SPIRE Data Users Manual

version 1.0.<undefined> , Document Number: SPIRE-RAL-DOC 003248
30 July 2010

e -
d Sl;'\

SPIRE Data Users Manual

Table of Contents

= =01 PP UPPRN %
Y= =TT o P %
0 O @ = 1= oo %
IO | oo [0 (o o I ORI 1
1.1. Scope of this Data USer's Manualcoevuiiiiiiiiiiiiiccis e e e e e e 1
1.2. SPIRE 0bSEVING MOUESunciii it e e e e e e eaa s 1
1.3. Structure of thiS OCUMENLcouuiieiii e 1
2. LOOKING @ YOUF TaIA ... cceunieiiieiii e e e e e e e e e e e e e e et e e e e e e 3
2.1. SPIRE Observation Context Data SIIUCIUIEeveevenieiiii e 3
2.1.1. Anatomy of a SPIRE Observation: Products, Pools, Storage, and Building
2] o0 PSPPSR 3
2.1.2. Linking it altogether: Introducing the Contextccovvvviveiiiieiiiiecieeeeenn, 4
2.1.3. Looking at your Observation Context iN HIPEcccoooviiiiiiiiiieee, 6
2.2. SPIRE Large Map and Parallel Mode Data Structurecocvvvveveeeiiieriineeineeeenn, 9
2.2.1. A first look at your image maps (The Level 2 Data Product)c.ceeevennees 9
2.2.2. Savingamap asaFITSfileand reading itinagain............cccoocoevivinennn.n. 12
2.2.3. Looking at the Level 1 Timeline Data.........cccvevveieviiniiiiiecei e 13
2.2.4. Looking at the Level 0.5 Timeline Data..........cccvevvnieiiiiieiiieeiieevieeeiees 16
2.25. Looking at the Raw Level O Data........ccceuniviiiiiiiicci e 19
2.3. SPIRE Small Map Mode Data StrUCIUIEc.ueviiieiii e e e 20
2.3.1. A first look at your image maps (The Level 2 Data Product) 20
2.3.2. Savingamap asaFITSfileand reading itinagain............cccoocoevivinnennn.. 24
2.3.3. Looking at the Level 1 Timeline Data.........cccovevveieviiiiiiiieeeiieeee e ee e 25
2.3.4. Looking at the Level 0.5 Timeline Data..........cccuvevvnieiiiniiiii e eeiees 25
2.3.5. Looking at the Raw Level O Data........ccceuniviiieiiieciiieci e ee e 26
2.4. SPIRE Point Source Mode Data StrUCLUIEuvveiiiiiiieeiiiiie e 27
2.4.1. The Point Source Observation Modecc.iieiiiiiiiiiiiiii e 27
2.4.2. Reading the JPP into memory and saving it asaFITSfileand reading it in
o = P 28
2.4.3. Looking at the Level 1 Datafor Point Source Observations...............c.......... 29
2.4.4. Looking at the Level 0.5 Timeline Data for Point Source Observations.......... 31
2.4.5. Looking at the Raw Level O Data........cccevniviiieiiieci e 35
2.5. SPIRE Spectroscopy Data SIrUCIUMEcvveeeeieece e e e e e e 36
2.5.1. SPIRE spectrometer introdUuCtioNc..vveiuieiiieiiii e ere e eaenns 36
2.5.2. The Spectrometer Observation CONtEXLccvvuveeiiiiiiiiieiiiieeieeeeeeaies 37
2.5.3. The Spectrometer Level 1 Data ProductScc.vevvvieiiieiiiieciii e 39
2.5.4. USING SPECEXPIOIEN . ovvuiiiieeieeei et e e e e e e e e e e et e e e e ean s 43
2.5.5. The Spectrometer Level 0.5 Data ProductScccveveviiiiiiiciiiicceeeieeen 51
2.5.6. Looking at the Raw Level O Data........cccevniviiieiiieiiiece e 55
3. SPIRE Calibration Datalveveveuieiiiiieeeiiie e e et e et e e e e e e aa s 57
3.1. SPIRE Calibration EXplainedcccouuiiiiiiiiii e e e 57
3.1.1. The SPIRE Calibration CONEXLcccuunieiiiiiiieeiiine et et e e eeens 57
3.1.2. The SPIRE Calibration Tre.ccccuuuieeiiiiieee e 57
3.1.3. SPIRE Calibration Product EditioNSccccuiiiiiiiiiieiiiiineecciii e 58
3.1.4. Updating @ Calibration TreEccuuiiiiiieii e e e 59
3.1.5. Updating Individual Calibration ProductScccocvvviviiiiiiiiicciiece e, 59
3.1.6. Removing Calibration Products fromthe Tree.........cccovvvviviiiiiiiii e, 59
3.1.7. Further INFOrmMEioNccouueieiiiis e eaees 60
4. REProCESSING YOUF TaLA ...u.evveieiieiii i eeei e e e e e e e e e e et s e e e e et s e e et e e et e e et eeaneeaneeeen 61
0 I g1 o [o ' o R 61
4.2. Reprocessing SPIRE Large Map and Parallel Mode Data..........c.occvevvviveviineennnnnnn. 61
N T 1= (= o 0 === 61
4.2.2. Level 0to Level 0.5 Processing (Optional)coevvviviiiiieiiiiiiiieciieeeis 63
4.2.3. Level 0.5t0 Level 1 ProCeSSINGuovvvniviiiiiii et 64
424, Level 110 Level 2 ProCESSING ..ucvvvniiiiiieiiieei e e e e e e e e 68

SPIRE Data Users Manual

4.3. Reprocessing SPIRE Small Map Datacoeevvuiiiiiiieeiiii e 72
A3 L. Pref@UUITES ..ottt et ettt ettt 72
4.3.2. Level 0to Level 0.5 Processing (Optional)cooeveeviiieiiiiinieiiiiiieeeeiinne, 75
4.3.3. Level 0.5t0 Level 1 ProCESSINGcvevveneiiiiiieieiiiiae et 75
4.34. Level 1to Level 2 ProCESSING ..ccovvnieiiiiiieiiiiii et e 80

4.4. Reprocessing SPIRE Point Source Mode Datacccvvuieeiiiiieeiiiiiieeceiieeeeiie 84
441, Pref@QUISITES oouniiiii ettt ettt et eaaas 84
4.4.2. Level 0to Level 0.5 Processing (Optional)cooeveeviiiiieiiinieiiiiiieeeeiinne, 87
4.4.3. Level 0510 Level 1 ProCESSINGcvveveneiiiiiieieiiii et et enaens 87
444, Level 1o Level 2 PrOCESSING ..covvvnieiiiiiieiiiiii e 91

4.5. SPIRE Spectroscopy Data PrOCESSINGccvuuiieiuineieiiiieeeiii e 92
4.5.1. Reprocessing SPIRE spectrometer datal.........cocvvueeiiiiiieeiiiiiieeceii e 92
4.5.2. Options available to the USEr ... 93
4.5.3. Detailed description of the processing SCrptovevevviieeiiiiineeeiieeeeciiennen 94
4.5.4. The ProCeSSING SCIPLeeeert ettt ettt e 104

Preface

1. Versioning

On the front page of this manual isaversion number made of three digits. Thefirst two digitsfollow a
traditional versioning system (0.1, 0.2, ...), and the changes introduced with each version are detailed
below. The third digit is the SPIRE build number to which each edition of the manual is associated.
Also shown on the front page is the date of publication of the manual.

1.1. Changelog

Thefollowing was changed for 1.0

» Major updates to all sectionsto conform to data products and data processing as of the 4.0 branch.

Added SPIRE Cadlibration chapter.

Added aditional section on the Spectrum Explorer for SPIRE.

Added reprocessing section for Small Map Mode.

» Expanded reprocessing section for spectrometer pipeline.

The following was changed for 0.2
» Updates to flow charts with respect to the 4.0 branch.
Thefollowing was changed for v0.1

» First version of the SDUM manual.

Chapter 1. Introduction

1.1. Scope of this Data User's Manual

The purpose of this document isto provide a comprehensice reference for all SPIRE usersin terms of
the data structure users will encounter for on inspection of the different types of SPIRE observations,
but also as a guide on how to reprocess the data and inspect the products through the full SPIRE
pipeline. This document superceeds the SPIRE pipeline reduction formerly included in the HOWTOs
document, but has been expaned to include all modes and insights on the data struture and types.

The data structure and reprocessing guide examples contained within the SPIRE Data Users Manual
are based upon the HIPE 4.0 release - views may differ and examples may not work on previous and
subsequent rel eases of HIPE.

For more information on obtaining HIPE and on how to install it, getting started with it, please go to
the HIPE Quick Start Guide and the HIPE Owners Guide for amore moreindepth overview of getting
started with the HIPE environment.

1.2. SPIRE observing Modes

SPIRE observing modes for both the Photometer and the Spectrometer are provided as Astronomical
Observation Templates (AOTS), and the way these AOTs are referred to may differ from resource to
resource (Hspot, HIPE, etc). There are currently 6 available observaing modes in various levels of
use and release, these are,

» Large Map Mode(Scan M apping, POF5): Used for observations of large fields (>4x4 arcmins).
The telescope is scanned building up a map, scan line by scan line. Scan lines can be orthonally
cross-linked to produce high quality maps.

» Small Map Mode (1x1 Small Scan Map, POF10): Used for observations of large fields (>4x4 ar-
cmins). Thismode replacesthe former small map 64-point Jiggle, POF3 mode. The new Small Scan
Map mode consists of 2 orthoganal scan lines of fixed length. The mode operation and processing
is essentially the same as the Large Map mode. For a given observation, the area covered by both
scan legs defines a central square of side 5 arcmins although the length of the two orthogonal scan
paths are somewhat longer than this. In practice, due to the position of the arrays on the sky at the
time of a given observation, the guaranteed areafor scientific useisacircle of diameter 5 arcmins.

» Point Source Mode (7-point Jiggle, POF2): Used for observations of point sources. The telescope
stares at a target and the detector arrays are jiggled, using BSM, over the target using a 7-point
pattern. The background is removed by chopping with the BSM and Nodding with the tel escope.

» Parallel Mode (Parallel): Used for maps created with both SPIRE and PACS in parallel. These
are essentially equivalent to Large Map observations.

 Point Sour ce Spectroscopy (SOF1): Used for point source spectrocopy. The Spectrometer Mech-
anism (SMEC) mirror is scanned to produce a spectrum over the full wavelength range

» Small Map Spectroscopy (SOF2): Used for creating small spectrocopic maps. The Spectrometer
Mechanism (SMEC) mirror is scanned to produce a spectrum over the full wavelength range while
the BSM jiggles over 16 positions to produce an image map.

1.3. Structure of this document

Astronomer users will receive data that has already been processed through the standard pipelines to
several Levels. The processing levels of the SPIRE pipeline and user deliverables are outlined below

inFigure1.1.

Introduction

U SPIRE Data Processing Levels

SPIRE — — — — Level O B
Pipelin e‘-'f !— Data Product Raw Data Products
Delivered | |
fo Users & Level 0.5 « Raw ADU counts converted
Data Product to meaningful units

1
Level 1 + Calibrated Timelines
j Peta Product,/ 4 ¢

| Level 2
e e - - Data Product * Image and Spectral maps
Level 2
Data Product * Quality Control

+QC

Figure 1.1. The processing levels of the SPIRE pipeline and user deliverables.

Thisdocument is divided into two broad topics. An introduction to the data structure as received from
the Herschel Science Archive (HSA) isdescribed in Chapter 2 which includes all relevant observation
modes and processing L evels. The pipelines themselves and detail s on reprocessing your observations
are covered in Chapter 4.

Chapter 2. Looking at your data

2.1. SPIRE Observation Context Data Struc-
ture

2.1.1. Anatomy of a SPIRE Observation: Products,
Pools, Storage, and Building Blocks

For the purposes of both this chapter and the next (on reprocessing your data), we assumethat you have
already downloaded a data set from the Herschel Science Archive and are familiar with how to put
your data into a store and how to access your data from this store within HIPE. If you haven't, please
look at the HIPE Quick Start Guide and the HIPE Owners Guide for instruction on how to do this.

Now you are the proud owner of a set of SPIRE observations. Before carrying out any processing
its most likely that you will want to have afirst look at your data. SPIRE observations are supplied
in a highly organized structure that may be unfamiliar to previous astronomical datasets you have
encountered.

All data within the HCSS processing system are passed around in containers referred to as Products.
There are Products for every kind of data, e.g.;

» Raw and processed Detector Data Timelines

e Cdlibration Data

Auxiliary (e.g. Pointing) Data
* Images

* Image Cubes

Data Contexts

Products can contain the following (pictorially visualized in Figure 2.1);
* MetaData

* One or more Datasets

 Processing History

Datasets can be;

* Array Tables

* |mage arrays

» Composite (nested) Tables

Looking at your data

2.1.2.

E—
Meta Data

History

Figure2.1. General structure of a SPIRE data Product

SPIRE (Herschel) Observations are accessed/downloaded and stored as a Pool of these products. A
Pool is basically a directory that contains the original raw data, the results of the automatic pipeline
processing and everything you need to process your observations again yourself (e.g. spacecraft point-
ing, the parameters you entered in HSPOT when you submitted the proposal, and the pipeline cali-
bration tables). Data that you reprocess yourself can also be stored into the same Pool or you may
alternatively wish to save theresultsin anew Pool. If you wish to send someone aset of processed data
for example, the entire Pool directory should be "tar"ed or archived and sent. Finally, once a Pool has
been created, the pool's directory namemust NOT be changed or HIPE will not be ableto find the data.

In general, HIPE expects al your observation pool directories to be contained in a "Local Store"
directory which can be thought of as a Super Repository for all Observation Pools on your hard disk.
By default this directory resides in ~/.hcss/Istore but can be changed and renamed by by editing the
HCSS user.propsfile. The structure of the Local Storeisvisualized in Figure 2.2

/Local Store

\i

Figure 2.2. General structure of the Local Store

PRODUCT
—_——

PRODUCT
PRODUCT /

Linking it altogether: Introducing the Context

The smallest “piece” of SPIRE observational datais called aBuilding Block. These Building Blocks
correspond to basic operations within an observation and as the name suggests every SPIRE AOT
is built up from a combination of these building blocks. Building Blocks are usually in the form of
Timeline Data Products.

Example building blocks may be;

e Ascanlineinamap

» A single 7 point Jiggle

* A set of Spectrometer scans

Looking at your data

¢ A segment of housekeeping scans
* A motion of the Beam Steering Mirror (BSM)

Building Blocks and other Products are grouped into a context. A context is a special kind of product
linking other products in a coherent description and can be thought of as an inventory or catalogue of
products. The SPIRE processed observation consists of many such contexts within one giant Obser -
vation context. Therefore, Each set of building blocks have a context. Each Processing Level in the
SPIRE pipeline has a context and the entire Observation has a context. Thus a complete observation
may be thought of as a big SPIRE onion as depicted in Figure 2.3. Moreover, contexts are not just for
building block products and higher processed data products, there are contextsfor Calibration Products
and contexts for Auxiliary Products (e.g. pointing) and even a context for Quality Control. The entire
SPIRE Obseravtional Context isshownin Figure 2.4 for al products from the raw building block data
to the final high level processed end products from the pipeline. Thisis the structure and content that
you should receive for your SPIRE observation from the Herschal Science Archive (HSA).

Level 1 - Level 2

Post Processing q
Level 0.5 - Level 1
AOT Processing q
Level O - level 0.5
Raw Data q

Engineering Conversion

Figure 2.3. The Context structure within HCSS. The smallest “piece” of SPIRE observational data are
Building Blocks. Building Blocks and other Products are grouped into a context. All the data within an
entire SPIRE observation arelinked by an Observation Context.

Looking at your data

p = N

2.1.3.

Raw Data, + Conversion to Level 0.5 + Processed Level 1 + Final Level 2 & QC)
Auxiliary Context Calibration Context Level O Context
® Pointing Product

l Photometer Calibration Context l Building Block Context
® SIAM Product

® Ephemeris Product Spectrometer Calibration Context

Level 0.5 Context Level 2 Context

 Building Block Context
® Processed Data Products

9-
e.g.
Photometer Scan Timeline Product Photometer Map Product

Pointed Photometer Jiggle Product Point Source Product

ctromter Interferogram
sl B &2 erects spectrun Photometer Jagle Map Product

Spectral Data Cube Product

-

Quality Context

® Quality Product

Figure 2.4. The complete Observation Context of a SPIRE observation

Looking at your Observation Context in HIPE

The Observation Context can be viewed directly within HIPE. It is assumed in this example that the
data has aready been downloaded from the archive and has aready been stored in a pool named
Gal axyScanMap inthe Local Store. Wetherefore have to load this pool into the HIPE environment
and extract the Observation Context for this observation. This is possible via a slightly convoluted
route using the GUI but can al so be accomplished painlessly with athe few lines of code shown bel ow;

Pool = -'Gal axyScanMap' # Sel ect the pool nane
st or age=Pr oduct St or age(Pool) # Regi ster the pool
queryResul ts = storage.sel ect(Query("type=="O0BS' ")) # Query the pool
MyCbsCont ext = queryResul t s[0] . pr oduct # Extract the Context

The first line of code selects the desired Pool from our Loca Store on disk. This Pool isread in to a
storage areain memory (referred to as Registering the Pool") whichwehavedecided to call st or age.
Once the Pool has been registered, it can then be queried for the observation context by searching the
storage for the Product Type OBS. Finally, the Observation Context Product is stored in avariable we
choose to call My GbsCont ext . After running the above lines we see five new entriesVar i abl es
pane of HIPE shown in Figure 2.5. These variables have aready been described above (Note: the
p is simply a place holder). Double clicking on the obsCont ext in the variable list brings up the
Observation Context observation in a new window as aso shown in Figure 2.5. The Observation
Context has Summar y, Met a- Dat a and Dat a panes. The Sunmar y pane contains information on
the instrument, target position, observation 1D, Operational Day and Observation Mode. The Met a-

Dat a pane contains al relevant information on the Product necessary to describe and process the
observation (including the information in the Sunmar y pane). The Meta-Data for the observation
context issummarized in Table 2.1. The Observation Context Dat a pane contains pointersto al other

Looking at your data

contexts and data products contained in the Observation Pool. The Dat a pane contains many entries,
listed below and in Figure 2.6 (See also Figure 2.4);

e | evel 0:TheLevel 0 context containing links to the Level 0 raw Data before any pipeline pro-
cessing.

* | evel 0.5:TheLeve 0.5 context containing linksto the Level 0.5 data products after the com-
mon engineering conversion has been made.

* l evel 1:Theleve 1 context containing links to the Level 1 data products after AOT specific
pipeline processing.

» | evel 2:TheLevel 2context containinglinksto thefinal Level 2 dataproductsfrom the pipeline.

» cal i brati on: The Cdlibration context pointing to al calibration products required for the pro-
cessing of SPIRE data.

e auxi | i ary: The context pointing to all .

* | ogOhsCont ext : The context pointing to the reduction log that records the processing history
of the data

» qual i ty: The Quality context pointing to the quality control products for this observation.
» br owsel magePr oduct : The context pointing to thumbnail products.
* br owsePr oduct : The context containing information from the HSA archive.

Note that the structure of the Observation Context can also be directly seen from the command line
by typing, pri nt MyGbsCont ext ;

HI PE> print MyObsCont ext

{descri pti on="Unknown", meta=[type, creator, creationDate, description, instrunent,
nodel Nane, startDate, endDate, obsState, obsid, odNumber, cushMbde, instMde],

dat asets=[], history=None,

refs=[auxiliary, br owsel magePr oduct, br owsePr oduct, cal i brati on, | evel 0,

I evel 0_5, | evel 1, | evel 2, | ogObsCont ext, qual i ty]}

Here the Observation Context can be clearly seen to contain no data as such but rather a set of pointers
or references to other different kinds of contexts. In the next section, the Observation Contexts for
specific individual AOTs will be investigated in more detail alowing us to have a first look at our
processed datal

Table 2.1. Description of Meta Data in the SPIRE Observation Context

Meta Data Description

odNumber The Observational Day when the observation was made

obsid The unique Observation ID (in decimal)

startDate The start date of the observation in TAI, Zulu Time

endDate The end date of the observation

creationDate The creation date of this Product

creator How the product was created (e.g. Standard Product Generation (SPG) ver-
sion)

modelName Whether the datais from Flight or Flight Spare, etc

obsState

Looking at your data

Meta Data Description

How far has the observation been processed by the pipeline (Level 0, 0.5, 1
or2)

type The Product Type (OBS = Observation Context)

instMode The instrument mode (The AOTs defined internally as POF5 for Large Map
Mode)

instrument The instrument name, in this case SPIRE

cusMode How the AOT isreferred to in the observaion logs and scheduling
(SpirePhotoL argeScan)

description The Product name

File Edit Run Window Help

mil=2

B P@ B ® B Q@
(=l

2% variables x

@ Pool
@ queryResults
@ storage

] Editor x

@ New-2 | % obsContext x

ObservationContext for SPIRE data of observation 1342183485

[=8]

~ Summal

Instrument: SPIRE RA: 233.7447529923502
DEC: 23.493336360600836 Operational Day: 117
Observation 1D: 1342183485
~ Meta Data
name value

‘Observation Mode: Large Map

unit description
type OBS Product Type Identification -
creator SPG v1.1.1 Generator of this product

creationDate |2009-09-09T09:16:282 Creation date of this product

description ObservationContext for SPIRE data of observation 1342183485 Name of this product
instrument SPIRE Instrument attached to this product
Model name attached to this product
Start date of this product

End date of this product -

modelName FLIGHT
startDate 2009-09-07T22:56:02Z
endDate 2009-09-07T23:15:527

= obsContext obsContext
%LB auxiliary

@ (% browselmageProduct

- (® browseProduct

& (2 calibration

fi
R

| | 82 of 2043 M8 .

Figure 2.5. The Observation Context within HIPE

Looking at your data

Auxiliary Product (pointing stuff)

Browse Image Product (thumbnail)

= obsContext
Browse Product (info for archive) ®auxiliary
& browselmageProduct
Calibration Product (calibration info) ®browseProduct
@ calibration
Level O Product (raw data) ®level0
o @ level0_5
Level 0.5 Product (Processed Timelines) i
®|evell
Level 1 Product (processed products) = level2
®|ogObsContext
Level 2 Product (final pipeline) ®quality

Reduction Log (data reduction history)
Quality Product (check of data)

Figure 2.6. Inside the Observation Context within HIPE.

2.2. SPIRE Large Map and Parallel Mode Data
Structure

2.2.1. A first look at your image maps (The Level 2 Da-
ta Product)

All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the datafor a SPIRE Large M ap
observation, however this description applies equally to SPIRE Parallel M ode observations.

The observation we shall belooking at isaL arge Map observation of the Planetary Nebulae NGC5315
taking during the Herschel-SPIRE PV phase. NGC5315 is at RA=13h53m57.00s, dec=-66d30'50.70"
and was covered by scanning the photometer arrays 3 times each in orthoganal direction. The entire
process was then repeated (i.e. this observation has 2 repetitions) giving in total 6 scansin each or-
thoganal direction making 12 scan linesin total.

It is assumed that the observation has aready been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = -'OD117- ScanNGC5315- 0x50001833' # Sel ect the pool nane
st or age=Pr oduct St or age(Pool) # Regi ster the pool
queryResults = storage. sel ect (Query("type=="0BS ")) # Query the pool
MyObsCont ext = queryResul t s[0] . product # Extract the Context

For this particular observation, we choseto call our Pool OD117-ScanNGC5315-0x50001833 where
OD117 means the observation was made on Operationa Day 117, Scan was the AOT mode,

Looking at your data

NGC5315 was the target name and 0x50001833 is the unique Observation ID in hexadecimal. Run-
ning the above script, reads the Observation Context into memory into the variable MyObsContext
which appears in the Variables pane of HIPE (See Figure 2.7). Right Clicking (or CTRL-click for
Apple Users) on the MyObsContext variable brings up another menu. Selecting Open Wt h --
onservation Vi ewer will open the Observational Context for this observation. The structure
of the Observation Context was explained in Section 2.1 and he we shall ook at the data inside the
Observational Context. We start with the final Product of the SPIRE Large Map pipeline - theimage
maps. Themapsare Level 2 Products and can therefore be found within the Level 2 Context. The maps
can be simply acccesed by clicking onthelevel 2 folder as shown in Figure 2.8, which revealsa SPIRE
Photometer Map Product (or moretechnically Si npl el mage Products) for each of the three SPIRE
arrays (PSW, PMW, PLW). Each Photometer Map Product contains 3 Table Datasets corresponding
to the image, error and coverage maps for each array and these are revelaed by clicking on the + sign
next to the array folder.

