, of which the fundamental ones are shown in
Figure 2.10, which provides the full work bench. A perspective is a collection of graphical windows

HIPE Introduction

11

("views") organized in a way to focus the user on doing a specific job within the whole suite of jobs
that a user can and will do within the system. It may consists of one or more views and, optionally,
the editor area; these windows are then organized in tabbed panes and split panes. Many of the views
also contain their own toolbars. These toolbars are in addition to the toolbars for HIPE displayed at
the top left (editor capabilities for editor window view) and right of the HIPE screen (icons providing
access to full set of defaults perspectives -- hover mouse over icon to view perspective name).

Figure 2.10. A single element (view) for a HIPE perspective.

2.6.1. Available Default Perspectives

There are five perspectives that come pre-packaged in the system. These can always be obtained
by using the toolbar at the top of the HIPE window. Click on "Window" and pull down to "Show
Perspectives", which provides the list.

2.6.1.1. Product Access Layer Perspective

The Product Access Layer perspective provides a convenient means of getting and briefly viewing
data from databases and data stores -- both locally and remotely stored. This is illustrated in
Figure 2.11. There are 4 windows ("views") including an editor where DP scripts can be created (see
the DP User's Manual).

Data can be queried from a locally stored database (default is under the ~/.hcss directory) or remotely
registered database using the "Data Access" view seen to the left of the perspective (see Section 2.8.3).
More information on how to get data from databases and the Herschel Science Archive is available
from the chapter HowTo Access Data.

HIPE Introduction

12

Figure 2.11. HIPE Product Access Layer (PAL) perspective. This provides access to data stores both on-
line and on the user's own computer.

2.6.1.2. Classic(JIDE) Perspective

The Classic JIDE perspective provides a scripting environment with 3 windows that provide an editor/
debugger window, a console window and a log window. This is the basic view of the system used
during earlier development of the DP system (see Figure 2.12). A new Jython (DP) script window can

be added by clicking on the icon at top left of the Editor window. More information on the
Editor view can be found at Section 2.8.4. The DP User's Manual, available under the Help menu, also
provides significant further help on JIDE itself and the HIPE/JIDE view in creating user scripts.

The same perspective can be obtained by clicking the icon to the top right of the HIPE window.

HIPE Introduction

13

Figure 2.12. HIPE's 'classic' JIDE perspective.

2.6.2. The Full Work Bench Perspective

The Full Work Bench perspective provides a general environment with multiple windows, five
of which are prominent (editor, console, variable list, outline, run tools). Other windows/views are
available by clicking on the tabs, e.g., Navigator, Classes (see Figure 2.13).

HIPE Introduction

14

Figure 2.13. HIPE view of the full work bench perspective.

2.6.3. The Work Bench Perspective

The Work Bench perspective provides a slimmed-down general environment similar to the work
bench but with only with four windows (views). The editor, console, variable list, outline, tasks views
are available (see Figure 2.14).

HIPE Introduction

15

Figure 2.14. HIPE default view of the work bench perspective.

2.6.4. Archive Browser

The Archive Browser perspective provides a convenient means of querying and obtaining data from
the Herschel Science Archive (HSA). There are three views related to providing log-in information
for the HSA, the connection to the HSA (via plastic VO protocol) and the loading of selected data
from the archive (see Figure 2.15).

Queried data appear under a single, selectable variable in the DP session (under Variables view) and
a click on the variable allows its outline to be provided in the Outlines view. These two views are
described in more detail later in this chapter. Further information on how to get data from databases
and the Herschel Science Archive is available from the chapter HowTo Access Data.

HIPE Introduction

16

Figure 2.15. HIPE Archive Browser perspective. This provides access to the Herschel Science Archive
(HSA).

2.7. Changing HIPE Perspectives
Changing a perspective to a worksurface that a user prefers can be done in various ways. Each window
can be resized or dragged to different areas of the workspace. Also, new views can be added to a
perspective.

2.7.1. Adjusting Individual Views
Each individual window can be adjusted in the following ways.

• Window resizing. These can be adjusted in a standard way. To the top of each window, the cross
(X)on the tab being clicked removes the window/view. The underscore line minimizes a window
(_) while the window can be maximized or returned to its original size by clicking of the box figure
in the tab at top right. Minimized windows appear to bottom left of the workspace (see Figure 2.16).
Holding the right mouse button down while on the window tab also provides a menu which includes
the same options.

Clicking and dragging borders of each of the windows allows for expansion in any direction of any
of the views.

• Window Tab Placement. A right click on the view tab provides a pull-down menu that allows some
default window resizing and also tab placement and direction of written label (see Figure 2.17).

• Moving Views. Windows can be moved inside the HIPE workspace by clicking on the window
itself and dragging to another part of the worksurface. Outline black boxes appear on the screen
indicating where the window would be if the mouse button was released at that point.

HIPE Introduction

17

It is also possible to completely Undock a window view by holding the right mouse button down
while on the window tab. Pulling down on the menu to "Undock" allows the view to become a
separate window that can be moved completely off of the HIPE surface (see Figure 2.18 for an
example). To move this undocked window the user need only click on the top, blue part, of frame
of the window and drag to wherever he/she wishes on the screen surface.

• Moving Between Windows in a View. Windows can be moved inside a view using the arrow
buttons to the top right of the view. The left and right arrows toggle through the windows available
in a view, while the down arrow allows window selection from a list (see Figure 2.19).

Figure 2.16. Minimized window appearance at the bottom of the HIPE window.

Figure 2.17. Changing tab positions in a HIPE view.

HIPE Introduction

18

Figure 2.18. Example of undocking a view using HIPE. In this case the Editor view has been undocked and
now sits "over" the HIPE worksurface and can be dragged to anywhere on the user's computer screen.

Figure 2.19. Selecting windows within a view. The down arrow shows the list of windows available in the
Editor view that the user can move to.

2.7.2. Adding New Views to the Perspective
Several additional views can be added to a perspective. The complete list is obtained from the Windows
menu on the toolbar at the top of HIPE. Pulldown to "Show Views" to show the available views in the
system. Click on one to add that view to the current worksurface (see Figure 2.20).

HIPE Introduction

19

Figure 2.20. The 'Show Views' selection from the Windows pulldown menu lists the views that can be added
(note: if the view already exists then a new one is not added).

2.8. Available Views And What They Allow
You To Do

Each view has particular capabilities that can be combined to provide a powerful interactive
environment. However, the environment can be simplified to a few windows to make a perspective,
as noted above. The views available under the HIPE "Window" pulldown menu on the toolbar can
be added to any perspective.

2.8.1. Classes
This view allows the user to see all the classes (routines) currently available in the session. These can
include scripts written and loaded into the system by the user. Help information for any of the classes
can be obtained by use of a right mouse button click. This brings up a small menu which provides
access to Help.

Help information on a class appears in the "Topic Help" view.

Both these views are available as default "Workbench" perspectives (see Section 2.6.1).

2.8.2. Console
The Console view is also available in the default workbench window. It provides a terminal-like
input for the DP system where command-line DP inputs can be made. A prompt (editable in a user's
properties) is provided.

Re-running commands. It is possible to cut and paste command lines into the window. It is also possible
to rerun commands by clicking on the window then hitting the up arrow key until the command that
requires repeating is reached. Editing of the command line can then be done before hitting return again
to rerun the (edited) command.

Note that the console inputs are the same as for the classic JIDE case and its full use is described in the
Basic User's Manual. Outputs such as plots or images will appear as separate tabbed windows within
the editor view (see below for more information on the Editor view).

The console window is also where printed output from routines appears. So a routine that involves a
print output will provide that printed output to the Console view (see Figure 2.21).

HIPE Introduction

20

Figure 2.21. The Console view is where command-line input can be made and where feedback command-
lines appear following the use of a GUI.

2.8.3. Data Access
This view brings up the interface for downloading data into a session (see Figure 2.22). This provides a
mechanism for interacting with a set of data on a user's machine or data contained in remote databases,
including the Herschel Science Archive (HSA). The data can be accessed by several means;

Figure 2.22. Outline of a variable in the DP session is shown in the Outline view.

• Observation: which allows querying for observations by target, proposal information, instrument
or observation id/day of observation.

• Attributes: which allows data selection via attributes in the data products such as creation date and
instrument model.

• Meta Data: which allows selection based on metadata associated with the products in the database
(TBD).

• Data Mining: which allows selection based on information contained within the science data
themselves (TBD).

HIPE Introduction

21

2.8.4. Editor
The Editor view is where scripts are displayed and can be edited (see Navigator view information).
When scripts are viewed a complete editing environment is made available allowing for standard
editing capabilities. These are available under the "Edit" toolbar at the top of the HIPE work area (see
Figure 2.23). A number of edit capabilities are also shown by icons ()
which can be clicked to perform certain tasks. Hovering the mouse over each of the icons indicates
the edit function it performs, e.g. the torch icon provides find/replace edit capabilities and the double
arrow icon allows the loading of everything showing in the current editor window. The run icon will
run the highlighted lines shown in the currently shown edit window. If no lines are highlighted then
the one line will be run from where the cursor is presently placed at the side of the script. An arrow
appears marking this position when the mouse is clicked next to a line -- in left hand side grey region
-- in a script window (see Figure 2.24).

Figure 2.23. The Edit toolbar.

Figure 2.24. The Edit arrow is placed next to the line the user wishes to execute next. In this case, the
Display task would be called once the Run button was clicked.

HIPE Introduction

22

Once a script is initiated, it can be halted by clicking the red highlighted square (Stop) icon. NOTE:
the current line of the script will be completed before the script stops running. This can lead to a delay
before coming to a halt.

The Editor view is also where informational overview or the contents of a DP file type are displayed
-- when requested. It is also the area where plots -- which are in themselves editable, e.g. zoom, pan,
change of labeling, task dialogs etc. -- are placed. Examples are shown in Figure 2.25 and Figure 2.26.

Figure 2.25. A window shows metadata associated with an image within the Editor view.

HIPE Introduction

23

Figure 2.26. Window showing a task dialog associated with an image rotation within the Editor view.

The area can hold several (tabbed) windows so multiple plots/scripts/file contents can be open at one
time.

2.8.5. Export Herschel Data from HIPE

This view allows Herschel data to be exported from the session into a directory structure which is
identical to the one found in the tar file of observations that are received fromt he Herschel Science
Archive following a request for data. See Chapter 8 for examples.

2.8.6. Herschel Login

This view allows the user to login to the Herschel Science Archive (HSA). It is also available as
part of the Access Data perspective noted previously. See Figure 2.27. The user enters username and
password which allows certain priviliged access to the archive system.

HIPE Introduction

24

Figure 2.27. The Herschel Science Archive login screen provided by the Herschel Login view.

2.8.7. Herschel Science Archive

This view allows the user to access the Herschel Science Archive (HSA). It is also available as part
of the Access Data perspective noted previously. See Figure 2.27. The user can get the HSA interface
by clicking the "Open HSA User Interface" button. Once selection is done then the "Load Selected
Products" button will bring selection into the HIPE session. More information is provided in the
HowTo chapter on Data Access.

Figure 2.28. The Herschel Science Archive interface view.

2.8.8. HIFI pipeline

This has not been fully implemented yet, but will be a specific view from within which it will be
possible to run HIFI pipelines (in part or full).

HIPE Introduction

25

2.8.9. History

The History view provides a listing of the commands executed at the console or lines executed from
the Jython script window of the Editor. This also shows whether the command was successful or not.

A tick () indicates the command supplied was successfully executed. A white cross in a red

circle () indicates that there was a problem when performing the command. A click on the small

plus sign in a circle () next to this will expand out the error information including a complete
traceback (see Figure 2.29).

Figure 2.29. A traceback of errors is available from the History window.

History can be saved and used for later batch processing. A right click on the History window allows
the commands listed to be either copied or saved to hard disk, enabling the contents to be used within
scripts edited in the Editor window or storage of the command listing. Later sessions can then easily
import the saved history into the Editor view for re-execution.

2.8.10. Import Herschel Data into HIPE

This view allows Herschel data to be imported from the tar file of observations that are received fromt
he Herschel Science Archive following a request for data. This creates a context for the observation
in HIPE that is easily navigable. See Chapter 8 for examples.

2.8.11. Log

The log screen provides a logging of the commands that have been executed from the command-line
or the equivalent from dialog interactions in HIPE. It also indicates warnings generated in the system.
The warning system level can be adjusted by the pulldown menu available at the arrow to top right of
the window, from FINE to SEVERE warning levels (see Figure 2.30).

HIPE Introduction

26

Figure 2.30. The Log screen with pull-down menu showing warning levels that are to be filtered and
displayed in the Log view.

2.8.12. Navigator
The Navigator view provides access to the user's directory environment. By default it provides a listing
of the user's home directory. Certain types of stored information can be brought into the session and
displayed. A right click on an item in the Navigator list provides items indicating what may be done
with the particular file (see Figure 2.31).

A prime example of using the Navigator tool is in loading a Jython script (file ending with .py). A right
click and pull down to "Open With..." then "Jython Script Editor", will open the script up in an Editor
view window (the Editor view can hold several, tabbed, windows). Scripts can also be run directly
from the same menu, with the "Run Script" item appearing on the menu. Although the scripts need to
be self-contained requiring no parameter inputs.

Figure 2.31. The Navigator view for HIPE showing the options available for the selected item on the user's
system. Double-clicking on a ".py" script will open the script in a new Editor view window.

2.8.13. Outline
The outline information on a given variable is placed in this uneditable view. Clicking on the variable
in the "Variables" view (see Section 2.8.18)provides an output of its name, variable type (class) and
the herschel package in which this variable type is defined. In Figure 2.32, the DP session variable
myImage2 is shown to be an image dataset which could be viewed using the available DP Display
task (for example).

HIPE Introduction

27

Figure 2.32. Outline of a variable in the DP session is shown in the Outline view.

NOTE: This window provides information only, and its contents can not be manipulated by the user.

2.8.14. Packages

This view brings up a panel that provides access to the packages that are currently available to the
session (see Figure 2.33. In order to get further information on what is available in a given package
the user can double-click on one of the folders displayed. Package documentation associated with the

available commands () can be obtained by clicking on the command or right click on the item in
the Package view and pulldown to "Help". Documentation appears in the "Topic Help" view. Note
that the documentation provided at this level is not for the general user but more for those wishing to
use to use package elements to develop scripts etc. within the HCSS.

HIPE Introduction

28

Figure 2.33. The Package view which is one of the tabbed views to the top left of the default Workbench
perspective. Information on a package item is shown in the Outline view.

Information on the package item is provided in the Outline view when the item is highlighted.

2.8.15. PAL Storage Manager
This view allows the user to setup storage areas (mini databases storing data in the structures used to
store Herschel observations. These areas can then be queried and read from and data can be stored in
them. See Chapter 8 for examples.

2.8.16. Save Products to Storage
This view allows the user to save data (Herschel data products) from their session into a store of their
choosing. See Chapter 8 for examples.

2.8.17. Tasks
This provides a list of tasks and tools available to the user from HIPE. These can be applied to variables
of the appropriate type in a session. A right click on the available task allows a menu with a pulldown

HIPE Introduction

29

that includes "Open With...". This allows a Task dialog where the task can be applied to a given set
of data. Some example workflows are given below.

When a variable (see Variable view, below) is highlighted, available tasks appear as available in the
"Tasks" listing. The Tasks are available in three folders; All, Applicable, and By Category. The "All"
folder shows all available tasks in the system, while "Applicable" tasks are those that are designed and
registered to run with data of the type associated with the highlighted variable in the Variables view.
The folders can be opened or closed with a double-click. To start a task working on the data variable
highlighted, simply double click on the task shown in the list (see Figure 2.34).

Figure 2.34. Tasks available for a given DP session variable are automatically made available in the
"Tasks" view. Applicable tasks are shown in the Applicable Tasks folder.

Most of the tasks needed for basic data analysis can be accessed in this fashion. More information
on how to use tasks for general data analysis is provided in the set of HowTos that are available in
the main Help window (e.g., go to "Help" in the main toolbar at top left of HIPE, which opens up a
window with access to the full user documentation).

Double-clicking any task in the Tasks view brings up a GUI dialog in the Editor view. This can be
used to run the task in the appropriate way. In all cases an "Accept" button, to bottom right of the
dialog, under the progress bar, should be clicked to run the task with the given inputs (see example
task dialog at Figure 2.26).

2.8.18. Variables
This view shows the variables established in your session that you can use. You can always see what
they are in two ways.

• Click on the variable in the Variables view. It's description and outline are shown in the Outline
view (see Section 2.8.13).

• You can print the contents to the screen in the Console view (see Section 2.8.2) by the command

print <variable name>

HIPE Introduction

30

Clicking on a variable in the Variables view enable you to see what type of variable it is (this appears
in Outline view, Section 2.8.13). In this way it is possible to look at the structure of a complex item
in your session containing multiple groups of spectra or images.

A right mouse click on a variable allows a short menu to appear which provides the possibility to do
the following:

• Get help information on the variable type. The help information appears in a new browser window
tab, and is the User Reference Manual information for the given variable type(see Section 2.4).

• Delete the variable from the session. Note that the equivalent command-line will appear in the
Console view (see Section 2.8.2).

• "Open with" allows a list of ways to view the variable other than in outline (e.g., if it is a table you
can use a Dataset Viewer, see Figure 2.35 or Spectrum Viewer for spectra). These viewers currently
provide output in the Editor view (see Section 2.8.4).

Figure 2.35. Tools available for a given DP session variable are automatically made available in the "Tasks"
window.

2.8.19. Welcome
Opens up the initial startup window.

2.9. Viewers in HIPE
A convenient feature of HIPE is that recognizes the type of variables held in a session (is it a dataset,
a spectrum, an image, a scalar constant etc). Items appearing in the "Variables" or "Outline" views,

HIPE Introduction

31

with a green dot beside to their left, can potentially be opened. A right mouse click on any of these
variables appearing in a DP session will provide a small menu of options allowing the user to "Open"
the variable or "Open With..." or "Delete" or get help on ("Help Selection") the variable chosen. As
previously noted in the "Variables" section.

Choosing "Open" allows opening with the first item in a list of available viewers for the selection.
But there can be more than one viewer. These are shown under "Open With...". One of the viewers is
chosen as the default for a double-click on the variable -- and this is shown with a dot beside it.

An example is shown for SimpleImage. A right-click on a variable of this type in the "Variables"
window shows there are two viewers (see Figure 2.36). The Product viewer will show associated
metadata and array values while the second viewer displays the image (more is provided in the HowTo
on Display and Manipulation of Images).

As examples, viewers are available to show information on headers (metadata), and datasets
(numerical arrays), enable table plotting and exploration, show images and/or spectra.

Figure 2.36. Available viewers are shown with a right-click.

32

Chapter 3. HowTo Access and
Retrieve Data from the Herschel
Science Archive

3.1. Introduction
The Herschel Science Archive (HSA) is the main repository for the observational data products from
Herschel. It is available via a web interface to the Herschel Science Centre. But it is also available
directly from within a DP session using HIPE.

In this HowTo we explain how to access data and bring it into a DP session.

3.2. Retrieving Data from the Herschel
Science Archive User Interface

Data can be accessed directly from the HSA using the Herschel Science Archive User Interface (HUI;
see Figure 3.1)

Figure 3.1. The Herschel Science Archive interface.

In order to retrieve data from the HSA you have to be a registered Herschel user. To register with the
Herschel system please go to: Herschel Archive Registration and follow the appropriate instructions.
This registration page is also accessible through the "Login/Register" page of the HUI ("Register as
New User") Figure 3.2).

http://herschel.esac.esa.int/registration.shtml

HowTo Access and Retrieve Data
from the Herschel Science Archive

33

Figure 3.2. Login/registration in the HSA.

You do not need to register if you intend solely to browse the content of the archive. Registration is,
however, a precondition to retrieve data from the HSA.

Only the PIs can access data covered by proprietary rights. The same rule applies to the viewable
quick-look products of observations, as well as to proposal-related files. They can be viewed by the
observation PI only, provided s/he has logged in with her/his registration identifier.

After executing a query in HUI, the user is automatically moved to the "Latest Result" page (see
Figure 3.3) which contains the list of observations which match the query. A direct download button
("Retrieve") is available in this page, which starts the ftp retrieval of the selected set of products. The
usage of it is only recommended for individual observations.

Figure 3.3. Result of query of the HSA

The "Shopping Basket" (Figure 3.4) page allows to define the set of data to be retrieved for a group
of several observations.

Figure 3.4. The shopping basket of data to retrieve from the HSA

Once the shopping basket has been filled in with all the data intended to retrieve, the user is asked to
finally confirm the choice, by submitting the data retrieval request. The generation of the dataset to
be retrieved is then started, see Figure 3.5.

HowTo Access and Retrieve Data
from the Herschel Science Archive

34

Figure 3.5. Data retrieval request in the HSA

One or more tar files are automatically transferred to an ftp area. In the HSA all access is via a password
protected ftp area, since most data is proprietary. When they are available for retrieval, the user will
be informed via e-mail on how to download them.

The tar file with the data retrieved from the HSA contains FITS files ordered in a well specified
(jerarchized) directory structure. Once the tar file is decompressed in a user directory, it can be
registered in HIPE as a pool.

3.3. Accessing HSA Data within HIPE
To access the HSA from HIPE the user simply accesses the Herschel Science Archive icon on the
"Data Access" page or selecting the "Herschel Science Archive" view via the "Windows" pulldown
on the HIPE menu (see Figure 3.6).

Figure 3.6. HIPE perspective for the HSA

Click on 'Open HSA User Interface" to access data in the HSA. Note that if an HUI was opened
before starting HIPE, opening a new one is not needed as the Plastic connection will be established
automatically between them. Query the HSA for the data to be retrieved and select the products
from the "Send to External Application" pulldown menu, either in the "Latest Result" page or in
the "Shopping Basket" page. After a few seconds, the number of observations selected will be
automatically displayed in the "Retrieval" window of HIPE (as in Figure 3.7).

HowTo Access and Retrieve Data
from the Herschel Science Archive

35

Figure 3.7. Retrieving observations from the HSA into a HIPE session.

Press "Load selected products" and the data will start to be loaded into HIPE. (see Figure 3.8). During
loading an indicator is shown in the HIPE display indicating that loading is taking place and the system
is busy.

HowTo Access and Retrieve Data
from the Herschel Science Archive

36

Figure 3.8. Product loading into HIPE from the HSA.

Note that in this way the data is not stored on a user's machine, it is referenced for fetching as needed
within the user's working session. So this simply makes the data available in the HIPE session. Products
can be inspected, analyzed, plotted, etc... Note also that for this, the internet connection must be
kept open. Products can be saved/stored into pools later on (see chapter on "HowTo Save and Restore
Data").

37

Chapter 4. HowTo Store and Access
Data

Herschel Editorial Board

4.1. Introduction
This HowTo chapter describes the means by which data can be accessed and stored and using the
HIPE interface. It should be noted that reading and writing of FITS data is held in a separate HowTo.

In order to access remote areas of data storage users must be on the internet. For access to data in
the HSA users must have an appropriate username and password. Full use of the HSA is discussed
in the HowTo on Archive Access. Users of the HSA will be allowed access to their own data as well
as publicly available data within the HSA.

Users can store their data locally in data product pools which can be accessed for reading through the
Data Access area of HIPE. This means that the user's stored data (processed or unprocessed) can also
be selectable by queries that can become quite sophisticated.

4.2. Creating and Saving Products in a Pool
Any product (an example being a complete observation in the form of an ObservationContext) can
be placed in a pool, or storage area, on the hard disk of the user. The setting up of various types of
storage is discussed in Chapter 12 of the "DP Basic User's Manual" available as part of the release
documentation. For this HowTo we will simply illustrate how to set up a set of stores (which act a
bit like mini databases) in which a user can place any output data that is in the form of a product,
such as an observation.

A pool can be set up and populated in the following fashion via the command line.

 store = ProductStorage() # "store" is the name (handle) we will use
 # in our session to place things
 myPool = LocalStoreFactory.getStore("myTestPool") # "myTestPool" is actually
 # the directory name where the store will be
 store.register(myPool) # now link it/register it under the name of store
 store.save(prod1) #and now we merrily add our products called
 store.save(prod2) #"prod1", "prod2" and "prod3" into the store.
 store.save(prod3) #

Note that if you start a new HIPE session you will need to register your pool again via something
similar to the first three lines.

The directory on your disk where the data physically resides in the directory ".hcss/lstore" which you
will find under your login directory. You will see that the information is actually held as a hierarchical
set of FITS files that can be treated like a database, allowing us to query and search for data in similar
ways to other databases.