The image map can be viewed by clicking on the appropriate array folder (PSW, PMW, PLW) or
alternatively the image map can be displayed in a new window by right clicking on the appropriate
array folder and selecting Open W't h - St andard | nage Vi ewer from the drop down menu
as shown in Figure 2.9. This action opens the image in the | mage Vi ewer where the image can
be panned, magnified etc. Colours, cut-levels, annotation options can be accessed by right-clicking
anywhere on the image. The image, error and coverage maps can also be displayed individually by
clicking on them or by right-clicking on the appropriate dataset and selecting Open Wt h - | nage
Vi ewer for ArrayDatasets from the drop down menu. Finaly, right-clicking on a given
image dataset and selecting Open Wth - Array Dataset Vi ewer from the drop down menu
shows the image (or error or coverage) in table form (Jy/beam for every pixel in the image) as shown

in Figure 2.10.

If you want to extract the Si npl el mage for the PSW, PMW or PLW array as a data cube containing
the image, error and coverage maps to work with, rather than view it with the | mrage Vi ewer, on
the command line type the rather exhaustive:

MyMapPr oduct =MyObsCont ext . ref s["l evel 2"]. product . ref s["PSW] . pr oduct
Then to view each of the map datasets

Di spl ay(MyMapPr oduct . i mage)

Di spl ay(MyMapPr oduct . error)

Di spl ay(MyMapPr oduct . cover age)

where MyMapPr oduct can be any name we choose and the following syntax means from My Cb-
sCont ext we want the Level 2 product PSW array Photometer Map Product. Y ou will also notice
that My MapPr oduct now appearsin the Variables Panel which can correspondingly beright-clicked
on to show the various viewing options available for this product. The next 3 linesin the above script
allow usto display the signal, error and coverage maps respectively.

10

Looking at your data

oo HWPE20-Newl 0000000000000

File Edit Run Window Help

& L P@EmEQ
] Editor % —_o|| 52 variables x 5
New-1 x -
1 Pool = '0ODL17-ScanNGCS5315-0x50001833° Tm
2 storage=ProductsStorage(Fool)
5 gueryResults = storage.select(Query('type== 085 ")) ep
4 print queryResults @ Pool Product Viewer
5 obs = 1ts[0].prod
: SCONLext = querymesulrs[0]-product © queryResults| = send to ¥ Product Tree Editor
@ storage .
Show methods Context Viewer
Rename
¥ Delere ®
= Console % = (Z) Help inURM F1
[EOPE> Pool = 'ODII7-SCanNGC5315-0x50001833" (2) Help in DRM

storage=FroductStorage(Fool)

lqueryResults = storage.select(Query("type==0BS'"))

print gueryResults

fobsContext = queryResults[0].product
[urn:0D117-5canNGC5315-0x50001853:herschel.ia.obs.ObservationContext:1]
HOFE>

|| Cemmm .,

Figure2.7. Loading and viewing the Observation Context for the Large Map Observation.

- MyObsContext X

Image
-~ Summary
name value description
crpixl 250.0 'WCS: Reference pixel position axis 1, unit=5Scalar -
crpix2 16.0 'WCS: Reference pixel position axis 2, unit=Scalar
icrvall 208.11765598421647 'WCS: First coordinate of reference pixel
crval2 -66.74621303624633 'WCS: Second coordinate of reference pixel
cdeltl -0.001666666666667 'WCS: Pixel scale axis 1, unit=Angle
cdeltz 0.001666666666667 'WCS: Pixel scale axis 2, unit=/Angle
ctypel RA---TAN 'WCS: Projection type axis 1, default="LINEAR"
ctype2 DEC--TAN 'WCS: Projection type axis 2, default="LINEAR" -
= MyObsContext MyObsContext.refs["level2"].product.refs[|"PSW"].product["image”] B a9
& (8 auxiliary

rimage Viewer

®- (% browselmageProduct
& % browseProduct

@ [calibration

& (8 |oyel0

® (5 |evel0_S

& (59 |evell

o= level2

& (% pLw

-.;r@ PIMW

= (= PSW

N.A. | NLA.

© coverage
= 5 History
®- (% |ogObsContext
® (® quality

160, 162

BJRJEIA 10 [T]

0.035267

Figure 2.8. Accessing thefinal Level 2 Product maps

11

Looking at your data

2.2.2.
again

E MyObsContext

@ auxiiary
|+ browseImageProduct
|4 browse Product

% (9 calibration

& Open With

|4 @ logObsContext
[+ 8 quality

OVl (3) Help in URM F1

[Product Viewer
Product Tree Editor
Wes explorer for Images

= Standard Image Viewer

[Editor x

= aproaua x

image Viewer

13:50:46.174, -66:33:35.30

Figure 2.9. Viewing the Level 2 Image Maps

.- MyObsContext X

Image
- Summary

- Meta Data

= MyObsContext
- (% auxiliary

& (% browseProduct

& (® browselmageProduct

Image
Meta Data

MyObsContext.refs["level2”).product.refs["FSW").product[”image"]

| MewaData |
- (% calibration
@ (# lovel0
4 (% level0_S rArrayData: Double2d
- (2 levell
o & lavel2 Double2d:data[0:307][0:313]
e@pw
¢ (5 PMW t184 [185 | 186 | 187 188 189 190
=& psw) Eem = =
B i Open with | @ Dataset Viewer [89...[-0.01062...|0.006240...|-0.01870...
— U -~ -
= 57® s i -, ISR URGRAg 0 o01o. ooecas oozt
b ;5:0';”“ 7../-0.00358..|-0.00296...0.001061.. |-0.00691.._|-0.00909...-0.00863.._|-0.01472..
4 8 l0g0bsContext 2../0.001983...[-0.00570... -0.01786...|-0.02044...-0.00576... 0.003916...|-0.01975....
o % quality 2../-0.00900...|-0.00713...|-0.00550..[0.001237..-0.00102...-0.01949_._|-0.01554
5. |-0.00656..|-0.00841.._-0.01095_.-2.99812.._|0.002567..|-0.00927.._|-0.02378_.
9../-0.01581..|-3.94172.../0.002835...-0.00682...|-0.01752... -0.01940...|-0.01223..
5..|-0.01414...|2.332835...-0.00292...|-0.00766... -0.00924...-0.01690... -0.00976...
8..|-0.00352...|0.009071._.[0.005223.._|-0.00988_._|-0.02719...|-0.00437.._|-0.01801..
4 |[-0.00208 =-0.00273% 0003896 |-0.01200 [-0.00733 =-0.01803 -N.N08RS9

Figure 2.10. Viewing the Level 2 Image Array Datasets

Saving a map as a FITS file and reading it in

It is possible that me may also want to look at our image maps in external applications such as DS9
for example and HIPE provides the tools for exporting our maps as conventional fitsfiles. Following
on from the previous example above we can send our MyMapPr oduct (Si npl el mage) product to
aFITSfileby right-clicking onitinthe variable list and selecting Send To -FI TS fi | e fromthe
drop down menu. This will open the FITS writer panel as shown in Figure 2.11 where we can type
in our desired filename and path. Click on Accept at the bottom of the panel to save the FITS file.
Thisfitsfile will then be saved as a multi-extension fits file containing the image, error and coverage
maps that can then be read into DS9 as a data cube and viewed. The same effect can be acheived on

the command line by;

Fi t sArchi ve().save(' nypath/ nyMap.fits',

MyMapPr oduct)

12

Looking at your data

which again saves the products as a multi-extension fits file containing the image, error and coverage

maps.
0o HIPE - Herschel Interactive Processing Environment
File Edit Run Window Help
N PR wm B
”‘r_,fEdimr x [—o]| 2% variables x) =
[® New-1 (- myObsContext {3 MyMapProduct | & simpleFitsWriter x -

rinput

% Open With
B = Send 10 LB FITs file
file* : |myMaps.ﬂt5 || Browse. .. © storag

product® : E MyMapProduct

Show methods =7 Local store

Warn : [vi Ask before overwriting Rename
Delete B

(7) Help in URM F1
‘ (2) Help in DRM

Fvutmﬂ

rInfo

success -
status: il
progress: 100%
Clear | | Accept

|| Csemmw i .

Figure 2.11. Exporting Image Maps as FI TSfiles

Reading aFITSfileinto the HIPE session can be accomplished by either selecting Open Fi | e from
the Fi | e menu in the top right hand corner of the HIPE window. Alternatively, from the command
line;

nmyMap=si npl eFi t sReader (' nypat h/ nyMap. fits')

These FITS files are imported as asi npl el mage and can be manipulated in the same manner as
thesi npl el nage products described earlier in this section.

Note

@ The Photometer Map Products (data cubes for each array containing the im-
age, error and coverage arrays) actualy exist as fits files within the Pool
for this observation in the Local Store. These can be found in the Pool for
this example in the folder / | ocal st or e/ OD117- ScanNGC5315- 0x50001833/
herschel . i a. dat aset. i nage. Si npl el mage (wherethe poolnameis"OD117-
ScanNGC5315-0x50001833"). The Photometer Map Products have the form
hspireplw.......... prmp.fits

2.2.3. Looking at the Level 1 Timeline Data

The image maps have been created from the individual timelines of detectors as they were scanned
accross the target. These timelines are the Level 1 products from the Photometer Large Map Pipeline
and are also available from the Observation Context. The Level 1 Large Map products are referred to
as Photometer Scan Products. In Figure 2.12 we show how the Level 1 products can be accessed
from the observational context. Note that within the Level 1 Context there are atotal of 12 Products
labelled from 0 to 12. These are all Photometer Scan Products. As noted earlier the map of NGC5315
was constructed by scanning the photometer arrays 3 timesin each orthoganal direction twice making
atotal of 12 scan linesin total. Although the numbering system seems anonymous, the actual name of
the Building Block can still be revealed by checking the MetaDatabbTypeNane inthe Photometer
Scan Product (i.e. click on one of the folders numbered 1-12). The column names give the time, and
then the signal for each detector on the arrays (not thefirst entry PSWR1, actually aresistor, measured

13

Looking at your data

in Volts and the following bolometers measured in Jy and a thermistor (PSWT1) again measured in
volts, etc.).

Each Photometer Scan Product contains 5 individual Table Datasets (and a Product containing the
processing history) as shown in Figure 2.12 and defined below;

Signal Table: A table containing the Sample Time (in seconds) and a column for the signal from
every bolometer including both detector (in Jy/beam) and non-detector (e.g. thermistor, resistor in
Volts) channels

Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

RA Table: A table containing the Sample Time (in seconds) and a column for the RA on the sky
in degrees for each detector (not including non-detector channels)

Dec Table: A table containing the Sample Time (in seconds) and a column for the Dec on the sky
in degrees for each detector (not including non-detector channels)

Temperature Table: A table containing the Sample Time (in seconds) and a column for each
Thermistor channel temperature (measured in Kelvin)

These individual Table Datasets correspond to data from a single scan line and can be viewed either

as - by right-clicking - array tables (by selecting Open Wth -Data Set Vi ewer) or plotted
(by selecting Open Wt h-Tabl e Pl otter).Althoughtheuseof Tabl e Pl ott er isbeyond
the scope of this document, an example is shown in Figure 2.13 where we have selected to plot the
Sample Time against the Signal from the PSW D16 bolometer for this particular scan line.

File_Edit Run Window Help
(=3 LP@mmBEQ

7] Editor x =

L MyObsContext x

Voltages table
- Summar
Instrument: SPIRE Operational Day: 117
‘Observation ID: 1342183475
eta Data

name value unit description

(& MyObsContext levell'].prod roduct|"signal’] Ba
- (3 auxiliary
- (% browselmageproduct | Voltages table
- (3 browseProduct
- (3 calibration None
- levell
0 index sampleTime [TA] PSWRL [V] PSWD16 (y] PSWB16 [yl PSWCLS y]
o mask 6310330373046134E9[0.0036739871233701706 _[3.1707296315580606 _[0.008600875735282898 [3.005746673643589 |2.541075486689806 _[2.9926].
© temperature $6310330373583734E9[0.0038735512644052505 |3.378318315371871 _[0.00850997421503067 _|3.3514888621866703 |2.666641777381301 |
o BTl [2 16310330374121335€9 [0.003873370587825775 [3.170234214514494 [0.008600190281867981 3.257490688934922 |2.6023678220808506 3.
en .6310330374658935E9 (0.003874456509947777 .288765862584114 .008601076763604164 221271876245737 |2.626731269389391
© dec .6310330375196536E9 [0.0036744304329156876 |3.0915281139314175 |0.008601104840636253 808787804096937 |2.5220005363225937
@ (3 History .6310330375734134E9 [0.0038748327642679214 _|3.2850029322862625 __[0.008601460605859756 34642758592063 |2.6432138737291098
&1 16310330376271734E9 [0.003873812034726143 .2195344120264053 [0.00860036164522171 907008100301027 |2.545657891780138 X
&2 16310330376809335E9 (0.003873780369758606 .2003567684441805 [0.008600421249866486 799942456185818 |2.685350116342306
-3 .6310330377346935E9 [0.0038731861859560013 |3.2254335787147284 [0.008599866181612015 866016644984484 |2.568072346970439 X
&4 16310330377884533E9 (0.003873385488986969 .249263681471348 .00859985500574112 24903767555952 |2.622727571055293
&5 .6310330378422134E9 (0.0038750208914279938 |3.152145754545927 .008601674810051918 55575753748417 |2.555066052824259
4 .6310330378959734E9 [0.00387687049806118 .2265113908797503 [0.008603427559137344 66866547614336 |2.616087509319186
&7 16310330379497302E9 [0.0038770735263824463 |3.191035522148013 .008603818714618683 0529486114855 |2.6417532563209534 3.
4 16310330380034902E9 [0.0038761943578720093 |3.3342644833028316 |0.008602799847722054 866198867559433 |2.5416779626488686 3.
4 16310330380572503E9 [0.003674586895108223 .2202154994010925 [0.008601317182183266 175192289054394 |2.5655260235071182
& 10 16310330381110103E9 (0.003874378278851509 .20277763530612 .00860089436173439 50957615673542 |2.666023937985301 X
& 11 6310330381647704E9 [0.0038745123893022537 |3.2666346952319145 [0.0086012352257967 507891558110714 |2.509281480535865
P level2 16310330382185302E9 [0.003874531015753746 .2374502774327993 [0.008600931614637375 524324748665004 |2.6920028403401375 3.
> & logObsContext .6310330382722902E9 [0.00387442 11196899414 234139855951071 008601220324635506 631816305220127 |2.5123568680137396
> quality 631 03£9 617

|| MEmmw .

Figure 2.12. Viewing the Level 1 Photometer Scan Products

14

Looking at your data

File Edit Run Window Help

Oe TP @ s ® B @
] Editor x (=)
@ New-1 | %: MyObsContext x
Voltages table
= MyObsContext “levell"].prod £5(0] .product [signal”] B

- (3 auxiliary
- (%8 browselmageProduct
- (%8 browseProduct Display Style
- (% calibration
9 level0 in_ | Marked__ vE
- (5 level0_S 1 in |VeROSS + E
7 > levell
=]
© mask T~y
© temperature ‘ s ' t | A
¥ sional| =
on g “‘U ‘ | ‘H H “" |’ \| M l =] Fast] = | 3¢
© dec == || | ‘ ‘ ”
& (5 History d '>.| ‘ ”" ‘| | i I ‘H 41+
s | i R
- (% 2 | ‘ ‘ H“‘ i | ‘ ‘ H Selections
g: Hide X | Unhide O |
- Excl, Select | Unhide Al
20 Al cols [T show Al
(7 e
S5 s Exract | [Preferences|
-9 | I | I
‘g 10 o n = ; el £ QOverlay plots
sampleTime(TAD
(511 " 7 overlay
- (59 level2 = - o Legend
:g?ﬁﬁ‘x“m“ x-axis: [-offset [sampleTime [=] [1== y-axis: [] -offset [PSWD16 = 3= [Remove a layer ~
time[0]=1631033037:2009-09-07 16:43:23(UTC)
1.2.234.0

I .
Figure 2.13. Plotting L evel 1 Photometer Scan Product Timeline Data

Individual Table Data Sets can also be extracted from the Observational Context using the alternative
command line script. Using Figure 2.13 as a guide we can see the following;

Extract the Photoneter Scan Product for the first Scan Line
ScanLi nel=MyCbsCont ext . refs["| evel 1"]. product . ref s[0] . product
or extract the Photonmeter Scan Product for the second Scan Line
ScanLi ne2=MyCbsCont ext . refs["| evel 1"]. product . ref s[1] . pr oduct
#

CGet the Signal Table fromthe first Scan Line

Si gnal ScanLi nel=ScanLi nel["' si gnal ']

Get the array of values for the Sanple Tine

Ti meScanLi nel=Si gnal ScanLi nel[' sanpl eTine']. data

CGet the array of values for the PSW D16 Detector
PSWD16ScanLi nel=Si gnal ScanLi nel[' PSWD16'] . dat a

print PSWD16ScanLi nel

where ScanLi nel, etc can be any hame we choose and the following syntax means from My Cb-

sCont ext wewant the Level 1 product Photometer Scan Product for the first scan line (i.e. element
[0]). Youwill also noticethat ScanLi nel now appearsin the Variables Panel which can correspond-
ingly be right-clicked on to show the various viewing options available for this product. The follow-
ing lines show the procedure for extracting the second scan line (i.e. array element [1]) and go on to
extract, for the first scan line the Signal Table Dataset. Finally the sanpl eTi ne and detector signal
for the PSWD16 detector are extarcted as normal arrays of numbers. The final list of variablesin the
HIPE Variable Pane is shown in Figure 2.14.

15

Looking at your data

2.2.4.

M ™ O Variables

B2 variables x (o

-

MyObsContext

P
Pool

gqueryResults
ScanLinel
SignalscanLine 1
storage
TimeScanLine 1

PP OO O OED

Figure 2.14. Plotting L evel 1 Photometer Scan Product Timeline Data variable list

Looking at the Level 0.5 Timeline Data

These timeline data have been created by processing the raw Level 0 data through the Common Engi-
neering Conversion (Level 0- Level 0.5) Pipeline. TheLevel 0.5 dataare the uncalibrated, uncorrected
timelines measured in Volts. The level 0.5 products are al so available from the Observation Context.
The Level 0.5 context folder can be seen in the Observation Context and can be opened by clicking on
the + next tothel evel 0_5 folder. The Level 0.5 context contains a lot more data than the Level 1
context and includes all the data necessary to processthe observation and produce science quality data.
In Figure 2.15 we show all the Level 0.5 data within the observation context. We see that there are a
total of 31 entriesin the list informatively labelled from 0 to 30 (Note that PCAL calibration flashes
are no longer nade at the beginning of the observation since Operational Day OD302 for Large Map
mode and OD341 for Parallel mode). This can be compared to atotal of 12 entries that we saw for the
Level 1 products. The Level 0.5 context contains all the building blocks used in the observation and
in Figure 2.15 we show how this Large-Map observation was built up from the individual building
blocks. In the figure, the building blocks can be divided into roughly 4 general types, configuration
blocks, calibration blocks, science blocks and movement blocks. The type of building block can be
revealed by clicking on a given number from 0-30 and scrolling down the Met a dat a window pane
to the BBt ypeNamne entry. The individual blocks are described below in Table 2.2;

Table 2.2. Description of the Building Blocksin aLarge Map Level 0.5 Context

BB number |BB Type BB Hex Description
prefix
0 SpireBbObsConfig OxAFO1 Initial configuration
1 SpireBbPhotSerendipity |0xA104 Slew to target
2 SpireBbPOF5Config 0xA050 AQT configuration
3 SpireBbPOF5Init OxA051 Initialize the AOT
4 SpireBbPcalFlash OxA801 Photometer Calibration Lamp Flash
5 SpireBbScanLine 0xA103 A large map scan line
6 SpireBbMove OxAFO00 Scan Line turnaround movement
7 SpireBbScanLine OxA103 A large map scan line
8 SpireBbMove OxAF00 Scan Line turnaround movement
SpireBbScanLine 0xA103 A large map scan line
SpireBbMove OxAFO00 Scan Line turnaround movement

16

Looking at your data

BB number |BB Type BB Hex Description
prefix
27 SpireBbScanLine 0xA103 A large map scan line
28 SpireBbMove OxAF00 Scan Line turnaround movement
29 SpireBbPcalFlash 0xA801 Photometer Calibration Lamp Flash
29 SpireBbPOF5ENd OxA052 End of AOT
Large Map a00 MyOb
Bqulng 0 — G4 MyObsContext X
Block 1
[Ssummary |
Sequence 2
3 HbsComut MyobsContext 7
& (% auxiliary :
4 & (® prowselmageProd uc
’ (= browseProduct
5 1
6 = levelD_5
. .‘_ % E'hsmry
8 =2
G 3
9 181
10 -4
11 183
12 I8y
13 184
14 & % 15
- 16
15 % 4
16 S
- 20
17 2
18 4
19 ¢4
20 =
- (2 29
21 & 30
22 - level2
& (%% logObsContext
23 (% quality
|« |
24
. 1 scncesan
o6 Science (scan line)
27 @ Movement (scan turnaround)
28
29 @ Set-up (configuration, slewing, etc)
= -

Calibration (PCAL flash)

Figure 2.15. Anatomy of Level 0.5 Building Block structurefor a Large Map observation

Looking at some of the individual entriesin the Level 0.5 context, it can be seen that the individual
Building Blocks are built up from a variety of different types of Products. clicking on the + sign for
a given Building Block number reveals what Products a particular Building Block is made from. In
Figure 2.16 the first handful of building blocks for our observation are opened to view the contents.
The contents are a variety of Products referred to by ancronyms such as CHKT, NHKT, PDT, POT,
SCUT, etc, described in order of importance below;

Example building blocks may be;

* PDT: The Photometer Detector Timeline contains the Level 0.5 detector data.

* NHKT: The Nominal House Keeping Timeline contains the housekeeping datawith all the settings
for this observation.

17

Looking at your data

CHKT: The Critical House Keeping Timeline contains all the critical parameters of the instrument
such as the electronics.

SCUT: The Sub Control Unit Timeline contains monitoring data for the instrument operation for
this observation.

POT: The Photometer Offset Timeline contains all the raw DC offsets in ADU that have already
been used in the raw data processing to set the dynamic range of the detectors.

Note that Building blocks such as the Slewing (serendipity Building Block), Calibration flash and the
scan line turnarounds all contain PDT data. Indeed, the scan line turnaround Building Block data | S
used for scientific processing. The CHKT, NHKT, POT, SCUT Products all contain asi gnal table,
containg data arrays and a Mask table containing flag information. The Level 0.5 PDT Photometer
Detector Timeline Products contain 4 Table dataset arrays,

Voltage Table: A table containing the Sample Time (in seconds) and a column for the signal mea-
sured in Volts for every bolometer including both detector and non-detector (e.g. thermistor, resis-
tor) channels.

Resistance Table: A table containing the Sample Time (in seconds) and acolumn for the Resistance
measured in Ohms for every bolometer including both detector and non-detector (e.g. thermistor,
resistor) channels.

Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

Temperature Table: A table containing the Sample Time (in seconds) and the temperature of the
6 Thermistors (2 per array) in Kelvin.

Quality Table: A table containing any Quality Flags raised for each detector.

In Figure 2.16 the PDT for the first Scan Line Building Block has been selected. Right-clicking and
selecting Open-wi t h - Dat aset Vi ewer, opensthevol t age table in a new window. Any of
the Table Data Sets can also be viewed graphically by selecting Open-wi th - Tabl e Pl otter
as shown in Figure 2.17. In the plot window the bolometer signa to plot can be selected from the
Y- axi s menu and many bolometers can be overlayed by ticking the over | ay box (both circled in
the plot window).

18

Looking at your data

000 MiObeCanlipmadis
[E: MyObsCon..product X

Voltages table
Meta Data

MyobsContext .refs["level0_5"].product....roduct.refs["PDI"].produet| voltage'] =)

Voltages table
Meta Data
None

Table Data
TableD:

Index | sampleTi...| PSWR1 [V] | PSWD16... | PSWT1 [V]
0 1.631033...10.003873...0.003649.../0.008599.../0.
1 [1.631033.]0.003873..[0.003649._./0.008599

| — Observation Configuration

| Telescope Slew

| AOT Configuration

1.631033..0.003873..0.003649...]0.008599...|0.
itiali 1.631033..[0.003873..[0.003649../0.008599 0
L— AOT Initialize 1.631033..[0.003873..[0.003649.../0.008599...
1.631033..[0.003873../0.003649.../0.008599 004107
1.631033..{0.003873..[0.003649...0.008599 0.004107...[0..
. . 7 |1.631033..[0.003873..[0.00 ~.|0.008599
L~ Calibration flash 8 (1631033]0.00387: ~10008599
9 [1.631033..[0.00387 8599...
033.../0.003873... 8599
.631033..(0.003873... 8599
i .631033...[0.003873... 8599
|~ Scan Line 631033]0.003673 ~10.008595
033.../0.003872...0.003649...[0.008599...[0.003548...[0..
.631033...0.003873.../0.003649...[0.008599...[0.003548... 0.
! 6 |1.631033../0.003873...[0.003649..[0.008599...[0.003548...[0.
[@ resistance — 7 |1.631033..]0.003873..[0.003649.../0.008599...[0.003548
[& mask 8 1.631033../0.003873..0.003649...[0.008599...[0.003548...[0.004107...[0.
© quality @ elp nuRw £1| Power Spectrum Generator 9 |1.631033..[0.003873../0.003649...0.008599...[0.003548.../0.004 107
(5 History TablePlotter 20 |1.631033..0.003872...[0.003649.../0.008599...[0.003548...[0.004107...[0.
- @ emperature o 21 1.631033../0.003873..[0.003649...[0.008599. .[0.003547...[0.004107... 0.
OvIRiows 22 ~|0.003872..0.003649...0.008599...[0.003548...0.004107...|0.
23 ..0.003873../0.003649...10.008599.../0.003548../0.004107...[0.
g’;‘:ﬁ 24 .[0.003873../0.003649.../0.008599.../0.003548.../0.004107... 5
4 E I

Fevage L~ Scan Turnaround
- @ resistance
@ mask
@ quality
#-(% History
— @ temperature

Figure 2.16. Inside the L evel 0.5 Building Block structurefor a Large Map observation

BOO MyObsCon.;product
& MyObsCon..product X

Voltages table

|5 MyObsContext refs[level0_5 . product |~ 15" Levelo_5" | .prod 5[5 .prod £5("EDT" | .product ["voltage"] BN
[+ History
=41
& (% CHKT 0.0036875 "
& (% NHKT F
&1 r
(5 CHKT L +
& (59 NHKT r M
& (% pDT 0.0036874 | — e o
&2 b P
& (8 CHKT r . e) S
- (% NHKT J T A
LaZ s - . NIt | s
i ! B i N
c&4 C v R R S ARty [fin Joor >[4
& @ CHKT F T DTS LD LTI 5
& (39 NHKT r - A Igal
& (% PDT C PR ~ 3l e
4~Bs{ur 3 0.0036872 e ' t |~
& S r N - 7
w‘~§ CHKT ; C A 4um | Fast| bid
@ (3 NHKT E N .
L& por & 0.0036871 - — — l [+
| o) oo ae et S wiet S ST
© resistance Onen; < i a dhed "% L Selections
© mask Dataset Viewer s, PR . e X | Unhide O |
© quality . Power Spectrum Generator |* + o =
& (% History @ Help in URM F1) T“::P':: M EIETT | ERE Excl, Selest|_Unhide Al
© temperature L & » R Al Cote[[ll|_show ail
=6 OverPlotter ' ————
4 (3 CHKT 0.0036869 - 1h Extract _||Layer Props|
l:g ;‘:;(T [+ f}*u ‘Overlay plots
&7 I . [Overlay
[+ 8 L
e 9 0.0036868 -
& 10 Cow v b e b b ||
g 11 0 10 20 30 40
& 12 y
& 13 sampleTime(TAl
& 14 | ——
@15
-Lgm x-axis: [V -offset [sampleTime [=] | 1= set [pSwes 5]
i 17
b g :g | time[0]=1631033037:2009-09-07 16:43:23(UTQ)
S on +l| 2.0.837

Figure 2.17. Plotting the Level 0.5 data for a Large Map observation

2.2.5. Looking at the Raw Level 0 Data

The Raw data formatted from the satellite telemetry is also avail able within the Observation Context.
These are the Level 0 Products and will in most circumstances be of no general interest. The Level
0 Context, shown in Figure 2.18, contains 30 entries. Note that there is a significant difference in
the Level 0 data structure compared to the Level 0.5 Products. In the Level 0.5 Products, each indi-
vidual block in the observation has several data types (e.g. Scan line, Housekeeping data, etc - see
Table 2.2). However, in order to reduce the raw data volume at the Level O stage, all the data types
are concatonated into asingle Level O product, referred to as a Raw SPIRE Timeline (RST) for each

19

Looking at your data

building block, i.e. A single Level 0 product contains many seperate Table datasets. Clicking on a
given number within the Level O context revealsthe Level O Product for that particular building block.
These products are the raw data versions of the Level 0.5 data and contain Table Datasets such as the
Critical House Keeping timelines (CHK), Nominal House Keeping timelines (NHK), Raw Photome-
ter Detector timelines (PHOTF), Raw Photometer Offset timelines (PHOTOFF) and Sub-Control Unit
timelines (SCUNOM NAL). The Raw Photometer Detector Timeline (PHOTF) Table Dataset can be
viewed by right-clicking and selecting Open- wi t h - Dat aset Vi ewer , see Figure 2.18), we find
quite adifferent structureto the Level 0.5 PDT datasets. There are 288 columns, one for every SPIRE
channel, numbered not in the familiar PSVE8, PSVWE9 notation but rather as as PHOTFARRAY001
-- PHOTFARRAY288 which corresponds to their Channel Number (from an electrical designation).
Thesignal istill inraw ADU and there are many different time columns which correspond to various
measures of the data frames, telemetry packets and packet sequence counts, etc. The only flags are
contained in the PHOTFADCFLAGS column which is set in the case of a problem with ADC process
in telemetry. A full description of the data structure can be found in the Products Definition Docu-
ment (HERSCHEL-HSC-DOC-0959) or the SPIRE Pipeline Description Document (SPIRE-RAL-
DOC-002437).

800 MyObsContext
- MyObsContext X
Photometer Full Array (Nominal Science Report)
@MvobsCameu MyobsContext.refs| " level0"].product.refs|5].product| " PHOTF"] 2 5
Igz:;‘g‘;ﬂm index | PHOTFA_ | PHOTFA | PHOTFA__ | PHOTFA . | PHOTFA. | PHOTFA_ | PHOTFA. | PHOTFA_ | PHOTFA. | PH |
L& Jevald D 116367 (53367 [45727 |47410 _ [30623 49677 [0 46194 51756 [467|~
0 1 [16367 53365 45727 (47413 30628 49677 |0 46198 [51754 |467]
t ® CHK 2 (16368 [53359 [45733 47410 30630 [49678 [0 46194 |s1752 467
© NHK 3 (16368 [53364 [45734 47403 30629 49674 |0 46201 |s1752 467
Let 4 |16365 53366 45736 |47405 30630 49684 [0 46196 (51759 |467|
° CHK 5 116366 [53373 45732 47403 30637 |49685 0 46192 51764 |467
|E o NHK 6 (16367 [53370 [45734 47403 30633 49678 |0 46194 [s1759 |467|
& PHOTE 7 116367 [53364 (45729 47402 30634 49672 0 46201 [51755 467
Les 8 116366 (53370 [45730 |47406 _ [30629 _ |49673 0 46197 51759 |467|
t - 9 116369 [53368 [45736 (47405 30630 49680 |0 46199 |51755 467
o NHK 10 |16367 [53366 45728 47403 30633 49682 0 46199 51756 |467|
Les 11 (16370 [53371 45732 47405 30634 49679 [0 46200 [51756 |467]
o CHK 12 (16366 [53371 45730 |47402 30634 49676 [0 46197 51754 |467|
E © NHK 13 (16365 53369 45733 47406 30628 49678 [0 46193 51757 |467
® PHOTOFE 14 16362 53362 45730 (47410 |30635 49679 [0 46202 51754 467
ey 15 16365 53362 45733 47402 30638 49676 [0 46203 51759 |467
o NHK 16 (16368 [53370 45732 47407 30629 |49675 0 46201 51760 |467|
® CHK 17 [16367 |53365 45732 47402 30629 49680 |0 46197 51762 467
* PHOTE 18 (16368 |53365 45728 47405 30626 49680 |0 46196 51757 |467)
& SCUNOMINAL 19 [16365 53366 45730 [47408 _ [30634 _ |49687 [0 46191 [51753 467
Las 20 116361 [53365 45730 [47405 30638 49681 [0 46190 [51755 467
M 16367 |53367 45730 |47397 (30631 49676 |0 46197 |s1758 |467|
|E o NHK [53373 45732 47404 30634 49680 [0 46194 |s1758 |467)
o CHK Par 07 _ [30634 49680 [0 46191 [51762 467
e @6 LA 02 30633 49680 0 46196 51757 467)
® PHOTE Power Spectrum Generator (01 [30630 49677 |0 46200 |s1762 467
|E o CHK TablePlater 03 30631 49681 |0 46205 51762 467
o NHK e—— 06 [30638 49682 0 46196 [51762 467
L a7 06 (30630 49675 0 46197 [51753 467
® PHOTE 53366 |45735 47402 30633 49681 0 46203 51752 467
|E © NHK 53369 (45732 47405 30637 |49682 0 46203 51754 (467
o CHK 53367 |45732 47412 30629 49676 [0 46197 51757 |467|
b 53370 45730 |47407 [30634 _ |49681 |0 46202 51755 467
i@, 53370 |45733 47407 30630 49680 [0 46205 51755 467
i@ 53374 45736 [47412 30632 49680 [0 46202 51753 467
4% 11]

Figure 2.18. The Level 0 Raw Data within the Observation Context

2.3. SPIRE Small Map Mode Data Structure

2.3.1. A first look at your image maps (The Level 2 Da-
ta Product)

All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the data for a SPIRE Small Map
observation, however this description applies equally to SPIRE Large Map and Parallel M ode ob-
servations. The Small Map mode operation is basically identical to the nominal Large Map Maode
except that instead of a nominal 2x2 scan leg covergae of optional scan leg length, the Small Map

20

Looking at your data

mode consists of a pair of orthoganl scans (i.e. a 1x1 scan, See Figure 2.19). For a given observation
the area covered by both scan legs defines a central square of side 5 arcmins although the length of
the two orthogonal scan paths are somewhat longer than this. In practice, due to the position of the
arrays on the sky at the time of a given observation, the guaranteed area for scientific useis acircle
of diameter 5 arcmins.

40k
4250
U L -
Lu -
a) L
£ L
Q L
Ul
t 4 \ v,
435 — nm
[.
L s
++‘
L *
- +4;1

el v v b v v byt by v by |
22715 22710 22705 -227.00 -22695 12690

Figure 2.19. Theformat of a Small Map observation.

The observation we shall belooking at isaSmall Map observation of astandard SPIRE calibration star
Gamma Draconis taking during the Herschel-SPIRE routine calibration phase. Gamma Draconisis at
RA=17h56m36.37s, dec=51d29'20.00" and was covered by scanning the photometer arrays once each
in orthoganal directions. The entire process was then repeated atotal of 4 times (i.e. this observation
has 4 repetitions) giving in total 6 scansin each orthoganal direction making 12 scan linesin total.

It is assumed that the observation has aready been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = -' OD358- Snal | ScanMapGammDr a0x5000489F' # Sel ect the pool nane
st or age=Pr oduct St or age(Pool) # Regi ster the pool
queryResults = storage. sel ect (Query("type=="0OBS ")) # Query the pool
MyObsCont ext = queryResul t s[0] . product # Extract the Context

For this particular observation, we chose to cal our Pool OD358-
SmallScanM apGammDr a0x5000489F where OD358 means the observation was made on Opera-
tional Day 358, SmallScanM ap wasthe AOT mode, GammDr awasthetarget name and 0x5000489F
isthe unique Observation I D in hexadecimal . Running the above script, reads the Observation Context
into memory into the variable MyObsContext which appears in the Variables pane of HIPE (See
Figure 2.20). Right Clicking (or CTRL-click for Apple Users) on the MyObsContext variable brings
up another menu. Selecting OQpen Wt h -- Cbservati on Vi ewer will open the Observational
Context for this observation. The structure of the Observation Context was explained in Section 2.1
and he we shall look at the data inside the Observational Context. We start with the final Product of

21

Looking at your data

the SPIRE Large Map pipeline - the image maps. The maps are Level 2 Products and can therefore
be found within the Level 2 Context. The maps can be simply acccesed by clicking on the level2
folder as shown in Figure 2.21, which reveals a SPIRE Photometer Map Product (or more technically
Si npl el nage Products) for each of the three SPIRE arrays (PSW, PMW, PLW). Each Photometer
Map Product contains 3 Table Datasets corresponding to the image, error and coverage maps for each
array and these are revelaed by clicking on the + sign next to the array folder.

The image map can be viewed by clicking on the appropriate array folder (PSW, PMW, PLW) or
alternatively the image map can be displayed in a new window by right clicking on the appropriate
array folder and selecting Open W't h - St andard | nage Vi ewer from the drop down menu
as shown in Figure 2.22. This action opens theimage in the | mage Vi ewer where the image can
be panned, magnified etc. Colours, cut-levels, annotation options can be accessed by right-clicking
anywhere on the image. The image, error and coverage maps can also be displayed individually by
clicking on them or by right-clicking on the appropriate dataset and selecting Open Wt h - | nage
Vi ewer for ArrayDatasets from the drop down menu. Finaly, right-clicking on a given
image dataset and selecting Open Wth - Array Dataset Vi ewer from the drop down menu
shows the image (or error or coverage) in table form (Jy/beam for every pixel in the image) as shown
in Figure 2.23.

If you want to extract the Si npl el mage for the PSW, PMW or PLW array as a data cube containing
the image, error and coverage maps to work with, rather than view it with the | mrage Vi ewer, on
the command line type the rather exhaustive:

MyMapPr oduct =MyObsCont ext . ref s["l evel 2"]. product . ref s["PSW] . pr oduct
Then to view each of the map datasets

Di spl ay(MyMapPr oduct . i mage)

Di spl ay(MyMapPr oduct . error)

Di spl ay(MyMapPr oduct . cover age)

where MyMapPr oduct can be any name we choose and the following syntax means from My Cb-

sCont ext we want the Level 2 product PSW array Photometer Map Product. Y ou will also notice
that My MapPr oduct now appearsin the Variables Panel which can correspondingly beright-clicked
on to show the various viewing options available for this product. The next 3 linesin the above script
allow usto display thesignal, error and coverage mapsrespectively. Theresultisshownin Figure 2.24.

800 HIPE - empty.
File Edit Run Pipeline Window Help
= LI vl I ISR
] Editor X [— 0| i variables x [=E
@ New-1 x ® -
1p Pool = '0D358-SmallScanMapGammpra0x5000489F" n ™ m
2 storage=ProductStorage(Pool) ° Open
% gueryResults = storage.select(Query("types='055 ")) @ Pd_
4 MyObsContext = gqueryResults[0].product # EXErac he Contex: N & Open With »| Product Viewer
[
@ sY sendto Context Viewer
Show methods = Observation Viewer
Rename
X Delete ®
(2) Help inURM F1
(2) Help in DRM

El Console x (=a)

HUPE

HOFE> Pool = 'OD358-SmallScanMapGammDra0x5000489F' # select the pool name
storage=productstorage(Fcol} # Register the pool
queryResults = storage.select(guery(’type=='0BS'')) # Query the pool
lyObsContext = queryResults[0].product # Extract the Context

HOPE>

HOPE>

HOPE>

| Jython Interpreter | ‘ | I 660f2044 mB | 3

%

Figure 2.20. L oading and viewing the Observation Context for the Small Map Observation.

22

Looking at your data

File Edit Run Pipeline Window Help
ffeH& E»»

Laemn &
| Editor x ==
G- MyObsContext x
Image
- Summary
name value unit description
crpixl 181.0 WCS: Reference pixel position axis 1, unit=5calar -
crpix2 130.0 'WCS: Reference pixel position axis 2, unit=5calar
crvall 268.9113487456618 'WCS: First coordinate of reference pixel
crval2 51.52914919154403 'WCS: Second coordinate of reference pixel
cdeltl -0.001666666666667 WCS: Pixel scale axis 1, unit=Angle
cdelt2 0.001666666666667 WCS: Pixel scale axis 2, unit=Angle
ctypel RA---TAN . Projection type axis 1, default="LINEAR"
ctype2 DEC--TAN P type axis 2, defa LINEAR" b
~ Data
(= MyObsContext MyobsContext.refs["levelz”].product.refs["PSW"].product[”image”] 3
£ (%8 auxiliary
£ (%8 hrowselmageProduct
5 (%8 hrowseProduct
b (% calibration
£ (58 level0
£ (5 |avelD_S
B (59 |evell
- = level2
t%»@ PLW
gx@ PMW
= = PSW
R ima
@ error
@ coverage
&% History
(%8 |ogObsContext
£ (5 quality
107, 92 0.0087294 N.A. | NA
& & [=]& 100 [T]
| Cond Srpliage ||| [ommm .,
o
Figure 2.21. Accessing thefinal Level 2 Product maps
[’ Editor x
] Editor X ', —a

[P ew-1 (G MyObsContext] MyObsCont.product x

[. [Product Viewer
© Create Variable Wes explorer for Images

(@ HelpinURM F1

0.22454 Jy/beam 17:56:35.895, +51:29:14.07 |Image ~

EJA[EIA[200 [T]

Figure 2.22. Viewing the Level 2 Image M aps

23

Looking at your data

] Editor % (=ml
% MyObsContext X

Image

poaa ... |

(= MyObsContext MyObsContext.refs[" level2”].product.refs[PSW"].product[”image"] B A

(& auxiliary rArrayData: Double2d [=]

- % browselmageProduct

, g E;ﬁ;“:;md““ Double2d:data[0:193][0:194]

& (5 |evelD

& (% level_S 75 76 77 78 79 80

k ‘-@ levell .../0.010738...|0.004971...[3.345841_..|/0.002757...0.008786...|0.007333_..|0/~

= = level2 ...|0.007226...|0.006056...|0.002581._..|-0.00533.../0.005040...|0.005209...|0

*‘Tﬂ@ PLW ...|0.003253.../0.006233.../0.004995...|-0.00362... 0.005331...-5.12238...0
';LB PMW ...-0.00152...|-0.00535...|-0.00399...|-0.00130...|0.010572...19.714961...|-
= = PSW ...|-0.00387...|0.009526...|-4.74278...|-0.00839...0.002535...|0.002966...|-
@ Open 0 ||---|-0.00243_._|0.003834..|-0.00163._.|-0.00294._.|-0.00575_.. -0.00261...|0

-] - ConECO A onnce C00o208 |0.002241.../5.667805.../0.001220...|0

'8 i Open With b = Dataset Viewer 7. l0.016115...0.002556...-0.00235...|0

@ (5 @ Create Variable Image Viewer for ArrayDatasets !3 -0.00408...|0.003727..|-0.00446... -

& (% logO [[FU.UULS S [U.UUE IS5y _u.ouEs19. (-0.00211...|-0.00556...|-0.00707 |-

& (%8 quality ...|0.004219.../0.004725...-0.00192.../10.007223.../0.002911... -0.00245... |-
...-0.00407...|3.276965...-0.00216.../0.009369.../0.001276... -0.00398... |-
...|0.005747...|-0.00447...(0.001088.../0.003396...-0.00594_..|0.006430...|-
...|-1.66072...|-0.00124...(-0.00335...|-0.00244...|0.004486...4.632994 .. |-

0.007807 |4 AR4374 [-0.00401 Innni1441 [-n.one09 -4 85583 |-d -

e — R R L
4

Figure 2.23. Viewing the Level 2 Image Array Datasets

000 HIPE - empty
File Edit Run Pipeline Window Help
eS| @SS 98 e w»d LaQ@s| &
Editor x. — 0| ¢ variables x (=3
@ New-1 x x -
1) rool ra0x5000489F # Select the pool name S MyMapProduct
stora o01) ¥ Register the pool
queryR Lect(Query("types-'083'")) £ Quary che pocd © MyObsContext
iy % Extract the. context

oduct.refs['Fsi"].product. © queryResults
© storage

Display (ynapPra
Display(ynapProd:

[| s | I sezmm i s,

RIRMEIA] 100 [T] RIRMEIA 00 [T] ARJEJEA oo [T]

Figure 2.24. Viewing theimage cubefor signal, error and cover age maps

2.3.2. Saving a map as a FITS file and reading it in
again

It is possible that me may also want to look at our image maps in external applications such as DS9
for example and HIPE provides the tools for exporting our maps as conventional fits files. Writing
dataout as FITSfilesand reading FITSfilesin isidentica to the method described in the Large Map
Section 2.2.2.

Note

The Photometer Map Products (data cubes for each array containing the image, er-
ror and coverage arrays) actualy exist as fits files within the Pool for this ob-
servation in the Local Store. These can be found in the Pool for this exam-
plein thefolder / | ocal st or e/ OD358- Sral | ScanMapGanmDr a0x5000489F/
herschel . i a. dat aset. i nage. Si npl el mage (wherethe poolnameis"OD358-
Small ScanM apGammDra0x5000489F"). The Photometer Map Products have the form
hspireplw. pmp.fits

24

Looking at your data

2.3.3.

2.3.4.

Looking at the Level 1 Timeline Data

The image maps have been created from the individual timelines of detectors as they were scanned
accross the target. These timelines are the Level 1 products from the Photometer Small Map Pipeline
and are also available from the Observation Context. The Level 1 Small Map products are referred to
as Photometer Scan Products and are exactly the same format as the Level 1 Large Map products
described in Section 2.2.3. In Figure 2.25 we show how the Level 1 products can be accessed from
the observational context. Note that within the Level 1 Context there are atotal of 8 Products labelled
from 0 to 8. These are all Photometer Scan Products. As noted earlier this map of Gamma Draconis
was constructed by scanning the photometer arrays 4 timesin each orthoganal direction once making
atotal of 8 scan linesin total. Although the numbering system seems anonymous, the actual name of
the Building Block can still be revealed by checking the MetaDatabbTypeNane inthe Photometer
Scan Product i.e. pull down the meta data information (circled in red in Figure 2.25) and then click
on one of the folders numbered 1-8 in the context. The Figure showsthe si gnal table for one scan
line. The column names give the time, and then the signal for each detector on the arrays (not the first
entry PSWR1, actually aresistor, measured in Volts and the following bolometers measured in Jy and
athermistor (PSWT1) again measured in volts, etc.).

Since the Small Map and Large Map modes are essentially the same, the further detailed structure of
the Small Map Level 1 Product is described in the Large Map Section 2.2.3.