4.3. Registering and accessing other data
stores

It is possible to register other stores that can then be searched from the data access view, but they first
have to be registered in the system (you need to tell the system where they are, in effect). For data

HowTo Store and Access Data

38

stores elsewhere on your machine other than the default area this can be done by using the following
lines of code which can be entered at the command line.

#import Configuration components into the environment
from herschel.share.util import Configuration
get a local store (or create a new one if not already existing) with
an id of "test". The Configuration command changes the directory
where the store is
Configuration.setProperty('hcss.ia.pal.pool.lstore.dir', 'C:\\.hcss\\myData')
datastore=LocalStoreFactory.getStore("test")
myStore=ProductStorage() # tell the system it is a store of products
myStore.register(datastore) # register it
"myStore" is now one of the selectable data stores on the Data Access menu
myStore.save("myProduct")
will save a Product in the DP session called "myProduct" in the storage area

Note

The process of registering/adding pools that the user can use in a session is expected to
be made into a simplified tool in the future.

4.4. Data access via the HIPE GUI
Other than interactions with the Herschel Science Archive (which are discussed in another HowTo),
access to data is via the Data Access view. The Data Access view is available via two routes within
HIPE. The first is via the data access icon on the Welcome page of HIPE (see Section 2.5. The second
route is via the "Windows" pulldown on the HIPE menu. Go to "Show View" and pull down to "Data
Access". This brings up the page shown in Section 2.8.3 described in the introductory section of the
HowTo documentation.

4.4.1. Types of Stored Data
All data is stored in the form of Products. These products are kept as FITS files on the local
computer system, but are organised into pools of Products/FITS files. This allows querying on
the contents of the Products (e.g., the metadata or header information). The Product wraps
information such as images, spectra or tables of data into a storable component. An example is a single
Herschel observation (which actually has several products wrapped up into one).

When the user obtains data from the Data Access view it enters the DP session as a Product and
an overview can be obtained using the "Product Viewer" via a right-click on the name of the product
in the session (see information on viewers in the HIPE overview chapter). Datasets such as tables or
spectra contained inside the products can be accessed and viewed using Dataset or Spectrum Viewers
as described later in this HowTo.

4.4.2. Using the Data Access View
When selecting the Data Access view the user will have certain "pools" of data available. These allow
access to data stored in registered data storage areas (basically areas accessible to the user on his/her
own computer or via the internet to another computer). Storing data in user-named pools is described
in Section 4.3. All pools currently need to be explicitly "registered" to tell the system where to look.

4.4.2.1. Using the Data Access View to Query for Products

There are several ways of searching through your stores of data to get the products you want. You can
search for complete observations -- such as those you are PI on which exist in the Herschel Science
Archive -- attriibutes or metadata values, or you can go into data mining which involves searches
based on the data itself.

For all cases, setup of the data query can be done based on observation data, the attributes of data,
meta data or all data (data mining). Once the query of the data store has been set up the search can

HowTo Store and Access Data

39

be done by clicking the Search button to the bottom right of the Data Access view. If the user wishes
to access all available data in a data storage then this can be obtained by placing nothing in any of
the input boxes of the query.

When the search button is clicked the equivalent command-line version of the request appears in the
Console view (see Section 2.8.2). This can be saved and edited and used in batch mode processing.
This helps to avoid syntax errors by the user in setting up queries on data stores.

Doing a Search

In order to do a search the user needs to do the following.

• Open the "Data Access" view.

• Select an available pool from the pull-down menu at the top of the view next to the word "Query". If
none are available (greyed-out) then you need to first register a pool for access (see earlier sections
of this chapter).

• After inserting an appropriate query, click on the "Accept" button to bottom right of the view. Note
that if nothing is placed in the query then the total contents of the pool will be obtained. This is a
good way to see the total contents of a pool.

Search by Observation

In this case we are dealing with high-level information. The data is part of certain proposal or uses a
particular instrument on a particular day. Clicking on the "Observation" tab in the Data Access view
allows searches at this level based on instrument, proposal ID, proposal name, observation ID (unique
observation numbers or operational day (See Figure 4.1).

Figure 4.1. HIPE store selection and panel for searching by information on stored observation information
in a product.

Search by Attributes

The attributes of a set of data are standard to all (See Figure 4.2) and it is possible to do a search on
values in this given set of attributes -- which are listed in the query interface.

HowTo Store and Access Data

40

Figure 4.2. Attributes available for search.

Search by Meta Data

Meta data (like FITS header data) is data more specific to a given observation (See Figure 4.3).

Figure 4.3. Metadata search.

Search by Data Mining

For data mining it possible to search on specific information contained within the science data itself
rather than the meta data. YET TO BE IMPLEMENTED (See Figure 4.4).

HowTo Store and Access Data

41

Figure 4.4. Search via data mining.

4.4.2.2. Output from a Query and Searching a Query Result

The output from the first query produces a result "QUERY_RESULT". This will be a group of
products (e.g., observations) which can then be looked at by the user. The "QUERY_RESULT" name
is highlighted in the Variables view (where the name can also be edited to something more appropriate
if desired). This result is also automatically fed back to the Data Access pulldown menu, allowing for
a search to be made on the result of the initial search.

The query output can be viewed by double-clicking on the result variable, e.g. "QUERY_RESULT"
in the Variables view. This brings up the query results viewer in the Editor view part of HIPE. This
lists the selected items. It also makes the outline available in the "Outline" view.

Clicking on one of the results shown in the query viewer extracts the chosen result (for example, the
first product in the list is then available as "prod_0" in the session). Clicking on the name of this
extracted product when it appears in the "Variables" view allows further assessment of its contents
and viewing of any datasets it contains.

4.4.2.3. An Example of Search to Display of Data

In this case, we have partially processed some HIFI data to level 1, which has the format of a
HifiTimelineProduct, and stored several versions of this processing in a store given the handle under
the HCSS of "store1". This appears under the Data Access view pulldown menu as a selectable store
item. The following now leads to displaying some data that has been extracted from our data store.

HowTo Store and Access Data

42

Figure 4.5. Set up of a query for data out of our store.

Figure 4.6. Query result obtained.

HowTo Store and Access Data

43

Figure 4.7. List of query results appear in editor window.

Figure 4.8. One of the items is selected with outline of contents shown bottom left.

Figure 4.9. Metadata (header) display for the extracted spectrum.

HowTo Store and Access Data

44

Figure 4.10. Displaying the extracted spectrum. Note that the view has been expanded using the capabilities
of the "Spectrum Explorer" viewer.

1. We now intend to search for all HifiTimelineProducts (see second pulldown menu on the screen)
with instrument=HIFI within this store by searching on these attributes. The setup should look like
the screen shown in Figure 4.5.

2. Once this has been setup we click the "Search" button and the appropriate results are extracted
and placed in a query result (see Figure 4.6). A highlighted "QUERY_RESULT1" (the number
automatically placed at the end will increase depending on the number of queries you make) appears
and the data access store available for querying -- at the top of the Data Access view -- immediately
changes to QUERY_RESULT1 ready for further searching on the initial query results.

3. Select the query result in the Variable view (QUERY_RESULT1) via a double mouseclick. This
provides a Query result viewer showing a listing in the Editor view of the query results items (see
Figure 4.7).

4. Double-clicking on one of the results shown in the editor view creates the item (product) in the
session. It allows us to pull out one of the selected products (e.g., "prod_3" for item number 3 in the
query viewer) which can be manipulated in standard ways. For example, if we click on this product
in the Variables view we get an outline of its contents in the Outline view (as in Figure 4.8).

5. We see that it shows a single folder in the Outline view. Clicking on the first folder, it opens up to
show its contents which include a single dataset (as in Figure 4.8).

6. A right-click on the word "dataset" in the Outline view provides a set of viewer options. The
Dataset viewer will show the associated metadata (header) information plus a table of various values
associated with the spectrum, include flux/count values per channel (as in Figure 4.9).

7. Alternately, we can simply view the extracted spectrum dataset by selecting the "Spectrum
Explorer" viewer instead (see Figure 4.10 and HowTo on displaying spectra).

4.5. Data Access via the Console View
Command Line

Within the Console View (see Section 2.8.2) it is also possible to access data directly from the
command line. The commands for doing this are actually generated in the Console view when using
the dialog interactions noted above.

HowTo Store and Access Data

45

In the following we show how the information can be extracted into "newVariable1" (as per above
example) which is then ready for display, fitting etc.

1. First we do a query on attributes in our data store, which was labeled "storage", looking for
HifiTimelineProducts and instrument=HIFI. The following should all be on one line and the easiest
way to get it is when it is copied to the Console view when using the Data Access view as noted
above.

QUERY_RESULT1 = StorageResult(store1,
 \
 herschel.ia.pal.query.MetaQuery(herschel.hifi.pipeline.product.DatasetWrapper,
 \"p", "(p.meta.containsKey(\"instrument\")
 \ and p.meta[\"instrument\"].value == \"HIFI\")"))

We can always print to the screen the contents using

print QUERY_RESULT1

Queries on the observation or meta data windows are MetaQuery's rather than AttribQuery's.

2. Now we extract the third in the list of results found.

 prod_3 = QUERY_RESULT1[3].product

Again, we can use the print command to see its contents. Which is actually several products (in
this case 5).

3. Get the dataset out of the product.

 data_3 = prod_3["dataset"]

The Outline view of data_3 will show it is of the form WbsSpectrumDataset and that it is a HIFI
pipeline product.

A full explanation of how to handle displays and manipulations (arithmetic and fitting) of spectrum
(and image) datasets are covered in other HowTos.

46

Chapter 5. Running the HIFI pipeline
The HIFI pipeline is used for processing data received from one or more of the four HIFI spectrometers
on-board Herschel into a final product that is suitable for interactive analysis.

Data obtained from the Herschel Space Archive has been processed with the HIFI pipeline within the
Standard Product Generator (SPG) of the Herschel Science Centre, and is available as Level 0, 0.5,
1 and 2 products. If you desire, it is possible to reprocess data to (and from) any level within HIPE
using the hifiPipeline Task. It is designed to: obtain data from a local store of data (or a database, if
you have access to the ICC databases); remove instrument-related properties of the data; calibrate the
resulting spectra; and, then combine the separate spectra from a single observation. The final product
is dependent upon the observation mode and is either a calibrated spectrum, a set of co-added spectra
or spectral 3D cubes.

For more information about the pipeline steps and their results, please read the HIFI Standard Product
Specification Document, or the HIFI Pipeline Specification document.

5.1. Running the Pipeline
We can run the HIFI pipeline within HIPE in the following fashion.

1. • Click once on an Observation Context in the Variables pane and the "hifiPipeline" Task will
appear in the "Applicable Tasks" folder, double click on it to open the Task dialogue in the Editor
view.

• Alternatively, open the "hifiPipeline" Task by double-clicking on it under the Hifi Category in
the Tasks view.

• A "Hifi Pipeline" View is also available from the HIPE Window menu (under Show View) but
it is not fully implemented yet.

http://www.sron.rug.nl/hifi_icc/protected/documentation/publications/HIFI-standard-data-product-specification-V0.4.pdf
http://www.sron.rug.nl/hifi_icc/protected/documentation/publications/HIFI-standard-data-product-specification-V0.4.pdf
http://www.sron.rug.nl/docserver/wiki/doku.php?id=docbook:hifi-pipeline1

Running the HIFI pipeline

47

Select "hifiPipeline" from the Windows menus or the Task view. If
a HIFI observation context has been selected in the Variables view

then the "hifiPipeline task" appears in the "Applicable Tasks" folder.

Figure 5.1. Starting the HIFI pipeline task

2. The default (or basic) dialogue allows you to re-process an already existing observation context,
e.g. from the Herschel Science Archive, through the pipeline.

• The way the data is to be reprocessed is defined in the Input section:

a. If the hifiPipeline Task was opened from the "Applicable Tasks" folder then the Observation
Context selected in the Variables View will automatically be loaded into the Task dialogue, and
you will see its name by the observation context bullet, which will be green. Alternatively, drag
the name of the observation context to be reprocessed from the Variables view to the observation
context bullet.

b. Select the spectrometers you wish to process data for by checking the desired instrument(s) and
polarisation(s). Both H and V polarisations of both the Wide Band Spectrometer (WBS) and
High Resolution Spectrometer (HRS) are checked by default.

c. Select which level to (re)process to (0, 0.5, 1, or all levels) by checking the appropriate box. The
default set-up will pipeline data through all levels.

d. If you have permission to access the HIFI ICC databases (only read access is possible), you can
process data by typing in an obsid and database name. Note that when using the ICC database
calibration information is required in order to process data through the pipeline. You can access
this information through the Versant databases at the HIFI ICC or install the hifi-cal
database locally on your machine. See ??? for details.

Running the HIFI pipeline

48

• In the Output section, choose the name of the observation context that will be produced or
use the HIPE default, obsOut. The observation context contains all the products generated
by the pipeline task and is stored in a "hifi-pipeline" lstore (~/.hcss/lstore/hifi-pipeline). (The
variable obs is also produced in order that the pipeline can be re-run without the need to reset
IO parameters.)

• Click on "accept" to run the pipeline. The status ("running" if all is well, error messages if not)
and the progress of the pipeline are given in the Info section at the bottom of the Task dialogue.

In this example, an already processed observation, 'MyData', is being
reprocessed up to Level 1, both polarisations of both spectrometers are included.

Figure 5.2. HIFI pipeline task: default view

3. By clicking on the "expert" button, you may additionally control more detailed aspects of the
pipeline set-up. The following items are available to experts only and are generally expected to be
used only by HIFI calibration scientists.

• If you wish to use your hifi-cal lstore, set this up as usual in myconfig and leave the "hifi cal"
box blank.

• Write out comments on the quality of data and processing steps by checking the "quality" box.

• To set the mode of the observation, type it into the "obsMode" box (required for ILT data).

• To use a self-defined palStore, drag its name in from the Variable view.

• Define the test environment by typing in the tmVersion (e.g., ilt-fm)

Running the HIFI pipeline

49

• Set the execMode

a. It must be "INTERACTIVE" in order that the resulting Observation Context be stored in your
palStore.

b. "SYSTEMATIC" will update the Observation Context and save it to memory rather than the
store.

c. "ON-DEMAND" and "TEST" are used within the SPG environment

• Check the "cache" box to clear the cache store.

• Read in from file your own version of pipeline algorithms.

Toggle back to the default dialogue by clicking on the "basic" button.

Expert users could set up the pipeline from this view.

Figure 5.3. HIFI pipeline task: expert view

5.2. Using the HIFI Pipeline task
Below are several examples showing how to use the HIFI pipeline task.

The hifiPipeline task is called into the session by:

from herschel.hifi.pipeline.PipelineTask import *

Running the HIFI pipeline

50

1. Run the pipeline and generate an observation context ('obs') from scratch (Figure 5.4):

obs = pipelineTask(obsid=268435583, db="ds1@iccdb.sron.rug.nl 0
READ")

If you do not specify the database with db="..." then the default (var.database.devel) set in the
user's properties will be used.

Eg 1. Running the HIFI pipeline task

Figure 5.4. Running the HIFI pipeline task

2. To re-use the pipeline task, ensure that all the IO parameters are reset by setting obs=None

obs = pipelineTask(obs=None, obsid=268435583,
db="ds1@iccdb.sron.rug.nl 0 READ", gui=1)

You can use a GUI to show a progress bar (test only with no clear information, at the moment).

3. For ILT data, provide the obsMode name - the data itself does not have it:

obs = pipelineTask(obs=None, obsid=268516902,
db="ilt_fm_5_prop@iccdb1.sron.rug.nl 0 READ",
obsMode="HifiPointModeLoadChop")

4. Redefine the tmVersion if the selected database requires a different mission phase than the default
in your binstruct property hcss.binstruct.mib.pal.tm_version_map (hifi default =
"ilt-fm"):

Running the HIFI pipeline

51

obs = pipelineTask(obs=None, obsid=268439922,
db="ilt_par_5_prop@iccdb.sron.rug.nl 0 READ", tmVersion="ilt-
par")

5. The pipeline task automatically processes data from all four spectrometers. You can select an apid
for processing to Level 1 (for now, processing to Level 0 always includes all available apids):

obs = pipelineTask(obs=None, obsid=268516902,
apids=["1030"], db="ilt_fm_5_prop@iccdb1.sron.rug.nl 0 READ",
obsMode="HifiPointModeLoadChop")

6. The pipeline can be re-run in various ways:

a. Re-run the pipeline, assuming Level 0 is available:

pipelineTask(obs=obs)

b. Re-run for Level 0 too. (Note that all calibration and other products are not replaced):

pipelineTask(obs=obs, reprocessAllLevels=1)

c. Or just re-generate Level 0:

obs = pipelineTask(obsid=268516902,
obsMode="HifiPointModeLoadChop", uptoLevel0=1)

d. You can then use this to process from Level 0 up to Level 0.5:

obs = pipelineTask(obs=obs, uptoLevel0_5=1)

7. You can edit the algorithm of the pipeline tasks:

obs = pipelineTask(obs=None, obsid=268435583,
db="ds1@iccdb.sron.rug.nl 0 READ", wbsAlgo=myWbsAlgo,
hrsAlgo=myHrsAlgo, genericAlgo=myGenericAlgo)

The algorithms can be found in:

WBS: {build_root}/lib/herschel/hifi/pipeline/wbs/WbsPipelineAlgo.py
HRS: {build_root}/lib/herschel/hifi/pipeline/hrs/HrsPipelineAlgo.py
Generic: {build_root}/lib/herschel/hifi/pipeline/generic/GenericPipelineAlgo.py

8. And provide your own palStore to which the pipeline will write to:

obs = pipelineTask(obs=None, obsid=268435583,
db="ds1@iccdb.sron.rug.nl 0 READ", palStore = myStore)

9. Clear CachedStoreHandler to avoid a block due to none closed stores. Note, this closes ALL stores
available in this cache and may affect other applications running in the session.

obs = pipelineTask(obs=None, obsid=268435583,
db="ds1@iccdb.sron.rug.nl 0 READ", uptoLevel0=1,
clearCachedStoreHandler=1)

10.Finally, if pipeline task is not behaving as you expect you could try a reset:

pipelineTask = PipelineTask()

Running the HIFI pipeline

52

5.3. Running the Individual Pipelines using
the HIFI pipeline task

The HIFI pipeline task can be easily used to (re)process an observation context up to levels 0, 0.5, 1
and 2 using the uptoLevel... check boxes in the HIFI pipeline task (see Figure 5.2). However, it
is also possible to run each component of the pipeline individually: the HRS and WBS pipeline Tasks
can be run to remove instrumental effects (up to Level 0.5), and the Generic pipeline Task can then
be used to intensity calibrate the data (up to a Level 1 or 2 product).

These pipeline tasks, which are intended for more expert users, are run and set-up in the GUI in much
the same way as the HIFI pipeline task. Some points to note:

• The individual pipeline tasks can handle both Observation Contexts (ObsContext) and HifiTimeline
Products (HTPs), while the HIFI pipeline can handle only Observation Contexts. An Observation
Context contains all levels of data, calibration, auxilliary and quality products but an HTP contains
only a data set (and meta data). Therefore, processing an HTP is much faster.

• HTP in gives HTP out, ObsContext in gives ObsContext out.

• Spectrometers are identified by apid number 1028 (HRS-H), 1029 (HRS-V), 1030 (WBS-H), or
1031 (HRS-V). Data is processed for only one spectrometer at a time.

• Note that, unlike the hrs- and wbsPipeline Tasks (see Figure below), the genericPipeline Task does
not allow to access an observation from a database. Instead an HTP resulting from one of the back-
end pipelines or a Level 0.5 Observation Context from the HSA should be passed to it.

In addition, you can (re)process a level 0.5 (1) product up to a level 1 (2) product using the
level1Pipeline (level2Pipeline) task. The GUI interface is exactly the same for these pipeline tasks as
for the genericPipeline task.

Running the HIFI pipeline

53

A Level 0 HTP is being reprocessed, only data from the
Horizontal polarisation (apid=1030) of the WBS will be used.

Figure 5.5. Running the wbsPipeline task

5.4. Running the Individual Pipeline Tasks
In addition to using the HIFI pipeline task, one can run the underlying pipeline tasks to, for example:

1. Pass an observation context (from running the HIFI pipeline task) to the WBS pipeline task to re-
run up to Level 0.5 for only one apid

from herschel.hifi.pipeline.wbs.WbsPipelineTask import *

newobs=wbsPipelineTask(obs=obs, apid=1030)

2. and then pass that to the Generic pipeline task

from herschel.hifi.pipeline.generic.GenericPipelineTask import *

newobs2=genericPipelineTask(obs=newobs, apid=1030)

3. Process a HifiTimelineProduct using your own HrsPipelineAlgo

from herschel.hifi.pipeline.hrs.HrsPipelineTask import *

newhtp=hrsPipelineTask(htp=htp, algo=myHrsAlgo)

4. Load dataframes and housekeeping (create an HifiTimelineProduct)

Running the HIFI pipeline

54

htp = wbsPipelineTask(obsid=268516902,
db="ilt_fm_5_prop@iccdb1.sron.rug.nl 0 READ")

As these examples illustrate, both ObservationContexts ("obs") and HifiTimelineProducts ("htp") can
be passed to these tasks. The parameters used in the Section 5.2 above can also be applied to these
tasks.

5.5. Running the Pipeline step by step
Another way to run the pipeline is step-by-step using the three pipeline branches separately. This is
the simplest way to view or modify the pipeline steps, which are contained in the following scripts:

The WBS pipeline is found in $HCSS_DIR/lib/herschel/hifi/pipeline/wbs/
WbsPipeline.py
The HRS pipeline is found in $HCSS_DIR/lib/herschel/hifi/pipeline/hrs/
HrsPipeline.py
The Generic (or AOT) pipeline is found in $HCSS_DIR/lib/herschel/hifi/pipeline/
generic/GenericPipeline.py

As an example, take (again) the simulated WBS-H (apid=1030) HifiPointModeDBS observation with
obsid=268435583 from the simulator data database (ds1).

1. Load the WBS pipeline script into your JIDE editor. The obsid, apid and database must be entered
manually into the script, see Figure 5.6.

Then step through the WbsPipeline.py script until the end, or play the entire script with the run-all
button (two green arrows). The output is a HifiTimeline product, which is stored in a simple Pool
called simple.wbspipeline

Running the HIFI pipeline

55

Running the WBS Pipeline Script step-wise

Figure 5.6. Running the WBS Pipeline Script step-wise

2. To run the Generic pipeline, load GenericPipeline.py into your JIDE editor and step through the
script.

• The Generic pipeline requires that data have an AOT-like structure. Older obsids,
such as gas cell data, do not have this structure and result in the error
herschel.ia.task.SignatureException: params: Null is not allowed

• The GenericPipeline.py script does not (yet) store the results in a Pool.

• The Generic pipeline script cannot be played with the run-all button but can be run from the
command line as follows:

from herschel.hifi.pipeline.generic.GenericPipelineAlgo import
runGenericPipeline

newhtp=runGenericPipeline(htp, None)

However when the Generic pipeline is run this way, no calibration products are generated.

5.6. Running the Pipeline step by step
The individual steps of the HRS, WBS and Generic Pipelines are also found in the task pane when the
HIFI Category is selected. By double-clicking on tasks you may use them to run through the pipeline
step by step. As an example, Figure 5.7 shows the GUI for the step in the WBS pipeline that subtracts
the darks from the fluxes (DoWbsDark); three methods of dark subtraction can be selected from the

Running the HIFI pipeline

56

drop-down menu. The HIFI Pipeline Specification document should be consulted for descriptions of
each step of the pipeline, as well as the methods used and inputs required.

It is possible to modify the steps taken at stages of the spectrometer pipelines.

Figure 5.7. Running the pipeline step-by-step

Additionally, the wbsPipeline task has an option to be run step-by-step by selecting true from the step
drop-down menu, (see Figure 5.2) .

http://wwwtest.sron.rug.nl/docserver/wiki/doku.php?id=docbook:hifi-pipeline1

57

Chapter 6. HowTo run the PACS
pipelines within HIPE

Vanessa Doublier-Pritchard, PACS ICC; Katrina Exter,
KULeuven

6.1. Introduction
The purpose of this HowTo is to brief users on running the PACS pipelines via the HIPE application, by
listing the steps that the pipelines follow. Detailed explanations of what is being done at each stage and
how to check your results are given the PACS cookbooks and data reduction guides which are available
from the HIPE help main page, and first-time users are strongly recommended to read these. The
PACS pipelines currently run as a long series of individual tasks, rather than as a single application.
The data you will recieve from the Herschel Science Archive (HSA) will have been processed through
a pipeline already, and here we list the steps that the pipelines actually do so you could repeat this
yourself if you so wished. But, if you want to know what you are doing at each step, you will have
to read the cookbooks and data reduction guides.