000 HIPE - MyObsContext
File Edit Run Pipeline Window Help
ffTeH& 5> » La@m &
| Editor x [=9]
[v’ “New-1 TQ_.— MyObsContext X
Flux Signal Timelines
= MyObsContext MyobsContext.refs[levell’].product.refs[0].product[signal”] = 2
:ig;:;!;:gm eProduct || Ndex sampleTime [TAI] PSWR1 [V] PSWD16 [Jy] PSWT1 [V] PSWEL6 (1] | PSWCLS [yl | |
-@bmwsepmagun 0 |1.6519478162709305E9 [0.0038739457 12.756714 0.008521159 [11.781448 |12.195216 -
14 @ calibration 1 |1.65194781632469E9 0.0038740423 12.615115 0.008521099 |11.827436 |12.150984
5 leveld 2 [1.65194781637845E9 0.0038740127 12.767223 0.008521051 |11.856564 |12.199116
(5 leveld 5 3 |1.6519478164322095E9 |0.003874011 12.696349 0.00852109 |11.842955 |12.071842
& 6 levell 4 |1.651947816485969E9 0.00387391 12.82575 0.008521219 |11.806668 |12.209969
Py 5 [1.6519478165397289E9 [0.003874112 12.641852 0.008521047 |11.86685 12.141347
® mask 6 |1.6519478165934885E9 |0.003873945 12.776896 0.00852126 |11.813551 |12.118302
© temperaure 7 |1.651947816647245E9 .0038740558 .64123 . 09645 |11.81209 .206281
o 8 78167010045E9 739254 67147 79726 -105067
ora 9 7816754764E9 740395 71321 .75502 .138779
® dec 7816808524E9 74007 61537 7838335 .0983
78168622835E9 739447 731138 . 77413 1194
4 (% Hist
**B? sty 7816916043E9 7 7441435 I .8386965 |12.1327
b2 78169695029E9 7 .7 . S [11.8414 R
4 78170235624E9 7 .694283 . .9019 .10
L@ 7817077322E .00387400 2.712589 .008521013 .9069 2.08351
L@ s . 78171310818E9 .00387391 2.60859 008521146 _B613 2.180365
Lo 17 |1.6519478171848414E9 |0.003874044 12.651813 0.008521172 |11.733392 |12.1234865
L@y 18 |1.65194781723B601E9 0.0038739333 12.643611 0.008521151 [11.80793 12.172018
4 lovelz 19 [1.6519478172923608E9 [0.0038740137 12.681251 0.008521119 |11.B7187 12.141032
. (8 logDbsContext 20 |1.6519478173461204E9 |0.003873952 12.718099 0.008521125 |11.789909 |12.090194
. & quality 21 |1.65194781739988E9 0.003873905 12.725415 0.008521128 |11.87785 12.076321
22 |1.6519478174536397E9 [0.0038740577 12.744706 0.008521174 |11.862555 |12.130731 | |
23 |1.6519478175073993E9 _ |0.0038739587 12.749885 0.0085211545 |11.8592615 |12.118229 -
4 D
Load PointedPhotTimeline 92 of 2044 MB .
| RN i o

Figure 2.25. Viewing the Level 1 Photometer Scan Productsfor the Small Map mode

Looking at the Level 0.5 Timeline Data

TheLevel 2 mapsand theLevel 1 timeline products represent the output from the Small Map pipeline.
Thesetimeline datawere created from the lower Level 0.5 data products (which were correspondingly
created from processing the raw Level 0 data through the Common Engineering Conversion (Level
0 - Level 0.5) Pipeline). The Level 0.5 data are the voltage calibrated, timelines measured in Volts
uncorrected for detector effects. These level 0.5 products are also available from the Observation
Context. The Level 0.5 context folder can be seen in the Observation Context and can be opened by
clicking on the + next to the | evel 0_5 folder. The Level 0.5 context contains alot more data than
the Level 1 context and includes all the data hecessary to process the observation and produce science
quality data. In Figure 2.26 we show all the Level 0.5 data within the observation context. We see that
there are atotal of 20 entriesin thelist informatively labelled from 0 to 20. This can be compared to a
total of 8 entries that we saw for the Level 1 products. The Level 0.5 context contains all the building

25

Looking at your data

2.3.5.

blocks used in the observation and in Figure 2.26 we show how this Small-Map observation was built
up from the individual building blocks. In the figure, the building blocks can be divided into roughly
4 genera types, configuration blocks, calibration blocks, science blocks and movement blocks. The
type of building block can be revealed by clicking on a given number from 1-20 and scrolling down
theMet a dat a window paneto the BBt ypeNane entry. Theindividual blocks are are the same as
for the L arge Map mode and described previously in Table 2.2.

Small Map
Building
Block
Sequence

000 wobstomex

G- MyObsContext X

= MyObsContext
& (% quxiliary
+ (® prowselmageProduct
®- (% browseProduct
+ (® calibration
- (% leveld
- = levelD_S
& (% History
',

MyObsContext E &

o~ o W N = O
=}

©
-

v
@

L‘A
o= o
3-9-9-6-8-9
eehGeh

13 5817

[

® (M |evell
16 T (W level2

®- (% |ogObsContext
17 ® (% quality

Science (scan line)
Movement (scan turnaround)

Set-up (configuration, slewing, etc)

Qo@da

Calibration (PCAL flash)

Figure 2.26. Anatomy of Level 0.5 Building Block structurefor a Small Map observation

Since the Small Map and Large Map modes are essentially the same, the further detailed structure of
the Small Map Level 0.5 Productsis described in the Large Map Section 2.2.4.

Looking at the Raw Level 0 Data

The Raw data formatted from the satellite telemetry is also available within the Observation Context.
These are the Level 0 products and will in most circumstances be of no general interest. Since the
Small Map and Large Map modes are essentially the same, the further detailed structure of the Small
Map Level 0 Productsis described in the Large Map Section 2.2.5.

26

Looking at your data

2.4. SPIRE Point Source Mode Data Structure
2.4.1. The Point Source Observation Mode

All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the datafor a SPIRE Point Sour ce
observation. A point source observation carries out a staring observation of a point source. In order to
recover the source successfully a 7-point hexagonal jiggle pattern is made around the source position.
Sky backgrounds are removed by chopping using the Beam Steering Mirror (BSM) over a distance
of plus/minus 63 arc sec and any emission due to the telescope structure is removed by nodding the
entire telescope and repesating the chop=jiggle cycle.

The observation we shall be looking at is a Point Source observation of the Planetary Nebu-
lae NGC5315 taking during the Herschel-SPIRE PV phase. NGC5315 is at RA=13h53m57.00s,
dec=-66d30'50.70" and was covered by making 2 repetitions of the Point Source Mode whichinvolves
makes apair of chopped and nod cycles at each of the 7 jiggle positions in the pattern.

It is assumed that the observation has aready been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = -'OD117-7pt NGC5315-0x50001832' # Sel ect the pool nane
st or age=Pr oduct St or age(Pool) # Regi ster the pool
queryResults = storage. sel ect (Query("type=="0OBS ")) # Query the pool
MyObsCont ext = queryResul t s[0] . product # Extract the Context

For this particular observation, we chose to call our Pool OD117-7ptNGC5315-0x50001832 where
0OD117 meansthe observation was made on Operational Day 117, 7pt wasthe AOT mode, NGC5315
was the target name and 0x50001832 isthe unique Observation I D in hexadecimal . Running the above
script, reads the Observation Context into memory into the variable MyObsContext which appears
in the Variables pane of HIPE (See Figure 2.27). Right Clicking (or CTRL-click for Apple Users)
on the MyObsContext variable brings up another menu. Selecting Open Wt h -- Cbservati on
Vi ewer will open the Observational Context for this observation. The structure of the Observation
Context was explained in Section 2.1 and hewe shall look at the datainside the Observational Context.
We start with the final Product of the SPIRE Point Source pipeline - The Jiggled Photometer Product
(JPP). The JPPis aLevel 2 Product and can therefore be found within the Level 2 Context. The JPP
can be simply acccesed by clicking on the level2 folder as shown in Figure 2.28, which reveadls a
SPIRE Jiggled Photometer Product. Right-clicking on the JPP and selecting Open W th - Array
Dat aset Vi ewer from the drop down menu showsthe datain table form as shown in Figure 2.28.
The JPP contains a Table Dataset with arow for each array with the following information;

e Array Name: A column listing each array PSW, PMW, PLW.

* RA: A column listing the final fitted Right Ascension for each array to the detected source within
the 7-point Jiggle pattern for the target detector in decimal degrees

* RA Error: A column listing the errors on the Right Ascension for each array

» Dec: A column listing the final fitted Declination for each array to the detected source within the
7-point Jiggle pattern for the target detector in decimal degrees

» DecError: A column listing the errors on the Declination for each array

» Signal: A column listing the Gaussian fitted signal for the target detector for each array to the
detected source within the 7-point Jiggle pattern in Jy (in beam flux)

27

Looking at your data

» Error: A column listing the error on the fitted signalfor each array

800 HEE2 0 hewal

File Edit Run Window Help
e Ll oP@ B E B @
] Editor % [=o| i€ variables x [=0)

New-1 x =1 v

1 } PoOl = 'OD117-7ptHGC5315-0X50001832 lse.(ect the pool name v

2 storage=Froductstorage(Fool # Register the pool p

3 queryResults = storage.select(Query('type=='085'")) # uery the _

4 MyobsContext = gueryResults[0].product # Extract the Context © Pool & Open With i Product Viewer

@ queryResults Fem e
@ storage
FronmieE # Observation Viewer
Rename

El Console x —o % Delete =
[HOPE> Pool = 'ODL17-7ptNGC5315-0%50001832" # Select the pool name —
storage=FroductStorage(Fool) # Register the pool (Z) Help in URM F1
[jueryResults = storage.select(Query('type=='0BS'")) # Query the pool &
MyobsContext = queryResults(0].product # Extract the Context (2) Help in DRM
[HOPE>
R e Y

I e

F3

Figure 2.27. Loading and viewing the Observation Context for the Photometer Point Sour ce Observation

800 HIPE2.0 - MyObsContext
File Edit Run Window Help

O e

= Editor %

=0
%‘; MyObsContext X

Contents

Instrument: SPIRE

Operational Day: 117
Observation ID: 1342183474

BMvasConlexl MyObsContext.refs["level2”].product.refs["JPP"].product["outputDataset”] EE
- (%8 auxiliary
; -
ie (@ calibration Contents
(52 levelo
T@ level0_5 None
?hg ;eve:; Table Data
= leve
L)PP TableDataset
" ® Index | arrayName ra errRa dec errDec signal error |
- [History 0 |psw 208.4906...4.733157..|-66.5136...[0.001772...[1.565983..]0.0
i (% logObsContext 1 [PMwW 208.4929..[6.515659...]-66.5142...[0.002084...[0.343536...[0.0
- - (8 quality 2 |pw 208.4942...]7.107329..|-66.5147.../0.001722...[0.217698..]0.0

Figure 2.28. Accessing thefinal Level 2 Product Jiggled Photometer Product

2.4.2. Reading the JPP into memory and saving it as a
FITS file and reading it in again

It is possible that me may also want to export our data and HIPE provides the tools for exporting

data products as conventional fitsfiles. The Level 2 JPP can be read into memory with the following
admittadly long-winded command from the command line;

read entire Product

myJPP=MyCbsCont ext . ref s["I evel 2"]. product . refs["JPP"]. product
#

read the RA data array

myRa=nyJPP["out put Dat aset"]["ra"] . data
print nyRa

read the RA for PSWarray

myRaPSWenmy JPP[" out put Dat aset "] [“ra"] . dat a[O]
print myRaPSW

This creates a new entry my JPP in the Variables Pane of HIPE which can correspondingly be right-
clicked on to show the various viewing options available for this product. The next 4 linesin the above
script alow usto read in and print out the data for the Right Ascension for all arrays and for just the

28

Looking at your data

PSW array (creating entries for myRa and my RaPSWin the variable pane). The JPP Level 2 Product
can be saved as a FITSfile by the following command line entry;

Fi t sArchi ve().save(' nypath/ nmyJPP.fits', myJPP)

whereny pat h isthe desired path. Alternatively the product can be sent to aFI T Sfile by right-clicking
onitinthevariablelist and selecting Send To - FI TS fi | e from the drop down menu. This will
open the FITS writer panel as shown in Figure 2.29 where we can type in our desired filename and
path. Click on Accept at the bottom of the panel to save the FITSfile.

800 HIPE 2.0 - simpleFitsWriter
File Edit Run Window Help
Nl P @mE D@
| Editor x [—o][%2 variables x [=1cil
@ New-1 5 MyObsContext | £ simpleFitswriter x s -
= o e
) © MyObsContext Open
product® : myJPP @ myRa | Open with
] -
file* : |myjPP.I|ts || Browse... | . ?"‘Ra"s‘” = send to FITS file
. . @ Pool Show methods &’ Local store
R S |_] Ask before overwriting ® queryResults ——
)
|—0u1m... | storage ¥ Delete 53
o (Z) Helpin URM F1
~Info: =
(7) Help in DRM
success -
status:]
progress:
Clear || Accept

|| [seommm i,
Figure 2.29. Exporting the JPP asa FITSfile

Reading aFITSfileinto the HIPE session can be accomplished by either selecting Open Fi | e from
the Fi | e menu in the top right hand corner of the HIPE window. Alternatively, from the command
line;

nmyJPP=si npl eFi t sReader (' nypat h/ nyJPP.fits')

These FITSfilesareimported asan JPP Pr oduct dat aset and can be manipulated in the same
manner as described earlier throughout this section.

Note
@ The JPP actualy exist as a fits file within the Pool for this obser-
vation in the Loca Store. These can be found in the Pool for this
example in the folder /1 ocal store/ OD117- 7pt NGC5315- 0x50001832/
herschel . spire.ia. dat aset. Ji ggPhot Product (where the pool-
name is "OD117-7ptNGC5315-0x50001832"). The JPP will have the
hspi rephotometer........ jpp.fits

2.4.3. Looking at the Level 1 Data for Point Source Ob-
servations

Thefinal Level 2 Jiggle Photometer Product has been created from a Gaussian fit to the 7-point jiggle
pattern of atarget bolometer. The information on the individual jiggle positions for all bolometersis
contained within the Level 1 Product and are also available from the Observation Context. The Level
1 Point Source mode product is referred to as the Averaged Pointed Photometer Product (APPP).
In Figure 2.30 we show how the Level 1 product can be accessed from the observational context. The

29

Looking at your data

APPP holdsinformation for each of the 7 jiggle positions for al bolometers after the signal has been
demodulated (chopped) and de-nodded.

Each Averaged Pointed Photometer Product contains 7 individual Table Datasets (and a Product con-
taining the processing history) as shown in Figure 2.30 and defined below;

» Signal Table: A table containing a column for the Jiggle ID (1-7 position) and a column for the
signal from every detector channel (in Jy/beam)

» Error Table: A table containing a column for the signal error from every detector channel (in Jy/
beam)

» Dec Table: A table containing a column for the declination on the sky in degreesfor every detector
channel

» Dec Error Table: A table containing a column for the errors in declination on the sky in degrees
for every detector channel

* RA Table: A table containing a column for the right ascension on the sky in degrees for every
detector channel

* RA Error Table: A table containing acolumn for the errorsin right ascension on the sky in degrees
for every detector channel

* Mask Table: A table containing the mask value for every detector channel corresponding to which
processing flags have been raised. The masks are defined in the SPIRE Pipeline User Guide doc-
ument

The APPP be viewed either - by right-clicking - array tables (by selecting Open Wt h -Dat a Set
Vi ewer) or plotted (by selecting Open Wt h - Tabl e Pl ott er). Although the use of Tabl e
Pl ot t er isbeyond the scope of this document, an example is shown in Figure 2.31 where we have
selected to plot the Jiggle ID against the Signal from the PSW E10 bolometer for the APPP.

800 HIPE 2.0 - MyObsContext
File Edit Run Window Help
= LP@uE 2
] Editor % ==
@ New-1 | % MyObsContext x

signal
- Summal

Instrument: SPIRE Operational Day: 117
Observation ID: 1342183474

= MyObsContext £5["“levell”].product.refs[0].product| signal”] Ba
|- (% auxiliary . —
[(% calibration signal
(- levelo
I Lglevemj None
2 levell
i " Table Data
By sional TableD
@ error index | jiggld | PLWAL Dy] | PLWA2 [yl | PLWA3 Uyl | PLWA4 [Ivl | PLWAS D] | PLWAG [ly) | PLWA7 [iy] | PLWAS [iv] | PLWA9 [iy] [PLWBL [iy] | P!
Jigg! vl | Pl
@ dec 0.081303..]-0.01378...]-0.00331... -0.01020...[0.004960... 0. 7.096423..|-0.03125..|-0.01617...|-0.00933... -
© errbec -0.09281...[-0.00105...]-0.00697... -0.01397...[0.009836... 0. . 3.../-0.01444.../-0.00811...-0.00975... -
8 0.031982../-0.00552...0.005438...-0. ..[0.004755...[0. . 7../-0.01971...[-0.00903...| 0.
© errka 0.0 ..|-0.02747...|-1.30856... 0. -0 .002235...-0. ~|-0.01101...|-0.
@ mask 0.0 ...|-0.00759.../0.003 0.1 -.|0.1 |0 001554 0. 7
* (22 History -0. -0.00714...[-0.00523...|-0. |0 X -0.00273...-0.1 -|-0.00719
“g:“gi[ot -0.02260...[0.003288...1-0.00223... 0. ..[0.011902...0. 0.002069...-0. ..|-0.00145...
l& (3 logObsContex
(- (2 quality

Figure 2.30. Viewing the Level 1 Averaged Pointed Photometer Product

30

Looking at your data

2.4.4.

800 HIPE 2.0 - MyObsContext
File Edit Run Window Help

SPIRE Operational Day: 117
1342183474

“Fa-0.0n

+
t
| Fast| m—p | 7

Selections-
Hide X | Unhice O |

E Excl Solect | Unhide All
008~ Al Cols []]|_Show Al
Ev v b e e Lo e e b | ——
1 3 4 5 6 7 | [2met[Layer Props]
jiggld Overlay plots
[Overlay
[Legend
axis: [0 -offset figgd =1 1= y-axis: [D-offser PLWAL [0 | 2/=5 e

2.0.837

Figure 2.31. Plotting Level 1 APPP Data Product

Looking at the Level 0.5 Timeline Data for Point

Source Observations

The Level 2 JPP and the Level 1 APPP products represent the output from the Point Source pipeline.
These data products were created from the lower Level 0.5 data products (which were correspondingly
created from processing the raw Level 0 data through the Common Engineering Conversion (Level
0 - Level 0.5) Pipeline). The Level 0.5 data are the voltage calibrated, timelines measured in Volts
uncorrected for detector effects. These level 0.5 products are also available from the Observation
Context. The Level 0.5 context folder can be seen in the Observation Context and can be opened by
clicking on the + next to thel evel 0_5 folder. The Level 0.5 context contains alot more data than
the Level 1 context and includes all the data hecessary to process the observation and produce science
quality data. In Figure 2.32 we show all the Level 0.5 data within the observation context (Note that
since Operational Day OD302 PCAL cadlibration flashes are no longer nade at the beginning of the
observation). We see that there are atotal of 23 entriesin the list informatively labelled from 0 to 22.
This can be compared to the singlefinal product that we saw for the Level 1 data. The Level 0.5 context
contains al the building blocks used in the observation and in Figure 2.32 we show how this Point
Sour ce observation was built up from theindividual building blocks. In thefigure, the building blocks
can be divided into roughly 4 general types, configuration blocks, calibration blocks, science blocks
and movement blocks. Thetype of building block can be revealed by clicking on agiven number from
0-22 and scrolling down the Met a dat a window pane to the BBt ypeNare entry. The individual
blocks are described below in Table 2.3. This observation involves two repetitions of the Point Source
Mode. A single science building block consists an operation at agiven Nod position (denoted A or B)
and moving to thefirst jiggle position on the 7-point pattern, chopping 8 times on/off source, moving
to the second position, until al 7 positions have been visited (plus one more at the centre). This
operation isthen repeated at the next nod positin (position B), repeated at B and then once more at nod
position A. One repetiotion thus corresponds to a single ABBA nod cycle, therefore this observation
will consist of 2 ABBA cycles.

31

Looking at your data

Point Source
Building
Block
Sequence

—_

om0 MyObsContext

@E; MyObsContext x

-_Meta Data

- (8 auxiliary

- (% Javel0
= leveld_S

= & (% 0

@ (% quality

ObservationContext for SPIRE data of observation 1342183474

= MyObsContext

+- (% browselmageProduct
#- (% browseProduct
@ (%@ calibration

- (™ History

& (% |ogObsContext

MyObsContext A

Science (Jiggle Pattern)
Movement (Nod motion)
Set-up (configuration, slewing, etc)

Calibration (PCAL flash)

Figure 2.32. Anatomy of Level 0.5 Building Block structure for a Point Sour ce observation

Table 2.3. Description of the Building Blocksin a Point Source Mode L evel 0.5 Context

BB number |BB Type BB Hex |Description
pr efix
0 SpireBb_StartObsAll |0xB6C8 | Begin Observation
1 SpireBbPOF2Config |0xA020 |Initia configuration of the Point Source AOT
2 SpireBbPOF2Init O0xA021 |Initialize the Point Source AOT
3 SpireBbPcalFlash 0xA801 |Photometer Calibration Lamp Flash
4 SpireBbJiggle 0xA321 |Carry out chopped motion around 7-point jig-
gle pattern at first nod position
SpireBbMove OXAFO0 |Movment of Nod position (position A to B)
6 SpireBbJiggle 0xA321 |Carry out chopped motion around 7-point jig-
gle pattern at second nod position
SpireBbMove OXAF00 |Movment of Nod position (dwell at position B)
SpireBbJiggle 0xA321

Looking at your data

BB number |BB Type BB Hex |Description
prefix
Carry out chopped motion around 7-point jig-
gle pattern at second nod position
9 SpireBbMove OXAF00 |Movment of Nod position (position B to A)
10 SpireBbJiggle 0xA321 |Carry out chopped motion around 7-point jig-
gle pattern at first nod position
11 SpireBbMove OXAFO0 |Movment of Nod position (dwell at position A)
12--19 . Repeat entries 4-11
20 SpireBbPcalFlash O0xA801 |Photometer Calibration Lamp Flash
21 SpireBbPOF2ENd 0xA022 |Endof AOT
22 SpireBb_EndObsAll |0xB6C7 |End Observation

Looking at some of the individual entriesin the Level 0.5 context, it can be seen that the individual
Building Blocks are built up from a variety of different types of Products. clicking on the + sign for
a given Building Block number reveals what Products a particular Building Block is made from. In
Figure 2.33 the first handful of building blocks for our observation are opened to view the contents.
The contents are a variety of Products referred to by ancronyms such as CHKT, NHKT, PDT, BSMT,
POT, SCUT, etc, described in order of importance below;

Example building blocks may be;

* PDT: The Photometer Detector Timeline contains the Level 0.5 detector data.

* BSMT: The Beam Steering Mechanism Timeline contains the information of the BSM (chop and
jiggle positions as a function of time).

* NHKT: The Nominal House Keeping Timeline contains the housekeeping datawith al the settings

for this observation.

* CHKT: The Critical House Keeping Timeline contains all the critical parameters of the instrument
such as the electronics.

» SCUT: The Sub Control Unit Timeline contains monitoring data for the instrument operation for

this observation.

» POT: The Photometer Offset Timeline contains all the raw DC offsets in ADU that have aready

been used in the raw data processing to set the dynamic range of the detectors.

33

Looking at your data

oo MuQbsGoniexs;
(G4 MyObsContext x '\
Voltages table
= MyObsContext MyobsContext.refs[”levelo 5"]...fs["PDT"].product| voltage’] =)
) g e mageProduct index | sampleTime (TAI PSWR (V] PSWD16 V| | |
5 ® browseProduct D [|1.6310322018593764E9 |0.0036730532 [0.0036460042 |{=
L calibration 1 [1.6310322019131365E9 00038730986 [0.0036463372
s 8 teveld 2 [1.6310322019668932E9 |0.0038730837 [0.0036492737
L leveld 3 [1.6310322020206532E9 |0.0038731897 |0.003650424
& (% History 4 |1.6310322020744133E9 [0.0038731443 [0.0036503333
= S [1.6310322021281734E9 |0.003873129 [0.0036502727
; ; 6 |1.6310322021665733E9 |0.0038731745 [0.003650091
:gm’g l» Observation Config 7 [1.6310322022203333E9 |0.0038730986 [0.003646095
= . 8 [|1.6310322022740932E9 |0.0038730986 [0.0036437644
emcT AOT Config 9 [1.6310322023278532E9 |0.0038730684 [0.0036435677
& % NHKT 10 |1.6310322023816133E9 [0.0038730986 |0.0036437341
=5 . 11 [1.6310322024200132E9 (0.003873129 [0.0036439458
cmanr | AQOT Initialize 12 [1.6310322024737732E9 [0.003873114 _ [0.0036478357
& & NHKT 13 [1.6310322025275333E9 [0.0038731443 [0.0036501063
& (% poT 14 [1.6310322025812933E9 (0.0038731745 [0.0036502576
—=5)) 15 [1.6310322026350532E9 [0.0038732048 [0.0036501817
& (% CHKT / Calibration flash 16 [1.63103220267345E9 0.0038731443 |0.0036498639
(% NHKT 17 [1.63103220272721E9 _ 0.0038730684 [0.0036458075
& (% pOT 18 |1.63103220278097E9 __ [0.0038730986 |0.0036436128
& 8 ccuT 10 [1.6310322028347301E0 [0.003873114 _ [0.0036435977
= 20 [1.63103220288849E9 |0.0038730684 [0.0036437039
& (58 BSMT 21 [1.6310322029263901E9 |0.003873038 [0.0036439612
& (% CHKT . 22 [1.63103220298065E9 _ |0.0038730986 |0.0036479265
& (% NHKT Jiggle Pattern 23 [1.63103220303441F9 |0.003873129 _ |0.0036501063
L & poT 24 [1.63103220308817E9 |0.0038731594 [0.0036502422
o T o ~~3220314193E9 _ 0.0038731443 _[0.0036503333
@ resistance pen i N21RNIIFY 00N3R731443 [0.00365
® mask PESITT Datset Viewer 1443 [0.0036457924
o qualiy T R @ D837 [0.0036436128
¢ History 30 [L63i(TableP oot .0oseeniss
—emaEre 31 [1631(© OverPlotter 8773 [0.0036440063
e 32 [1.631032203487527E9 [0.003873114 _ [0.0036479568
‘;_ECHKT Nod change 33 [1.631032203541287E9 |0.0038731745 [0.0036501063
= 34 [1.6310322035950468E9 |0.0038731443 [0.003650212
& s iagle P B3 ater 7007y 00038 aLaas 0003649836
:gﬁ:ﬂ — Jiggle Pattern 37 [1.6310322037409668E9 [0.003873129 [0.0036456075
& (% pr7 38 [1.6310322037947268E9 |0.0038731443 [0.0036437188
== 39 |1.631032203848487E9 |0.0038730986 |0.0036436128
T o Nod change || |[te_itioszzossazeris oomseriosss loonsscsesse
& (% NHKT < |« D

Figure 2.33. Inside the L evel 0.5 Building Block structurefor a Point Sour ce observation

The CHKT, NHKT, BSMT, POT, SCUT Products all contain asi gnal table, containg data arrays and
aMask table containing flag information. The Level 0.5 PDT Photometer Detector Timeline Products
contain 5 Table dataset arrays;

Voltage Table: A table containing the Sample Time (in seconds) and a column for the signal mea-
sured in Volts for every bolometer including both detector and non-detector (e.g. thermistor, resis-
tor) channels.

Resistance Table: A table containing the Sample Time (in seconds) and acolumn for the Resistance
measured in Ohms for every bolometer including both detector and non-detector (e.g. thermistor,
resistor) channels.

Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

Quality Table: A table containing any Quality Flags raised for each detector.

Temperature Table: A table containing the Sample Time (in seconds) and the temperature of the
6 Thermistors (2 per array) in Kelvin.

In Figure 2.33 the PDT for the first Jiggle Building Block has been selected. Right-clicking and
selecting Open-wi t h - Dat aset Vi ewer, opensthevol t age table in a new window. Any of

the Table Data Sets can also be viewed graphically by selecting Open-wi t h - Tabl e Pl otter

as shown in Figure 2.34. In the plot window the bolometer signal to plot can be selected from the
Y- axi s menu (circled in the plot window) and in this example the signal versus sample time for
bolometer PSW EG6 has been selected. In the figure, we aso plot a marked line selected from the

34

Looking at your data

2.4.5.

Di spl ay Styl e box (alsocircled in the plot window). In Figure 2.34 the on and off chop positions
and the circuit around the 7 jggle positions can be clearly seen.

@ MyObsContext x
Voltages table

83

Ljine plot

Display Style

il i

‘.\ I |\|‘ \|I “\l
i ~TE
| l ”H il H\”\

ol uyw’ i nm [
VT Hmn
“ W \,. e A \ nll\! ,HIMH‘H

i I
0003105 1] |‘||‘|| ||| \lllili |I||||
L n-u . .

N

1
._.J--

i
3 0.003120 f

uou.um
p Off l

Extract _|[Layer Props|

Overlay plots

Open

S & Open With [Dataset Viewer sampleTime(TAl)
i

Plot bolometer PSW E6
1ime[0)=1631032201:2009-09-07 16:29:27(UTO)

e
y-axis: [-offset |PSWEG F1y20=—
4.0.784

| I >

istory | © Create Variable Power Spectrum Generator
© temperature @ T

&5 X-axis:| OvarPlotter

——
=

=¥
$- (% BSMT
4

Figure 2.34. Plotting the L evel 0.5 data for a 7-point Jiggle Point Sour ce observation

Looking at the Raw Level O Data

The Raw data formatted from the satellite telemetry is also available within the Observation Context.
These are the Level 0 Products and will in most circumstances be of no general interest. The Level
0 Context, shown in Figure 2.35, contains 23 entries. Note that there is a significant difference in
the Level 0 data structure compared to the Level 0.5 Products. In the Level 0.5 Products, each indi-
vidual block in the observation has several data types (e.g. Scan line, Housekeeping data, etc - see
Table 2.3). However, in order to reduce the raw data volume at the Level 0 stage, all the data types
are concatonated into a single Level 0 product, referred to as a Raw SPIRE Timeline (RST) for each
building block, i.e. A single Level 0 product contains many seperate Table datasets. Clicking on a
given number within the Level 0 context revealsthe Level O Product for that particular building block.
These products are the raw data versions of the Level 0.5 dataand contain Table Datasets such as the
Critical House Keeping timelines (CHK), Nominal House Keeping timelines (NHK), Raw Photometer
Detector timelines (PHOTF), Raw BSM timelines (BSNNOM NAL), Raw Photometer Offset timelines
(PHOTOFF) and Sub-Control Unit timelines (SCUNOM NAL). The Raw Photometer Detector Time-
line (PHOTF) Table Dataset can be viewed by right-clicking and selecting Open- wi t h - Dat aset

Vi ewer , see Figure 2.35), we find quite a different structure to the Level 0.5 PDT datasets. There
are 288 columns, one for every SPIRE channel, numbered not in the familiar PSWE8, PSWE9 nota-
tion but rather as as PHOTFARRAY001 -- PHOTFARRAY288 which corresponds to their Channel
Number (from an electrical designation). The signal is still in raw ADU and there are many different
time columns which correspond to various measures of the data frames, telemetry packets and packet
seguence counts, etc. The only flags are contained in the PHOTFADCFLAGS column which is set in
the case of a problem with ADC process in telemetry. A full description of the data structure can be
found in the Products Definition Document (HERSCHEL -HSC-DOC-0959) or the SPIRE Pipeline
Description Document (SPIRE-RAL-DOC-002437).

35

Looking at your data

800 .

G- MyObsContext X

Jabscopte

Photometer Full Array (Nominal Science Report)
T
@MvasContext MyObsContext.refs["level0"].product.refs[4].product|"PHOTF"] B3
ig ::"“g‘;?m index | PHOTFARRAYOOL [| PHOTFARRAY00Z[] | PHOTFARRAVO03[] | PHOTFARRAY004[) [P |
TE evelo 0 16367 53148 45236 47197 30
s =0 1 16370 53170 45231 47218 3
NHK 2 16369 53364 45236 47509 30
o CHK 3 16376 53440 45243 47645 30
4 16373 53434 45241 47638 30
5 16372 53430 45239 47638 30
6 16375 53418 45237 47599 30
7 16370 53154 45234 46842 30
8 16370 53000 45227 46362 30
9 16368 52987 45226 46330 30
10 |16370 52998 45224 46330 30
1116372 53012 45225 46391 30
12 16371 53269 45236 47188 30
13 [16373 53419 45242 47624 30
14 |16375 53429 45243 47634 30
15 16377 53424 45241 47636 30
16 16373 53403 45241 47505 30
L e NHK 17 |16368 53135 45230 46820 30
[8 gk —0 37989 43225 a5325 3
L =t
L 2 MIN Open <t 52096 45229 46331 30
Las o Dataset Viewer 45230 46400 30
‘ te CHK © Create Variable [ED e :;gi? :;;32 ig
—-B(; NHK 24 |13z rableploner 45242 47638 34
L e CHE 25 11637 OverPlotter 45239 47629 30
[e NHK 26 163 EEL3} 45237 47581 30
[e pHOTE 27 16373 53134 45233 46808 30
[e BSMNOMINAL 28 16369 52990 45232 46353 30
L 29 16363 52986 45226 46326 30
| te NHE ||| 30 (16364 52994 45230 46335 30|
o CHK ||l ol

Figure 2.35. The Level 0 Raw Data within the Observation Context

2.5. SPIRE Spectroscopy Data Structure

2.5.1.

SPIRE spectrometer introduction

This section is dedicated to familiarizing the reader with the appearance of the data from the SPIRE
spectrometer within HIPE and how to visualize the data.

There are 6 different observing mode combinations for the SPIRE spectrometer (and within each of
these, the spectral resolution could be High, Medium or Low). The corresponding pipeline script for
each of the 6 combinationsis shown belowin Figure 2.36:

Pipeline SOF1 SOF2

Spatial Sparse Intermediate Full

sampling

Pointing Point | Raster Point | Raster Point Raster

Figure 2.36. SPIRE spectrometer modes

The Level-1 data products returned by the standard pipeline are the same for all 6 observing combi-
nations. They consist of the raw interferograms (in Volts), and the final spectra for each detector in
the array calibrated assuming uniformly extended emission (in W/m2/Hz/sr). The Level-2 products,
however, depend on whether the observation was “ Sparse, Point” or not. For a Sparse-Point observa-
tion, the final product contains the data from the central detector pair calibrated assuming it is a point
source (in Jy). For all other modes, the final product is a gridded spectral cube, calibrated assuming
it is uniformly extended emission (in W/m2/Hz/sr). In all cases, for Level-1 and Level-2 spectra and
spectral cubes, an unapodized and an apodized version is produced. Thisis summarised in Table 2.4
for the Level 1 products and Table 2.4 for the Level 2 products respectively:

36

Looking at your data

Table 2.4. Description of spectrometer Level-1 products

Pipeline Sampling Pointing Product Units

All All All Interferogram before processing |V
for every detector

All All All Unapodized spectrum for every |W/m2/Hz/sr
detector

All All All Apodized spectrum for every W/m2/Hz/sr
detector

Table 2.5. Description of spectrometer Level-2 products

Pipeline Sampling Pointing Product Units

SOF1 Sparse Point Single point spectrum for SS- | Jy
WD4/SLWC3

SOF1 Sparse Raster Gridded cube, map pixel W/m2/Hz/sr
38"/70"

SOF2 Intermediate | Point Gridded cube, map pixel W/m2/Hz/sr
19"/35"

SOF2 Intermediate | Raster Gridded cube, map pixel W/m2/Hz/sr
197/35”

SOF2 Full Point Gridded cube, map pixel W/m2/Hz/sr
9.5"/17.5"

SOF2 Full Raster Gridded cube, map pixel W/m2/Hz/sr
9.5"/17.5"

The calibration for Level-1 spectrais based on observations of the emission from the Herschel tele-
scope (i.e. observations of dark sky), and amodel of its emission spectrum. Asthe telescope emission
completely fills the beam in a uniform way, this gives a caibration that is appropriate for a smooth
uniformly extended source. The units are given as brightness and so a measure of the beam areais
necessary to convert to in-beam flux density.

For sparse-point observations, a conversion is applied to create a L evel-2 spectrum calibrated assum-
ing an unresolved point source. This correction takes account of the size of the beam, and also the
differencein coupling efficiency for an extended and a point source. The correction is derived empir-
ically by comparing the “extended” calibration derived from the telescope with a“point” calibration
derived from Uranus, and the standard Herschel Uranus model. The beam size and coupling efficiency
are determined from a combination of this empirical correction, and observations of the SPIRE spec-
trometer beam shape measured on Neptune.

For mapping observations, a spectral cube is created which re-grids the hexagonally packed detector
arrays onto a rectangular grid. The units of the final data cube are W/m2/Hz/sr assuming uniformly
extended emission.

In this example, a fully processed observation context is loaded into HIPE and inspected. Level-1
data products are extracted from the observation context and then visualized. Finally, portions of a
data product are extracted and plotted, giving the user direct accessto the data. The data, shown here,
derive from an observation of the galaxy 1C342. The observation was made on September 21, 2009,
Herschel's Operational Day 130.

2.5.2. The Spectrometer Observation Context

2.5.2.1. Load an observation context into HIPE

In HIPE, one can access the observation contexts from data pools as follows:

37

Looking at your data

1. Declare a ProductStorage: i.e. the name of the pool:
storage = Product St orage(" name- of - pool ")

2. Query for an observation context which isidentified by its type being equal to OBS:
results = storage. sel ect (Query("type=="0BS'"))

3. Load the observation into the HIPE session:
observation = resul ts[0]. product

The introductory script loads three observation contexts from three separate data pools. Please refer
to the script for the exact syntax. An observation context is a HIPE object which can contain several
data products.

2.5.2.2. Inspect an observation context in HIPE

HIPE provides convenient GUI tools to inspect an observation context. Begin with the observation
context for thelow resol ution observation (OBSID=0x50001AB8). Inthe HIPE VariablesView, select
IrObservation with aright mouse click and then Open With > Observation Viewer. HIPE will present
the Summary view of the observation, including the image of four spectra, one unapodized and one
apodized, derived from each of the center detectors of the two SPIRE spectrometer detector arrays:
SLWC3 and SSWDA4. Clicking the small arrow to the left of Summary in the observation viewer will
hide the observation summary and present the detailed view of the observation context:

[=3HIPE 2.0 - IrDbservation 81|
File Edit Run Window Help

@l 5»» PR B Q@
[Editor x [—a| 2% variables x =
[P SPIRE_sp..nitro.py | % IrObservation x = -

© hrobservation

name value unit description

ftype |oBs Product Type

; |[|[|e mrstorage
creator AUTO Generator of this product op
creationDate 2009-11-27T19.0547Z reation date of this product © resuits
description Ut

|
|

inknawin ame of this product
instrument |SPIRE instrument aftached ta this product

FLIGHT iodel name attached to this product
tartDate 2009-09-21 T02.2747Z Start date of this procuct
endDate 2009-09-21T02:42:37Z End date o this product I=])|

[ropservation 1rOhservation Ba [&= outine x [=B]

T'g audliary name Ircbservation

;'9 browselmageProduct class ObservationContext

(& browseProcuct package |herschelia.ohs

(- calibration

¢+ leveln

'TB levelD_§

@ levelt

rg IngObsContext
quality

& IrOhservation
© awiiary
© browselmageProduct
® browseProduct
@ calibration
@ leveld
© leveln_5

= H\stnr\/(Log | & Console x (=ei @ |evell

°
brlr ec-0x50001AB8") logOhsCantext
© quality

= pPreductStorage ("demo-spi
= lrstorage.select (Query ("t
lrobservation = results[0].product
#

[.
Figure 2.37. Viewing the SPIRE observation context

The viewing pane shows the many sub-contexts contained in the observation context in afolder-like
layout.

Next, inspect the level-1 context. In the Data area of the Editor for IrObservation, select level1 with a
right mouse click and select Open With > Context Viewer. Insidethe Level 1 context thereisonemain
entry named “Point_0 _Jiggle 0_LR” which standsfor thefirst and only raster point (index 0), the first
and only jiggle position (index 0) at Low Resolution. Thisisthe only building block contained in this
observation. Double-click this building block to see the three entries it contains. Each one represents
adifferent SPIRE spectrometer level-1 data product:

1. apodized spectrum: Level 1 Apodized Spectrum Product

2. interferogram: Level 1 Interferogram Product

38

Looking at your data

3. unapodized_spectrum: Level 1 Unapodized Spectrum Product

C=JHIPE 2.0 - IrObserv...product NI ES)
File Edit Run Window Help
e H&| 5> » ‘R P@E®E B Q@
™ Editor x 8 M
(P SPIRE_sp._niro py (% Irobservation | ' Irobserv...product x * -
MapContext for SPIRE products © hrObservation

© hrstorage
© IrObservation

name value unit description o IrStorage

ftyne pireMapContext Product Type Identification (|||l mronservation

creator Unknown Generator of this product o mrstorage

creationDate 2009-11-27723.17.362 reation date of this prociuct o

description MapContext for SPIRE products lame of this product P

instrument SPIRE Instrument attached to this product © resuts
Unknown iodel name attached to this product

startDate: [2009-11-27T23:17:36Z Start date of this procuct |

endDate [2009-11-27723:17:36Z End date of this product I=}|

= Point_0_Jiggle_0_LR 1rObservation.refs['levell'] .product 2 A
% (% apodized_spectrum £ outline x (=3
#- (% interferogram

name [irobservation.refs[*level] aroduct
(% unapodized_spectrum ‘ [1p

class [spireMapcontext
package |nerschel spire ia.gataset context

“ Histary . Log |] Console x (=g © ronservation refs[leveit"] prouct

© Paint_0_Jiggle_0_LR

rstorage = ProductStorage ("demo-spire-spec-0x500014B9")
results = mrStorage.select (Query ("type=='OBS" "))
robservation = results[0].product

#

OBSID = Ox50001ABA contains HIGH resolution FTE Scans

#

hrstorage = ProductStorage ("demo-spire-spec-0x50001ABA")
resulte = hrStorage.select (Query ("type==TORS™ "))
hrobservation = results[0].product

o>

| W

Figure 2.38. Viewing the SPIRE Level 1 context

2.5.3. The Spectrometer Level 1 Data Products

2.5.3.1. Extract the Level 1 data products

Beforeinspecting the contents of thelevel-1 data products, wefirst extract a selection of these products
as separate variables in HIPE. The syntax required to access alevel-1 product within an observation
context is as follows:

Level 1Product = observation.refs["level 1"]. product.
ref s[Bui | di ngBl ock] . product. refs[Product Nane] . pr oduct

For example, the following command will extract the level-1 interferogram product from the high
resolution observation context:

hrinterferogram = hr Cbservation.refs["l evel 1"]. product.
refs["Point_0 Jiggle O HR'].product.refs["interferograni]. product

Note that the right hand side of this command is spelled out at the top of the Data area of the Context

Viewer in HIPE. Clicking the copy icon at the top right corner will copy the command string into the
clipboard and can then be pasted into the command console.

2.5.3.2. Inspect the Level 1 data products

HIPE offers dedicated visualization tools to inspect the level-1 interferogram and spectrum products.

Thefollowing steps demonstrate how one can inspect the contents of the datasetswithin alevel-1 data
product astables. In this example, adataset in the level-1 interferogram product of the high resolution
observation is examined.

1. Select the hrinterferogram variable with right mouse click, select Open With > Product Viewer.
2. Scroll downto the bottom of the newly opened view. Within thefolder-like structure, unfold Dataset

0001 by clicking the plus symbol to its left and select SLWC3 with a right mouse click. Select
Open With > Dataset Viewer to view the numeric values of the dataset.

39

Looking at your data

3. These values can be easily written into atext file with comma-separated values with the command
quoted below. The equivalent command will work to save a particular spectrum into atext file:
ascii TableWiter(file="C/SLWC3Interferogramtxt",
tabl e=hrinterferogran{”0001"]["SLWC3"])

ascii TableWiter(file="C /SLW3Spectrumtxt",
t abl e=hr Spect runi "0000"] [" SLWC3"])

S-TE |
File Edit Run ‘Window Help
e H& | mr» LB P@rmE @

[Editor x [=o| ¢ variables x\ (=3

@ SPIRE_sp...ntro.py. SE: hrinterferagram | = hrinterf..SLWC3"] x b3 <

© nhrinterferagram
name ~ value unit hrQbservation

ra |56.70227766963556 g Ra pointing for this channel

Dec painting for this channel

© hrSpectrum
dec 65.09604536302676
channelNarme SLWC3 IChannel narme

© hrstorage
- Table Data

description

© Irinterferogram

© Ironservatian
© Irspectrum

TableD:
© Irstorage
Index | opd [em] | erroropd om) signal [v] errorsig V] mask | © mrinterferogram
0 L 0 -0.0013116411495190646 [3.101211371906833E-7 Z] - © mrOhservation
1 75|00 0.0013112416788101046 [2.728229115722643E-7 Z] © mrSpectrum
5 0 -0.0013102585961496237 |2.4399323100026996E-7 Z © mrstarage
25|00 -0.0013057657275309993 |2.5531915366245485E-7 a .
i -0.0013071454016707752 |2.7926329403566333E-7 Z] p
75|00 -0.001305956653027157 2.633879974326486 7E-7 7] © resuits
605 0 £0.001305386 1256806614 |1.8222784054440997E-7 Z]
6025 |00 -0.00130570142407393 2.226054452452789E-7 4
8 6 0 0013068415515576247 |2 679520514921951E-7 Z]
9 5975 |00 -0.0013086453926708242 |2.848003666422951E-7 4 & outline x =3
0 -0.595 0 -0.00131073914275722686 |2.431404399693771E-7 7 — -
1 5925 i} -0.0013125043426715389 2.233491121566251E-7 4 name \W‘mmemgram[‘0001"]["SLWC3"]
2 059 0 -0.0013134974809183239 |2.4356209409928476E-7 Z class |Spirelnterferogramid
3 L05875 |00 -0.0013135472754619425 _ |2.5990856163060506E- Z]
dataset
4 0585 0 0.0013123785046301728 |2 660661542931 623E-7 4 p;magﬁ ‘hmmﬁl SPITE.Ja datasel
5 05825 0 0.00 432714736104 |2.6930720199010383E-7 4 hrinterferngram*0001"["SLWGCS"]
6 058 0 -0.00 62942012395 |2.705001470829564E-7 7]
I Histary . Log | & Gonsole x =
MTINTEITerogran = =
hrobservation.refs["levell”].product. refe["Point_0_Jiggle 0_HR"].product.refs["interferogram”
hrSpect rum =
hrobservation.refs["lewell”].product. refs(["Point_0_Tiggle 0_HR"].product.refs["unapodized spe
>

|| MR] .

Figure 2.39. Inspecting data from a level-1 product astables

Thefollowing steps demonstrate how one can conveniently plot the contents of the level-1 data prod-
uct. In this example, the interferograms for a given detector in the level-1 interferogram product of
the high resolution observation are examined.

1. IntheVariables pane, select the hrinterferogram variable with right mouse click, select Open With
> Spec SDI Explorer. Do the same for mrinterferogram, and Irinterferogram.

2. In the hrinterferogram view, select detector SLWC3 with a left mouse click. In the other views,
select the same detector but do so with a double-click of the left mouse button to over-plot the
interferograms.

LIHIPE 2.0 - hrinterferogram =1Bx
File Edit Run Window Help
ffeH&| 8 r» L P@mmEQ
[Editor x [—o)| ¢ variables x (—o]
SPIRE_sp...ntro. pyThrlnteﬂerogram x ® B
[Displ [Meta Data | 2l|[|[e detector =]
- © fluxnit
© hrOhservation
© hropd
© hrsignal
© hrSpestrum
o o =
oSuse
e o | =
@ . © Irinterferagram
. . © IrLayer
' . © Iropservation =
[SE outline x =3
[name [nrinterterogram E
class SpectrometerDetectorinterferogram
package |herschel spire ia dataset
R1 & hrinterferogram
+ @ o001
& &2 0002
Contral Panel Panel (& 0003
& 0004
Scan Selection [J Narminal detectors only ‘TLQ oo0s
[Forward + (& 0008
[Unvignetted onty (%0007
O R i
everse L[| = & cons
=] Initial comla: [I1L [l Daechiond >]|(| ¢ & ooog -
(S bistory, Log, Gonsore @)

|| e .

Figure 2.40. The SDI Explorer allowsto select and plot data from alevel-1 interferogram product

40

Looking at your data

2.5.3.3. Extract and plot Level 1 data
The remainder of this chapter shows how to extract and plot interferograms and spectra:
1. Extract theindividual data vectors from the product datasets

General syntax:
wave = spectruniscanNunber][detector]. get\Wave()

flux = spectrunscanNunber]|[detector].getFl ux()

Specific syntax:

hr Wh hr Spectrunf 0] [" SLWC3"] . get ave()

hr Fl ux = hr Spectruni O] [" SLWC3"] . get Fl ux()

2. Plot the results.
General syntax:
p = Pl ot XY()

p. addLayer (Layer XY(x, y))

Specific sample syntax:
detector = "SLWC3"
plotTitle = "lInspect Level 1 Spectra "+detector
p = PlotXY(titleText = plotTitle)
hr Layer = Layer XY(hrWwh, hrFlux, nane="HR")

p. addLayer (hr Layer)

Using the above examples, the following plots should be displayed:

41

Looking at your data

Signal[V]

-0.00100
-0.00105
-0.00110
-0.00115
-0.00120
-0.00125
-0.00130
-0.00135
-0.00140
-0.00145
-0.00150
-0.00155

-0.00160
4

Inspect Level 1 Interferograms SLWC3

2 0 2 4 6 8 10 12
OPD[cm]
| HR ME LR ‘

Figure 2.41. Comparing three interferograms from the SLWC3 detector

Flux Density [Jv]

Inspect Level 1 Spectra SLWC3

14

e i e e e = R 2 D
[R = T~ B == T SE R)

Wavenumber [cm™]

|.—.HRHMRHLR |

Figure 2.42. Comparing three spectra from the SLWC3 detector

42

Looking at your data

2.5.4. Using SpecExplorer

The Spectrometer Detector Explorer, also known as SpecExplorer, is a GUI-based visualization tool
that allows efficient inspection of the contents of the two SPIRE products: Spectrometer Detector
Interferogram (SDI) and Spectrometer Detector Spectrum (SDS). The following sections detail the
features of SpecExplorer.