We recommend that you run HIPE with 2G of memory ("hipe -Xmx2000m").

We also recommend that you read the parts of the HowTo documentation that explain how to start
and navigate in HIPE, how to select and inspect products, and how to display data. We do not repeat
those instructions here.

Last edited 28 Feb 2009.

6.2. Retrieving your data, extracting the Level
0 product

The pipelines run from the Level 0 (minimally processed) part of your data. You first need to tell HIPE
where your data is, load the whole data-set and then extract the Level 0 product to work on.

It is expected that you will have obtained your data from the HSA. This will have given you a tar
file which you will have decompressed. By default HIPE assumes that the directory in which you
decompressed the tarfile is located in your ".hcss/lstore" directory, a directory structure that was
automatically created when you installed HIPE; it is assumed to be in, e.g., "/home/me/.hcss/lstore/
mydata/". If you don't want to put all your data here then, before you start HIPE, write into a file
called .hcss/props (which can contain other things) the following line:

hcss.ia.pal.pool.lstore.mydatadir.dir = /mypath/mydata

And you can decompress the tarfile in /mypath/mydata.

In HIPE you then register your data store with the command:

if your data is in the default location, e.g. /home/me/.hcss/lstore/mydata
mystore = ProductStorage("mydata")
if you data is in your own location e.g. /mypath/mydata
mystore = ProductStorage("mydatadir")
noting that "mydatadir" is the same "mydatadir" that you wrote in the .hcss/props
 file

After defining the store you need to select out your observation. You can do this using the Data Access
viewer, gotten via the Welcome window or HIPE menu bar and explained previously in this HowTo

HowTo run the PACS pipelines within HIPE

58

documentation (and which explanation of we do not repeat here). You will select your particular
observation from the QUERY_RESULT and that observation will be placed among the entries in the
Variables panel, with a name similar to "prod_12". (Note that the Data Access viewer can also be
used to query the HSA, but in this case the data is not held on your local machine and requires an
open internet connection.)

You now extract out of prod_12 your Level 0 product to work on. To find out what this is called
(and check that is it there), inspect prod_12 (double click on it in the Variables panel), and under the
Associated Products you will find "Level 0". Look in it (it is presented as a sort of directory) and select
the "product" therein. Inspecting this new "product" view you will see entries such as "HPSFITR" and
"HPSAVGR": these being the Herschel FIT Red or AVeraGed Red (Level 0) products. The one you
want to run the pipelines on will be called HPSAVGR (and/or B). (Note that the pipeline-processed
Level 1 and 2 products should also be present for prod_12, and so you can look at these if you wish.)

You now extract out this HPRAVGR product to work on with the console command:

myobs = prod_12.level["level0"].refs["HPSAVGR"].product.refs[0].product

Now you have your data, you can start the pipeline. First we will explain photometry and then
spectroscopy.

6.3. PHOT pipeline
Full PACS pipeline documentation explaining the tasks being performed in each module is provided
elsewhere. Here we show the steps. Note that what was called "myobs" above is here called "frames".

6.3.1. Level 0 to Level 0.5
In order to apply appropriate calibrations we first need to provide a calibration tree of information
to be used in the calibration conversions used in the PACS pipelines. This information is supplied
with the full observation context available when downloading a PACS observation from the HSA. It
appears as a folder called "calibration" viewable in HIPE when viewing the contents of a downloaded
observation in the "Outline" view (i.e. it is stored in "prod_12").

In order to get the calibration information associated with a given observation, the user simply gets
the "calibration" folder, e.g. using:

calTree = obsCont.calibration

Level 0 to Level 0.5 tasks are common to all photometer observing modes:

frames = findBlocks(frames, calTree=calTree)
frames = photFlagBadPixels(frames, calTree=calTree)
frames = photFlagSaturation(frames, calTree=calTree)
frames = photConvDigit2Volts(frames, calTree=calTree)
frames = photCorrectCrosstalk(frames, calTree=calTree)
frames = photMMTDeglitching(frames)
frames = addUtc(frames)
frames = convertChopper2Angle(frames, calTree=calTree)
frames = photAddInstantPointing(frames, pp)
frames = cleanPlateauFrames(frames, calTree=calTree)

6.3.2. Level 0.5 to Level 2

6.3.2.1. Point Source pipeline

The Point Source data reduction steps are:

• Single command: runPhotometerPointSource.py

HowTo run the PACS pipelines within HIPE

59

• Step-by-step tasks:

Level 0.5 > Level 1

frames = photMakeDithPos(frames)
frames = photMakeRasPosCount(frames)
frames = photAvgPlateau(frames)
frames = photAssignRaDec(frames, calTree=calTree)
frames = photDiffChop(frames)
frames = photAvgDith(frames)
frames = photDiffNod(frames)
frames = photCombineNod(frames)
print "photRespFlatfieldCorrection"
frames = photRespFlatfieldCorrection(frames, calTree=calTree)
frames = photDriftCorrection(frames)

Level 1 > Level 2 ##

image = photShiftDith(frames, copy=1)

6.3.2.2. Small Extended Source

The Small Extended Source data reduction steps are:

• Single command: runPhotometerSmallExtendedSource.py

• Step-by-step tasks:

Level 0.5 > Level 1

frames = photMakeRasPosCount(frames)
frames = photAvgPlateau(frames)
frames = photAssignRaDec(frames, calTree=calTree)
frames = photDiffChop(frames)
frames = photAvgNod(frames)
frames = photDiffNodSmall(frames)
print "photRespFlatfieldCorrection"
frames = photRespFlatfieldCorrection(frames, calTree=calTree)

Level 1 > Level 2

image = photProject(frames,calTree=calTree)

6.3.2.3. Scan Map -simple-

The Scan Map, default setup, data reduction steps are:

• Single command: runPhotometerScanMap.py

• Step-bystep tasks:

Level 0.5 > Level 1

frames = photMakeDithPos(frames)
frames = photMakeRasPosCount(frames)
frames = photAvgPlateau(frames)
frames = photAssignRaDec(frames, calTree=calTree)
frames = photDiffChop(frames)
frames = photAvgDith(frames)
frames = photDiffNod(frames)
frames = photCombineNod(frames)
print "photRespFlatfieldCorrection"
frames = photRespFlatfieldCorrection(frames, calTree=calTree)
frames = photDriftCorrection(frames)

HowTo run the PACS pipelines within HIPE

60

Level 1 > Level 2

image = photShiftDith(frames,copy=1)

6.3.2.4. Scan Map

The Scan Map, any setup, data reduction steps are:

• Single command: runPhotometerScanMap.py

• Step-by-step tasks:

Level 0.5 > Level 1

frames = photFluxCal(frames)

Level 1 > Level 2

frames = photAssignRaDec(frames, calTree=calTree)
frames = photHighpassFilter(frames, 200)
#Rem: Input paramters (scale =1 means skypix=dectector pixel)
#crota2 =0.0 of output map
scale = 1
crota2 = 0.0
tod = makeTodArray(frames, scale, crota2, "test.tod", ".")
filterLength = 0 maxRelError = 1e6 maxIterations = 500
if (runNaiveMapper == None):
 runNaiveMapper = Boolean.FALSE
 map = runMadMap(tod, calTree, filterLength, maxRelError,
 maxIterations, runNaiveMapper)

6.3.2.5. Chopped Raster

The Chopped Raster data reduction steps are:

• Single command: runPhotometerRaster.py

• Step-by-step tasks:

Level 0.5 > Level 1 ##

frames = photMakeDithPos(frames)
frames = photMakeRasPosCount(frames)
frames = photAvgPlateau(frames)
frames = photAssignRaDec(frames, calTree=calTree)
frames = photDiffChop(frames)
frames = photAvgDith(frames)
frames = photDiffNod(frames)
frames = photCombineNod(frames)
print "photRespFlatfieldCorrection"
frames = photRespFlatfieldCorrection(frames, calTree=calTree)
frames = photDriftCorrection(frames)

Level 1 > Level 2 ###

image = photShiftDith(frames,copy=1)

6.4. SPEC pipeline
Full PACS pipeline documentation explaining the tasks being performed in each module is provided
elsewhere. Here we show the steps. Note that what was called "myobs" above is here called "ramp".
The data reduction from level 0 to 0.5 are the same for all types of observation.

HowTo run the PACS pipelines within HIPE

61

6.4.1. Level 0 to 0.5: ramp to frame
First you need to tell HIPE about the calibration tree you will use. This contains the information to be
used in the calibration conversions used in the PACS pipelines, and it comes with your observation
when you get it from the HSA. It appears as a folder called "calibration" viewable in HIPE when
viewing the contents of your "prod_12" (not "myobs"). In order to get the calibration information
associated with a given observation, the user simply uses the command:

mycaltree = getCalTree()
and to see it either click on it in Variable panel or
print mycaltree.spectrometer

The next steps are to: decode the label (translate mechanism position data into observing blocks and
add to the "status" table for your ramp); apply various flags; convert the data to units of volt/s; fit
the ramps:

ramp = decodeLabel(ramp)
ramp = specFlagBadPixelsRamps(ramp,calTree=mycaltree)
ramp = cleanPlateauRamps(ramp,calTree=mycaltree)
ramp = flagGratMoveRamps(ramp,calTree=mycaltree)
ramp = specFlagSaturationRamps(ramp,pacsCalTree=mycaltree)
ramp = specConvDigit2VoltsRamps(ramp,calTree=mycaltree)
frame = fitRamps(ramp)
to inspect the masks created just above you can use a mask viewer. first import
from herschel.pacs.signal import MaskViewer
and then
MaskViewer(frame)

The next set of tasks do the following: convert digital chopper postions to angle on the sky; extract RA
and Dec from the pointing product for the central pixel; assign RA and Dec for every pixel (performs
a spatial calibration); add information to the status table; created a summary of the logical blocks in
the measurement.

frame = convertChopper2Angle(frame,calTree=mycaltree)
frame = specAddInstantPointing(frame,prod_12.auxiliary.pointing,calTree=mycaltree)
frame = specAssignRaDec(frame,calTree=mycaltree)
frame = specExtendStatus(frame,calTree=mycaltree)
frame = findBlocks(frame,calTree=mycaltree)

6.4.2. Level 0.5 to 2: frame to cube
These stages are AOT specific, and at present we only give the details for a chop-nod point source
AOT.

6.4.2.1. Chop-nod point source

The next set of tasks are to: assign the wavelength grid for each pixel; do a signal conversion; average
the signal on the chopper plateaux (i.e. data taken at times when the chopper and grating are not
moving); create the differential signal from the chop on/off pairs; and apply the RSRF (relative spectral
response function):

frame = waveCalc(frame,calTree=mycaltree)
frame = convertSignal2StandardCap(frame,calTree=mycaltree)
frame = specAvgPlateau(frame,ignoreUncleanChopMask=False,ignoreGratMoveMask=False)
frame = specDiffChop(frame)
frame = specAddNod(frame)
frame = rsrfCal(frame,calTree=mycaltree)

And finally we turn the data into a cube, then rebin that cube to give it a uniform wavelength grid,
and combine multiple cubes:

cube = specFrames2PacsCube(frame)

HowTo run the PACS pipelines within HIPE

62

here is the switch from Level 0.5 to Level 1
waveGrid = wavelengthGrid(cube,calTree=calTree,oversample=6,upsample=1)
rebinnedCube = specWaveRebin(cubeb1, waveGrid)
combinedCube = specProject(rebinnedCube)

And you are done. For more detail, and for instructions on inspecting your data at the various stages
of the pipeline, we refer you to the PACS data reduction guide that will be (in mid-2009) available
from HIPE help.

63

Chapter 7. How to perform SPIRE
pipeline processing in HIPE

Herschel SPIRE Editorial Board
version 1.1, 04-March-2009

7.1. SPIRE pipeline processing
This HowTo gives a step by step cookbook of how to run the SPIRE photometer pipelines using HIPE.

7.1.1. SPIRE photometer pipeline processing

7.1.1.1. Preperation for running the SPIRE photometer pipeline
within HIPE.

The user can process SPIRE photometer data for each of the various AOTs using the standard pipeline
scripts that are bundled in within HIPE. The available AOTs for SPIRE photometry are as follows:

Table 7.1. SPIRE Photometry AOTs

Instrument Mode HSpot Observation Mode Description

POF2 Point Source Photometry Seven-Point Jiggle Map

POF3 Small Map Small Map - 64-point jiggle Map

POF5 Large Map Large Scan Map Without
Chopping

POF9 Parallel Mode SPIRE/PACS Parallel Mode

For the purposes of this example, we will obtain and process a POF9 observation (SPIRE/PACS
Parallel Mode).

Download the required observation (for our example case, ObsID: 3221226084).This can be retrieved
via FTP, or more conveniently using the HSA Retrieval mechanism, which will bring the observation
into your HIPE session (see HowTo on accessing the Herschel Science Archive). We shall create a
pool called 'obsid_3221226084' to store our downloaded data.

In the latter case the default name of the downloaded observation product is

 obsid_<observation number>
 # in our case, obsid_3221226084

Using the 'Navigator' window, navigate to the directory: scripts/ within the build tree and choose
the appropriate pipeline file (those with the pipeline.py extension) as shown in the figure below
for the case of the POF9 pipeline script:

Double click on the name of the relevant pipeline script in the Navigator window, and the contents of
the pipeline file will appear within the Editor window. The user should note that this is the official script

How to perform SPIRE pipeline processing in HIPE

64

which contains many commands related to the Standard Product Generation (SPG) infrastructure. This
pipeline is not meant for stepping through but rather for batch processing.

Figure 7.1. The Navigator window within the HIPE GUI

There are two ways to run the pipeline though HIPE:

1) Either running through the pipeline script step-by-step by repeatedly clicking the Play button:

Figure 7.2. The Play button on the HIPE GUI

2) or you can run the entire pipeline straight through by first highlighting the contents of the entire
script within the Editor window and then clicking the Play button. Alternatively, you can click the
Fast Forward button to run the entire script. Once you have started running the pipeline, you obtain
the following window to track the progress of the processing:

How to perform SPIRE pipeline processing in HIPE

65

Figure 7.3. Plot dialog.

If you wish to obtain plots, change the 0 to 1 in the 'plot' dialog, otherwise just hit the 'Accept' button.
The window will then close automatically.

Next, you will see the Observation_Loader window - for HIPE to access and process the data
via the pipeline, this requires a Storage ID of the data pool (in this case, obsid_3221226084) and an
Observation ID (again in this case, 3221226084) for the data to be processed:

Figure 7.4. Observation Loader.

Then hit Search and the pipeline processing of data will start automatically. Running the pipeline will
process data automatically from the initial product Level 0 to the final Level 2 products without further
user interaction. However, the user may wish to tweak some of the pipeline processing parameters. In
the next Section we will run a customized interactive script to run a POF9 pipeline, with the dataset
3221226084 - if you use a different observation to this, the plots will of course differ.

As of HIPE version 0.6.7, the SPIRE pipelines are in fact integrated within HIPE, which should
make the execution of pipeline processing much more straightforward, without having to deal with
individual scripts. To do this,

• load in your HIPE section a SPIRE photometry observation;

• select the observation context in the Variables view of HIPE,

• go in the Task view, look in the "Applicable" list, and you'll find a task called spire****Pipeline
(where **** can be PointSource, LargeMap etc),

• double click on it, and a GUI will appear;

• click on "accept" and it will run the pipeline script for you.

How to perform SPIRE pipeline processing in HIPE

66

7.1.1.2. Running the SPIRE photometer pipeline interactively.

The pipeline for Level 0.5 to Level 1 processing involves the following sequence of processing
modules. The pipeline works on a Photometer Detector Timeline (PDT) and requires the Nominal
Housekeeping Timeline (NHKT). Additional auxilliary products are required for the telescope
pointing information (see the flowchart below)

Figure 7.5. The SPIRE POF9 pipeline.

Start the pipeline running the first correction - the Electrical Crosstalk Correction. We can execute
this in a loop for all scan lines:

for bbid in bbids:
 block=level0_5.get(obsid,bbid)
 pdt=block.pdt
 pdt=elecCross(pdt,table=obs.calibration.phot.elecCross)
 pdtList.append(sink.save(pdt))

How to perform SPIRE pipeline processing in HIPE

67

Now,for this observation, we know that detector timeline #5 contains a glitch in detector "PMWA13"
at sample 135:

pdt=pdtList[5].product

We can start to take steps to correct this glitch. First we get the voltage of detector "PMWA13". The
getVoltage() method is defined for DetectorTimeline objects:

voltage=pdt.getVoltage("PMWA13")

Next we get the sample times. We are using a jython syntax to call the method getSampleTime()
defined for DetectorTimeline objects:

time=pdt.sampleTime

Here we shift the time origin to center on the glitch:

time=time-time[135]

Get the name of the unit of the voltage:

uni=pdt.getVoltageUnit("PMWA13").toString()

Figure 7.6. Plotting voltage against time.

Now we can plot the voltage versus time to view the glitch:

plot1=PlotXY(time,voltage,color=Color.blue,xrange=[-7,7],\
 xtitle="Time [s]",ytitle="Voltage ["+uni+"]",name="Deglitching")
plot1[0].style.stroke=1
plot1[0].style.line=2
plot1[0].style.symbol=14

To correct, we run deglitching on all scan lines:

How to perform SPIRE pipeline processing in HIPE

68

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=deglitching(pdt)
 pdtList[i]=sink.save(pdt)

Now we get the same timeline after deglitching:

pdt_deg=pdtList[5].product

Again we get the voltage of detector PMWA13:

volt_deg=pdt_deg.getVoltage("PMWA13")

Figure 7.7. And we can overplot on the old timeline. We are currently optimising the parameters of the
deglitching task to improve the glitch subtraction - glitch removal in the final version of the pipeline should
be much improved over what is shown in this figure!

Overplot on the old timeline:

plot1[1]=LayerXY(time,volt_deg,color=Color.red)
plot1[1].style.stroke=1

Now we apply the Electrical Filter Response Correction

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=corrElecFiltResponse(pdt)
 pdtList[i]=sink.save(pdt)

Now we run Flux Conversion:

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=photFluxConversion(pdt,table=obs.calibration.phot.fluxConv)
 pdtList[i]=sink.save(pdt)

And let's plot the signal seen by the detector "PSWE10" of the first scan line. We will compare it with
the result of the temperature drift correction:

How to perform SPIRE pipeline processing in HIPE

69

pdt=pdtList[0].product
signal=pdt.getSignal("PSWE10")
time=pdt.sampleTime-t0

And obtain the name of the unit of the signal:

uni=pdt.getSignalUnit("PSWE10").toString()

Figure 7.8. Plotting signal vs. time.

And plot the signal versus time:

plot2=PlotXY(time,signal,color=Color.blue,\
 xtitle="Time [s]",ytitle="Signal ["+uni+"]",name="Temp. drift correction")
plot2[0].name="Before temp. drift correction"
plot2.legend.visible=1

Apply correction for temperature drift

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=temperatureDriftCorrection(pdt,table=obs.calibration.phot.tempDriftCorr)
 pdtList[i]=sink.save(pdt)

Get the corrected PDT:

pdt_corr=pdtList[0].product

Get the signal of the same detector:

signal_corr=pdt_corr.getSignal("PSWE10")

How to perform SPIRE pipeline processing in HIPE

70

Figure 7.9. After Temperature Drift Correction.

And finally overplot it over the original signal v time plot before the temperature drift correction:

plot2[1]=LayerXY(time,signal_corr,color=Color.red,name="After temp. drift
 correction")

Let's look at the voltage of the PSWT1 thermistor:

signal_pswt1=pdt_corr.getSignal("PSWT1")
plot3=PlotXY(time,signal_pswt1,color=Color.blue,\
xtitle="Time [s]",ytitle="PSWT1 Voltage [V]",name="Thermistor voltage")

How to perform SPIRE pipeline processing in HIPE

71

Figure 7.10. PSWT1 voltage.

Apply the bolometer response correction:

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=corrBolTimeResponse(pdt)
 pdtList[i]=sink.save(pdt)

Apply the Optical Crosstalk Correction:

for i in range(nscans):
 pdt=pdtList[i].product
 pdt=optCross(pdt,table=obs.calibration.phot.optCross)
 pdtList[i]=sink.save(pdt)

Create a Spire Pointing Product:

spp=SpirePointingProduct(detAngOff=obs.calibration.phot.detAngOff,\
 hpp=obs.auxiliary.pointingProduct,siam=obs.auxiliary.siamProduct)

Create a ScanContext where we will attach all the timelines. This will be used as input for map making:

scanCon=ScanContext(obsid)
scanCon.modelName=obs.level["level0"].modelName

In this loop we compute the pointing:

for i in range(nscans):
 block=level0_5.get(obsid,bbids[i])
 nhkt = block.nhkt
calculate BSM angles
bat=calcBsmAngles(nhkt,bsmPos=obs.calibration.phot.bsmPos)
#

How to perform SPIRE pipeline processing in HIPE

72

add the Bsm Angles Timeline to the SpirePointingProduct
spp.bat=bat
associate sky positions to flux samples
pdt=pdtList[i].product
ppt=associateSkyPosition(pdt,spp=spp)
scanCon.refs.add(sink.save(ppt))

Level 1 to Level 2 processing (using Naive Mapping or MadScanMapper) for the mapping pipeline
processing produces the final PLW/PMW/PSW products.

Run MADmap map making for the three bands:

mapPsw=madScanMapper(scanCon, array="PSW")
mapPmw=madScanMapper(scanCon, array="PMW")
mapPlw=madScanMapper(scanCon, array="PLW")

Save maps in the sink and attach them in the ObservationContext

level2=MapContext()
level2.refs.put("PLW",sink.save(mapPlw))
level2.refs.put("PMW",sink.save(mapPmw))
level2.refs.put("PSW",sink.save(mapPsw))

obs.level["level2"]=level2
obs.obsState = ObservationContext.OBS_STATE_LEVEL2_PROCESSED

Saving the data maps for each photometer array

When the pipeline is finished running, a new dialog will appear on screen, asking you whether you
wish to save the processed ObservationConext. Click yes to proceed. This enables you to save the
final observation context in a new location.

Figure 7.11. Observation context dialog.

Now enter the name of the pool where the user wants to save all the processed data in the dialog that
pops up.

Saving the data maps for each photometer array

In order to browse the processed data, within the 'Variables' window, select 'obs' from the list of the
available variables - this is the variable containing the final observation context. Doing this will bring
up the data summary information in the Editor window:

How to perform SPIRE pipeline processing in HIPE

73

Figure 7.12. Data summary information.

Furthermore, different levels of data processing can be accessed and inspected from the associated
products window. For the point source photometry pipeline (POF2), the final products are Level 1
products - namely extracted fluxes. For the remaining mapping pipelines, the final pipeline processing
products will be in the form of maps, naturally. Typical example of a final pipeline processing product
is shown below, where we have accessed the level 2 product maps from the POF5 scan map pipelines,
the PSW, PLW and PMW map products:

Figure 7.13. Level 2 PSW product from POF9 pipeline.

How to perform SPIRE pipeline processing in HIPE

74

Figure 7.14. Level 2 PMW product from POF9 pipeline.

Figure 7.15. Level 2 PLW product from POF9 pipeline.

7.1.2. SPIRE spectrometer pipeline processing.

7.1.2.1. Preparation to running the SPIRE spectrometer pipeline
within HIPE.

The process for preparing to run a SPIRE spectrometer pipeline within HIPE is a very similar process
to that for preparing to run a photometry pipeline - the user must obtain their data and set up a pool for
data storage in the same manner as for photometry - see section 1.1.1 for instructions on how to do this.

The user can process SPIRE spectrometer data for each of the various AOTs using the standard pipeline
scripts that are bundled in within HIPE. The user should note that the official scripts contains many
commands related to the Standard Product Generation (SPG) infrastructure. This pipeline is not meant
for stepping through but rather for batch processing. The available AOTs for SPIRE spectrometry are
as follows:

How to perform SPIRE pipeline processing in HIPE

75

Table 7.2. SPIRE Spectrometry AOTs

Instrument Mode HSpot Observation Mode Description

SOF1 Point-source spectrometry Point Source Spectrum
(Continuous Scan)

SOF2 Raster Mapping spectrometry Fully Sampled Spectral Map
within FOV (Continuous Scan)

As mentioned in Section 1.1.1., as of HIPE version 0.6.7, the SPIRE pipelines are in fact integrated
within HIPE, which should make the execution of pipeline processing much more straightforward,
without having to deal with individual scripts. To do this,

• load in your HIPE section a SPIRE spectrometry observation;

• select the observation context in the Variables view of HIPE,

• go in the Task view, look in the "Applicable" list, and you'll find a task called spire****Pipeline
(where **** can be SinglePointing, Raster etc),

• double click on it, and a GUI will appear;

• click on "accept" and it will run the pipeline script for you.

7.1.2.2. Running the SPIRE spectrometer pipeline interactively.

For the purposes of this example, we will obtain and process a observation (point-source spectrometry),
ObsID=0x300117FE within your pool. (This OBSID number is in Hex - generally you will search the
HSA in decimal notation for the OBSID.) That observation was an observation where a 202 µm laser
was shone on SSWD3. We base the steps for this spectroscopy HOWTO upon the script used for the
December 2008 Data Reduction workshop.

Run the demo script to the point where interferograms are generated.

Run all commands up to and including:

sdi=createIfgm(sdt=sdt, smect=smect, hkt=nhkt,
 calSmecZpd=obs.calibration.spec.smecZpd,
 calSpecChanTimeOff = obs.calibration.spec.chanTimeOff,
 calSpecSmecStepFactor=obs.calibration.spec.smecStepFactor,
 interpolType= "spline")

After the commands run to completion, inspect the resultant interferograms. In particular note the
difference between the interferograms on SSWD3 and SSWA2 (or any of the SLW pixels).

How to perform SPIRE pipeline processing in HIPE

76

Figure 7.16. Interferograms for detector SSWD3

Figure 7.17. Interferograms for detector SSWA2. The baseline is clearly visible.

How to perform SPIRE pipeline processing in HIPE

77

Figure 7.18. Interferograms for detector SLWA1. The baseline is clearly visible.

As shown in the above figures, the laser signature is clearly visible on SSWD3, while the position-
dependent baseline is clearly visible for SSWA2 and SLWA1. Next, remove the OPD-dependent
offset. One can modify the degree argument to change the order of the fitted polynomial (4 is the
default).

 sdi=baselineCorrection(sdi=sdi, type= "polynomial", degree = 4)

How to perform SPIRE pipeline processing in HIPE

78

Figure 7.19. Task view for baseline correction.

Figure 7.20. Interferograms for detector SSWA2 after baselineCorrection().

How to perform SPIRE pipeline processing in HIPE

79

Figure 7.21. Interferograms for pixel SSWA1 after baselineCorrection().

Here again, note the difference in the interferograms before and after this step (In particular, note the
differences for the outer edge pixels, compare Figure 7.17 and Figure 7.18 with Figure 7.20 and Figure
7.21). Next, we prepare the interferograms for phase-correction. First we extract the portion of the
interferograms symmetric about OPD=0 and apodize these interferograms.

 presdi = apodizeIfgms(sdi=sdi, apodType="ds", apodFunctionName="aNB_15")

How to perform SPIRE pipeline processing in HIPE

80

Figure 7.22. Task view for selecting apodizlgfm.

The apodType argument means that we are only going to apodize the symmetric portion. The
apodFunctionName is the name of the apodization function that we select. Here this function is from
the Norton-Beer family. All apodization functions have an adverse effect on spectral resolution; this
one will decrease the resolution by a factor of 1.5 (that is where the 15 comes from.).

Figure 7.23. Apodization of the double-sided portion of an SSWD3 interferogram. Note that this
interferogram contains only the signals from OPD positions symmetric about ZPD (OPD=0).

How to perform SPIRE pipeline processing in HIPE

81

The next pipeline step is to transform the double-sided interferograms. We do this because we want
to evaluate the phase (the phase being the arc tangent of the Imaginary part over the Real part of each
spectra.)

dsds = fourierTransform(sdi=presdi, ftType=”ds”, IA=True)

Here, the side argument just tells the function to take the transform of the double sided interferograms
and return a product whose signals will contain real and imaginary components. Using PixelViewer(),
you can inspect these spectra and see the Real and Imaginary components.

Figure 7.24. Spectra from the double-sided portion of an SSWD3 interferogram. Note the presence of real
and imaginary components.

How to perform SPIRE pipeline processing in HIPE

82

Figure 7.25. Spectra from the double-sided portion of an SSWA2 interferogram. Note the presence of real
and imaginary components.

We then pass these spectra and the original interferograms to the PhaseCorrectionTask() module:

 sdi = phaseCorrection(sdi=sdi, dsds, polyDegree=4,
 pcfSize=127, obs.calibration.spec.bandEdge)

This module will make a fit to the in-band phase for each interferogram, and then correct the
interferograms by convolution with the inverse transform of the fitted phase.

The two free parameters shown here, polyDegree and pcfSize, refer to the fitting and the convolution,
respectively. polyDegree is the order of the polynomial used in the fitting of the phase, and pcfSize
refers to the length of the convolution function.

How to perform SPIRE pipeline processing in HIPE

83

Figure 7.26. SLWC3 - after phase correction.

Figure 7.27. SSWA2 - after phase correction.

How to perform SPIRE pipeline processing in HIPE

84

Figure 7.28. SSWC2 - after phase correction.

Inspect the corrected interferograms. You can zoom right in on the portion around ZPD (OPD=0).
There you should see that the signals are now pretty much symmetric.

Now that phase-correction is complete, we can (optionally) apodize the interferograms. Here, we want
the apodization to apply to the entire interferogram so we set apodType=”ss”.

One thing you might want to do is to create a copy of the interferogram product. Create the copy by
un-commenting the lines:

unapodSdi = SpectrometerDetectorInterferogram(sdi)

Now, run the apodization:

 sdi = apodizeIfgms(sdi=sdi,
 apodType="ss", apodFunctionName="aNB_17")

Here we are using the Norton-Beer function that reduces resolution by a factor of 1.7.

We transform the interferograms to create high-resolution spectra. We tell the fourierTransformTask()
module to do this by setting the ftType argument to “ss”.

ssds = fourierTransform(sdi=sdi, ftType="ss")

How to perform SPIRE pipeline processing in HIPE

85

Figure 7.29. High resolution interferograms from SSWD3 after apodization.

Inspect the results. Again, look at SSWD3. Note too the difference in the spectra for this pixel between
the apodized and unapodized (see how the ripples are decreased at the cost of broadening the line.)

Figure 7.30. High resolution spectra for SSWD3. The Norton-Beer apodization function has been applied.
A close up of the laser line region is shown here.

How to perform SPIRE pipeline processing in HIPE

86

Figure 7.31. High resolution spectra for SSWD3. No apodization function has been applied. The ripples
from the Sinc ILS are clearly visible.

You may have noticed that the data products to this point contain four scans each. In theory, these
data are redundant as each is essentially the same observation – each is a scan of the spectrometer
mechanism while the detectors view the same target. Theory not always being equal to practice, it is
typical to perform more than one scan per spectrometer observation in order to increase the resultant
signal-to-noise ratio.

All this leads in to the final step of the spectrometer pipeline; that of averaging the spectra that we
just created.

The output product from this step contains a single spectrum per detector and that spectrum is the
average of the each input spectra per detector per wavenumber bin. Example spectra from this product
is shown in Figures 7.30 and 7.31.

7.1.3. Additional reading
We have include processing of only the photometry and spectroscopy pipeline scripts as illustrative
examples - however, the processing of other photometer and spectroscopy AOTs will follow the same
basic prescriptions. Further, additional information regarding the structure of data at the various levels

How to perform SPIRE pipeline processing in HIPE

87

of processing, post-running of the respective pipeline scripts for each of the different photometry
pipelines can be found in the SPIRE Pipeline Description document

http://www.herschel.be/twiki/pub/Spire/ScienceVerificationActivities/SPIRE-RAL-DOC-002437_Pipe_Description_Aug2.pdf

88

Chapter 8. How to Save and Restore
Data (including Herschel Archive
data, ASCII and FITS)

Herschel Editorial Board

8.1. Introduction
Saving HCSS data and exporting it to a format which can be read by other tools outside HCSS is a
very important task. It is necessary to have a correct understanding of the data structures in an object-
oriented environment like the HCSS, because the data may come in different types of classes and
hierarchies. The following drawing shows the general overview of the available high level data in
HCSS:

Figure 8.1. HCSS high level data hierarchy

In this scheme, the highest level data is the Context, which is a product that stores references to other
products. So, the Context shown above in reality does not physically keep the two Products in it but
instead it only keeps their references, also known as URNs.

The next level in the data hierarchy are Products, which may contain datasets of different types:
ArrayDatasets, TableDatasets etc. Some examples of Products are the SimpleImage, which holds the
images...

Note

How to save and restore variables of different kinds in a DP session is explained in Section
10.2 of the DP User's Manual.

In short:

http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc_ia13.1/hcss/um/html/saverestore.html/

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

89

save("myfile.sav","x,y,z") # x, y, z are variables that are saved
 in a disk
 # file called "myfile.sav"
save("myfile.sav") # saves all variables in a DP session on disk
 file
restore("myfile.sav") # restores all variables to the session.
WARNING: This file can get very large
for many sets of data being accessed
and saved from a DP session.

8.2. How to save and restore data from the
command line

In order to illustrate the steps to save and restore data we need to create some HCSS high level data,
like products and datasets.

First, let's create a product. An example of an HCSS product is the SimpleImage which is the
product used to hold images, together with the optional mask, flag, exposure and errors images. It also
includes necessary metadata in form of keywords (similar to FITS header keywords).

myImage = SimpleImage(description="An image",image = Double2d(100,100),\
 error=Double2d(100,100),exposure=Double2d(100,100))

8.3. How to save and restore products using
a Local Store

Note

Information in this section is covered in more detail in the PAL chapter of the "DP Basic
User's Manual" available from within the Help environment of HIPE.

The easiest way to save and restore products in a HIPE session is to place them into a "local store".
The "local store" is a simple folder structure which contains pools of products in the form of FITS
files with corresponding metadata. Pool folders usually reside in the ".hcss/lstore" directory under the
user's own home directory.

The "PAL storage manager" view in HIPE is shown in Figure 8.2. This allows the user to easily create
pools, open a product storage and register a pool in it. More than one pool (directory of data) can
be placed in a storage, if wanted, making many products from different observations or instruments
available from the same storage area. The ID given to the storage is the one needed to directly access
the products from that storage.

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

90

Figure 8.2. View for creating a pool for storing products

On the top panel are shown the list of user's pools under ".hcss/lstore" directory. New pools can be
created fill-in Pool ID field and clicking the "Create" button. The action performed by the button is
echoed in the HIPE Console (see Figure 8.3).

Figure 8.3. Listing available pools

Under panel Storages appear a number of pre-defined storages. New ones can be created (Figure 8.4).
Moreover, pools can be registered on the storage by selecting the Storage and pressing "Add": A pop-
up window will appear with the list of the available pools (Figure 8.5).

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

91

Figure 8.4. Adding new storages

Figure 8.5. Adding already existing storages to the session

Saving data

In order to save a product into the local store we need to open a product storage, register a pool in it
and then save the product into the pool. The first three items are discussed int he previous section. The
following example also illustrates how this can be done on the command-line. The last line actually
saves the data in the store.

store = ProductStorage()
myPool = LocalStoreFactory.getStore("myTestPool")

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

92

store.register(myPool)
store.save(myImage)

Now the product "myImage" is saved in the local store in the directory on local disk called
${HOME}/.hcss/lstore/myTestPool.

Figure 8.6. Save products to Storage view

Saving in HIPE can also simply be done using the "Save Products to Storage" view (see Figure 8.6),
which allows to easily save products into a pool by simply selecting those in your DP seesion and the
storage to use. Saving them in the storage occurs with the "Save" button at the bottom of the view.

Note that you can only save products, which means that if you want to save a Dataset of any kind -
TableDataset, Spectrum1d or 2d Dataset etc. you need to wrap them in a product as is shown
in the following example

create a TableDataset with two columns index and xvalue
table = TableDataset(description = "A table")
table["index"] = Column(data=Int1d.range(100))
table["xvalue"] = Column(data=Double1d(100).apply(RandomUniform()))

Next we need to put in a product:

tProduct = Product(description="A table")
tProduct["myTable"] = table
store.save(tProduct)

Placing things into products allows for the proper header information to be included. Products can be
wrapped within products (e.g., several images in a single product such as an observation) and each
level has its own metadata/header information.

Importing Herschel data to HIPE The tar file provided by the Herschel Science Archive (HSA) can
be registered in HIPE as a pool using the view "Import Herschel data to HIPE". Select a directory in
which the files coming from HSA are placed (see Figure 8.7). Pressing the button "Show Contents"
all the observations included in that directory will be shown. Select the ones you want to save into a
pool, select the pool and press "Import". In the near future it is expected that the observation(s) saved
into the pool are referenced automatically in HIPE.

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

93

Figure 8.7. Product loading into HIPE from the HSA tar file.

Export Herschel data from HIPE

In the same way, pools can be exported to the standard (jerarchized) directory structure. Select one
observation from a pool and an output directory in the "Export Herschel Data From HIPE" view, and
press "Export" (see Figure 8.8).

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

94

Figure 8.8. Product export from HIPE into standard Herschel directory structure.

Restoring data using the productBrowser

Restoring the data back into HCSS is more complicated as it is necessary to know the product URN in
the local store in order to retrieve it. However, a simple way to do this is using the productBrowser().
We can also use the Data Access view (see also HowTo on accessing data):

store = ProductStorage()
myPool = LocalStoreFactory.getStore("myTestPool")
store.register(myPool)
result = browseProduct(store)

You can then query the available products in "myPool", select the one you need, add it to the basket
and then exit the productBrowser. The steps are shown in the following screenshot:

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

95

Figure 8.9. Restoring product from the local store using the productBrowser

These are the steps explained:

1. Select the product class to be of type Product

2. Click on "Submit" button to execute the search

3. Results for the products in myPool of type Product are shown in "Query result" view. Select the
one you want.

4. The selected product structure appears in the "Product" view: Attributes, Metadata and Datasets
are shown for this particular product.

5. Click with the right-hand mouse button on the product line (with the large "P" in front) opens a
menu with "Dataset inspector" and "Add to JIDE Basket". Select the second item. The selected
product will appear in the "Downloads" view.

6. Click "OK" to close the productBrowser().

At the end the reference to the product will be stored in the result variable and you can restore the
SimpleImage following this example:

print result
[urn:MyPool1:herschel.ia.dataset.image.SimpleImage:0]

image = result[0].product

If there is more than one result then we can refer to it with an index ([0] in the previous example).

The same way we can retrieve products which contain datasets (TableDataset or
ArrayDataset) instead of SimpleImage.

Restoring data using command line queries

We can search the local store for products with a given attributes. For example, querying the local
store pool "myPool" for products with description matching "An image":

query=MetaQuery(Product,"p","p.description=='An image'")

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

96

results2=store.select(query)
print results2
[urn:MyPool1:herschel.ia.dataset.image.SimpleImage:0]

image = results2[0].product

The same as above, if there are more than one result then we can refer to it with the index.

8.4. How to Save Images and Tables as FITS
files

It is possible to save and read using command-line input or task dialogs in HIPE. For all task dialogs
it should be noted that the dialog appears in an Editor view window. To run the task via the dialog
always hit the "Accept" button to bottom right in the dialog box.

8.4.1. Saving with a Task Dialog
The simplest way to save data is using the simpleFitsWriter task. It is required that the data
(image/table/set of spectra) are wrapped up as a product. An example product is an observation itself.
But we can wrap any dataset into a product so that the appropriate metadata (header information) and
history is available. Clicking on the name of any product will show this task available in the Tasks
under the Applicable Tasks folder. A double-click on the task (shown in green) brings up the simple
dialog shown in Figure 8.10.

Figure 8.10. FITS save task dialog.

The only option the user needs to fill in is the name of the output FITS file. The default directory
is the one that hipe was started from, so the full path name is usually required. Hitting the "Accept"
button runs the task.

8.4.2. Saving Using Command-line Inputs
The FITS reader and writer in HCSS is in the FitsArchive package. First, let's store the product
"myImage" from our previous example in a FITS file.

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

97

fits=FitsArchive()
fits.save("testFits-file1.fits",myImage)

The file "testFits-file1.fits" will be saved in the folder from where you started up HIPE. Otherwise,
the full directory path should be supplied. It is a multi-extension FITS file with all the content of the
SimpleImage product. Here is the structure of the saved FITS file:

 No. Type EXTNAME BITPIX Dimensions(columns)

 0 PRIMARY 32 0
 1 IMAGE image -64 100 100
 2 IMAGE flag 16 100 100
 3 IMAGE error -64 100 100
 4 IMAGE exposure -64 100 100

8.4.3. How to Save TableDatasets as FITS Files

Once we have the TableDataset wrapped in a Product we can save it like all other products. We can
use the same FITS writing task from HIPE as noted above, or we can use a command-line method.
For example:

 fits=FitsArchive()
 myTable = TableDataset() # create an empty table
 myTable["X values"] = Column(Double1d([2,3.4,4])) # create fake column
 myTable["Y values"] = Column(Double1d([2,4.5,4.8])) # create 2nd column
 tProduct = Product(description="This is a table") # create the product
 tProduct["firstTable"] = myTable # add in the table and give it a label
 fits.save("testFits-file2.fits",tProduct)

The resulting structure of the saved FITS file is:

 No. Type EXTNAME BITPIX Dimensions(columns)

 0 PRIMARY 32 0
 1 BINTABLE table 8 2(3)

 Column Name Format Dims Units TLMIN TLMAX
 1 X values 1D
 2 Y values 1D

We can see that the column names, which we named as "X values" and "Y values" are in the file.

8.4.4. How to Read FITS Files

The simpleFitsReader task allows FITS files to be read in. Two types of FITS readers are
available -- for HCSS FITS and Standard FITS. You can let the software choose the appropriate one
or choose a specific reader (see Figure 8.11).

To run the command from the HIPE dialog, go to the "Tasks" view -- select the "All" tasks folder and
scroll down to simpleFitsReader. A double-click on the name brings up the dialog. Once a name
is input and the FITS reader chosen, click the "Accept" button to run the task and read in the FITS file.

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

98

Figure 8.11. FITS read task dialog.

8.5. How to Create and Read ASCII Table
Files

In this case it is not necessary to put the TableDataset in a Product and we can directly save the Dataset
to an ASCII file. As for FITS writing, we can do this from within a HIPE task dialog or from the
command-line.

8.5.1. Using HIPE Task Dialogs to Create and Read
ASCII Tables

If we click on a variable that is a TableDataset -- such as "myTable" in the example above -- in
the Variables view of HIPE, then we see that an Applicable Task in the Tasks view window is
asciiTableWriter. Double-clicking on this task brings up a dialog for creating an ASCII table.
The simplest way of formulating an ASCII table is to take the defaults and simply fill in a name for
the output table. But more sophisticated options are available (see Figure 8.12).

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

99

Figure 8.12. FITS save task dialog.

The other possible inputs for the task are the following (this information is also available by hovering
the mouse over the parameters shown in the dialog).

 * file = output file name.
 * table = TableDataset to write.
 * configFile = configuration file where the formatter
 (AsciiFormatter), parser (AsciiParser) and table template
 (TableTemplate) must be specified. When configFile parameter is specified,
 any parameter related to parser or to table template are not allowed.
 * configFileOutput = if a config file is specified, an output configuration
 file will be created.
 * formatter (default AsciiTableTool formatter) = AsciiFormatter object.
 * formatterHeader (default AsciiFormatter header allowed) = Specifies
 if header information to be provided (true/false).
 * formatterCommented (default AsciiFormatter comments allowed) = Specifies
 if there are comments when writing a file (true/false).
 * formatterCommentPrefix (default AsciiFormatter comments prefix value) =
 Specifies what the prefix is for identifying all comments.
 * template (INPUT, default value: extracted from the first file rows) =
 TableTemplate object for specifying the data structure (see DP Basic User's
 Manual for more details).

Clicking on "Accept" at the bottom of the task dialog window runs the task and creates an ASCII table.

Reading an ASCII table into HIPE can be done using the asciiTableReader. Go to the "Tasks"
view and open the folder "All". Double-click on the word asciiTableReader. This provides a
dialog. For standard CVS tables the only thing that needs to be filled in is the file name of the ASCII
table to be read in. More

 * file = input file containing ASCII table.
 * table = TableDataset object name for loaded table.
 * configFile = configuration file where the formatter (AsciiFormatter),

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

100

 parser (AsciiParser) and table template (TableTemplate) must be specified.
 When configFile parameter is specified, any parameter related to parser or
 to table template are not allowed.
 * configFileOutput = if a file is specified, an output configuration
 file will be created.
 * parser (default AsciiTableTool parser) = AsciiParser object.
 * parserIgnore (default AsciiParser ignore value)
 = String expression to ignore when parsing a file.
 * parserSkip (default AsciiParser skipping rows value) = Number of rows to
 skip when reading a file.
 * parserTrim (default AsciiParser trim rows value) = Specifies if the parser
 must trim each row when reading a file (true/false).
 * parserGuess (default value AsciiParser.GUESS_NONE) = specifies if
 the parser should guess column types. Files should not contain HCSS header
 (use skip=AsciiReader.HCSS_HEADER for skipping HCSS header or comment these
 lines)

 Valid options:
 o AsciiParser.GUESS_NONE: (default) file must contain template
 or template must be provided (no guess)
 o AsciiParser.GUESS_TRY: guess types based on the first 100 records
 o AsciiParser.GUESS_ALL: guess types based on all records
 o AsciiParser.ALL_STRING: each record is a string (no guess required)
 o AsciiParser.ALL_BOOLEAN: each record is a boolean (no guess required)
 o AsciiParser.ALL_BYTE: each record is a byte (no guess required)
 o AsciiParser.ALL_INTEGER: each record is an integer (no guess required)
 o AsciiParser.ALL_LONG: each record is a long (no guess required)
 o AsciiParser.ALL_FLOAT: each record is a float (no guess required)
 o AsciiParser.ALL_DOUBLE: each record is a double (no guess required)
 o AsciiParser.ALL_COMPLEX: each record is a complex (no guess required)
 * parserDelim (INPUT, default value: comma) = Specifies the field delimiter.
 If it is one character, a csvParser is selected. If it is an expression,
 a RegExpParser (regular expression) is selected.
 * template (INPUT, default value: extracted from the first file rows) =
 TableTemplate object for specifying the data structure. See TableTemplate.

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

101

Figure 8.13. FITS read task dialog.

8.5.2. Using Command-line Input to Create and Read
ASCII Tables

We can also do simple ASCII table creation from command-line inputs.

ascii = AsciiTableTool()
ascii.save("testAscii-file1.txt",table)

To read the table in again we need to "load" it using the same tool.

ascii = AsciiTableTool()
table=ascii.load("testAscii-file1.txt")

Loading uses the same parser/formatter (see below for how this may be changed) as is applied for
saving.

By default the table is saved as a coma-separated-value file with 4 header lines, for example

X values,Y values # column names
Double,Double # column data types
, # column data units
, # description of the column
2.0,2.0 # the data start from this line
3.4,4.5
4.0,4.8

The default output delimiter can be changed to another symbol, like is shown in the following example:

How to Save and Restore Data (including
Herschel Archive data, ASCII and FITS)

102

 ascii.formatter = CsvFormatter(delimiter = '*')
 ascii.save("testAscii-file2.txt",table)

Or the columns at output can have a fixed width using the FixedWidthFormatter with an indication
of the column widths given.

 ascii.formatter = FixedWidthFormatter(sizes=[8,12])
 ascii.save("testAscii-file3.txt",table)

More information on creating and reading tables is available in the DP Basic User's Manual.

103

Chapter 9. How to plot in HIPE
Herschel Editorial Board

Revision History

Revision 0.1 23 June 2008 IV

Created using RS template.

Revision 0.2 16 Oct 2008 IV

Some corrections and modifications.

9.1. Introduction
Plotting in HCSS is object oriented - each element of the plot window is an object and the user can
interact with it using its methods. For example, the main plot objects (or class) is called PlotXY()
and we have the axes and the different plotting layers as distinct objects and we can change their
properties, like the number of tick marks, the colour of the plotting symbols, adding new layers etc,
without the necessity to redraw the whole chart. This is powerful but seemingly complicated and this
How To is targeted to make it a bit more accessible and provide you with a simple receipts on how
to do simple plots.

An extensive introduction to plotting in HCSS-DP is given in the DP User's Manual and here we very
briefly introduce the basic plotting from the command line and using the plot properties GUI.