2.5.4.1. Starting SpecExplorer

SpecExplorer is an application that can be called from the interactive data processing environment
HIPE. At least oneinstance of one of the classes Spectrometer Detector | nterferogram or Spectrometer
Detector Spectrum must already be available in memory. For example, such a product can be loaded
into memory viathe Product Access Layer.

In HIPE, identify the product for visualization from the Products list and right-click the Spectrometer
Detector Interferogram or Spectrometer Detector Spectrum product, follow the “Open With” menu
entry and select the SpecExplorer from the drop-down menu (see Figure 2.43).

The SpecExplorer can also be called from the command line. SpecExplorer will visualize any Spec-
trometer Detector Interferogram (SDI) or Spectrometer Detector Spectrum product (SDS). Inthe HIPE

command line window, we will load a product of the name SDS after entering the following com-
mands:

from herschel . spire.ia.gui inport SpecExplorer

SpecExpl or er (SDS)

E HIPE - Herschel Interactive Processing Environment: Q@E|
File Edit Run Window Help
= L rEQe
| Editor X = 5% Variables x _oll&. = -
SpecDatapy x - ||
| Applicable

P from herschel.ia.io.fits import *

dataDir = r
dataFile =

® 50l % By Category

AnothersDI = FitsArchive () .load{dataDir +

- =
¥ Delete Delete I xplorer
(7) Help Selection F1

39%

Figure 2.43. Starting the SpecExplorer via HIPE.
2.5.4.2. SpecExplorer Layout

The Graphical User Interface of the SpecExplorer is divided into four sections: The Bolometer De-
tector Arrays Spectrometer Long Wavelength (SLW) on the top to the left, the Spectrometer Short
Wavelength (SSW) on the top to theright. The Control Panel is on the bottom left and the Preferences
Panel is on the bottom right (see the Figure 2.44).

43

Looking at your data

[HIPE - Herschel Interactive Processing Environment
File Edit Run ‘indow Help

Editor x _
SpecExplorerTestpy | Ssds_even_nice X

[DisplayPanel | Meta Data | =

Sl
B3

DP1 i R1; T14 T2

Scan Selection [Mamninal detestars only
[Forvrard

[Reverse [0 Unvignetted only

. [=]
@ Single 1E i ; 5 ; 7 T ; L B[l mitial scale: [User [Passhand
@ Al Seans

(3)

Cantrol

o [l [EanTine]
[Eansunmie |
[Eotiegens |
[sample Mask |

Thumbnails

sLw hd

Color Scheme Range =
Phase: () Radians @ Degrees

‘ H [sz
jeotem |5 [3at.01iem

FlotTyoe:] Real O Phase Cr Absalute
[Imaginan

Color Geherme: @ Grey Scale () Heat

0%

Figure 2.44. SpecExplorer Graphical User Interface.
Bolometer Detector Arrays Display

The top panels of the SpecExplorer contain the display of the two detector arrays (see Figure 2.45).

(Display Panel | Meta Data

sL)

DP1® i AR 1T

Figure 2.45. SpecExplorer —Bolometer Detector Arrays Display.

Thisdisplay allows the user to select any of the detectors of the SPIRE spectrometer: The long wave-
length array on the left and the short wavelength array on the right. The detector layout reflects their
arrangement in a honeycomb pattern. Clicking on one or more of these detectors allows the user to
plot the data said detector recorded.

Control Panel
The Control Panel (see Figure 2.46) alows usersto:
» Select asubset of the scans within the data product (Scan Selection).
» Create plots of many datasets on one page (Thumbnails).

» Definethefill coloursfor the detectors (Colour Scheme Range).

44

Looking at your data

-Zontrol Panel

Scan Selection
[_] Forward

[[] Reverse

5 LI OO 1
® Single 1 =l 1C|| | I I I | | | 8

i1 All Bcans
O

Thurmhbnails

SLY >

Color Scheme Range

ES| £ m—

= =
0.0 1fem it 18910 1/em

Color Scheme: (@ Grey Scale (O Heat

Figure 2.46. SpecExplorer - Control Panel.
Scan Selection
This section of the Control Panel (see Figure 2.47) allows the user to select which scans are plotted:

» The Forward and Reverse buttons allow the plotting of scans based on the direction of those scans.
Since all scans should be either forward or reverse, checking both options will plot all the scans
in one product.

» The Single option allows the user to plot one scan at atime.
e The All Scans option plots al the scans of a given detector in the product.

» Free Text: Users can specify arange of scansto be plotted in afree text field. For example, if the
user wishesto plot scans 1 through 4 and scans 7 and 8, this can be specified as follows in the user
selected scans section: 1-4 7,8. The wildcard * will select all scans.

Scan Selection

(] Forward

[l Reverse

@ Slngle 1 ﬂ 1 | | | | I | I | 8
) &ll Beans

ol

Figure 2.47. Control Panel - Scan Selection.
Thumbnails

In order to enable the user to compare data from many detectors, the SpecExplorer allows the user to
create numerous plots on a single page. The resulting data plots are small in order to fit all requested
plots on one screen, leading to "thumbnail" images of the data. The result is a single window that
contains a number of thumbnail data plots arranged in the same pattern as that of the detectors in
the Bolometer Detector Array display, a honeycomb pattern. The scaling of the main plot window is
applied to each thumbnail image. If no plot window is currently open, the selection of the Initial Scale
on the Preferences Panel is applied. The Initial Scaleis basically the scaling that allows for afocused
view of the plotted data (see Figure 2.50). Three selections are available under the Thumbnail drop-
down menu (see Figure 2.48):

45

Looking at your data

1. S Wto plot data which were recorded by the detectorsin the long wavelength detector array. De-
pending on the selection in the Preferences Panel, data are shown only for the nominal or unvi-
gnetted detectors.

2. SSWto plot data which were recorded by the detectors in the short wavel ength detector array. De-
pending on the selection in the Preferences Panel, data are shown only for the nominal or unvi-
gnetted detectors.

3. Co-Aligned to plot data which were recorded by the co-aligned detectors in SLW and SSW. De-
pending on the selection in the Preferences Panel, data are shown for all the nominal or only the
unvignetted co-aligned detectors.

Thumbnails

|Selectthumhnail v|

Select thumbnail
SLWW

SIS

Co-Aligned

Figure 2.48. Control Panel — Thumbnails— Thumbnails Selections.
Colour Scheme Range

This section allows the user to change and control the colour scheme used to determine the colours
used in the honeycomb "images' for the Detectors Display (see Figure 2.49). Two colour schemes are
available which both go from white (high values) to black (low values): Grey Scale and Heat. The
values for the colour scheme are set to the average of the detector data within a user-specified data
range. The range slider, and the indices and values displayed next to it, specify the abscissarangein
the interferograms or spectra which is used to compute the average signal value and subsequently set
the colours. Note that only the abscissa indices, not the values, can be entered by the user.

Color Scheme Range

338 1,939—

-20cm = ' 120cm
|

Color Scheme: @ Grey Scale 0 Heat

Figure 2.49. Control Panel - Colour Scheme.
Preferences Panel
This panel (see Figure 2.50) allows the user to :

 Select which detectors are to be displayed in the Bolometer Detector Array Display and the Thumb-
nails.

» Select theinitial scale of the plots.
» Customize thetitle, subtitle, and legend entries for the main plot area.

» Select whether spectral phase is given in units of radians or degrees. Note that the spectral phase
@(S) isdefined astan @ (S) = Imaginary (S) / Real (S).

» Select the quantity used in the plot when complex data are presented, to either Real or Imaginary,
or Phase, or Absolute. This selection is only available if the product contains complex data with
real and imaginary components.

46

Looking at your data

-Preferences Fanel

[[] Mominal detectors only
[Unvignetted anly

Initial scale; [User [¥] Passhand

Phase: 0 Radians ® Dedgrees

PIotTyRe: [Real {2 Phase () Absolute
[1 Imaginary

Figure 2.50. SpecExplorer - Preferences Panel.

The “Nominal detectors only” option allows the user to display only the nominal detectors in the
detector arrays, i.e. those detectors which make sky observations. The “Unvignetted only” option
allows the user to display only the unvignetted detectors in the detector arrays, i.e. those detectors
which have an unvignetted Field of View through the Herschel telescope.

The two selection check boxes for the “Initial scale” alow the user to select whether the initial scale
of aplot reflectsthelast user choice (“User”) or whether the plot presents the optical passband defined
by the instrument, i.e. 10 — 35 cm™ for data from SLW and 25 — 55 cm™ for data from SSW and 10
— 55 cm™ if data are plotted from detectors from both arrays (“Passband”). The ordinate will scale
with the data for the passband option. If neither box is checked, then the plot will self-scale according
to the data.

The edit buttons allow the user to customize the title, subtitle, and legend of the main plot area. All
descriptors from the data product are available regardless of the level where the metadata reside.

In case the spectral phaseis plotted, the “Phase” section allows the user to plot the phase in Radians

from - 1t/ 2to + 11/ 2 or in Degrees from -180° to 180°. This selection only applies to the first time
when phase data are plotted. Changing this selection subsequently does not have any effect on the
plot until anew plot is created.

The “Plot Type®" section alows the user to specify which aspect of the spectral flux is plotted
where it is given as a complex number. The absolute value of a complex number is given by

\ Fmaginary | s+ Real sV

2.5.4.3. Example 1: Plotting and Overplotting

In order to inspect datafrom aspecific scan and detector from aspecific product, perform thefollowing
steps:

1. Start the SpecExplorer for the product in question.

2. In the Scan Selection section of the Control Panel, specify which scan(s) should be plotted, e.g.
all reverse scans.

47

Looking at your data

3. Inthe Preferences Panel, click the buttons for edit titles, subtitles, and legends to customize these
fields. Fields are populated by the entries in the inspected product and free text can be added by
the user. Default title, subtitle, and legend information are stored and can be retrieved through the
customization window. See Figure 2.51.

4. Inthe Preferences Panel, select the Initial Scaling needed, e.g. Passband.
5. In the Preferences Panel, select the Plot Type, e.g. the Absolute value of a complex number.

6. Inthe Detectors Display shown in Figure 2.44, single left mouse click the detector to plot its data,
e.g. SLWD3. A new PlotXY window will open with the SSWD3 detector plotted as shown in

Figure 2.52.

7. For an overplot, double-click with the left mouse button on an additional detector to plot its data,
€.g. SSWC2 (see Figure 2.53). A single click would have created a new plot containing data from
SSWC2 only.

B edie Title - OX

Add Selected tem Restore Default

Data taken on %starntDate%

Set Title Cancel

Figure 2.51. Edit Title

48

Looking at your data

Data taken on 2008/Nov/13 21:42:32 UTC

0.07 III|III|III|III|III|III|III|III|III|III|III|III

0.06

0.05

0.04

0.03

Flux [V]

0.02

0.01

0.00

20.01 ol b b b Lo b by b b L L g 10
10 12 14 16 18 20 22 24 26 28 30 32 34

Wavenumber [cm™!]

——— Abs(SLWD3-1) ——— Abs(SLWD3-3) |

Figure 2.52. Single plot of thereversescans 1 and 3.

49

Looking at your data

Data taken on 2008/Nov/13 21:42:32 UTC

0.07 IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIIIIIIII

0.06

0.05

0.04

0.03

Flux [V]

0.02

0.01

0.00

-0.01 IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
10 15 20 25 30 35 40 45 50 55

Wavenumber [cm™!]

——— Abs(SLWD3-1) ——— Abs(SLWD3-3) ——— Abs(SSWC2 - 1)
Abs(SSWC2 - 3)

Figure 2.53. Overplot of data from two different detectorsin two different detector arrays.

2.5.4.4. Example 2: Making a Thumbnail Image

In order to compare data from different detectors on the same page perform the following steps:

1

2.

Start the SpecExplorer for the product in question.

In the Scan Selection section of the Control Panel specify which scan(s) should be plotted, e.g.
scan number 1.

. Open the main plot window by performing the stepsin Section 2.5.4.3, select therange to be plotted

on the thumbnail images, e.g. from 25 cm™ to 40 cm'™.

. In the Preferences Panel, check whether to get thumbnail images from al, only the nominal, or

only the unvignetted detectors, e.g. “Unvignetted only”.

. From the Thumbnails drop-down menu on the Control Panel, select to get thumbnail images from

SLW, SSW, or the co-aligned detectors on SLW and SSW (see Figure 2.54).

50

Looking at your data

2.5.5.

Honel- /]
sswEz L E sswez

£58

H

Fiix (Y]

07

g
*

uuuuuuuuuuu
Wavenussber [om]

§EEgE

Hx (Y]

sSWE3

S
Pid

®

¥

N
2 3
%r L4
i .

&

¥

TRy
bbb
Fix [Y] .

SSWEA

AENESEE

AR ERE:
LY

®
8
8

Flux

ERNEERE

TN A SRR

| ST TTTU TR VORTTOOTTOITY: Sy 3 / N
Homom o wonm oM % w8 / NG wonom
Weveanmber [oa] Eoou| I

Figure2.54. Thumbnail images of the unvignetted SSW detector sin the spectral region selected in themain
plot window.

The Spectrometer Level 0.5 Data Products

The Level 1 data products were created from the lower Level 0.5 data products (which were corre-
spondingly created from processing the raw Level 0 data through the Common Engineering Conver-
sion (Level O - Level 0.5) Pipeline). The Level 0.5 data are the voltage calibrated, timelines measured
in Volts uncorrected for detector effects. These level 0.5 products are also available from the Obser-
vation Context. The Level 0.5 context folder can be seenin the Observation Context and can be opened
by clicking on the + next to the | evel 0_5 folder. The Level 0.5 context contains a lot more data
than the Level 1 context and includes all the data necessary to process the observation and produce
science quality data. In Figure 2.55 we show all the Level 0.5 data within the observation context.
We see that there are atotal of 15 entriesin the list informatively labelled from 0 to 14. This can be
compared to the single final product that we saw for the Level 1 data. The Level 0.5 context contains
all the building blocks used in the observation and in Figure 2.55 we show how this spectrometer
observation was built up from the individual building blocks. In the figure, the building blocks can
be divided into roughly 4 general types, configuration blocks, calibration blocks, science blocks and
movement blocks. The type of building block can be revealed by clicking on a given number from
0-14 and scrolling down the Met a dat a window pane to the BBt ypeNare entry. The individual
blocks are described below in Table 2.6.

51

Looking at your data

Spectrometer
Building
Block

F Data
Sequence =4 MyObsContext MyobsContext [=]

®® N 200 pw N =2+ O

N e T M-
A WM =0 ©

T,
—
—
| —
I
R
e H Lo {2 7
I
p————
——
_
————
EEE—
e

(.- MyObsContext x\

+ Meta Data

- (% auxiliary
& (% calibration
— & (5 |evel0

= = level0_S

—— T E History

@- (%913

S @ 14

& (% logObsContext
& (%8 quality

E:_:j Science (FTS Scan)

ﬁ Movement (BSM motion)
@ Set-up (configuration, SMEC, etc)
@ Calibration (PCAL flash)

Figure 2.55. Anatomy of Level 0.5 Building Block structure for a spectrometer observation

Table 2.6. Description of the Building Blocks in a Spectrometer Level 0.5 Context

BB number |BB Type BB Hex |Description
prefix
SpireBb_StartObsAll |0xB6C8 | Begin Observation
SpireBbSOF1Config |OxAOBO |Initial configuration of the Spectrometer SOF1
AOT
SpireBbSmecl nit 0x8213 Initialize the SMEC
3 SpireBbSOF1Init OxAOB1 |Initidizethe AOT
4 SpireBbBsmMove 0xA107 |MoveBSM to position for thisset of FTS
scans
5 SpireBbSetBsmSam- | 0x8641 Set BSM sampling rate for FTS scanning
pling
6 SpireBbSetSmecSam- | 0x8642 Set SMEC sampling rate for FTS scanning

pling

SpireBbFtsScan OXAFO0 |Science FTS scans

SpireBb BsmMove |0xB6CC |Reset BSM position after scanning

52

Looking at your data

BB number |BB Type BB Hex |Description
prefix

9 SpireBb_MoveSmec2HA@xB6C2 | Move SMEC to home position after scanning

10 SpireBbSetBsmSam- | 0x8641 Reset BSM sampling rate after scanning
pling

11 SpireBbSetSmecSam- | 0x8642 Reset SMEC sampling rate after scanning
pling

12 SpireBbPcalFlash 0xB6B9 |Calibration Lamp Flash

13 SpireBb_MoveSmec |[0xB6C3 |Move SMEC to rest position

14 SpireBbSOF1ENnd OxA0B2 |End AOT Observation

Looking at some of the individual entriesin the Level 0.5 context, it can be seen that the individual
Building Blocks are built up from a variety of different types of Products. clicking on the + sign for
a given Building Block number reveals what Products a particular Building Block is made from. In
Figure 2.56 the first handful of building blocks for our observation are opened to view the contents.
The contents are a variety of Products referred to by ancronyms such as CHKT, NHKT, SDT, BSMT,
SOT, SCUT, etc, described in order of importance below;

Example building blocks may be;
» SDT: The Spectrometer Detector Timeline contains the Level 0.5 detector data.
* BSMT: The Beam Steering Mechanism Timeline contains the information of the BSM.

* SMECT: TheSpectrometer Mechanism Timeline contains the information of the position of the
SMEC (the moving FTS mirror) as afunction of time.

* NHKT: The Nominal House Keeping Timeline contains the housekeeping datawith al the settings
for this observation.

» CHKT: The Critical House Keeping Timeline contains all the critical parameters of the instrument
such as the electronics.

* SCUT: The Sub Control Unit Timeline contains monitoring data for the instrument operation for
this observation.

» SOT: The Spectrometer Offset Timeline contains all the raw DC offsetsin ADU that have already
been used in the raw data processing to set the dynamic range of the detectors.

* MCUET: The Mechanism Control Unit Engineering Timeline contains information on the SMEC
(position sensors etc).

53

Looking at your data

[G& MyObsContext x

Voltages table

2 leveld MyObsContext.refs|"leveld_5"].product.refs[7] .product.refs| "SDT"].product| "voltage"] =
Ffévﬂizggm Index sampleTime [TAI] SSWR1 [V] Sswhd [V] SSWAS [v] | SSWAZ [V]
&0 0 |1.6527616978556206E9 |0.0059874873 0.006856365 0.006515.../0.006807...
b (8 CHKT 1.6527616978681133E9 [0.0059876693 0.006856205 0.006515...[0.006807...|0.
lk@ NHKT 2 |1.652761697880606E9 0.0059876465 0.0068562967 0.006515...0.006807..0.
&1 6527616978930988E9 .005987533 0.0068562
4 (@ CHKT .6527616979055915E9 00059875785 0.0068562
& (® NHKT .6527616979180841E9 0005987465 0.00685
=2 K 7616979305768E9 .00598751 0.00685
4 (@ CHKT 7 |1.6527616979430697E9 0.005987624 0.00685
é & MCUET 1.6527616979555624E9 |0.0059876693 0.006856251 0.006515... 0.006807.
& (% NHKT 1.652761697968055E9 [0.0059875557 0.006856365 0.006515...[0.006807...
&3 10 [1.652761697980548E9 |0.0059875557 0.006856365 0.006515.../0.006807...|0.
@ (% CHKT ~ |1.6527616979930372E9 |0.005987465 0.006856091 0.006515...0.006807..0.
% (8 NHKT .65276169800553F9 0059875785 0.0068561137 .006515...,0.006807...0.0
& (@ sOT .6527616980180228E9 00059876014 0.0068563423 .006515...0.006807...0.0
(=] 4 7616980305154E9 .0059876693 0.00685 7 006515 006807. 0
4 (8 CHKT .652761698043008E9 0059874873 0.0068562278 .006515_0.006807__.[0.0
& (3 NHKT 16 |1.652761698055501E9 005987533 0.006856251 .006515.../0.006807.../0.0
&s 1.6527616980679936E9 |0.005987624 0.0068561137 0.006515... 0.006807...10.01
% @ CHKT 8 [1.6527616980804863E9 |0.0059875557 0.006856091 0.006515.../0.006807.../0.0
4 (8 NHKT 19 [1.652761698092979E9 0.0059876926 0.006856205 0.006515...[0.006807.../0.0
=6 20 [1.6527616981054718E9 |0.0059876014 0.006856365 0.006515../0.006807.../0.0
& (% CHKT 21 [1.6527616981179645E9 [0.0059876014 0.006856274 006 006807...[0.0
lk@ NHKT 22 6527616981304572E9 0059875557 0.00685 5 006 .006807...10.0
=7 23 6527616981429498E9 00598746 0.00685 37 006515... 0.006807. 0
& (8 BsMT FTS scan 24 |1.6527616981554427E9 [0.0059875785 0.0068562278 006515.../0.006807...0.04
@ (% CHKT 25 527616981679354E9 .0059876014 0.00685 7 006 -/0.006807...10.0
.‘LB NHKT 26 |1.652761698180428E9 0.0059875557 0.006856274 0.006515...0.006807...10.04
l-@SDT 27 |1.652761698192921E9 0.0059876926 0.0068562278 0.006515... 0.006807.../0.0
° [616982054136E9 [0.0059876014 0.006856068 0.006515...0.006807...10.01
© resisance . Dateer Viewer 6693 0.006856205 0.006515.../0.006807.../0.0
© mask 533 0.006856091 0.006515.../0.006807...0.0
© quality Power Spectrum Generator (5785 0.006856205 0.006515../0.006807../0.0
& (% History v TablePloter 624 0.006856091 0.006515.../0.006807.../0.0
L& temperature 331652 e 6926 0.0068563423 |0.006515...0.006807...0.0
@ (% SMECT 34 [1.652 6465 0.006856457 0.006515...0.006807...|0.01
=N 35 11.6527616982928627E9 |0.0059876014 0.006856365 0.006515... 0.006807...,0.04
@ (@ CHKT 36 |1.6527616983053553E9 |0.0059875785 0.0068563423 0.006515....0.006807...|0.0!
“‘BN"KT 37 11.652761698317848E9 0.0059876014 0.0068562278 0.006515...0.006807...10.04
&9 38 |1.6527616983303406E9 |0.0059875557 0.006856182 0.006515... 0.006807...10.0
& (B CHKT 39 |1.6527616983428335E9 |0.0059875785 0.00685616 0.006515...0.006807...10.0
4 (8 NHKT 40 [1.6527616983553262E9 [0.0059876693 0.0068562967 |0.006515...0.006807../0.0
10 41 [1.6527616983678188E9 [0.0059876014 0.006856274 0.006515.../0.006807.../0.0
4 (% CHKT 42 [1.6527616983803115E9 |0.005987533 0.006856205 0.006515.../0.006807.../0.0
J.B NHKT 43 |1.6527616983928044E9 |0.00598751 0.0068563195 0.006515...0.006807...|0.01
&1 44 |1.652761698405297E9 0.0059876014 0.0068562967 0.006515....0.006807...|0.01
@ (@ CHKT 45 1.6527616984177897E9 |0.0059875557 0.006856205 0.006515...0.006807..|0.01
*“BNMKT £169R84302824F9 10 00SQR74R73. 0 D0ARSANRR. 006515 0006807 10 00%/
Iy b i

Figure 2.56. Inside the L evel 0.5 Building Block structurefor a spectrometer observation

The CHKT, NHKT, BSMT, SOT, SCUT Productsall containasi gnal table, containg dataarraysand a
Mask table containing flag information. The Level 0.5 SDT Spectrometer Detector Timeline Products

contain 5 Table dataset arrays;

» Voltage Table: A table containing the Sample Time (in seconds) and a column for the signal mea-
sured in Volts for every bolometer including both detector and non-detector (e.g. thermistor, resis-
tor) channels.

Resistance Table: A table containing the Sample Time (in seconds) and acolumn for the Resistance
measured in Ohms for every bolometer including both detector and non-detector (e.g. thermistor,
resistor) channels.

Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

Quality Table: A table containing any Quality Flags raised for each detector.

Temperature Table: A table containing the Sample Time (in seconds) and the temperature of the
Thermistorsin Kelvin.

In Figure 2.56 the SDT Building Block has been selected. Right-clicking and selecting Open-wi t h
- Dat aset Vi ewer, opensthevol t age tablein a new window. Any of the Table Data Sets can
also be viewed graphically by selecting Open-wi t h - Tabl e Pl ott er asshownin Figure 2.57.
In the plot window the bolometer signal to plot can be selected from the Y- axi s menu (circled in

the plot window) and in this example the signal versus sample time for bolometer SSW D4 has been
selected. In the figure, the forward and reverse scans of the SMEC can be seen.

Looking at your data

2.5.6.

[% MyObsContext X & TPL (MyOb...xt.refs)

Voltages table
[swewary 0000000000000}
~ Data

Dal
= MyObsContext

MyObsContext.refs["level0_5"].product.refs[7].product.refs["SDT"].product["voltage"] ERZ
& (™ auxiliary —
% (% calibration
+ (2 level0 B 4
& ‘:::m 5 0.00650 Ff Line plot
§ @ Hsory 0.00645 £ P Breplay Sty
&1 0.00640 Jin [Marked |
+®:2 £l]
&3 0.00635 4
(38 CHKT E
@
& (5 NHKT 0.00630 £ 92 -
+ . %%
@L? ot S 000625 £ | IR
(3 CHKT 5 E s
& & N g 000620 126,0.00620) K— Pas
&s @ 0.00615 3 L) 1 —
¢ @ CHKT o i]l I I+
& (% NHKT 0.00610 H Selections
=6 E
¢ (@ CHKT 000605 5 Forward Reverse Forward Reverse Hide X | Unhide O
o kT o600] Scan Scan Scan Scan Excl Saoct| Unhide A1
= Al Cots [l]|_Show All
$ @ ssur 0.00595 Lo conlll] shew 1]
& (% CHKT El
+ @ nukr Plot the SDT 0.00590 5 Extract][Layer Props|
& sp signal Bl bbb b b beddlbinnc b b b b e Bdi Overlay plots
i e 0 20 4 60 80 100 120 140 160 180 200 220 240 260 E@)
© mask With [Dataset viewer sampleTime(TAI) (1 Show legend
© quality reate Variable Power Spectrum Generator P [Remove a layer _~
(% Histol
& History @ TablePlotter
il X% | oyerplotter = yasO —DM =
: t::g time[0]=1652761697:2010-05-17 04:27:43(UTC)
4 @ 10 4.0.784
& (% 1) ~| |4 »

Figure 2.57. Plotting the L evel 0.5 data for a Spectrometer observation

Looking at the Raw Level O Data

The Raw data formatted from the satellite telemetry is also available within the Observation Context.
These are the Level 0 Products and will in most circumstances be of no genera interest. The Level
0 Context, shown in Figure 2.58, contains 15 entries. Note that there is a significant differencein the
Level 0 data structure compared to the Level 0.5 Products. In the Level 0.5 Products, each individual
block in the observation has several datatypes (e.g. Scan line, Housekeeping data, etc - see Table 2.6
). However, in order to reduce the raw data volume at the Level O stage, al the data types are conca-
tonated into a single Level O product, referred to as a Raw SPIRE Timeline (RST) for each building
block, i.e. A single Level 0 product contains many seperate Table datasets. Clicking on a given num-
ber within the Level O context reveals the Level 0 Product for that particular building block. These
products are the raw dataversions of the Level 0.5 dataand contain Table Datasets such asthe Critical
House Keeping timelines (CHK), Nominal House Keeping timelines (NHK), Raw Spectrometer Detec-
tor timelines (SPECF), Raw SMEC timelines (SMECSELECT), Raw BSM timelines (BSNNOM NAL),
Raw Spectrometer Offset timelines (SPECOFF) and Sub-Control Unit timelines (SCUNOM NAL). The
Raw Spectrometer Detector Timeline (SPECF) Table Dataset can be viewed by right-clicking and
selecting Open-wi t h - Dat aset Vi ewer, see Figure 2.58), we find quite a different structure
to the Level 0.5 SDT datasets. There are 72 columns, one for every SPIRE channel, numbered not
in the familiar SSWD4, SLWC3 notation but rather as as SPECFARRAY001 -- SPECFARRAY072
which correspondsto their Channel Number (from an electrical designation). The signal is still in raw
ADU and there are many different time columns which correspond to various measures of the data
frames, telemetry packets and packet sequence counts, etc. The only flags are contained in the SPEC-
FADCFLAGS column which is set in the case of aproblem with ADC processin telemetry. A full de-
scription of the data structure can be found in the Products Definition Document (HERSCHEL -HSC-
DOC-0959) or the SPIRE Pipeline Description Document (SPIRE-RAL-DOC-002437).

55

Looking at your data

.- MyObsContext x

summary

Spectrometer Full Array (Nominal Science Report)

AE; M\rObSCumexl MyObsContext.refs["level0"].product.refs[7].product|"SPECF"] @
:i:g 2:‘1’:‘;':“ Index | SPECFARRAY0OL] SPECFARRAY00Z [| | SPECFARRAY0D3 [l | SPEC
1S eveln 0 18709 56897 40176 54729 |~
& =0 118717 56890 40174 54731
i 2 [18716 56894 40169 54736
4 3 [18711 56892 40173 54729
g4 4 [18713 56890 40168 54736
b 5 |18708 56891 40175 54736
IS 6 [18710 56892 40180 54732
- o g 7 |18715 56891 40184 54733
P 8 [18717 56892 40171 54736
L 9 |18712 56897 40170 54730
- o g 10 (18712 56897 40181 54734
o CHK 1118708 56885 40173 54738
Ly 12 (18713 56886 40170 54737
& NHK 13 18714 56896 40182 54734
o cHK 1418717 56887 40183 54733
o 1= liezna 56891 40174 54727
o SMECSELECT Open 4 | 56892 40182 54722
© BSMNOMINAL “ Dataset Viewer 40172 34726
‘ *g 8 © Create Variable Power Spectrum G :g:;g ::;:;
::9 ?0 20 18714 | TablePloter 40177 54729
&m0 21 [18714| OverPlotter 40171 54734
im0 22 |18712 SvEIU 40170 54730
&m0 23 |18708 56886 40181 54730
& 24 |18713 56891 40178 54732
714 SHBET 40181 54727 |¥|
- (% level0_S I“B]
B lnnnbeCantaut

Figure 2.58. The Level 0 Raw Data within the Observation Context

56

Chapter 3. SPIRE Calibration Data

3.1. SPIRE Calibration Explained

3.1.1.

3.1.2.

The SPIRE Calibration Context

Calibration data is attached to the Observation Context for every observation. This section describes
how to access, understand and update (if necessary) the calibration data. The calibration context which
contains all of the SPIRE calibration products for both Photometer and Spectrometer can be extracted
from the Observation Context as follows (where the observation context has alraedy been read into
avariable called obs):

cal = obs.calibration

The view when thisis visualised in the Observation or Context Viewer is shown in Figure 3.1. This
viewer shows that there are two sub-contexts — one for Photometer and one for the Spectrometer, as
well as some products that are common and so listed separately. The individual calibration products
are contained within the “phot” and “spec” calibration contexts.

e
File Edit Run Pipeline Window Help
HeoH® =r» ol I ISR
¥ Editor x (=a)[® - =x\[=a)[®@T- x\[==
[% obs % ® - | (= A
= Appiicable
Table for PSW array © cal = By Category
- Summary. © obs
Object: sh104irst Instrument: SPIRE
RA: 20h17m 56.6s DEC: 36° 45' 38.98"
Observation ID: 1342188190 Operational Day: 217
Observation Mode: Single Pointing
~_Meta Data
& obs ~| |obs.refs["calibration"] .pro.. .uct.refs[0].product ["PSW"] [&I
& auxiliary Index | names [| isDead [| isNoisy [] | isSlow [| |
- & calibration (SPIRE) o A lfalse e ee =
- & Phot 1 A2 false alse alse
- (% BeamProf Editions (arrayName dependent) 2 A3 false alse alse
. & BolPar 3 paise alse alse
(% BsmOps Editions (ime dependent) e laiee e e
(% BsmPos AT [false alse alse
- (% GhanGain A8 false alse alse
- = ChanMask Editions (time dependent) : alse alse alse
& ChanMask_20050201 M1 fales e e
e ATZ ffalse ffalse [false
° PMW A13_false alse alse
° PLW Al4_faise rue alse
o PTG A5 false alse alse
[15 [PSWBI faise false false
+® Chaniask_20061001 B2 false alse alse
+® ChanMask_20071201 B3 false alse alse
% (% ChanMask_20090519 gg alse alse alse
(% ChaniNoise Editions (biasMode, time dependent) B ke s e
~ (% ChanNum B7 _false alse alse
(% GhanTimeConst |22 B8 faise alse alse
B9 false alse alse =
4 D)
E Console x =a)
FIPES
H1pE>
nTeES
hreE>

HIPE>

Load PhotChanMask] ‘ ‘ I si2ot6222 M8 .

Figure 3.1. The SPIRE calibration context.

The SPIRE Calibration Tree

Thecalibration of the SPIRE instrument islikely to beimproved throughout the mission and beyond as
we gain better understanding of theinstrument performance. The collection of all calibration products
for SPIRE arereferred to asthe “ Calibration Tree”, and as thisis updated, the calibration tree number
changes. The version of the calibration treeis contained within the metadata of the calibration context,
for example:

57

SPIRE Cdlibration Data

3.1.3.

print obs.calibration.version
spire_cal _4 0

Calibration trees are often (but not always) related to a particular version of Hipe.

SPIRE Calibration Product Editions

Severa calibration products have different contents depending on the conditions of the observation (for
example, the values may change at different times, or may depend on whether “bright” or “nominal”
mode was used, etc.). These are referred to as “editions’. The Calibration Context Viewer lists the
dependency of the editions next to each calibration product, and gives access to all of the different
editions (shown as an example in Figure 3.2).

% (8 ChanNum abs.refs "ealibration] o7 Photometer Flux Conversion depends on the

(% GhanTimeConst | sl detector bias mode (“nominal” or "bright”
§ @ ChanTimeOft ; 7 source setting) and the date of observation
(% DetAngOff Editions (aperture dependent) = 33
+ (@ ElecCross " |PSWA 46

= FluxCony Ediions (PSWA 74

+ (5 FluxConv._bright 20058 5 bonae loonas .

% (2 FluxConv_bright_20090906 6 IPSWA: 48 Spectrometer Flux Conversion has several

+ (% FluxConv_nominal_20050222 7 |PSWAS 53 additional dependencies

% (% @ TomnaT 20086519 8 PSWA 574

FluxConv_nominal_20090819 g ..flf_ —ﬁq \
3 = Spec

4 (@ BandEdge
+ (% BeamParam Editions (apodName, biasi§ode, time dependent)
4 (% BeamProf Editions (arrayName dependefjt)
4 (% BolPar
(% BsmOps Editions {time dependent)
=, 4 (% BsmPos
4 (% ChanGain
= B"““'%‘ + (% ChanMask Editions (time dependent)
#- (% ChanNum
(% ChanTimeConst
In this case the edition valid for nominal mode ¢ ChanTimeOff
data taken after 19 August 2009 has been { & DethngOff Editons (aperture dependert)
selected 4 (% ElecCross

(@ FluxConv Editions (jiggld, apodName, commandedResolution, biasMode, time dependent)
(@ InterRef Editions (jiggld, commandedResolution, biasMode, time dependent)

4 (% LpfPar

2% 1)

Figure 3.2. SPIRE calibration editions.

In ascript, in simple cases (such as time dependency), the Observation Context can select the correct
edition automatically. In other cases, the variables upon which the product depends must be supplied
to get the correct product from aList. Some examples of accessing individual productsin ascript from
the phot and spec contexts are: Spectrometer band edges product, which has no dependency,

bandEdge = obs. cali brati on. spec. bandEdge

Photometer channel mask product (details which detectors are defined as dead, or noisy) — the correct
time dependent edition for this observation is selected automatically,

chanMask = obs. cal i bration. phot.chanMask

Flux Conversion products are selected automatically for the Photometer (dependency is on whether
nominal or bright mode was used and the observing date), but for the Spectrometer, where the product
also depends on jiggle position, spectral resolution and apodization function, the correct product must
be selected from a List,

phot Fl uxConv = obs. cal i brati on. phot. fl uxConv

specFl uxConv =

obs. cal i bration. spec. fl uxConvlLi st. get Product (6, -"HR', -"unapod", -"nom nal",
obs. startDat e)

58

SPIRE Cdlibration Data

3.1.4.

3.1.5.

3.1.6.

When the SPIRE calibration productsare saved in FITSfileformat, the naming convention for theindi-
vidual product edition filesisderived from“SCal” (for SPIRE Calibration), plus*“Phot” or “ Spec” (for
Photometer of Spectrometer), the name of the product, the dependencies (if there are any), and the
version number of that particular edition. For example:

SCal Phot Bol Par_v3.fits
SCal Specl nter Ref _12_CR nomi nal _20050222_v1.fits

Time dependency is specified in the file name by the start date at which the edition becomes valid.

Updating a Calibration Tree

When an observation is processed by the HSC and placed into the Herschel Science Archive, it has
the particular calibration tree of the time attached (and used in the automatic pipeline). It is possible
to update this calibration tree that is attached to the observation, either to a more recent version, or

to a previous version (e.g. to determine the effect of an update in calibration products). The latest
calibration tree can be downloaded from the HSA directly from within Hipe, using,

cal New = spireCal (cal Tree="spire_cal _4_0")

This will pop-up a dialog box asking for user login and password for the HSA. Alternatively, the
calibration tree can be loaded from a .jar file (if you have one) that has been saved on the local disk,

cal New = spireCal (jarFile="spire_cal _4 0.jar")

Once the updated calibration tree has been downloaded, it can be added to the Observation Context
to replace the existing tree using,

obs. cal i brati on. updat e(cal New)

To save this change, the Observation Context would then need to be written out to a pool on thelocal
disk.

Updating Individual Calibration Products
Thetasksin the pipeline take individual calibration products as input. This means that any individual

calibration product can be supplied directly to the task if an updated test version is available. The
name/filename of calibration product used is recorded in the processing history of the data.

Removing Calibration Products from the Tree

It is possible to remove some calibration products from the Calibration Context if it is taking up
too much disk space. For example, the Spectrometer calibration context is quite large - if only the
Photometer calibration products are needed, the Spectrometer part of the Calibration Context can be
removed using:

obs. calibration.spec.refs.clear()

The modified calibration tree could then be written back to the disk (if desired) as a new pool,

59

SPIRE Cdlibration Data

pool Name = -"spire_cal _4_0_phot"
store = Product St or age(pool Nane)
store. save(obs. calibration)

3.1.7. Further Information

Further details of (expert) methods to control or manipulate the calibration tree can be found in the
SPIRE Developer’s Reference Manual APl documentation (javadoc) in the entry listed under:

herschel . spire.ia.cal.SpireCa

60

Chapter 4. Reprocessing your data

4.1. Introduction

Now that you have inspected your data products, you may feel that you would like to reprocess your
data from the Level 0.5 products onwards, and in time to diverge away from the standard pipeline
processing provided by the HSC. This section provides an overview of the steps required to process
your datasets from Level 0.5 onwards, and on how to inspect your final Level 1 and Level 2 products.

4.2. Reprocessing SPIRE Large Map and Par-
allel Mode Data

4.2.1. Prerequites

The Large Map mode is essentially the same as the SPIRE component of the Parallel Mode - for both
modes, this processing guidewill allow you to reprocessyour data. For thisdatareprocessing example,
we assume that you wish to reprocess your data starting from Level 0.5 products. For this data repro-
cessing example, we will be using the Large Map observation (obslD: 1342183475) of NGC 5315.
We will in this example assume that you have received the engineering pipeline processed Level 0.5
data products from the HSC, and have stored them in astorage pool "1342183475 POF5 NGC5315",
either by a direct download or through HIPE.

You can access the POF5 pipeline processing script by clicling on 'Pipeline' on the top bar within
HIPE, selecting 'SPIRE' and then clicking on 'Photometer Large Map pipeline script (POF5)' - the
script will open up in the Editor window within HIPE.

Ao HIPE 4.0.0 - /Applications/hi
File Edit Run JEEENE Window Help
SPIRE » 3 Photometer Large Map pipeline script (POF5S)

e
Ld
@ Photometer Parallel Mode pipeline script (PARALLEL)

|—_‘.d»‘ Editor x @ Photometer Small Map pipeline script (POF10)

[r" POFZ_pipeline.py ‘(F # Photometer Point Source pipeline script (POF2) ine.py
1h # [o Spectrometer Point Source pipeline script (SOF1)
2 # This filg® Spectrometer Map pipeline script (SOF2) (HCS5) .
2 i Copyright g Engineering pipeline script (eng) onsor:
& # HCOSS is free software: you can redistribute It and/or modi.
[= i rimAdar Fha Farsmes At Fha TATT Toasooas Coanaras] Drvhlds Td~anms,

Figure 4.1. Selecting the POF5 pipeline script

To start processing, first, we need to make sure that you have imported all needed classes and task
definitions required to run the POF5/Large Map pipeline:

Inport all needed cl asses

from herschel .spire.all inport *

from herschel .ia.all inport *

from herschel .ia.task. node inport *

from herschel .ia.pg inport ProductSi nk
fromjava.lang inport *

fromjava.util inport *

from herschel .ia.obs.util inport CbsParaneter

61

Reprocessing your data

from herschel .ia. pal..pool.lstore.util inport Tenporal Poo

Inmport the script tasks.py that contains the task definitions
from herschel . spire.ia. pipeline.scripts. POF5. POF5_t asks inport *

|l nput definition
from herschel . spire.ia.pipeline.scripts. POF5. POF5_i nput inport *

Inmport the script obsLoader.py that allows to | oad an Cbservati onContext froma
st or age.

from herschel . spire.ia.scripts.tools.obsLoader inport *

We must search our local pool "1342183475 POF5 NGC5315" for our observation context. We will
run the ObsL oader pop-up window and input the ObslD and the name of the local pool to load the
observation context, and open an pop up dialog box to take inputs such as if we wish to look at plots
of intermediately processed pipeline products, the type of map-making (naive or MadMap) and which
point you wisg to start processing from (e.g. Level 0):

Open the input dialog to enter inputs
i nput s. openDi al og()

Open a dialog to | oad the Observati onContext if -"obs" is not defined
try:

obsi d=obs. obsi d

except NameError

| oader =QbsLoader ()

obs=l oader . get Gbs() . product

pass

plo: © ‘l.| | mapping: @ |naive ‘

level: @ hevﬂu |

BN

Figure4.2. Setting parametersfor processing

| i [A0 E

Vil i W e el | F R o ol B S |

Observation ID: 1342183475
Pool ID: 42183475 POF5S_NGC5315

| Search | | Abort |

A

Figure4.3. Using ObsL oader to load the observation

The pipeline aso includes a check that the datareally is SPIRE data, by raising a BadDataException
if the dataisn't:

Check that the data are really SPIRE data
if obs.instrunent -!= -"SPlIRE":

rai se BadDat aException("Thi s OCbservati onContext cannot be processed with this
pi peline: it contains -"+obs.instrunment+" data, not SPIRE data")

62

Reprocessing your data

Next, we shall create a creator variable to store the relevant origin metadata for the Level and Level
2 contexts, alogger to follow the progress of the pipeline's execution, set up the time origin for any
output plots and then finally, extract the Obsld of our observation and the calibration and auxillary
products required for processing the POF10 pipeline:

this is used to put in the creator metadata of level 1 and |level 2 context the

versi on of SPG or of the pipeline

that was execut ed

creat or=herschel . share. util. Configuration.getProperty("hcss.ia.dataset.creator", -"$Revision:
1.68 $")

#create a | ogger for the pipeline
| ogger =TaskMbdeManager . get Mode() . get Logger ()

Shift of tine origin for plots

t O=obs. st art Dat e. mi cr osecondsSi ncel958() *1le- 6

obsi d=obs. obsi d

print -"processing OBSI D=", obsi d, " (" +hex(obsid)+")"

Extract fromthe observation context the calibration products that
will be used in the script

bsmPos=obs. cal i brati on. phot . bsnPPos

bsmOps=obs. cal i brati on. phot . bsnOps

det AngOxf f =obs. cal i brati on. phot . det AngOf f

el ecCross=obs. cal i brati on. phot . el ecCross

opt Cross=obs. cal i brati on. phot . opt Cr oss

Extract fromthe observation context the auxiliary products that
will be used in the script

hpp=obs. auxiliary. poi nting

si anFobs. auxi | i ary. si am

We set up the Product Sink to perform our processing instead of simply using only memory and then
weinitialiseit:

Set this to FALSE if you don't want to use the ProductSi nk
and do all the processing in nenory
t enpSt or age=Bool ean. TRUE

Initialize the ProductSink with a Tenporal Pool that will be renpved when the

H PE session is closed, in case of interactive node.

The Tenporal Pool is created in a directory starting fromthe path defined by the
var.hcss.workdir property. If this directory is inaccessible or not convenient,

pl ease
change this property to a proper val ue.
i f TaskModeManager . get Type().toString() == -"I1NTERACTI VE' and tenpStorage:

pnane="t np" +hex(SystemcurrentTimeM | lis())[2:-1]
t nppool =Tenpor al Pool . cr eat eTnpPool (pnane, Tenpor al Pool . Cl oseMbde. DELETE_ON_CLCSE)
Product Si nk. get | nst ance() . product St or age=Pr oduct St or age(t nppool)

pass

4.2.2. Level 0to Level 0.5 Processing (Optional)

If you do not have Level 0.5 products to hand, you will need to make the engineering conversion
first from the raw Level 0 products - basically, we are converting the raw telemetry in the form of
products into engineering units such as bolometer voltages and resistances timelines. We can run the
engineering conversion pipeline from the Level 0 products obtained from the HSA to obtain our Level
0.5 products using:

From Level O to Level 0.5
if inputs.level =="1]evel 0":
Make Engi neering conversion of level O products
| evel 0_5= engConversi on(obs. | evel 0, cal =obs. cal i brati on, tenpStorage=tenpStorage)

63

Reprocessing your data

Add the result to the observation in level 0.5
obs. | evel 0_5=l evel 0_5
el se

| evel 0_5=0bs. | evel 0_5

pass

4.2.3. Level 0.5to Level 1 Processing

Now, we can process our datafrom Level 0.5to Level 1. Looping over the scan linesto start building
up the map, we take the engineering products to calculate the BSM angles and the SPIRE pointing
product. We then perform a number of corrections to the data, after which we will have produced the
Level 1 pipeline dataproduct. The pipeline for Level 0.5to Level 1 processing involvesthe following
seguence of processing modules. The pipeline works on a Photometer Detector Timeline (PDT) and
requires the Nomina Housekeeping Timeline (NHKT). Additional auxilliary products are required
for the telescope pointing information. The figure below outlines the steps required to process the
Small Map pipeline.

U
Photometer Nominal Spacecraft Spacecraft
Detector Housekeeping Pointing Apertures
Timeline Timeline Product Product

\Electrical Crosstalk Matrix
e (ABSM positions

Correlation Parameters

Thermal Fluctuation Flux BSM

/ SPIRE

Laesazs rument
9'¢ *1 Pointing
| Timeline bgprodick

_Unit Conversion onve 0 1x Density Detector Angular,
| Offsets v
o Inst

Detector Beams Miapmaking
\Qhunnel Noise Table .

\ My TCVErEproaTET==— J

Product

Figure4.4. The SPIRE POF5 Photometer Large Map pipeline.