9.2. Simple plots from the command line
In order to illustrate the steps to produce simple plots we need an input x and y variables:

x = Double1d.range(11)
y = x*x

1. Simple plot:

from herschel.ia.gui.plot import *

plot = PlotXY()
plot.autoBoxAxes=1
layer = LayerXY(x,y)
plot.addLayer(layer)

2. Overplot a second x and y dataset

x1 = 10.0*Double1d.range(11)/10.0 - 5.0
y1 = x1**3.0

Note that we do not need to repeat all plotting commands from the above example, we simply add
a new layer

layer2 = LayerXY(x1,y1)
plot.addLayer(layer2)

And we note that the axis ranges are expanded correspondingly and that the new layer is with a
different colour.

3. Change the plot title and subtitle

http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc_ia13.1/hcss/um/html/ch06.html

How to plot in HIPE

104

plot.title.text="Example plot"
plot.subtitle.text="two layers"

or if you don't want to have plot title and subtitle you can switch them off

plot.title.setVisible(0)
plot.subtitle.setVisible(0)

4. Change the axis labels:

plot.xaxis.title.text="X-values"
plot.yaxis.title.text="Y-values"

5. Change the axis ranges

plot.xaxis.setRange([-2.0,2.0])
plot.yaxis.setRange([-10.0,10.0])

or go back to the auto range

plot.xaxis.setAutoRange(1)
plot.yaxis.setAutoRange(1)

6. Change the tick marks spacing and then the number of minor tick marks

plot.xaxis.getTick().setInterval(3.0)
plot.yaxis.getTick().setInterval(30.0)

and to have 5 minor tick intervals between the major tick marks (which means 4 minor ticks)

plot.xaxis.getTick().setMinorNumber(4)
plot.yaxis.getTick().setMinorNumber(4)

7. Draw grid lines

plot.xaxis.getTick().setGridLines(1)
plot.yaxis.getTick().setGridLines(1)

Note that the grid lines are drawn at the major tick marks.

8. Change the axis from linear to log

plot.xaxis.setType(Axis.LOG)
plot.xaxis.setType(Axis.LINEAR)

Warning

The axis ranges need to be positive otherwise values are ignored in the LOG plot. When
returning the plot back to LINEAR, all points are made plotted again even if some had
been dropped in the LOG plot.

9. Change the line style for a given layer

layer.setLine(Style.NONE)

The line styles for setLine() can be

• Style.NONE - symbols only

• Style.MARKED - symbols connected with lines

• Style.SOLID - solid line, no symbols

How to plot in HIPE

105

• Style.DASHED - dashed lines

• Style.MARK_DASHED - symbols connected with dashed lines

Note that in the MARKED styles the default plotting symbol is used

10.Change the plotting symbol and its size. In order to have an effect you need to change the line style
first to be one of NONE or MARKED styles

layer.setLine(Style.NONE)
layer.setSymbol(Style.FSQUARE)
layer.setSymbolSize(10)

The symbols can be:

Table 9.1. Symbols codes

DOT = 1 a dot VCROSS = 2 a "+" sign

DCROSS = 3 an "x" sign VDCROSS = 4 a "+" + "x" sign

CIRCLE = 5 an empty circle TRIANGLE = 6 an empty triangle

UTRIANGLE = 7 an empty upside-down
triangle

SQUARE = 8 an empty square

SQUARE_CROSS=9 an empty square + "x" DIAMOND = 10 an empty diamond

DIAMOND_CROSS=11a diamond + "+" OCTAGON=12 an empty octagon

STAR = 13 an empty star FCIRCLE=14 a filled circle

FTRIANGLE=15 a filled triangle FSQUARE = 16 a filled square

FDIAMOND=17 a filled diamond FOCTAGON=18 a filled octagon

UARROW = 19 an up arrow DARROW = 20 a down arrow

RARROW=21 a right arrow LARROW = 22 a left arrow

DARROW_LARGE=23a large down arrow UARROW_TRIANGLE
= 24

a large up triangular
arrow

DARROW_TRIANGLE
= 25

a large down triangular
arrow

Note

You can use either the code or the numeric value for the symbol, that is,
setSymbol(Style.FSQUARE) is equivalent to setSymbol(16).

11.Change the colour of the symbols and lines for a given layer

layer.setColor(java.awt.Color.RED)

12.Show or remove the legend for the layers

plot.setLegendVisible(1)

and we can also remove itt

plot.setLegendVisible(0)

13.We can also change the legend name for a given layer

layer.setName("Test 1")

and we can also remove the legend for a particular layer if we don't want it to appear on the plot

How to plot in HIPE

106

layer.setInLegend(0)

14.Histogram mode. You need to be in MARKED or SOLID line style for this mode to work:

layer.setLine(Style.MARKED)
layer.style.setChartType(Style.HISTOGRAM)

The chart type can be HISTOGRAM - the data point is in the middle of the histogram horizontal bar,
HISTOGRAM_EDGE - the data point is on the edge of the histogram horizontal, LINECHART -
the data points are connected with lines.

15.Add error bars to x and/or y values. First we need to create arrays with errors

xerr = SQRT(x)
yerr = SQRT(y)

layer.setErrorX(xerr,xerr)
layer.setErrorY(yerr,yerr)

Note that the upper (the first argument to setError() method) and the lower (the second argument
to setError() method) error limits can be different.

16.Add an annotation

layer.setAnnotation(0,Annotation(6.5,-10,"Test",color=java.awt.Color.GREEN))

17.We can use math and special symbols for axis titles, annotations, title plot etc. It is possible to use
TeX-like formating of strings. In particular, entering math mode using a "$" symbol it is possible to
formulate greek characters, e.g. using \\alpha or \\beta. Superscripts are preceded by the "^" symbol
and subscripts by the "_" symbol. For example the following can be used to set the title of the x axis

plot.xaxis.title.text="$A_{1.3}^{b-3/2}$"
plot.xaxis.title.text="$\\alpha_{1.3}^{\\beta-3/2}$"

Note that it is necessary to use "\\" to escape the "\" symbol.

Warning

Not all special symbols (mainly Greek characters) are available. If the symbol
is not available (for example $\\Alpha$ is not available) then this produces an
IllegalArgumentException error.

18.Change the plot window size. You can resize the window with the mouse or you can specify the
desired window size once you have added layers to the plot

plot.setWidth(400)
plot.setHeight(300)

19.Save plot in a file

plot.saveAsJPG("myfile.jpg") # JPEG format
plot.saveAsEPS("myfile.eps") # Encapsulated PS
plot.saveAsPNG("myfile.png") # PNG format

9.3. Interacting with plots using plot
properties GUI

Once you have done steps 1., 2. and/or 3. from the above then most of the following interactions with
the plot properties, i.e. steps from 4. on from the previous section, can be done via the plot properties

How to plot in HIPE

107

GUI. To open up the plot properties GUI you need to click with the right-hand mouse button and
choose "Properties..." entry in the menu. This will bring up the following window:

Figure 9.1. Plot properties initial windows.

On the left frame of the window we can see the hierarchical structure of the plot we created following
steps 1., 2. and 3. from the above example: we have the root element our plot and we have two layers
added on top of it. Each layer has also sub-objects for the x and y axes. Navigating to each of these
elements we can change the properties for each of the items.

1. First, let's enter the Plot properties:

How to plot in HIPE

108

Figure 9.2. Plot properties items

The different base plot entries are self-explanatory and they can be changed interactively and
applied. Also, if you plan to reuse some of them for all subsequent plots you may save them as
default.

2. Layers properties

How to plot in HIPE

109

Figure 9.3. Layer's properties

These are the property entries at a layer level, they are the same for all layers. From this panel you
can also add annotations to the plot. Note that this annotation is attached to the corresponding layer
so any change in layer colour will affect the annotation as well.

3. Axes properties

How to plot in HIPE

110

Figure 9.4. X-axis properties

Here you have almost complete control over the axis properties: range, title, tick marks and minor
tick marks, axis label. And different radio buttons allow you to turn on/off auto features.

How to plot in HIPE

111

Figure 9.5. Y-axis properties

4. Printing of a plot. In the menu which pops up when you click with the right-hand side mouse
button you have "Print..." menu which allows you to send the plot directly to a printer (if you have
configured one for your system).

5. Saving the plot. In the menu which pops up when you click with the right-hand side mouse
button you have "Save as..." menu which allows you to save the plot in different image formats:
Encapsulated PostScript file (EPS), JPG or PNG files.

Note

For plots, layers, annotations or axis titles when using the TeX notation you should not
escape the "\" symbol, that is you can directly use α in the text field of the GUI.

9.4. Advanced plotting
Here we introduce some more advanced plotting. Most of these are explained in greater detail and
with examples in the DP User's Manual.

1. Multiple plots per window.

http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc_ia13.1/hcss/um/html/ch06.html

How to plot in HIPE

112

When we add layers to the plot we can specify their position on a grid as in the example below
which places 4 layers onto a 2x2 grid (running indeces from 0,0 to 1,1).

plot = PlotXY()
layer = LayerXY(x,y)
layer1 = LayerXY(x1,y1)
layer1x = LayerXY(x1,y1/5.0)
layer1y = LayerXY(x1/5.0,y1)
plot.addLayer(layer,0,0) # top left
plot.addLayer(layer,0,1) # top right
plot.addLayer(layer,1,0) # bottom left
plot.addLayer(layer,1,1) # bottom right

Now, if we open the plot properties GUI we have all four layers and we can change each one of
them if necessary. We can interact with each layer and change its properties following the command
line methods too.

2. Create a plot in batch mode.

This is useful when you have many layers to add to the plot and you want to avoid to have the plot
window redrawn and reajusted each time a new layer is added. From the above example:

plot = PlotXY()
plot.setBatch(1)
layer = LayerXY(x,y)
layer1 = LayerXY(x1,y1)
layer1x = LayerXY(x1,y1/5.0)
layer1y = LayerXY(x1/5.0,y1)
plot.addLayer(layer,0,0)
plot.addLayer(layer,0,1)
plot.addLayer(layer,1,0)
plot.addLayer(layer,1,1)
plot.setBatch(0)

9.5. Plotting table datasets - using the
TablePlotter

A powerful tool exists which allows you to plot HCSS TableDataset products. This tool is called
TablePlotter and there is an extensive documentation on it in Chapter 6 of the DP User's Manual and
Chapter 10 of this HowTos manual (Chapter 10).

113

Chapter 10. HowTo Inspect and Plot
Dataset Tables in HIPE

Herschel Editorial Board

10.1. Introduction
This HowTo is a description of how to create and inspect a simple TableDataset in HIPE. It will walk
you through the necessary steps to create a dummy TableDataset, if you don't already have one--using
the command line window. We will show you how to manually inspect the values in the table and, then
use TablePlotter to plot data within the table, NOTE: Currently it is not yet possible to run TablePlotter
within HIPE, but this option will soon become available.

A TableDataset is made up of a number of columns. Each column contains an
ArrayDataset (data), a description and a quantity value associated with the ArrayDataset.
Each ArrayDataset can have up to 5 dimensions and can be of varying types.

Constructed on 2008/06/23 19:14...

10.2. Steps to creating and viewing a simple
TableDataset with the HIPE GUI

These are the steps to follow to create, view, and plot graphs of a TableDataset within HIPE.

1. Step 1: Open HIPE's "Welcome" window and click on Workbench Icon

2. Next we assume here that you do not have a TableDataset loaded into your session. If you
already have one loaded into HIPE, then skip to the next item. Otherwise read on. Type the
following commands into command-line window containing the "IA>>" prompt (bottom center in
the default view). In the example given here, we will create a TableDataset with 3 columns
each containing a 1D dataset, one being a sequence of numbers from 1 to 100, the second being the
sine value of each of the numbers in the first column, and the final column containing the values
in the first column multiplied by 100. The column names are x, sin and y respectively.

from herschel.share.unit import *
x = Double1d.range(100)

t = TableDataset(description="This is a table") #

t["x"] = Column(data=x, unit=Duration.SECONDS) #

t["sin"] = Column(data=SIN(x),description="sin(x)") #
t["y"] = Column(data=x*100,description="x*100")

This sets up the table dataset with an associated description
This creates our first column which has the data, x and its associated units, which in this case
is a time duration of SECONDS.
Here we have applied the SIN function from the numeric package, and we have also added
a description for the second column.

Notice that when you create the variable x and the TableDataset t, they appear in the "Variable"
window in the top right.

3. Next we wish to view the table we have created. Move your cursor over the item "t" in the Variables
window and right mouse click on it. Choose the OPEN WITH option in the drop-down menu and
select Dataset Viewer. At his point a view of the table will appear in the Editor window and you can

HowTo Inspect and Plot Dataset Tables in HIPE

114

scroll down and view the table, and expand it if necessary using the cursor and left-mouse clicking
at the boundries of the window to re-size it.

4. Now we wish to view the table in the TablePlotter task. Again right-mouse click on the item "t" in
the variable list and select OPEN WITH item "TablePlotter". This will bring-up the TablePlotter
GUI in its own window. A complete guide to the TablePlotter is found in the Herschel DP Basic
User's Manual. We list below a brief guide to TablePlotter.

10.3. Guide to TablePlotter Controls and their
functions

The TablePlotter provides the following control buttons to view and analyze data.

Figure 10.1. Example of the TablePlotterGui.

• X and Y- Axis Selection:

Under the graphics display area, two sets of Combo Box buttons and spinner buttons allow users to
select X and Y-axis data. The first column of the TableDataset is associated with X-axis by default.
The second column is initially associated with the Y-axis.

Users can choose a column by name in the Combo Box and by number in the spinner.

HowTo Inspect and Plot Dataset Tables in HIPE

115

Fast forward/backward selection of columns in the spinner can be achieved by holding the left
mouse button down and moving the mouse up or down to select.

• Display Style:

The control buttons in this section allow to change the axis style (linear or log), line style (solid or
dashed and more), and symbol style.

The default axis scaling is linear. The toggle buttons / and /
allow to switch between linear and logarithmic scales in the X / Y axes respectively.

The pull-down menus of Lines and Symbols allow to select line style and symbol style. The selection
of symbol styles is only available when the line styles are either MARKED, MARK_DASHED or

NONE. To increase or decrease the symbol size, click either or .

Another toggle button / determines whether all data points or only
the selected ones are shown (see detail in Selections below).

• Navigation:

Two buttons are provided to simultaneously zoom in and zoom out in both X and

Y directions. The buttons and zoom out individually in either X or Y direction .

Four buttons with arrows pan the view onto the graph in X
or Y direction.

The size of each zooming or panning step is controlled by a toggle button / and

the exact factors of both fast and slow modes can be adjusted in the menu (for
details see the Preferences section below).

To Zoom-in on specific areas of the graph, press the left mouse button, and hold-and-drag a rectangle
around the area of interest with the mouse pointer.

There are three Free Scaling buttons. The button will adjust the scales of both axes such

that all visible datapoints are optimally distributed within the display, while and
will do the same but for either X or Y axis alone.

• Selections:

HowTo Inspect and Plot Dataset Tables in HIPE

116

The selection feature of TablePlotter allows to hide or select a particular portion of the data points.

In combination with / in the Display Style section, and Multi
Column Mode, this feature can be used to display only selected data to get fast automatic scaling
when scanning through many columns of data. The main purpose, however, is the extraction of
specific data points into new datasets. A typical purpose could be for instance to remove electronic
glitches from detector data, or to extract a specific piece of signal from a sequence of instrument
configurations.

The following buttons , hide, un-hide or
exclusively select all data points within a rectangular area in the plot. This area is selected after
pushing one of those three buttons by holding and dragging the mouse pointer in the same way as
for zooming in.

Clicking the button will re-select all hidden data points.

If the toggle button is visible, the TablePlotter is in single column mode. In this
mode hiding or selecting operations will only apply to the current column. Clicking on this button

will toggle into all columns mode and the button will change to Now all the
columns are affected and selections are done based on the selected intervals on the X-axis only. The
Y-coordinate will be ignored in this mode.

In mode the hidden data points will be marked with red symbols. See Figure 10.2

below. Clicking on toggles to mode, where all hidden data points
disappear from the graph.

HowTo Inspect and Plot Dataset Tables in HIPE

117

Figure 10.2. The plot with selected and hidden data points.

• Dataset Extraction:

To extract a subset of the data after performing the necessary selection operations, press the

button. The selected data will be extracted into a new dataset that will be fed back
to DataInspector, where it will appear in the leftmost panel under "Datasets".

If is selected, only the selected data points in the currently displayed column will
be extracted.

If is selected, the selected data points in all the columns become available for

extraction. After clicking , a column selection window will pop up to allow users
to Add individual columns or Add All columns to a list. Users can also Remove individual columns
or Remove All. Up and Down buttons allow to change the order of columns in the new dataset.

Hitting the Close button will complete the extraction and an option is provided to change the default
name of the new dataset.

HowTo Inspect and Plot Dataset Tables in HIPE

118

• Preferences:

Finally the Table Plotter proivides a Preferences menu with two options. The first one is Set
properties... where preferred zooming and panning factors for Fast and Slow modes can be set.

Figure 10.3. Preferences: Set Properties

The second one controls the display of Complex Data. TablePlotter allows only one graph to be
displayed at a time. Here the user has three choices: plot modulus only, plot real part only, or plot
imaginary part only.

The selected preferences are stored in a properties file and will be "remembered" in the next call
to Table Plotter.

119

Chapter 11. HowTo Display Spectra

11.1. Introduction
HIFI spectra can be visualised in several ways, at various levels of sophistication and user-friendliness.
At the lowest level, individual X and Y axis values can be extracted and units applied and the basic
plotting facilities of the PlotXY package can be used (see "HowTo Plot" and the "HIFI DP User's
Manual" for more details). However, a simpler way for most users of HIPE is to use the "Spectrum
Explorer" package.

11.2. Obtaining a Spectrum from an
ObservationContext

Most users will obtain spectra from downloading observations from the Herschel Science Archive
(HSA). The main product form of an observation is referred to as an ObservationContext. An
ObservationContext contains all the components of an observation, including all calibrations
needed for repeating pipeline processing data. The full observation download from the HSA includes
all levels of processed data from level 0 (raw data) to level 2 (final pipelined product).

An observation context can contain many spectral products (e.g., from all 4 spectrometers of HIFI)
at each of the different levels of processing.

We can consider a HIFI ObservationContext called "prod" which has been downloaded from
the HSA. A double-click on the variable name "prod" in the "Variables" view of HIPE provides an
outline view of its contents in the "Outline" view (see Figure 11.1). This shows the containers of
spectra at the different processed levels (also quality and calibration information associated with the
observation). If we now open the level 2 folder and click on the product (highlighted in Figure 11.1),
we get a view in a new "Editor" window like the one shown in Figure 11.2) -- after expanding out
the folder labeled 1030.

At present, the HIFI spectrometers are identified by the values 1028 = HRS H polarization, 1029 =
HRS V polarization, 1030 = WBS H polarization and 1031 = WBS V polarization. In this case the
1030 folder under level 2 is the final, processed data product from Standard Processing at the Herschel
Science Centre of WBS H polarization data. The folder labeled "1" contains the first (and in this case
only) final product. A double-click on product(load) -- highlighted in Figure 11.2) -- provides access
to a listing of the metadata and the final dataset (scroll to bottom of "Editor" window) which is marked
with a green dot beside it.

We can display this final spectrum via a viewer called Spectrum Explorer. As with all viewers in
HIPE -- click with right mouse button on the dataset word, choose "Open With..." from the menu that
appears and then click on the words "Spectrum Explorer". This will display a new "Editor" window
with a blank spectrum display (initially). To fill in the spectrum the user needs to click on the four
boxes (label above shows 1, 2, 3 and 4) to the left under the plot or simply clicking on the box under
"ALL". This fills in the 4 sub-bands of 1GHz wide CCDs that make up the full backend spectrum from
a WBS spectrometer (see Figure 11.3). An appropriate legend is automatically created.

HowTo Display Spectra

120

Figure 11.1. Accessing the level 2 (final) processed product from an observation.

Figure 11.2. Editor view showing access to the final WBS H polarization spectrum from within the full
observation tree.

HowTo Display Spectra

121

Figure 11.3. Display of a test data (no source) produced by the HIFI pipeline using the
SpectrumExplorer.

An example of a SPIRE spectrum is provided in Figure 11.6. Here we can input (say) a FITS file
using the "simpleFitsReader" available in the Tasks view (see Figure 11.4). It is also possible to input
a FITS file by simply double-clicking on it in the directory display of the Navigator view of HIPE.
The variable created ("product1" in this case) can be seen in the Variables menu. Click on this and the
Outline is shown and it can also be opened by double-clicking. This provides access to the metadata
and datasets (see Figure 11.5). Click on the spectrum dataset (with the green dot next to it) and the
SpectrumExplorer is started with a display of the spectrum (click the "1" symbol to bottom left). This
will then show a spectrum similar to that shown in Figure 11.6.

Figure 11.4. Using the simpleFitsReader task for reading in a FITS file with a SPIRE spectrum.

HowTo Display Spectra

122

Figure 11.5. Display of the metadata and datasets in the FITS file when the variable is double-clicked.

Figure 11.6. Display of the SPIRE spectrum using the SpectrumExplorer.

11.3. The SpectrumExplorer Package
The SpectrumExplorer package is based on the PlotXY package, but allows the user to visualize
SpectrumDatasets in a friendlier, interactive way.

In the example from the previous section, the different colors indicate different WBS sub-bands.
Individual sub-bands or individual scans can be plotted by clicking on the appropriate boxes in the
bottom panel and removed by double-clicking. Any plot parameter (plot range, titles, colors etc.) can
be modified using the right mouse bottom in the same way as for the PlotXY package (see "HowTo
Plot Data"). For example, a right-click on the plotted spectrum allows changes in the axes and plot
properties (e.g., labels fonts etc.). It is also possible to save and print the plot from the right-click menu.

In addition the plot can be modified interactively after clicking the appropriate action button which
Spectrum Explorer places in the top left of the HIPE display (see top left of Figure 11.3).
Hovering the mouse over the icons allows provides the user with a tooltip for what the icon allows
you to do. From left to right:

• button 1: highlight/select a spectrum (or WBS sub-band) by moving the mouse over it and click the
right mouse button to change its color, description, or remove it.

• button 2: change the horizontal and vertical plot ranges by drawing a rectangular box using the left
mouse button. Also, one can scroll the spectrum along the horizontal and vertical axes by clicking

HowTo Display Spectra

123

on an axis with the left mouse button and then moving the mouse or using the mouse wheel. The
mouse wheel can also be used to (un)zoom the spectrum.

• button 3: pan through the spectrum by clicking the left mouse button and moving the mouse.

• button 4: click on a spectrum (or WBS sub-band) and drag it to right or down to another or a new
panel which is automatically generated on release (however, dragging to the left or top of the first
panel is not possible).

• button 5: click on this button to auto-range the displayed spectra (after zoom).

• button 6: only show the active plot panel, and change the axis ratio in order to fit the screen.

This allows images such as the Figure 11.7 to be constructed from the displayed data.

Figure 11.7. Two sub-bands extracted interactively (button 4) using SpectrumExplorer shown with the
full resolution of the screen (button 6).

11.4. Future developments
Finally, the SpectrumExplorer package is still under development. Future developments include:

1. clicking on product will plot all SpectrumDatasets included (likely a HIPE functionality, not JIDE)

2. apply a filter to the meta data and only plot the applicable spectra (e.g. a certain chopper position)

3. applying functions to greyed-out/flagged spectral regions

4. saving modified SpectrumDatasets back into the session, e.g. with interactively masked
points removed.

HowTo Display Spectra

124

5. overplotting multiple SpectrumDatasets.

125

Chapter 12. Spectral Arithmetic and
Mathematical Operations

12.1. Introduction
The spectrum arithmetic toolbox allows us to combine Herschel spectrum data. Operations
are performed either on subclasses of spectrum datasets (Spectrum1d, Spectrum2d), on
cubes (SimpleCube, SlicedCube), or on products containing such data structures (e.g.,
HifiTimelineProduct).

Operations on Spectra include Selection and Arithmetic Operations.

This chapter explains how to work with spectra so that basic spectral arithmetic can be done on a 1D
spectrum dataset. It also indicates how to handle datasets composed of multiple 1D spectra. When
working with these larger sets of 1D spectra it is also possible to select spectra based on information
held in the data or metadata of the individual spectra before applying the arithmetic transformations.

12.2. Starting point -- using a dataset of a
number of HIFI spectra.

It is assumed that an observation product containing spectral data is available and active within
your HIPE session. For this HowTo, we will have an active variable called "prod" which is a HIFI
observation downloaded from the HSA (see HowTo Access Data). This contains several levels of data
processing. We will be dealing with level1 data -- double-click on the highlighted "product(load)" in
Figure 12.1. The results appear in a new Editor window and include some metadata on the product
plus (scrolling down) a set of associated products (see Figure 12.2). Clicking on the highlighted
"summary" will provide a list of what datasets are contained for apid=1030 (the WBS spectrometer
H polarization). In the particular case (a Double Beam Switch observation) we are using we see that
there a comb (frequency calibration measurement), a hot-cold internal calibrator measurement (hc), a
tuning measurement (other) and two science measurements datasets for ON and OFF target (datasets
4 and 5). We will pick out dataset 4 for our purposes (double-click highlighted "product(load)" gives
Figure 12.3). This produces a list of metadata for the selected product and a dataset (with green dot
beside it) at the bottom of another Editor window. Drag-and-drop the dataset to the "Variables" view
and this dataset is automatically given a name in the session -- typically "newVariable."

Spectral Arithmetic and Mathematical Operations

126

Figure 12.1. Selecting Level 1 data from a downloaded archive observation done by HIFI.

Figure 12.2. Display of product set.

Spectral Arithmetic and Mathematical Operations

127

Figure 12.3. Choosing the product with the dataset we want.

A double-click on newVariable in the "Variables" view will open the dataset using the
SpectrumExplorer (see HowTo on Spectral Display for information on how to manipulate the
visualization). In the example dataset used here there are 18 spectra.

12.3. Using HIPE to Access the Spectrum
Arithmetic Tasks

In HIPE the "Tasks" view gets filled with the currently available tools. Tasks that are available for use
on datasets of spectra will appear under the "Applicable Tasks" folder that appears in the Tasks view.
Available tasks include add/subtract/multiply/divide/average which can be seen in the Applicable
Tasks folder after highlighting "newVariable" (see Figure 12.4).

Spectral Arithmetic and Mathematical Operations

128

Figure 12.4. Display of tasks available for our dataset of spectra.

In this section we discuss each of the available arithmetic tasks in turn.

Spectral Arithmetic and Mathematical Operations

129

Figure 12.7. Using the smooth task

Spectral Arithmetic and Mathematical Operations

130

Figure 12.8. Using the avg task

Spectral Arithmetic and Mathematical Operations

131

Figure 12.9. Using the extract task

Spectral Arithmetic and Mathematical Operations

132

Figure 12.10. Using the resample task

Spectral Arithmetic and Mathematical Operations

133

Figure 12.11. Using the replace task

• select: Provides a means of selecting those spectra that can be combined. A given attribute value
or range of values can be used or simply the index number of the spectrum within the group (see
Figure 12.5).

Figure 12.5. Using the select task

Spectral Arithmetic and Mathematical Operations

134

• add/subtract/multiply/divide: Provide means of adding/subtracting/multiplying/dividing groups of
spectra or single spectra together (pair-wise), or adding/subtracting/multiplying/dividing a scalar
value to/from all spectra in the selected dataset. Numbered segments, e.g., subbands, can be selected
for addition if available within the dataset (see Figure 12.6 for adding the scalar value 200.0 to all
spectra in our dataset)

Figure 12.6. Using the add task

• statistics This allows for statistical operations to be performed on the datasets (it automatically
works on individual sub-bands presently). It provide as mean, median, variance, standard deviation
or percentiles for samples / selections of spectra from a dataset that can contain many datasets
(spectra) when the "Accept" button is clicked. The result is an output that contains a number of
datasets holding statistical information on the datasets. The main output is the "summary" table
that is typically the last dataset listed of the set (double-clisk on output variable, e.g., "stats", in the
Variables view. Use an appropriate viewer (Dataset viewer or Tableplotter to see the results).

• smoothThis allows a transformation of the data via a box or gaussian (of user-selected width) smooth
of the spectra in a dataset. Flags and weights for the different spectral points can be added in the
future. To run this tool, click on the dataset, e.g., "newVariable", in the "Variables" view to highlight.
The Applicable Tasks in the "Tasks" view include smooth. Double-click on this to get the self-
explanatory dialog shown in Figure 12.7. The task runs by hitting the "Accept" button.

• avgThis allows the average of a selection of spectra from a dataset. Flags and weights for individual
channels/pixels can be used if available. Spectra can be selected by their index number in the dataset
or by attributes (such as buffer number -- a pull-down selection list is available.). To run this tool,
click on the dataset, e.g., "newVariable", in the "Variables" view to highlight. The Applicable Tasks
in the "Tasks" view include avg. Double-click on this to get the self-explanatory dialog shown in
Figure 12.8. The task runs by hitting the "Accept" button.

• extractThis allows the extraction of a data from a minimum to a maximum frequency/wavelength
range for the complete set of spectra in a dataset. Flags and weights for individual channels/pixels

Spectral Arithmetic and Mathematical Operations

135

can be used if available. Spectra can also be selected by their index number in the dataset or by
attributes (such as buffer number -- a pull-down selection list is available.). To run this tool, click
on the dataset, e.g., "newVariable", in the "Variables" view to highlight. The Applicable Tasks in
the "Tasks" view include extract. Double-click on this to get the self-explanatory dialog shown
in Figure 12.9, where the channels with frequencies 4000 to 5500 MHz have been selected. The
task runs by hitting the "Accept" button.

• resampleThis allows the resampling of data using a Trapezoidal or Euler box, with a choice of
variable or fixed width. Flags and weights for individual channels/pixels can be used if available.
Spectra can also be selected by their index number in the dataset or by attributes (such as buffer
number -- a pull-down selection list is available.). To run this tool, click on the dataset, e.g.,
"newVariable", in the "Variables" view to highlight. The Applicable Tasks in the "Tasks" view
include resample. Double-click on this to get the self-explanatory dialog shown in Figure 12.10.
The task runs by hitting the "Accept" button.

• replaceThis allows the replacement of certain frequency/wavelength channels. To run this tool,
click on the dataset, e.g., "newVariable", in the "Variables" view to highlight. The Applicable Tasks
in the "Tasks" view include replace. Double-click on this to get the dialog shown in Figure 12.11.
The task runs by hitting the "Accept" button.

It is planned that the arithmetic toolbox will provide generic functionality for all instruments (HIFI,
PACS and SPIRE). Instrument-specific behavior will be pre-configured by defaults in the system but
will be able to be overwritten by the user.

Full command-line versions of the spectral arithmetic tools is also available and is described in the
"DP Basic User's Manual."

136

Chapter 13. The
CubeSpectrumAnalysisToolbox
13.1. Introduction

The CubeSpectrumAnalysisToolbox ("cubetool" for short) is a tool that allows you to visualise your
spectral cubes within the HIPE environment: inspect them spatially and spectrally and perform some
simple spectral analyses. This document explains how the cubetool is organized, how to use the GUI,
and what command line versions of the various tools are available (commands you can then incorporate
in a script, for example). It explains what kind of data it can ingest and what kind of format it use
for the results.

This document does not explain how to use HIPE, the Herschel data format, jython syntax or anything
else. For these subjects you need to read other documentation available from HIPE -> Help ->
Contents. To perform complex spectral analysis within HIPE you should to use the various spectrum
fitter tools available in HIPE and to work on your cube as individual image slices, you can use the
image analysis toolbox available from the HIPE Tasks panel.

13.2. Launching the
CubeSpectrumAnalysisToolbox GUI

The cubetool is basically a graphical user interface (GUI) which allows you to run various functions
(a.k.a. "tasks") of a separate toolbox that has been written to work on spectral cubes. Each of the
functions can also be run straight from the HIPE command line, but the GUI offers a more user-
friendly interface.

The cubetool is available in the package herschel.ia.gui.cube and the individual tasks are located in
the package herschel.ia.toolbox.cube. (These are all available to you, the HIPE user, by default, but
you are unlikely to need to access them in these locations.) The cubetool is designed to be used with
data of type SimpleCube - you can find out what type your cube is either by hovering over it in the
Variables panel, or with the command:

print mycube.class

First you need to get your cube in to HIPE. You can load a FITS format cube from disk with the
command

fits=FitsArchive()
mycube=fits.load("/mypath/mycube.fits")

Or you can simply locate the fits image in your directory structure in the Navigator panel of the
Full Work Bench perspective of HIPE, and double-click to load. For data that comes from another
observatory it is possible you will need to run a conversion of the FITS to a FITS that HIPE can ingest.
A sample bit of script to do that which may later change is:

from herschel.ia.io.fits import FitsArchive
fits = FitsArchive(reader = FitsArchive.STANDARD_READER)
#select the fits file on the disk
myfitsfile = fits.load("/mypath/myfile.fits")
extract the image from the cube
PrimImage = myfitsfile["PrimaryImage"]
dd = Double3d(PrimImage.data)
Sicube=SimpleCube()
Sicube.setImage(dd)

putting the wcs in the metadata
mywcs=Sicube.getWcs()

The CubeSpectrumAnalysisToolbox

137

for i in myfitsfile.meta.keySet():
 print "meta = "+i
 mywcs.setParameter(i,myfitsfile.meta[i].getValue() ,"automatically copied")

Sicube is now a good simplecube which can be saved or manipulated
checking the WCS is ok
print mywcs.isValid() # if return = 1 then the WCS is valid, if not
 # it must be manually corrected
print mywcs # display the content of the WCS : to decide if need to
 # to correct/modify it
an example of manual modification (in case such is necessary)
mywcs.setCunit1("Arcsec")
mywcs.setCunit2("Arcsec")
mywcs.setCtype1("RA---TAN") # must be 8 characters
mywcs.setCtype2("DEC--TAN") # must be 8 characters
mywcs.cunit3 ="angstrom"

At the end of their pipelines HIFI and SPIRE cubes are in SimpleCube format, for PACS the cube
coming out of the task "specProject" is also in SimpleCube format, and these can immediately be
ingested in the GUI.

The cubetool is launched by right clicking on a SimpleCube product in the Variables panel, where the
cubetool (along with other) is offered as a viewing option (CubeAnalysisToolbox). Alternatively you
can launch it from the command-line:

mycuberesults = CubeSpectrumAnalysisToolbox(mycube)

With the command-line method, anything you create via the cubetool will be put in mycuberesults,
from where it can be accessed later (as we will show).

13.3. Using the GUI
When you launch the cubetool you will see a window looking similar to this:

Figure 13.1. The first view you will have of the cubetool GUI

The CubeSpectrumAnalysisToolbox

138

And the first thing you will want to do is zoom-to-fit-window on the cube image, and resize the whole
GUI so all the information boxes will fit the information in them.

Note that the cubetool is still under construction, so some of the menu item etc. names will different
from what written or shown here.

Note

If your spectrum displays with odd ranges, it is possible that a previous adjusting to plot
properties (e.g. of PlotXY) that you did is still in effect. Try selecting the spectrum plot's
Properties and select Autorange#First Layer#Both Axes.

13.3.1. Design

All the features of the cubetool are integrated in an unique GUI which is split in 2 parts:

• On the left side (the "image side") the imported cube is displayed as a large image. The spectral
slice of the image is adjustable with a slide bar to the lower right of the cubetool. Above the image
are shown:

• A real-time display of the spectrum in the spaxel (spatial pixel) that is under the mouse in the
image, with a red vertical line corresponding to the layer (spectral cut) currently selected.

• A zoom and navigate section for the image: the upper allows one to adjust the view of the total
cube plane that is shown in the large image; the lower is a zoom of the spaxels around the mouse.

• On the right side (the "working side") are found, located in tabs, the results of various selections
you will have done on the cube (this is explained later).

• At the bottom of the GUI is a bloc display with

• Zoom / pan / adaptative zoom buttons which work on the image.

• Pixel coordinate, intensity value, and sky coordinate (if present in the cube) of the spaxel under
the mouse on the image.

• An adjustable colour bar, and a slide bar allowing one to navigate along the spectral dimension
of the cube. The units of the slide bar are not spectral, rather indicate the position in the spectral
dimension (the array position) where you are located. Spectral units are shown on the plots,
however.

13.3.2. File menu

Allows only for closing tabs or exiting the GUI.

13.3.3. Spectrum menu

The Spectrum menu allows one to: select out parts of the cube on the image side - single spaxels,
a spaxel region - and send the result to the working side where various manipulations are possible;
to extract out a spectral region and save the cube for just that spectral range; to create a postition-
velocity diagram.

The CubeSpectrumAnalysisToolbox

139

Figure 13.2. The Spectrum menu

13.3.3.1. Single Spaxel Display

Selecting the first Spectrum menu item Single Spaxel Display brings up a small blue square
on the cube image, which appears when you move the mouse on to the image. A real-time display of
the spectrum is now shown in a tab on the working side of the GUI. Clicking on a spaxel will freeze
its spectrum on the plot on the tab. To so select out a new spaxel, you need to select the menu item
again and the new spectrum overwrites the old one on its tab.

The plot in the tab can be manipulated in the usual way that plots can be in HIPE (e.g. PlotXY plots),
but in the tab itself we find additional functionalities:

• Smoothing: selecting this you can perform a Gaussian smoothing or a boxcar filter, for both of
which you can chose the width of the filter, in units of channels (i.e. not spectral units but rather the
number in the spectral axes array positions). A red smoothed spectrum is now superimposed on the
blue original in the plot (currently to see this on the frozen spectrum you need to select smoothing
before you select the spaxel to freeze, or you need to go back to the image and select a spaxel again)

• Print spectrum; Save spectrum (in a multi-extension FITS file)

• Export to Cassis: this is a spectral fitting program (http://pc-126.cesr.fr/)

• Save script: will save a python script containing the sequence of commands you have executed
(buttons you have pressed) within this tab, including selecting the spaxel in the first place

Note that the GUI is still under construction: at present you can chose to zoom on the plot on the
working side but if you go back to the image side to "select a new spaxel to display", you lose the zoom.
In addition (and under review), for the tab that this menu item creates (with title "Raw Spectrum"), if
after having created a few more tabs you click on this one to look at it again, you have immediately
activated the "select spaxel" and you need to click-select on the image (the little blue box will appear)
to activate the tab again and unfreeze the others.

The CubeSpectrumAnalysisToolbox

140

13.3.3.2. Multiple Contigous Spaxel Display

The second menu item allows you to select a region of spaxels, the average spectrum from which will
be sent to a new tab. Again, to repeat this on a new region you have to select the menu item again,
and this overwrites what was in that tab before.

When you select the menu item the tab opens and the first thing you will do is chose to select either
the whole spaxel plane or a subregion -- choose a circle or a rectangle -- using the radio buttons on the
upper part of the tab (Whole image / Region of interest). To select a region's location and size mouse
selections on the cube image are necessary, the region will be shown in a thin green outline. Once
created (click within and the green outline gains some blue features) you can move it about and resize
it. To actually see the averaged spectrum of the region you need to click the Show Spectrum button.
You can adjust the properties of this plot in the same way as with most plots in HIPE. If you move the
region on the image, you need to click Show Spectrum again to see the new spectrum.

Also possible within this tab are:

• The same Save Script, Print, and Send to Cassis buttons as found on the single spectrum tab

• An information bar

• A Save Data button which saves the spectrum of the frozen spaxel in a multi-extension FITS file

• The same smoothing options as offered with the single spaxel section

If you select a circular region, note that a within this a complete pixel has a weight 1 and partial pixels
weights proportional to their included area.

13.3.3.3. Spectral Range Selection

This options allows you to select a particular spectral range and then save the cube over this spectral
range only. This menu option is still under construction!

Select it and a new tab will open on the working side of the GUI. The wavelength limits shown in the
plot of this tab are indicated above the plot are of the current cube, i.e. the original cube on first start-
up and then updated each time you select to "Extract Limited Cube". Zoom in on the spectral range
you are interested in with a mouse box selection on the plot (not by typing numbers in the boxes). You
can then save the cube ("Extract Limited Cube"), with only this spectral range, as a FITS file (with a
default name "extractedCube_"+date+hour+".fits").

There is also a "Switch the Cube" button, however it is currently not fully functional and should not
be used.

13.3.3.4. Position-Velocity Diagrams

The final Spectrum menu item offered is to create from your cube Position-Velocity (PV) diagrams.
Selecting this will open a new tab on the working side. You can chose between two modes (indicated
with radio buttons): Axis, which works by allowing you to select a slit along which the PV diagram is
computed; and Map, which makes a 2D map with intensities being the velocity values (currently this
does not work if you started up the cubetool from the HIPE Variables panel rather than the command
line). This menu option is still under construction!

For both modes you need to select, using the slide bar at the bottom of the working side, to which
layer in the spectral dimension you wish the PV diagram to be computed (e.g. which wavelength is 0
velocity). You will notice that as you move this slide bar the red line on the plot on the image side of
the GUI moves - in this way you can "translate" reference layer units into spectral units. As you move
this slide bar the numbers in white boxes next to the Map radio button will change, but you cannot
change the numbers by typing directly in the boxes.

For the Axis mode you must also set the slit the PV diagram should be made along with mouse click-
pull-click on the large cube image on the image side, to produce a green line. You can next set the
slit width by typing an integer into the box provided next to the Axis radio button. What the task

The CubeSpectrumAnalysisToolbox

141

actually does is create an averaged spectrum for the spaxels along the slit you set: for a slit width of
1 the spaxels selected are those that the green line you set actually goes through; for a width of 2, and
additional 1/2 of the spaxels either side are selected, this meaning that the spectra from these spaxels
are selected but the intensities are weighted by 0.5; etc. for widths of 3 and greater. It is then from this
averaged spectrum that the PV diagram is created. Hence, a wider slit will increase the signal-to-noise
ratio of the spectrum the PV diagram is constructed from.

The velocities are computed using the usual v=c.delta(wavelength)/wavelength and are given in m/s.

For both modes you can now actually compute the PV diagram by clicking the "Compute Velocity
Map" button. This will produce an image such as show below. For Axis mode the horizontal axis is
offset from the left side of the slit you drew (or offset from the top if the slit is directly up-down) and
the vertical axis is velocity on the left and colour scale on the right. For Map mode the two axes are
the spatial axes of the cube (in WCS units) and colour indicates velocity, with a colour bar on the right
showing the scale, which runs from maximum to minimum velocity.

Note

If the PV diagram you see looks to be too "small" it is possible you are on a super-zoom;
try panning out or zooming-to-fit using the magnifying-lens tabs below the PV diagram.
If it is too dark, edit the cut levels (right-click on the PV diagram itself).

Note that currently one can only zoom on box axes at the same time; later we will allow for a zoom
on the axes independently. Also note that the PV diagram is constructed from the whole cube that is
currently show on the image side, i.e. over the whole spectral range you have. Therefore, it is likely
you have a lot of velocties that are very large numbers! We are redesigning the GUI to allow you to
select a smaller spectral region from which to make a PV diagram, but currently if you want to do
this, you need to first create a new cube from a small spectral region (the Spectral Range Extraction
menu item) and rerun the GUI on that cube.

Figure 13.3. Position-velocity diagrams

Once you have created the PV diagram, you may wish to ajust the properties of the diagram. You do
this in the familiar way, that is right-click on the diagraAm where you are offered options: edit cut
levels, edit colours, zoom, annotate, create screenshot (jpg), print, flip Y-axis.

The CubeSpectrumAnalysisToolbox

142

As with all other tabs on the working side, you can Save Data in FITS format or Save Script containing
the sequence of commands that produce the PV diagram showing on the tab as you click to Save Script.

13.4. Running the tasks outside of the
cubetool GUI

It is possible to run the tasks that the GUI call upon outside of the GUI, and here we will tell you how.
It is also possible to access the products that the cubetool creates, e.g. when you select the spectrum
from a single spaxel, in HIPE, that is also outside of the cubetool GUI.

13.4.1. Accessing the individual products
As you perform activities in the cubetool (e.g. select out spectral or spatial regions) the results are
held in tabs on the working side; but they are also held in new products that you can access from the
HIPE command line or GUI.

• As you do things with the cubetool new products are created and are listed in the HIPE Variables
panel, with names similar to "singlepixspectrum". (And then singlepixspectrum1 for the next
selection, then 2 ...). These should appear no matter how you started the cubetool, although it is
possible that with the still-under-construction version this will not work if you started via right-
click on your cube in the HIPE Variables panel.

• In addition, your creations are (supposed to be) stored in one of two separate products, also listed
in the HIPE Variables panel, that were created when you started up the cubetool. If you started
with click-selection then the product is currently called "cat", if you started from the command-line
(using the syntax of Sec. 2) then it is called "mycuberesults". However, currently "cat" containings
nothing useful and should be ignored.

The advantage of this is that you can access your cubetool creations outside of its GUI. As with
anything listed in the Variables panel in HIPE (and which we assume you are familiar with), you can
inspect these new products by right-clicking and chosing one of the viewers offered. We recommend
these for inspecting these data visually, rather than e.g. trying PlotXY from the command line, the
reason being that the syntax that tasks such as PlotXY will use on the cubetool products is still under
consideration and will change with time.

You can also access these from the command line with the syntax:

singlespectrum = mycuberesults.getSinglePixelSpectrum()

Here you are extracting into "singlespectrum" the result of the last single spaxel spectral selection that
you did in the cubeool. The data type of "singlespectrum" is Spectrum1d. For each of the cubetool
products the python syntax for the "get" differs, this is explained in the table below: on the left is the
"get" part of the command (the one after "mycuberesults."), the middle is the data type this product
will be, the right is the cubetool command that created the product.

Table 13.1. Syntax for extracting cubetool-products from the command line

getSinglePixelSpectrum Spectrum1d single spaxel spectrum display

getAvgspectrum Spectrum1d region spectrum display

getRangeExtractedCube SimpleCube range extraction

getVelocityAxisImage SimpleImage position-velocity diagram

getVelocityMapCube SimpleCube position-velocity diagram

13.4.2. Details for specific tasks
This section is for those who may wish to incorporate the cube spectral analysis toolbox in their own
scripts or call up individual tasks that the GUI otherwise runs for you. Here we show you the calling

The CubeSpectrumAnalysisToolbox

143

syntax and I/O structure. Note that in almost all cases the units of the spectral dimentions are not
"wavelength" or "velocity but layer/channel (i.e. array location).

13.4.2.1. Single spaxel selection

To extract the spectrum from spaxel (4,5) use:

myspectrum=extractSinglePixelSpectrum(simplecube=mycube,posX=4,posY=5)
or
myspectrum=extractSinglePixelSpectrum(simplecube=mycube,posX=4,posY=5).spectrum

where

• mycube is in SimpleCube format

• PosX,Y are the X,Y coordinates of the spaxel

and the first command creates output in Spectrum1d format, with metadata (taken from the input cube)
and the second creates a spectrum of Double1d without metadata. The spectrum has columns of flux,
weight, flag, segment (segment for now is just a placeholder, its value everywhere here is 1) and
wavelength, this latter being in the same unit that your SimpleCube had.

Note that if you typed the first command and then realised you wanted in fact the second output format,
then a way to do this faster than running the second command is to rather type now

myspectrum1=extractSinglePixelSpectrum.spectrum

because as long as you have not run "extractSinglePixelSpectrum" since running it the first time, this
method does not re-run the task on your cube but simply extracts out the result in a different format.

13.4.2.2. Multiple contiguous spaxel selection

To extract the average spectrum from the whole cube use (and see the instructions regarding creating
Specrum1d from the initial Double1d just above):

output as a Double1d containing the flux
myspectrum2d=extractRegionPixelSpectrum(simplecube=mycube,wholeImg=True)
for Spectrum1D format for the output type then after that
myspectrum1d=extractRegionPixelSpectrum.finalspectrum
or just type
myspectrum1d=extractRegionPixelSpectrum(simplecube=mycube,wholeImg=True).finalspectrum

To extract an average spectrum from a region you need to make a Double2d array with columns of
[X,Y,weight], to indicate which spaxels to select, and starting with entry [0,0,0]. Weight will determine
by what fraction the spectrum from each X,Y will be multiplied in the average, i.e. can be considered
to be an area-weight. Assuming that this array has the name "toto":

output as Double1d
myspectrum=extractRegionPixelSpectrum(simplecube=mycube,wholeImg=False,posArray=toto)
or Spectrum1d, type just after that
myspectrum=extractRegionPixelSpectrum.finalspectrum
or only type
myspectrum=extractRegionPixelSpectrum(simplecube=mycube,wholeImg=False,posArray=toto).finalspectrum
and you can also see the effective area in spaxels you have extracted
totalWeight=extractRegionPixelSpectrum.totalWeight

13.4.2.3. Smoothing filters

This is a long sequence of commands, so we list here the commands and some explanation:

filt=FilterSpectrumTask()
filt.rawSpectrum = myspectrum
filt.spectralDimension = ”Physical meaning of the spectral axis”

The CubeSpectrumAnalysisToolbox

144

is a string
filt.spectralUnit = ”unit”
filt.sizeOfSpectrum = sizeOfSpectrum
sizeOfSpectrum is just an integer that is the length of the spectrum
filt.specIndex = specIndex
specIndex is a Double1d, previously created, containing the spectral
values for the flux
filt.modelFilter = "GAUSSIAN"
model to use
filt.widthFilter = 10
width of the filter in units of array/channel, not spectral units
filt.execute()

and then
FilteredSpectrum = filt.filteredSpectrum
is the Double1d array containing the filtered flux
MaxValueFitSpectr = filt.maxValue
is a double
PosMaxFitSpectr = filt.maxPosition
is an integer

The input is a Double1d, here called "myspectrum", i.e. something you created before. For example, if
you extracted it using the single/region extraction commands given above and put it in :finalspectrum",
you then just need to type

mspectrum=finalspectrum.getFlux()

13.4.2.4. Spectral range selection

Is currently rathe awkward to run in HIPE, but if you really want to here is a developer-oriented
example scritp

rangeextraction=RangeExtractionTask()
rangeextraction.simplecube=mycube
rangeextraction.startIndex=200
rangeextraction.endIndex=600
rangeextraction.perform()
access the results
res1=rangeextraction.rangeCube
errcode=rangeextraction.error
logmssg=rangeextraction.log

13.4.2.5. PV Diagram

To run on the command line for Axis mode (Map mode will be documented at a later date) you need
to make a list of the spaxels to be read into the task, with columns [index, X, Y, weight]. Index is the
offset along the slit from the beginning, and if the X and Y are in order this will simply be 0,1,2,3.....
For slit widths >1 all the spaxels of one "column" have the same index. For example, your "list" can
be: [0;4;0;0.5] on the first line, [0;5;0;1] on the second, [0;6;0;0.5] on the third..... Then you run the
commands

for output of type Double3d
velocityMap =
 positionVelocityDiagram(simplecube=mycube,axis=True,coordSlitArray=list,
 widthSlit=1,nbpixelsAxis=15,referenceLayer=200)
for output of type SimpleCube you then type
cubevelocitymap=positionVelocityDiagram.cubeVelocityMap
and to access other parts of the creation
velocityMapAxis = positionVelocityDiagram.velocityMapAxis # Double2d
velocityMapAxisProd = positionVelocityDiagram.velocityMapAxisProd # simpleImage

"nbpixelsAxis" is the length of the slit (for map mode it should be ignored), not the total number of
spaxels to be read. "referenceLayer" is the reference layer along the spectral axis (note, not in spectral
units) that sets 0 velocity.

145

Chapter 14. HowTo Fit Spectral
Features

Spectral features (baseline, lines and noise) are fitted using the spectrum fitting toolbox in the HCSS.

The data that is used by toolbox can be any Java or Jython object, as long as it implements
the SpectralSegment interface (e.g., extracted from a Spectrum1d object). An example of a
SpectralSegment could be the spectrum from one subband of the HIFI WBS spectrometer.

14.1. How to fit spectra in HIPE
1. Select the spectrum to fit from the variable list and then double click on the task fitSpectrum

(Figure 14.1).

Figure 14.1. Starting fitSpectrum. Select "fitSpectrum" from the task list. This can most easily be found
in the "Applicable Tasks" folder.

2. Apply a model to the spectrum via the GUI that pops up.

All 1D models that are in ia.numeric.toolbox.fit can be selected from the drop-down box 'Use
model'. The default is a Gaussian ("gauss") model, for which the 'Height of peak', 'X-Position of
peak', and 'Width (sigma)' must be defined. The height and width have the value '1' already filled
in, supply a value for the position and click RUN (Figure 14.2).

HowTo Fit Spectral Features

146

Figure 14.2. The Gaussian fit GUI. Supply the Gauss fit parameters.

A Lorentzian ("lorentz") model can be fitted in a similar way. If you select a polynomial ("poly")
fit, then only the order of the polynomial needs be defined. The 'fix' tickboxes can be used to fix
the value of the parameters (Figure 14.3).

Figure 14.3. The polynomial fit GUI. Supply the order of the polynomial fit.

HowTo Fit Spectral Features

147

If any other model is selected, the GUI will look like Figure 14.4 . If the model requires constructor
parameters (see the "DP Basic User's Manual" for details of all available models' parameters),
the 'Constr Parms' field must be filled with a comma-separated list, for example, the "power"
model needs a degree. If no constructor parameters are needed, as for the "sinc" model, leave the
field empty. In the 'Parameters' field the fit parameters must be filled in with a comma-separated
list - be sure to give the correct amount of parameters (see the JavaDoc). In the 'Fixed' field the
parameters that must be fixed can be listed in (guess what) a comma-separated list. If the first and
third parameter must be fixed, fill in: 0,2.

Figure 14.4. Other fit models. Supply all the model fit parameters.

3. A fit can be applied over a specified range.

Click on 'Add Window' to define the fit X-range (between 'from' and 'to'). Up to five ranges can be
defined by clicking on 'Add Window' again (Figure 14.5).

Figure 14.5. fitSpectrum can be applied over a specified range. Set the fit X-range

4. The result of a fit is a "fitResult" variable. Double clicking this variable opens a view window with
the data and fitted model (top) and the residual (bottom). A table of the fitted parameters and their
standard deviations can be seen by then clicking on the "ShowFitResult" task (Figure 14.6). If the
fitResult contains several models, the parameters for all models are listed here.

HowTo Fit Spectral Features

148

Figure 14.6. Tasks available after "fitSpectrum". Click on "ShowFitResult" to see fitted parameters
and their standard deviations.

5. Another model can be applied to the result of a fit. So you can, for example, fit the baseline and
then fit a spectral feature.

Click on a 'fitResult' and then again on the 'fitSpectrum' task and follow the proceedure given above.
This results in another fitResult variable to which you can apply another fit model, and so on.

6. Once satisfactory models for all spectral features have been found, all the models can be applied
to the original data.

Click on your final fitResult variable and then click again on the fitSpectrum task. The GUI contains
a checkbox 'global fit' (Figure 14.7), check this and click on 'RUN'. No new model can be added
at this stage.

Figure 14.7. Global fit. Check global fit to apply all models to original data.

14.2. How to fit spectra from the command
line

1. Download the toolbox into the session, note that in JIDE it is called SpectrumFitter rather than
fitSpectrum!

from herschel.ia.toolbox.spectrum.fit import SpectrumFitter
from herschel.ia.toolbox.spectrum.fit.testdata import MakeData

For demonstration purposes, we will use MakeData to create some test data to fit.

HowTo Fit Spectral Features

149

data=MakeData(7)
data.addNoise(10)
#instantiate the fitter
sf=SpectrumFitter(data)

A plot window should look similar to that shown in Figure 14.8.

Figure 14.8. Test data to fit. Start the SpectrumFitter

2. The SpectrumFitter is an interactive tool and is best used in conjunction with the SpectrumModel
tool, which allows you to select (and change) models and fitting parameters. The three models you
are most likely to use are Gaussian, Lorentzian and Polynomial; the model fits, their parameters,
and their usage in the SpectrumFitter tool are summarized in Table 14.1:

HowTo Fit Spectral Features

150

Table 14.1. Model fits, their parameters and usage in the SpectrumFitter tool

Model Mathematical fit Parameters Usage

a0 = amplitude of line

x0 = location of line
peak

Gaussian

s0 = width of line
(sigma)

sf.addModel
('gauss',
[a0,x0,s0])

p0 = amplitude of line

p1 = location of line
peak

Lorentzian

p2 = half width at half
maximum of line

sf.addModel
('lorentz',
[p0,p1,p2])

n = order of
polynomial

Polynomial f(x) = c0 + c1x + ... +
cnxn

c0 .. cn = polynomial
coefficients

sf.addModel
('poly', [n],
[c0,c1, ...,
cn])

Note that you must know (roughly) where you expect a spectral feature in your data to be, in addition
to its expected shape and approximate shape parameters. So, an initial guess is required - if this
guess is completely wrong you may end-up fitting noise rather than your spectral lines.

Now, fit first the baseline with a polynomial and then fit the line with a Gaussian.

#First the baseline
Apply the model
model=sf.addModel('poly', [2],[0,0,0])
Do the fit
sf.doFit()
Inspect the residual after the baseline is removed
sf.residual()
Keep the fit
sf.fitOK()
#Now the line
sf.addModel('gauss', [1.0,30,0.1])
sf.doFit()
sf.residual()
sf.fitOK()

These steps result in the plot below. A black line (not seen here) displays the model and is replaced
by a green line showing the fit (the Gaussian model here). The red line is the final fit for the entire
spectrum. The residual is shown in a separate plot.

HowTo Fit Spectral Features

151

Figure 14.9. Fit result. Fit results for spectrum

3. It is possible to do both fits at the same time, globally, since the instance of our SpectrumFitter
remembers what it has done so far.

sf.doGlobalFit()

HowTo Fit Spectral Features

152

Figure 14.10. Global fit. Use the models together in a global fit

4. It is also possible to mask data. The following will do a polynomial fit only using data from 0 to
20 and from 40 to 100.

model=sf.addModel('poly', [2],[0,0,0])
#after you've created the model, now add the masks.
model.setMask(0,20)
model.setMask(40,100)

To best see how this works, include this masking in the example given above.

5. The fitted model parameters and their standard deviations are printed to screen with:

print sf

6. It is possible to manipulate the models produced by SpectrumFitter in various ways:

• If you wish to change the initial parameters of any of the models (model =
sf.addModel(...)), use setParameters:

model.setParameters([...])

A new fit will be made on the fly.

• There are two ways to remove models:

sf.removeModel(m)

Or:

m.remove()

HowTo Fit Spectral Features

153

• Subtract the model from the dataset:

sf.subtractModel(m)

This also removes the model from the fitter tool.

• Once you are satisfied with a fit, you can set the fitted parameters as the default for the models:

m.useResults()

This may be useful when using the same models for a following dataset.

• To apply them to a different dataset:

sf.setData(otherData)

Note that this replaces the data held in the SpectrumFitter with the SpectralSegment held in the
variable 'otherData'. Once again, the fit will be redone on the fly.

154

Chapter 15. HowTo Display and
Manipulate Images in HIPE

Herschel Editorial Board

15.1. Introduction
All image display tasks work on a SimpleImage that can be derived from a FITS file import (see
HowTo chapter on FITS and ASCII input/output) or even from an image file such as a JPEG -- which
is what we will use for illustrative purposes in this chapter.

Images can come with associated flux information (in header or, in Herschel DP, meta data). The flux
information/units can also be applied to a given image by hand.

Images either have a World Coordinate System (WCS) stored in the meta data information, or a WCS
may be applied. This chapter will also include information on the WCS parameters that can be found
or applied to a given image.

Throughout this chapter illustrations are given from the Full Work Bench perspective.

15.2. Creation of a SimpleImage for Display
The SimpleImage format data is the standard map/ image data format that comes from the
pipelining of Herschel data following standard pipeline processing. Images downloaded from the
Herschel Science Archive are in this format. The following short script can be adapted to create a
SimpleImage from any JPEG file and associate a very simple WCS to it. The following can be
copied and pasted into the Editor view after opening a Jython script window, or copied into the Console
view and run from there.

Create some fake WCS information
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = -22.5, \
 cdelt1 = 0.00028, cdelt2 = 0.00028, ctype1="RA---TAN", ctype2 = "DEC--TAN")
Create a SimpleImage with WCS in it
myImage2 = SimpleImage(wcs = myWcs)
#Put the image into the SimpleImage
*.jpeg, *.jpg, *.tiff, *.tif, *.png, *.fits, *.fts or *.fit
files are accepted.
importImage(image = myImage2, filename="directory name/ngc6992.jpg")

A SimpleImage called "myImage2" is created and is available in the "Variables" view (See
Figure 15.1). It should be emphasised that it is possible to use ANY image created in an instrument
pipeline for the examples given in this chapter.

The importing of the image is also possible via the "importImage" task available in the Tasks
view list. Click on "myImage2" in the "Variables" view then double-click on the appropriate task,
"importImage". A name can be typed in or a selection made by Browse...ing the system.

HowTo Display and Manipulate Images in HIPE

155

Figure 15.1. The Variables view shows the "myImage2" highlighted. A double click on this automatically
brings up the image in a new Editor window (top left). In the Tasks view the folder "Applicable", when
opened, shows the tasks that can be applied to this image.

Double-clicking on the variable "myImage2" in the Variables view will automatically display the
image in a new Editor window. A single right click in the same place will indicate that this can be
"Open(ed) with..." a Product viewer as well. This shows header (metadata) information for the whole
image product, which can have a number of datasets. For the SimpleImagewe have created for our
example there is a single image dataset.

15.3. Viewing the Metadata and Array Data
Associated with an Image Dataset

An image can have several datasets. For example, we can include a flag image dataset for flagging bad
pixels (see "DP Basic User's Manual" for more information). Each of these datasets have associated
metadata, which has the same role as header information in a FITS file. It indicates associated flux
and coordinate information plus processing history (if appropriate) etc.

To view the metadata (and array data) associated with an image dataset requires opening a Dataset
viewer. This can be done in two ways.

• First a right-click on your image variable name in the "Variables" view (e.g., on "myImage2"). A
short menu including "Open With...." appears. Choose the product viewer. The product view is
shown which includes some overview information/metadata plus a list of datasets (at the bottom of
the datasets -- and could include a number of image layers). Do a right-click on one of the datasets
to see the "Open With..." in the short menu. Select Dataset viewer.

• A single click selection of the image in the "Variables" menu list shows its outline in the "Outline"
view. Opening the folder in the Outline view to see the datasets in it and right-click on a dataset to
see the short menu with "Open With...." and the dataset viewer selectable.

HowTo Display and Manipulate Images in HIPE

156

Any of the above will provide a view of the metadata plus the data values of the array making up the
dataset within a window in the "Editor" view. View of either the metadata or array data can be toggled
using the arrows to the left of the metadata/array data names in the "Editor" window (see Figure 15.2).

Figure 15.2. Metadata and Array data view using the Dataset viewer with an image.

15.4. A Simple Display of an Image
The simplest way to display an image in HIPE is to double-click the image name (e.g., in the
"Variables" list). The default activity for this is then the display of the image in a new window in the
"Editor" view (see Figure 15.3).

HowTo Display and Manipulate Images in HIPE

157

Figure 15.3. Automatic Display obtained via double-click of a SimpleImage variable appearing in the
"Variables" view.

The display shows a zoom/pan image as the main image, plus two smaller images that show,

• A zoomed image is shown around the mouse position on the main image (at top right).

• An overview of the full image showing the zoom/panned position of the main display (at bottom
right) outlined by a rectangle. This box also illustrates the directions N and E on the display based on
the WCS coordiantes of the image. The position of the rectangular zoom/pan region can be adjusted
by clicking on the box and dragging it to another part of the display. In Figure 15.3 the box has
been dragged to the top left of the image.

15.4.1. Magnifying an Image
To bottom left of the view (see Figure 15.3) are a set of magnifying glass images that, in order left
to right, zoom in, zoom out and go back to the original image size. In between the magnifying glass
images is an icon with a small square surrounded by a box -- which allows an image to be displayed
that fits the whole SimpleImage into the viewing area.

15.4.2. Image Coordinates and Pixel Intensity
The mouse position over the image is constantly updated at the bottom of the image displayed with
both the pixel coordinates and the world coordinates (if a WCS is available in the SimpleImage being
viewed) being presented to the right of the magnification icons.

In between the two pieces of coordinate information the pixel intensity for the pixel falling under the
mouse position is also constantly updated (see again Figure 15.3) as the mouse is moved across the
image.

15.5. Editing and Printing Images
We can edit an images in a number of ways. The following are available after doing a right-click of
the mouse button while the mouse is over a displayed image (see Figure 15.4).

HowTo Display and Manipulate Images in HIPE

158

Figure 15.4. Edit functions available via a right-button mouse.

• Edit colors -- the colour lookup table can be adjusted to a number of different types plus linear/
log/exponential scalings.

• Edit cut levels -- the cut levels for which the colour lookup table is to be applied can be adjusted
for an image.

• Zoom in/out -- as per the zoom icons discussed earlier.

• Annotate the image -- an annotation can be placed at the position of a mouse click.

• Create screenshot/print image -- the displayed image can be saved to an image file or printed on
a user-selected printer.

15.5.1. Editing the Colour Look Up Table (LUT)
The standard colour scheme for image display is for "Real" colours shown in a "Ramp" intensity with a
"linearScale". Selection of the "Edit colors..." from Figure 15.4 displays the colour menu Figure 15.5.
Hitting the "Reset" button always enables the default colour display.

To select any other colour scheme simply click on the colour type and/or intensity or algorithm
to create a new colour scheme. The scheme is applied to the image immediately. The window
(Figure 15.5) can be dragged away from the image.

Figure 15.5. Colour table selection menu. Hitting "Reset" takes you back to the original colour table.

15.5.2. Editing the Cut Levels
The default cut levels for images is 99.5 per cent of pixel values. Selection of the "Edit cut levels..."
from Figure 15.4 displays the a cut level selection including a histogram of the current pixel intensity
values Figure 15.6. Hitting the "Reset" button always enables the default cut levels.

To select any other cut level the user can do one of two things.

HowTo Display and Manipulate Images in HIPE

159

• A button selection of cut levels (90, 95, 98, 99, 99.5 or 100 per cent). Note that selection of any of
these will adjust the histogram display above.

• Adjustment of the upper and/or lower-level cutoffs of the histogram by click-and-drag of the yellow
arrows (left or right) shown at either end of the histogram view.

Figure 15.6. Cut level selection window. Hitting "Reset" takes you back to the original cut levels of 99.5
per cent.

15.5.3. Zoom In/Out
Selection of either of these provides an increase or decrease in zoom by a factor of 2.

15.5.4. Annotation Toolbox
The annotation toolbox is shown in Figure 15.7.

Figure 15.7. The annotation toolbox.

The icons in the annotation toolbox appearing in Figure 15.7 have the following usage (from left to
right and from top to bottom):

• Select annotation

• Select all annotations in a region

• Draw a line

• Draw a rectangle

HowTo Display and Manipulate Images in HIPE

160

• Draw an ellipse

• Draw a polyline

• Draw a polygon

• Draw with the free hand on the image

• Add a text annotation

• Remove the selected annotation(s)

• Remove all annotations

Letting the mouse linger over an icon also displays its function.

The polygon and polyline methods will enable you to select points on the image which should be
used as a corner of the polygon using the mouse. Double-clicking the mouse will end the selection
procedure.

The three buttons below the ones already described change the view of the annotation. From top to
bottom:

• Change the thickness of the line

• Change the colour of the annotation. The present colour of annotations is shown in the background.

• Change the font of the text annotation

15.5.5. Screenshots and Printing Images
The last 2 possibilities within the image edit menu allows screenshots to be created in JPG, PNG or
BMP format or a printing to a user-selected printer. The user is also given the choice of whether the
image produced includes all overlays and annotations or not.

15.6. Image Transformations
Image representations can be adjusted in the following ways:

• Clamp: or clipping an image.

• Crop: extract a seubsection of an image.

• Clamp: or clipping an image.

• Rotate: rotate image by an arbitrary angle

• Scale: image rescaling in user-selected factors in X and Y.

• Translate: move positive or negative pixel or sky amount of image within the frame.

• Transpose: flip or rotate by n x 90 degrees

15.6.1. Applying Image Transformations
All image transformations can be applied in the same way. First, select a SimpleImage in the
"Variables" view, then go to the "Tasks" view and select -- from the Applicable Tasks folder -- the
appropriate image transformation (crop, clamp, rotate, scale, translate or transpose). To select one
of the transformation tasks, double-click on its name on the Tasks view. This will bring up a dialog
for the task.

HowTo Display and Manipulate Images in HIPE

161

Dialogs work in a similar fashion for all image transformations. Options are presented in a pull-down
menu (e.g., the form of the interpolation of pixel values when rotating an image, see Figure 15.8) or
with an editable input such as the rotation in degrees and the option for the name of the output variable
created following the transformation. Hitting "Accept" will run the task.

Figure 15.8. Example image transformation dialog. Rotating an image using the "rotate" task. Several
interpolation options are available.

15.6.2. Image Transformation Options
For each image transformation there are a set of options for the user.

15.6.2.1. Clamp Options

This allows the floor and ceiling of an image to be set. Values above the max or below the min input
by the user are set to the max and min values assigned by the user respectively.

15.6.2.2. Crop Options

A section of the image to be extracted to another SimpleImage. The range of X and Y pixel coordinate
values are input by the user.

15.6.2.3. Rotation Options

When rotating the image, several types of interpolation are possible. By default, bi-linear interpolation
is used. There are four types of interpolation possible.

• Bi-linear [default] -- the default - interpolates one pixel to the right and one below.

• Nearest neighbour [fast] -- direct pixel copying, the fastest.

• Bi-cubic -- uses interpolation via a piecewise bi-cubic polynomial.

• Bi-cubic2 [slow] -- variant of bicubic interpolation that can give sharper results than bicubic.

15.6.2.4. Scale Options

Allows for different magnification in X and Y pixel directions. Possible interpolation types are as for
the "rotate" task.

15.6.2.5. Translate Options

Allows either X and Y pixel translations or sky translations (coordinates input as strings of the form
"hh:mm:ss.s" and "dd:mm:ss.s") can be input by the user.

HowTo Display and Manipulate Images in HIPE

162

15.6.2.6. Transpose Options

Allows for different simple transpositions of images. The following transpositions can be done with
this task.

• Flip vertical (flips top and bottom)

• Flip horizontal (flips from side to side)

• Flip diagonal (bottom left to top right)

• Flip antidiagonal (top left to bottom right)

• Rotate 90 degrees (clockwise rotation)

• Rotate 180 degrees

• Rotate 270 degrees

15.7. Image Arithmetic
Images can be arithmetically manipulated (scalar or pair-wise combinations) to provide changed
versions of the original. In all cases, image arithmetic can be done by opening a dialog, filling in the
dialog and then clicking "Accept" to run the task (e.g., Figure 15.9).

Possible arithmetic tasks are:

• Absolute value (imageAbs). To obtain the absolute value image from the input.

• Add/Divide/Multiply/Subtract (imageAdd, imageDivide, imageMultiply, imageSubtract). This
allows either a scalar or a second image as the amount to be added/divided/multiplied/subtracted.
The second image can be input into the dialog by click-and-dragging of it from the "Variables"
view to the orange dot position in the dialog for the second image (see Figure 15.9) For images, the
combination is by pixels or WCS reference.

• Exponent of the image. Including to the power N and 10 (imageExp, imageExpN, imageExp10).

• Log of the image. Including base 10 or N (imageLog, imageLog10, imageLogN).

• Image to the power n (imagePower).

• Image rounding (imageRound).

• Square and square root of the image (imageSquare, imageSqrt).

Most of the above are self-explanatory. One example is shown in Figure 15.9.

Figure 15.9. Example image arithmetic dialog.

HowTo Display and Manipulate Images in HIPE

163

15.8. Working with the World Coordinates
System (WCS)

The WCS information for an image is stored in its metadata which can be viewed using the Dataset
viewer.

The Wcs class enables the user to define a transformation between the pixel coordinates and world
coordinates. The following illustrates how we can type in (at a command-line) a WCS. We create our
Wcs() object which we then add to a fake SimpleImage we set up to start with.

i = SimpleImage()
i.image=RESHAPE(Double1d.range(200*300), [200,300])
create a fake image 200x300 pixels in size

myWcs = Wcs() # set up the Wcs() object
myWcs.ctype1 = "LINEAR" # start adding things to it....
myWcs.cdelt1 = 5
myWcs.crval1 = 200
myWcs.cunit1 = "K"
myWcs.crpix1 = 0

myWcs.ctype2 = "LINEAR"
myWcs.cdelt2 = .05
myWcs.crval2 = 2.0
myWcs.cunit2 = "V"
myWcs.crpix2 = 0

i.wcs = myWcs # apply the set of WCS information to our image
print i.wcs #to see the WCS of the image

The above example will create a coordinate system, where the temperature and current are set for the
axes. The x-axis is LINEAR (ctype1), has the central pixel in column 0 (crpix1), has a value of 200 in
the central pixel (crval1), uses steps of 5 (cdelt1) and has as unit Kelvin. The y-axis is also LINEAR
(ctype2), has the central pixel in row 0 (crpix2, this is the top of the image), has a value of 2 in the
central pixel (crval2), uses steps of 0.05 (cdelt2) and has as unit Volts.

It is also possible to use the Wcs class to define transformations between pixel coordinates and sky
coordinates. This can be done using the standard Wcs parameters. An example is given below. It also
indicates how we can "set" WCS values in our WCS object :

wcs2 = Wcs() #
wcs2.setCrpix1(128)

wcs2.setCrpix2(128) #
wcs2.setCrval1(101.676612741936)

wcs2.setCrval2(0.829427624677429) #
wcs2.setCtype1("RA---TAN")

wcs2.setCtype2("DEC--TAN") #
wcs2.setRadesys("ICRS")

wcs2.setEquinox(2000.0) #
wcs2.setParameter("cd1_1", -1.9064468150235E-6, "")
wcs2.setParameter("cd1_2", 3.39797311269006E-4, "")
wcs2.setParameter("cd2_1", 3.39811958581193E-4, "")

wcs2.setParameter("cd2_2", 1.580446989748E-6, "") #

A Wcs is created.
The central pixel is set. In this case, the central pixel is at (128, 128).
The value of the central pixel is set. In this case, the first central pixel is located at 6h46'42.387"
and the second pixel at 0 degrees 49'45.94".
The type of the axes is set. The first axis defines the right ascension (in a gnomonic projection)
and the second axis defines the declination (in a gnomonic projection).

HowTo Display and Manipulate Images in HIPE

164

The coordinate system is set (here, we use the standard ICRS type). The equinox is also set.
The linear transformation matrix is set. This defines the pixel size and the rotation of the images.

For more information on the WCS see Chapter 4 of the "DP Basic User's Manual."

165

Chapter 16. HowTo Do Basic Image
Analysis in HIPE

Herschel Editorial Board

16.1. Introduction to Interactive Image
Analysis with HIPE

Basic image analysis described in this chapter involves the following tasks that are available within
the HIPE environment.

• aperture photometry

• image/area histograms

• 1D profile plotting

• contour plotting and overlays

All tasks work on a SimpleImage that can be derived from a FITS file import (see HowTo chapter
on FITS and ASCII input/output) or even from an image file such as a JPEG -- which is what we will
use for illustrative purposes in this chapter.

16.2. Setup and Display of Images for
Analysis

In the chapter on Image Display we note how to create image coordinate systems and how to formulate
the SimpleImage format from external sources. SimpleImage format data is the standard map/
image data format that comes from the pipelining of Herschel data during standard pipeline processing.
Images from the Herschel Science Archive (HSA) are in this format. The following short script can
be adapted to create a SimpleImage from any JPEG file and associate a WCS to it. The following
can be copied and pasted into the Editor view after opening a Jython script window, or copied into
the Console view and run from there.

Create some fake WCS information
myWcs = Wcs(crpix1 = 29, crpix2 = 29, crval1 = 30.0, crval2 = -22.5, \
 cdelt1 = 0.00028, cdelt2 = 0.00028, ctype1="RA---TAN", ctype2 = "DEC--TAN")
Create a SimpleImage with WCS in it
myImage2 = SimpleImage(wcs = myWcs)
#Put the image into the SimpleImage
*.jpeg, *.jpg, *.tiff, *.tif, *.png, *.fits, *.fts or *.fit
files are accepted.
importImage(image = myImage2, filename="directory name/ngc6992.jpg")

A SimpleImage called "myImage2" is created and is available in the "Variables" view (See
Figure 16.1). It should be emphasised that it is possible to use ANY image created in an instrument
pipeline for the following tasks.

The importing of the image is also possible via the "importImage" task available in the Tasks
view list. Click on "myImage2" in the "Variables" view then double-click on the appropriate task,
"importImage". A name can be typed in or a selection made by "Browse..."ing the system.

HowTo Do Basic Image Analysis in HIPE

166

Figure 16.1. The Variables view shows the "myImage2" highlighted. A double click on this automatically
brings up the image in a new Editor window (top left). In the Tasks view the folder "Applicable", when
opened, shows the tasks that can be applied to this image.Variables view with SimpleImage variable
highlighted.

Double-clicking on the variable "myImage2" in the "Variables" view will automatically display the
image in a new Editor window. A single right click in the same place will indicate that this can be
"Open(ed) with..." a Product display as well. This shows header information and the fact that there is
a single image dataset in the SimpleImage product we have created.

The image appearing in the Editor view is displayed with the standard zoom/pan and editing
capabilities associated with it that are discussed in the chapter "HowTo Create, Display and Manipulate
Images."

16.3. Getting a SimpleImage a product out of
the Herschel Science Archive (HSA)

When downloading a product out of the science archive we access images from an
ObservationContext. An ObservationContext contains all the information associated
with a single observation and its processing (including all associated calibration files). In a download
(see chapter on HowTo Access Data) from the HSA we have products made available from several
levels of processing at using the Herschel Science Center's Standard Product Generation pipelines.

HowTo Do Basic Image Analysis in HIPE

167

Figure 16.2. An ObservationContext called "prod1" has been obtained from the HSA. Clicking on
the folders it contains in the "Outline" window allows us to get at the Level 2 product -- the final pipeline
output for this observation.Contents of an ObservationContext

Figure 16.3. A double-click on the product highlighted in blue in Figure 16.2 provides this Outline view.
A double-click on the product highlighted displays the image from the green channel of this PACS
observation.PACS green channel image access

HowTo Do Basic Image Analysis in HIPE

168

Figure 16.4. The PACS green channel image displayed in the full work bench of HIPE.

In the "Variables" and "Outline" displayed in Figure 16.2 and Figure 16.3 we see first an
ObservationContext called "prod1" which is a PACS photometer test observation -- which has
been expanded in the "Outline" view. A double click on the "Level2" product will show the outline
of the final processed image (which contains two PACS images in two channels of the photometer
taken simultaneously, a green channel and a blue channel). This is shown in Figure 16.3. We can also
get the SimpleImage (e.g., name it "image1") by extracting it from the ObservationContext.
The line below can do this from the command-line of the "Console" view.

image1 = prod1.refs["level2"].product.refs["HPPAVGR"].product

A double click on the product automatically opens up an image display of the test image. In the
"Outline" window we can actually see that there are several datasets which include an error map, a
coverage map and exposure map associated with the image (see Figure 16.4). A right click on any of
the associated datasets and going to "Open With..." allows a Dataset viewer to appear which shows
metadata and array data for the particular dataset.

16.4. Basic Analysis Capabilities
It should be noted that the overview and zoomed images displayed to the right of the displayed image
during basic image analysis are the reverse for those when just dislaying the image, as illustrated in
the "HowTo Display and Manipulate Images" chapter.

The basic analysis capabilities described in this chapter -- for application to SimpleImages are;

• 1D profile plotting. Slices can be taken through the image

HowTo Do Basic Image Analysis in HIPE

169

• making a histogram of the whole image or of a certain region of interest, which is bounded by a
circle, an ellipse, a rectangle or a polygon (the user should draw the bounding figure on the image)

• aperture photometry with a circular target aperture and an annular or a rectangular sky aperture

• contour plotting and overlays

Note

Note that all these functionalities are also available via the command line in the HIPE
"Console" view. Using GUI/dialog interaction will copy the equivalent command to the
"Console" view. This can be copied and pasted into a script (if wanted) for possible use
in further, batch, processing.

16.4.1. 1D Profile Plotting

The 1D profile plotting capability allows the user to draw a straight line on an image and plot the
intensity along that straight line.

After double-clicking on the Variable "myImage2" in the previous section the image was displayed
in an "Editor" window. The Applicable Tasks are also available including the task profile (see
Figure 16.5). A double-click on this item in the tasks list brings up another display of the image and
allows interaction with the mouse

Figure 16.5. The available tasks show profile is available for "myImage2". Double-clicking on profile
after first highlighting myImage2 in the Variables window creates a new display of the image together with
the profile tool capabilities.Accessing the profile task

Now we can start drawing the straight line on the active image. The beginning of the line can be
fixed by clicking once on the image. While moving the mouse over the active iamge, the straight line
will be updated, until the end of the straight line is fixed by clicking a second time on the image.
Simultaneously, the intensity plot along the straight line in an extension of the window below the
displayed image (see Figure 16.6). The window is scrollable so the whole profile display can be seen
by scrolling down (see Figure 16.7).

HowTo Do Basic Image Analysis in HIPE

170

Figure 16.6. A 1D profile plot interaction

Figure 16.7. Same as for Figure 16.6 but scrolling down to show the profile display.

16.4.2. Area Histogram
One can make a histogram of an image as a whole, or of a certain region of interest which is specified
by the user. This region can be bounded by a CIRCLE, an ELLIPSE, a RECTANGLE or a POLYGON,
which has to be drawn on the image, or can be for the whole image.

HowTo Do Basic Image Analysis in HIPE

171

We start the procedure for making an area histogram by choosing one of the
imageHistogram, polygonHistogram, circleHistogram, ellipseHistogram
or rectangleHistogram tasks.

First click on a SimpleImage in the list of Variables, e.g. "myImage2". Then double-click one of
the histogram tasks in the Tasks view. This brings up a new image and activates the mouse so that an
image area can be selected. To cover an area with a circle, ellipse or rectangle do a click-and-drag. On
release, the area selected is shown overlaid on the image.

The histogram is constructed from the intensity values of the selected pixels and the input of the min
and max cut levels in the boxes provoided, plus the number of bins for the histogram. Hitting the
"Accept" button does several things.

• A histogram is formulated in the Editor window (scroll down).

• The equivalent command line is shown in the Console view which includes a named output object.

• The histogram values are placed in a dataset that appears in the Variables list. In Figure 16.8 this
is called "histogram2".

• The output (e.g., "histogram2") appears highlighted in the Variables view and appears in the Outline
view. Double-clicking this output value in the Variables view provides the histogram together with
key information (see Figure 16.9).

For the polygonHistogram the only difference is that each corner is indicated by a single mouse
click. The polygon area completion is indicated by a mouse double-click. Otherwise, this works in the
same way as the other histogram tasks.

Figure 16.8. Circle histogram area selection and parameter selection. These appear in the HIPE "Editor"
view.Circle histogram

HowTo Do Basic Image Analysis in HIPE

172

Figure 16.9. Display of the histogram results held in the histogram output in an expanded Editor
view.Histogram display

16.4.3. Aperture Photometry
One can also perform aperture photometry on an image, using a circular target aperture and an annular
or a rectangular sky aperture. There are five algorithms that can be used to estimate the sky : average,
median, mean-median, the synthetic mode and daophot. In the mean-median method all values further
away from the median than a specified number of times the standard deviation (i.c. 1.5) are discarded
and the remaining values are averaged. The daophot method is a translation of the algorithm used
in the aophot package from IDL to Java.

A start to doing annular aperture photometry can be made by choosing the
annularSkyAperturePhotometry item in the Tasks menu following selection of the
appropriate image in the "Variables" menu. This provides the image in the "Editor" view below which
is the dialog for the aperture photometry task options (see ???). This is easiest seen by expanding the
"Editor" view window and scrolling down below the image.

There are three mechanisms by which the photometry area can be identified.

• By click-and-drag mouse interactions.

• By pixel region selection.

• By sky coordinate selection.

The default is by mouse interaction. A single click on the image allows places a circle on the image at
the mouse point. The user then inputs a value for the object aperture radius and inner and outer radii for
sky subtraction. A selection should be made for the appropriate fitter (e.g. daophot) and pressing accept

HowTo Do Basic Image Analysis in HIPE

173

leads to an output in the variable "result". The circular radii are shown on the image (see Figure 16.10).
To redo -- press the "Clear" button.

A sky position or pixel position can also be selected. Selection of either of these possibilities enables
an update to the input screen allowing the sky/pixel values to be input. For the sky position (at present)
the format of input is "02:00:39.4" for RA and "-22:27:20.6" for Dec. Note that the quotations are
necessary as the input is a string. This is likely to be changed to allow various input types in the future.

The results can be displayed by double-clicking on the "result" variable shown in the "Variables"
menu (see Figure 16.11)

Figure 16.10. Aperture photometry with an annular sky aperture as displayed in HIPE.

HowTo Do Basic Image Analysis in HIPE

174

Figure 16.11. Aperture photometry results plot and tables. Note that n.a. relates to "not applicable" and
typically will occur when units are not assigned to the image.Results of sky aperture measurement.

A similar capability is available for using a rectangular sky aperture. Rectangular aperture photometry
can be done by choosing the rectangularSkyAperturePhotometry item in the Tasks menu
following selection of the appropriate image in the "Variables" menu. Similar to the above, a single
mouse click can be used to identify the target or a sky or pixel position can be indicated by the user.
A rectangular sky aperture can then be selected by a click-and-drag across a region of the image (see
Figure 16.12). Following the calculation for the first position, the same rectangular box can be used
for the sky and a further single click on the image picks out a new object. Hitting the "Accept" button
allows another result for this new position.

HowTo Do Basic Image Analysis in HIPE

175

Figure 16.12. Aperture photometry with an annular sky aperture as displayed in HIPE.

The results for both aperture photometry tasks provide the curve of growth. This is a plot of the target
flux as a function of the target radius. Such a plot can be used to see whether a valid target radius has
been given. When an annular aperture is used to estimate the sky, a sky intensity plot is also shown.
This plot shows the intensity per sky pixel as a function of a varying inner radius (the outer radius
is fixed).

16.4.4. Contour Plotting

Another functionality of the toolbox is contour plotting. A contour plot connects all points in the image
with the same intensity, like isobars on a weather map.

First we create the contours. We then, later, overlay these contours on any image we wish.

There are two methods for providing a set of contours for display. The first is an
automaticContour where the number of contour levels and a min and max contour level are
selected and the intermediate levels are generated automatically with linear, ln or log intervals of
intensity. The second is a manualContour where the values of each contour level are individually
put in by the user.

In either case we, as usual, start by clicking the name of the image we want to be countoured from
the "Variables" list. Then we choose either automaticContour or manualContour by double-
clicking these items in the "Tasks" list (see Figure 16.13for example).

HowTo Do Basic Image Analysis in HIPE

176

Figure 16.13. Dialog for automaticContour.

In either case, we create an output (editable value for user), e.g. "contours". When hitting the "Accept"
button this is the variable that will store the contour results.

177

Chapter 17. How to Save/Play Back
Scripts in HIPE

Herschel Editorial Board

17.1. Introduction
Hipe keeps a running record of all items typed or actiona taken using the graphical interface (Mouse
points and clicks). The purpose of this article is to identify the steps you can take to save this
information. The goal is to be able to keep a record of all actions and create a Jython script which
can be resused or slightly modified.

17.2. How to save/ play back a script in HIPE
These are the steps to follow using to save all the commands which were given to HIPE during your
session. In the tab bar with the Console view there is a tab called history. You can also bring this
History view up from the Window--Show view pull down menu.

1. In the History view. Mouse left mouse click on the column called "Command". The entire column
should be now selected.

2. From the "File" button at the top left of the HIPE window, create a new (blank) Jython script.

3. Then right-mouse click on the selection and Choose copy.

4. Move the cursor to the blank Jython script page and either select the "Paste" command in the Edit
pull down menu or type Ctrl-V. The script will appear in the Editor window.

5. Your new Jython script can be saved for later importing (via the Navigator view).

The following screen shots show what is described above.

And...

How to Save/Play Back Scripts in HIPE

178

To save the script to file (default extension .py), click on the Editor view tab that contains the script
-- which brings the script to the foreground -- then hit CTRL-S. The file will be saved. If you have
not already provided a directory and name for the script then you are prompted for one, otherwise the
previous version is overwritten at the same place in your directory structure.

Alternatively -- click on the appropriate Editor tab (as above) and then go to the "File" pull-down
menu at top left of HIPE. Go to "Save" or "Save As...".

17.3. How to Play Back a Script from the
Command Line

The main way in which a script is developed and run in the HIPE environment is via the Editor screen,
as described above. It can also then be saved -- as noted above. However, it is also possible to play
back a saved script that is on the disk using the execfile command. Enter something similar to the
following on the command-line of the Console view (do not forget the quotation marks).

execfile("<full path name><file name>")

	Herschel Data Processing HowTo Documents
	Table of Contents
	Chapter 1. HowTos Preface
	1.1. Introduction
	1.2. Change Log

	Chapter 2. HIPE Introduction
	2.1. Introduction
	2.2. HIPE Philosophy
	2.3. Installation and Startup of HIPE
	2.4. Obtaining Help from within HIPE
	2.5. HIPE Welcome Screen
	2.5.1. Icon: Work Bench
	2.5.2. Icon: Access Data
	2.5.3. Icon: Documentation
	2.5.4. Icon: Preferences
	2.5.5. Icon: Updates
	2.5.6. Icon: External Tools

	2.6. HIPE Perspectives
	2.6.1. Available Default Perspectives
	2.6.1.1. Product Access Layer Perspective
	2.6.1.2. Classic(JIDE) Perspective

	2.6.2. The Full Work Bench Perspective
	2.6.3. The Work Bench Perspective
	2.6.4. Archive Browser

	2.7. Changing HIPE Perspectives
	2.7.1. Adjusting Individual Views
	2.7.2. Adding New Views to the Perspective

	2.8. Available Views And What They Allow You To Do
	2.8.1. Classes
	2.8.2. Console
	2.8.3. Data Access
	2.8.4. Editor
	2.8.5. Export Herschel Data from HIPE
	2.8.6. Herschel Login
	2.8.7. Herschel Science Archive
	2.8.8. HIFI pipeline
	2.8.9. History
	2.8.10. Import Herschel Data into HIPE
	2.8.11. Log
	2.8.12. Navigator
	2.8.13. Outline
	2.8.14. Packages
	2.8.15. PAL Storage Manager
	2.8.16. Save Products to Storage
	2.8.17. Tasks
	2.8.18. Variables
	2.8.19. Welcome

	2.9. Viewers in HIPE

	Chapter 3. HowTo Access and Retrieve Data from the Herschel Science Archive
	3.1. Introduction
	3.2. Retrieving Data from the Herschel Science Archive User Interface
	3.3. Accessing HSA Data within HIPE

	Chapter 4. HowTo Store and Access Data
	4.1. Introduction
	4.2. Creating and Saving Products in a Pool
	4.3. Registering and accessing other data stores
	4.4. Data access via the HIPE GUI
	4.4.1. Types of Stored Data
	4.4.2. Using the Data Access View
	4.4.2.1. Using the Data Access View to Query for Products
	Doing a Search
	Search by Observation
	Search by Attributes
	Search by Meta Data
	Search by Data Mining

	4.4.2.2. Output from a Query and Searching a Query Result
	4.4.2.3. An Example of Search to Display of Data

	4.5. Data Access via the Console View Command Line

	Chapter 5. Running the HIFI pipeline
	5.1. Running the Pipeline
	5.2. Using the HIFI Pipeline task
	5.3. Running the Individual Pipelines using the HIFI pipeline task
	5.4. Running the Individual Pipeline Tasks
	5.5. Running the Pipeline step by step
	5.6. Running the Pipeline step by step

	Chapter 6. HowTo run the PACS pipelines within HIPE
	6.1. Introduction
	6.2. Retrieving your data, extracting the Level 0 product
	6.3. PHOT pipeline
	6.3.1. Level 0 to Level 0.5
	6.3.2. Level 0.5 to Level 2
	6.3.2.1. Point Source pipeline
	6.3.2.2. Small Extended Source
	6.3.2.3. Scan Map -simple-
	6.3.2.4. Scan Map
	6.3.2.5. Chopped Raster

	6.4. SPEC pipeline
	6.4.1. Level 0 to 0.5: ramp to frame
	6.4.2. Level 0.5 to 2: frame to cube
	6.4.2.1. Chop-nod point source

	Chapter 7. How to perform SPIRE pipeline processing in HIPE
	7.1. SPIRE pipeline processing
	7.1.1. SPIRE photometer pipeline processing
	7.1.1.1. Preperation for running the SPIRE photometer pipeline within HIPE.
	7.1.1.2. Running the SPIRE photometer pipeline interactively.

	7.1.2. SPIRE spectrometer pipeline processing.
	7.1.2.1. Preparation to running the SPIRE spectrometer pipeline within HIPE.
	7.1.2.2. Running the SPIRE spectrometer pipeline interactively.

	7.1.3. Additional reading

	Chapter 8. How to Save and Restore Data (including Herschel Archive data, ASCII and FITS)
	8.1. Introduction
	8.2. How to save and restore data from the command line
	8.3. How to save and restore products using a Local Store
	8.4. How to Save Images and Tables as FITS files
	8.4.1. Saving with a Task Dialog
	8.4.2. Saving Using Command-line Inputs
	8.4.3. How to Save TableDatasets as FITS Files
	8.4.4. How to Read FITS Files

	8.5. How to Create and Read ASCII Table Files
	8.5.1. Using HIPE Task Dialogs to Create and Read ASCII Tables
	8.5.2. Using Command-line Input to Create and Read ASCII Tables

	Chapter 9. How to plot in HIPE
	9.1. Introduction
	9.2. Simple plots from the command line
	9.3. Interacting with plots using plot properties GUI
	9.4. Advanced plotting
	9.5. Plotting table datasets - using the TablePlotter

	Chapter 10. HowTo Inspect and Plot Dataset Tables in HIPE
	10.1. Introduction
	10.2. Steps to creating and viewing a simple TableDataset with the HIPE GUI
	10.3. Guide to TablePlotter Controls and their functions

	Chapter 11. HowTo Display Spectra
	11.1. Introduction
	11.2. Obtaining a Spectrum from an ObservationContext
	11.3. The SpectrumExplorer Package
	11.4. Future developments

	Chapter 12. Spectral Arithmetic and Mathematical Operations
	12.1. Introduction
	12.2. Starting point -- using a dataset of a number of HIFI spectra.
	12.3. Using HIPE to Access the Spectrum Arithmetic Tasks

	Chapter 13. The CubeSpectrumAnalysisToolbox
	13.1. Introduction
	13.2. Launching the CubeSpectrumAnalysisToolbox GUI
	13.3. Using the GUI
	13.3.1. Design
	13.3.2. File menu
	13.3.3. Spectrum menu
	13.3.3.1. Single Spaxel Display
	13.3.3.2. Multiple Contigous Spaxel Display
	13.3.3.3. Spectral Range Selection
	13.3.3.4. Position-Velocity Diagrams

	13.4. Running the tasks outside of the cubetool GUI
	13.4.1. Accessing the individual products
	13.4.2. Details for specific tasks
	13.4.2.1. Single spaxel selection
	13.4.2.2. Multiple contiguous spaxel selection
	13.4.2.3. Smoothing filters
	13.4.2.4. Spectral range selection
	13.4.2.5. PV Diagram

	Chapter 14. HowTo Fit Spectral Features
	14.1. How to fit spectra in HIPE
	14.2. How to fit spectra from the command line

	Chapter 15. HowTo Display and Manipulate Images in HIPE
	15.1. Introduction
	15.2. Creation of a SimpleImage for Display
	15.3. Viewing the Metadata and Array Data Associated with an Image Dataset
	15.4. A Simple Display of an Image
	15.4.1. Magnifying an Image
	15.4.2. Image Coordinates and Pixel Intensity

	15.5. Editing and Printing Images
	15.5.1. Editing the Colour Look Up Table (LUT)
	15.5.2. Editing the Cut Levels
	15.5.3. Zoom In/Out
	15.5.4. Annotation Toolbox
	15.5.5. Screenshots and Printing Images

	15.6. Image Transformations
	15.6.1. Applying Image Transformations
	15.6.2. Image Transformation Options
	15.6.2.1. Clamp Options
	15.6.2.2. Crop Options
	15.6.2.3. Rotation Options
	15.6.2.4. Scale Options
	15.6.2.5. Translate Options
	15.6.2.6. Transpose Options

	15.7. Image Arithmetic
	15.8. Working with the World Coordinates System (WCS)

	Chapter 16. HowTo Do Basic Image Analysis in HIPE
	16.1. Introduction to Interactive Image Analysis with HIPE
	16.2. Setup and Display of Images for Analysis
	16.3. Getting a SimpleImage a product out of the Herschel Science Archive (HSA)
	16.4. Basic Analysis Capabilities
	16.4.1. 1D Profile Plotting
	16.4.2. Area Histogram
	16.4.3. Aperture Photometry
	16.4.4. Contour Plotting

	Chapter 17. How to Save/Play Back Scripts in HIPE
	17.1. Introduction
	17.2. How to save/ play back a script in HIPE
	17.3. How to Play Back a Script from the Command Line