In order to execute these stepsin the most efficient manner possible, we execute a number of pipeline
tasks within asingle loop. A simplified vesion of this loop, adapted from the POF10 pipeline script,
isgiven below:

if inputs.level =="]evel 0" or inputs.|evel=="]evel 0_5"
Create Level 1 context
| evel 1=Level 1Cont ext (obsi d)
for key in level 0_5.neta. keySet():
if key -1= -"creator" and (not key.endswith("Date")) and key -!= -"fileNanme" and \
key -!= -"type" and key -!= -"description"
I evel 1. met a[key] =l evel 0_5. net a[key] . copy()
| evel 1. creat or =cr eat or
bbi ds=I evel 0_5. get Bbi ds(0xal03)
nl i nes=I en(bbi ds)
print -"nunmber of scan lines:",nlines
#
Loop over scan lines
for bbid in bbids
bl ock=l evel 0_5. get (bbi d)

Reprocessing your data

print -"processing BBl D="+hex(bbi d)
Now npve to engi neering data products

pdt = bl ock. pdt
nhkt = bl ock. nhkt
#

access and attach turnaround data to the nominal scan line
bbCount =bbi d & OxFFFF
pdt Lead=None
nhkt Lead=None
pdt Tr ai | =None
nhkt Tr ai | =None
if bbCount >1:
bl ockLead=l evel 0_5. get (Oxaf 000000L+bbCount - 1)
pdt Lead=bl ockLead. pdt
nhkt Lead=bl ockLead. nhkt
if pdtLead -!= None and pdtLead. sanpl eTi ne[-1] < pdt. sanpl eTi me[0] - 3. O:
pdt Lead=None
nhkt Lead=None
if bbid < MAX(Longld(bbids)):
bl ockTrai | =l evel 0_5. get (Oxaf 000000L+bbCount)
pdt Trai | =bl ockTrai | . pdt
nhkt Tr ai | =bl ockTr ai | . nhkt
if pdtTrail -!= None and pdtTrail.sanpl eTi ne[0] > pdt. sanpl eTi ng[- 1] +3. 0:
pdt Tr ai | =None
nhkt Tr ai | =None
pdt =j oi nPhot Det Ti nel i nes(pdt, pdt Lead, pdt Trai |)
nhkt =j oi nNhkTi nel i nes(nhkt, nhkt Lead, nhkt Trai |)
#
cal cul ate BSM angl es
bat =cal cBsmAngl es(nhkt, bsnPPos=bsnPos)
#
create the SpirePointingProduct
spp=cr eat eSpi r ePoi nti ng(det AngXx f =det AngCf f, bat =bat , hpp=hpp, si amesi an)
#
run electrical crosstalk correction
pdt =el ecCrossCorrecti on(pdt, el ecCross=el ecCross)
#
run the deglitch
pdt =wavel et Degl i t cher (pdt, scal eM n=1.0, scal eMax=8.0, scal el nterval =5,
hol der M n=-1. 9, \
hol der Max=-0. 3, correl ati onThreshol d=0. 69)
#
run electrical Low Pass Filter response correction
pdt =l pf ResponseCorrecti on(pdt, | pf Par =l pf Par)
#

run the flux conversion

f I uxConv=f | uxConvLi st . get Product (pdt. met a[" bi asMbde"] . val ue, pdt. st art Dat e)
pdt =phot Fl uxConver si on(pdt, f | uxConv=f | uxConv)

#

run the teneperature drift correction

tempDriftCorr=tenpDriftCorrlList.getProduct(pdt.neta["bi asMde"]. val ue, pdt. start Date)
pdt =t enperatureDriftCorrecti on(pdt,tenpDriftCorr=tenpDriftCorr)
#

run bol oneter tinme response correction

pdt =bol onet er ResponseCorrecti on(pdt, chanTi meConst =chanTi meConst)
#

run optical crosstalk correction

pdt =phot Opt Cr ossCor r ect i on(pdt, opt Cr oss=opt Cr 0ss)

#

add pointing

psp=associ at eSkyPosi ti on(pdt, spp=spp)

#

cut the tineline back to scan line range.

|f you want include turnaround data in nmap neking, call the follow ng
task with the option -"extend=True"

psp=cut Phot Det Ti nel i nes(psp)

Store Photoneter Scan Product in Level 1 product storage
if tenpStorage:
ref =Pr oduct Si nk. get | nst ance() . save(psp)

65

Reprocessing your data

| evel 1. addRef (ref)
el se
| evel 1. addPr oduct (psp)

#

print -"Conpl eted BBl D=0x% (% /%)" % bbi d, count +1, nl i nes)

set the progress

count =count +1

i nputs. progress = 20+(60*count)/nlines

#

if levell.count == 0

| ogger. severe("No scan |ine processed due to nissing data. This observation
CANNOT be processed!")

print -"No scan |line processed due to missing data. This observati on CANNOT be
processed! "

rai se M ssingDat aException("No scan |ine processed due to missing data. This
observati on CANNOT be processed!")

#

obs. | evel 1=l evel 1

pronote to LEVEL1 PROCESSED

obs. obsState = Observati onCont ext. OBS_STATE_LEVEL1_PROCESSED
el se

| evel 1=0bs. | evel 1
pass

To break this up into its constituent parts, first of all, we create the Level 1 context:

Create Level 1 context

| evel 1=Level 1Cont ext (obsi d)

for key in level 0_5.neta. keySet ()
if key -1= -"creator" and (not key.endswith("Date")) and key -!= -"fileNane" and \
key -!= -"type" and key -!= -"description"
I evel 1. net a[key] =l evel 0_5. net a[key] . copy()

| evel 1. creat or =cr eat or

bbi ds=I evel 0_5. get Bbi ds(0xal03)

nl i nes=I en(bbi ds)

print -"nunmber of scan lines:",nlines

#

We loop over the scan lines and attach the engineering data to the scan lines:

Loop over scan lines
for bbid in bbids
bl ock=l evel 0_5. get (bbi d)
print -"processing BBl D="+hex(bbi d)
Now npve to engi neering data products
pdt = bl ock. pdt
nhkt = bl ock. nhkt
access and attach turnaround data to the nominal scan |ine
bbCount =bbi d & OxFFFF
pdt Lead=None
nhkt Lead=None
pdt Tr ai | =None
nhkt Tr ai | =None
if bbCount >1:
bl ockLead=l evel 0_5. get (Oxaf 000000L+bbCount - 1)
pdt Lead=bl ockLead. pdt
nhkt Lead=bl ockLead. nhkt
if pdtLead -!= None and pdtLead. sanpl eTi me[-1] < pdt.sanpleTinme[0]-3.0
pdt Lead=None
nhkt Lead=None
if bbid < MAX(Longld(bbids))
bl ockTrai | =l evel 0_5. get (Oxaf 000000L+bbCount)
pdt Trai | =bl ockTrai | . pdt
nhkt Tr ai | =bl ockTr ai | . nhkt
if pdtTrail -!= None and pdtTrail.sanpleTime[0] > pdt.sanpleTinme[-1]+3.0
pdt Tr ai | =None
nhkt Tr ai | =None
pdt =j oi nPhot Det Ti nel i nes(pdt, pdt Lead, pdt Trai |)

66

Reprocessing your data

nhkt =j oi nNhkTi nel i nes(nhkt, nhkt Lead, nhkt Trai |)

Next, we calculate the BSM angles and compute the SPIRE Pointing Product:

cal cul ate BSM angl es
bat =cal cBsmAngl es(nhkt, bsnPPos=bsnPos)
#

create the SpirePointingProduct
spp=cr eat eSpi r ePoi nti ng(det AngXx f =det AngCf f, bat =bat , hpp=hpp, si amesi an)
#

We now perform anumber of correctionsto the data- electrical crosstalk correction, deglitching, elec-
trical Low Pass Filter response correction, flux conversion, temeperature drift correction, bolometer
time response correction. Most of these are dependent on the calibation products you imported earlier
in the pipeline, so to tweak, you must supply the updated relevant calibration product. The exception
is deglitching, where you can edit the input parameters to the module directly. Discussion of the pa-
rameters of this module is beyond the scope of this discussion - instead, please inspect the relevant
section of the SPIRE Users Manual for a more in-depth treatment of the paarmeters for this module.

run electrical crosstalk correction

pdt =el ecCrossCorrecti on(pdt, el ecCross=el ecCross)

#

run the deglitch

pdt =wavel et Degl i t cher (pdt, scal eM n=1.0, scal eMax=8.0, scal el nterval =5,
hol der M n=-1. 9, \

hol der Max=-0. 3, correl ati onThreshol d=0. 69)

#

run electrical Low Pass Filter response correction

pdt =l pf ResponseCorrecti on(pdt, | pf Par =I pf Par)

#

run the flux conversion

f I uxConv=f | uxConvLi st . get Product (pdt. et a[" bi asMbde"] . val ue, pdt. start Dat e)
pdt =phot Fl uxConver si on(pdt, f | uxConv=f | uxConv)

#

run the teneperature drift correction

tempDriftCorr=tenpDriftCorrlList.getProduct(pdt.neta["bi asMde"]. val ue, pdt. start Date)
pdt =t enperatureDriftCorrecti on(pdt, tenpDriftCorr=tenpDriftCorr)
#

run bol oneter tinme response correction

pdt =bol onet er ResponseCorrecti on(pdt, chanTi meConst =chanTi meConst)
#

run optical crosstalk correction

pdt =phot Opt Cr ossCorr ect i on(pdt, opt Cr oss=opt Cr 0ss)

We then add the pointing product, and cut the timeline back to follow the scan line range:

add pointing

psp=associ at eSkyPosi ti on(pdt, spp=spp)

#

cut the tineline back to scan line range.

|f you want include turnaround data in nmap neking, call the follow ng
task with the option -"extend=True"

psp=cut Phot Det Ti nel i nes(psp)

#

67

Reprocessing your data

N.YoXe) Herschel PlotXY

Detector signal timeline

6-6IIIIIIII|IIII|IIII|IIII|IIII|IIII|IIIIIIIIIIII

6.4
6.2
6.0
5.8
5.6

54

Signal [Jy]

5.0

4.8

L

gt b b b b b b b B P i
970 975 980 985 990 995 1000 1005 1010 1015 1020

Time [s]

4.6

Figure 4.5. Detector signal timelines

Finally for this stage of the pipeline, we shall store our product in the Level 1 context:

if tenpStorage:
ref =Pr oduct Si nk. get | nst ance() . save(psp)
| evel 1. addRef (ref)

el se:
| evel 1. addPr oduct (psp)

obs. | evel 1=| evel 1
pronmote to LEVEL1_ PROCESSED
obs. obsState = Observati onCont ext. OBS_STATE LEVEL1 PROCESSED

And that brings us to the end of our Level 1 processing for Small Map.

4.2.4. Level 1to Level 2 Processing

Our next step isto convert our Level 1 photometer product into our final maps, which constitute the
Level 2 products for the Small Map pipeline.

if inputs.mapping -!= -'none':

#

Flag to switch on and off the baseline renoval
useRenoveBasel i ne=Tr ue

#

Create a SpireListContext to be used as input of nap naking
scans=Spi r eLi st Cont ext ()

#
Run baseline renoval and popul ate the nap meki ng i nput
for i in range(levell.count):

i f useRenpveBasel i ne:
psp=l evel 1. get Product (i)
psp=r enoveBasel i ne(psp, chanNum=chanNum)
if tenpStorage:
ref =Pr oduct Si nk. get | nst ance() . save(psp)

68

Reprocessing your data

scans. addRef (ref)

el se:
scans. addPr oduct (psp)

el se:

scans. addRef (1l evel 1. refs[i])
pass
#
Run napneki ng
if inputs.mapping == -'naive':

mapPl w=nai veScanMapper (scans, array="PLW)

i nput s. progress=85

mapPmw=nai veScanMapper (scans, array="PMN)

i nput s. progress=90

mapPsw=nai veScanMapper (scans, array="PSW)
el se:

chanNoi se=obs. cal i brati on. phot. chanNoi selLi st. get Product (| evel 1. get Product (0) . met a[" bi ashMbde"] . val u

\
| evel 1. get Product (0). start Date)
mapPl w=nmadScanMapper (scans, array="PLW, chanNoi se=chanNoi se)
i nput s. progress=85
mapPmw=nadScanMapper (scans, array="PMVN, chanNoi se=chanNoi se)
i nput s. progress=90
mapPsw=nadScanMapper (scans, array="PSW, chanNoi se=chanNoi se)
pass
#
Create a context with level 2 products (maps) and attach it to the observation
cont ext
| evel 2=MapCont ext ()
for key in level 1. neta. keySet():
if key -!= -"creator" and key -!= -"creationDate":
I evel 2. net a[key] =l evel 1. net a[key] . copy()
| evel 2. cr eat or =cr eat or
| evel 2. type="1 evel 2cont ext "
| evel 2. descri ption="Context for SPIRE Level 2 products"
level 2. meta["l evel "] =StringParaneter("20", -"The |evel of the product")
| evel 2. refs. put ("PLW, Product Ref (mapPl w))
| evel 2. refs. put ("PMN, Product Ref (mapPnw))
I evel 2. refs. put ("PSW, Product Ref (mapPsw))
obs. | evel 2=l evel 2
#
pronote to LEVEL2_ PROCESSED
obs. obsState = Observati onCont ext. OBS_STATE_LEVEL2_PROCESSED
#
Create browse product and i nmage
cr eat eRgbl nage=Cr eat eRgbl mageTask()

br owsePr oduct =cr eat eRgbl nage(r ed=mapPl w, gr een=mapPnw, bl ue=mapPsw, per cent =98. 0, r edFact or =1. 0,

greenFact or =1. 0, bl ueFact or =1. 0)
#
Popul ate nmet adata of the browse product
for par in QbsParaneter.val ues():

i f obs. neta.containsKey(par.key) and par.key -!= -"fil eNane":
br owsePr oduct . net a[par . key] =obs. net a[par . key] . copy()
pass

br owsePr oduct . st art Dat e=obs. start Date

br owsePr oduct . endDat e=obs. endDat e

br owsePr oduct . i nst rument =obs. i nst r unent

br owsePr oduct . nodel Name=obs. nodel Nane

br owsePr oduct . descri pti on="Browse Product"

br owsePr oduct . t ype=" BROASE"

#

Attach the browse product to the Observati onCont ext

obs. br owsePr oduct =br owsePr oduct

#

Generate the browse i mage

from herschel .ia.gui.inage inport |nageltil

imageUtil = I mageltil ()

br owsePr oduct | mrage=i nageUti | . get RgbTi | edl mage(\

browseProduct["red"]. data, browseProduct["green"].data,

br owsePr oduct [" bl ue"] . dat a)

obs. br owsePr oduct | mrage=br owsePr oduct | mage. asBuf f er edl nage

69

Reprocessing your data

pass

Assuming that we have requested mapping products, we first of al flag the pipeline to perform base-
line subtraction, set up a List Context to be used as input to the map making, perform the baseline
subtraction on our Level 1 product and storeit in our List Context:

Flag to switch on and off the baseline renoval
useRenpveBasel i ne=Tr ue
#
Create a SpireListContext to be used as input of nap neking
scans=Spi r eLi st Cont ext ()
#
Run baseline renoval and popul ate the nap meki ng i nput
for i in range(level1l.count):
i f useRenpveBasel i ne:
psp=l evel 1. get Product (i)
psp=r enoveBasel i ne(psp, chanNumrchanNum)
if tenpStorage:
ref =Pr oduct Si nk. get | nst ance() . save(psp)
scans. addRef (ref)
el se:
scans. addPr oduct (psp)
el se:
scans. addRef (l evel 1. refs[i])
pass

We use this as input for the map maker. The type of map produced is dependent on your input at the
very start of the pipeline - naive or MadMap.

Run napneki ng
if inputs.mapping == -'naive':
mapPl w=nai veScanMapper (scans, array="PLW)
i nput s. progress=85
mapPmw=nai veScanMapper (scans, array="PMN)
i nput s. progress=90
mapPsw=nai veScanMapper (scans, array="PSW)
el se:

chanNoi se=obs. cal i brati on. phot. chanNoi selLi st. get Product (| evel 1. get Product (0) . met a[" bi ashMbde"] . val u
\
| evel 1. get Product (0). startDate)
mapPl w=nmadScanMapper (scans, array="PLW, chanNoi se=chanNoi se)
i nput s. progress=85
mapPmw=nadScanMapper (scans, array="PMVN, chanNoi se=chanNoi se)
i nput s. progress=90
mapPsw=nmadScanMapper (scans, array="PSW, chanNoi se=chanNoi se)
pass

Three maps are each produced for PSW, PMW and PLW, and are visible through the Product Viewer
by right-clicking on the required variable in the Variable pane and selecting 'Open With':

70

Reprocessing your data

|| ‘ g s
| Hq Open <

Product Viewer g Open With]

h Wcs explorer for Images E{} Send to b
Standard Image Viewer Show methods
Rename
Delete =

(7) Help in URM F1
(7) Help in DRM
@ pdtLead

Figure4.6. Selecting the Product Viewer

the actual map with fluxes (denoted as 'image’);

Image
-_Meta Data

[mapPsw
e
@ error
@ coverage
[+ History

mapPsw| " image”]

[A=A o0 T |

Figure4.7. Setting parametersfor processing

the statistical flux error map (denoted as 'error’):

Statistical error on the pixel values
Meta Data

= mapPsw mappsw("error’]

@ ima
. e

@ coverage
- (% History

[EJRIETA w0 [T]

Figure 4.8. Setting parametersfor processing

and an image which shows the coverage map for our scans (denoted as ‘coverage’):

71

Reprocessing your data

Coverage
~_Meta Data

= mapPsw mapPsw] "coverage”]
© image
@ error
Ll coverage
& (3 History

I
—
[EYENDIEN B

Figure 4.9. Setting parametersfor processing

We can export our images to FITS files by right clicking on the respective variable in the Variable
pane (e.g. mapPsw), and selecting 'Send To -> FITSfil€.

We finally scan create a context to store our maps as Level 2 products, and attach them to the obser-
vation context.

Create a context with |level 2 products (maps) and attach it to the observation
cont ext
| evel 2=MapCont ext ()
for key in level 1. meta. keySet ():
if key -!= -"creator" and key -!= -"creationDate":
I evel 2. et a[key] =l evel 1. net a[key] . copy()
| evel 2. cr eat or =cr eat or
| evel 2. type="1evel 2cont ext"
| evel 2. descri pti on="Context for SPIRE Level 2 products”
level 2. meta["l evel "] =StringParaneter("20", -"The |evel of the product")
I evel 2. refs. put ("PLW, Product Ref (mapPl w))
I evel 2. refs. put ("PMN, Product Ref (mapPnw))
| evel 2. refs. put ("PSW, Product Ref (mapPsw))
obs. | evel 2=| evel 2
#
pronote to LEVEL2_PROCESSED
obs. obsState = bservati onCont ext. OBS_STATE_LEVEL2 PROCESSED

Congratulations! Y ou have now re-processed your Small Map data al the way to the final Level 2
maps!

4.3. Reprocessing SPIRE Small Map Data
4.3.1. Prerequites

For this data reprocessing example, we will be using the Small Map observation (obslD: 1342195871)
of the star Gamma Draconis. We will in this example assume that you have received the engineering
pipeline processed Level 0.5 data products from the HSC, and have stored them in a storage pool
"1342195871 POF10_GammaDra', either by adirect download or through HIPE.

You can access the POF10 pipeline processing script by clicling on 'Pipeline’ on the top bar within
HIPE, selecting 'SPIRE' and then clicking on 'Photometer Small Map pipeline script (POF10)' - the
script will open up in the Editor window within HIPE.

72

Reprocessing your data

00
File Edit Run §aFEGE Window Help
M e B AN @ Photometer Large Map pipeline script (POF5)
|
Photometer Parallel Mode pipeline script (PARALLEL)
| Editor X # Photometer Small Map pipeline script (POF10)
fr" POF2_pipeline.py ‘@ @ Photometer Point Source pipeline script (POF2) ine.py
Statistical error on [o Spectrometer Point Source pipeline script (SOFL)
+ Meta Data A Spectrometer Map pipeline script (SOF2)
[of Engineering pipeline script (eng)
= mapPsw MAPFSW] ELTOT |
L @ image

Figure 4.10. Selecting the POF10 pipeline script

To start processing, first, we need to make sure that you have imported all needed classes and task
definitions required to run the POF2/point source pipeline:

lmport all needed cl asses

from herschel .spire.all inport *

from herschel .ia.all inport *

from herschel . i a. task. node inport *
from herschel .ia.pg inport ProductSink
fromjava.lang inport *

fromjava.util inport *
from herschel .ia.obs.util inport CbsParaneter
from herschel .ia.pal.pool.lstore.util inport Tenporal Pool

lnmport the script tasks.py that contains the task definitions
from herschel . spire.ia.pipeline.scripts. POF10. POF10_t asks i nport *

I nput definition
from herschel . spire.ia.pipeline.scripts. POF10. POF10_i nput inport *

lnmport the script obsLoader.py that allows to | oad an Cbservati onContext froma
st or age.
from herschel . spire.ia.scripts.tool s. obsLoader inport *

We must search our local pool "1342195871 POF10 GammaDra' for our observation context. We
will run the ObsL oader pop-up window and input the ObsID and the name of the local pool to load
the observation context, and open an pop up dialog box to take inputs such as if we wish to look at
plots of intermediately processed pipeline products, the type of map-making (naive or MadMap) and
which point you wisg to start processing from (e.g. Level 0):

Open the input dialog to enter inputs
i nput s. openDi al og()

Open a dialog to | oad the Observati onContext if -"obs" is not defined
try:
obsi d=obs. obsi d
except NaneError
| oader =CbsLoader ()
obs=| oader . get Gbs() . product
pass

73

Reprocessing your data

plot: @ |1| ‘ mapping: @ ‘nai\re

level: @ |Ieve|0 ‘

Clear | | Accept

o

Figure4.11. Setting parametersfor processing

Sl PR R hd]

Observation ID: 1342195871
Pool ID: 195871 POF10 GammaDra

| Search | | Abort |

A

Figure 4.12. Using ObsL oader to load the observation

The pipeline aso includes a check that the datareally is SPIRE data, by raising a BadDataException
if the dataisn't:

Check that the data are really SPIRE data
if obs.instrument -!= -"SPlIRE":

rai se BadDat aException("Thi s CbservationCont ext cannot be processed with this
pipeline: it contains -"+obs.instrument+" data, not SPlIRE data")

We set up the Product Sink to perform our processing instead of simply using only memory and then
weinitiaiseit:

Set this to FALSE if you don't want to use the ProductSi nk
and do all the processing in nenory
t enpSt or age=Bool ean. TRUE

Initialize the ProductSink with a Tenporal Pool that will be renpved when the
H PE session is closed, in case of interactive node.
The Tenporal Pool is created in a directory starting fromthe path defined by the
var.hcss.workdir property. If this directory is inaccessible or not convenient,
pl ease
change this property to a proper val ue.
i f TaskModeManager . get Type().toString() == -"I1NTERACTI VE' and tenpStorage:
pnanme="t np" +hex(System currentTimeM I lis())[2:-1]
t nppool =Tenpor al Pool . cr eat eTnpPool (pnane, Tenpor al Pool . Cl oseMbde. DELETE_ON_CLOSE)
Product Si nk. get | nst ance() . product St or age=Pr oduct St or age(t nppool)
pass

Next, we shall create a creator variable to store the relevant origin metadata for the Level and Level
2 contexts, alogger to follow the progress of the pipeline's execution, set up the time origin for any
output plots and then finally, extract the Obsld of our observation and the calibration and auxillary
products required for processing the POF10 pipeline:

74

Reprocessing your data

this is used to put in the creator netadata of level 1 and level 2 context the

versi on of SPG or of the pipeline

that was executed

creat or=herschel .share. util.Configuration.getProperty("hcss.ia.dataset.creator", -"$Revision
1.2.2.2 $")

#create a | ogger for the pipeline
| ogger =TaskMbdeManager . get Mode() . get Logger ()

Shift of tine origin for plots

t 0=obs. start Dat e. m crosecondsSi ncel958() *1le- 6

obsi d=obs. obsi d

print -"processi ng OBSI D=", obsi d, " (" +hex(obsid)+")"

Extract fromthe observation context the calibration products that
will be used in the script

bsmPos=obs. cal i brati on. phot . bsnPos
bsmOps=obs. cal i brati on. phot . bsnOps

det AngOf f =obs. cal i brati on. phot . det AngOf f

el ecCross=obs. cal i brati on. phot . el ecCross

opt Cross=obs. cal i brati on. phot . opt Cr oss

Extract fromthe observation context the auxiliary products that
will be used in the script

hpp=obs. auxi | i ary. poi nti ng

si amFobs. auxi | i ary. si am

4.3.2. Level 0 to Level 0.5 Processing (Optional)

If you do not have Level 0.5 products to hand, you will need to make the engineering conversion
first from the raw Level O products - basically, we are converting the raw telemetry in the form of
products into engineering units such as bolometer voltages and resistances timelines. We can run the
engineering conversion pipeline from the Level 0 products obtained from the HSA to obtain our Level
0.5 products using:

From Level O to Level 0.5

if inputs.|level =="|evel 0":

Make Engi neering conversion of |evel O products

| evel 0_5= engConver si on(obs. | evel 0, cal =obs. cal i brati on, tenpStorage=tenpStorage)
Add the result to the observation in level 0.5

obs. | evel 0_5=l evel 0_5

el se

| evel 0_5=obs. | evel 0_5

pass

set the progress

i nput s. progress=20

counter for computing progress
count =0

4.3.3. Level 0.5to Level 1 Processing

Now, we can process our datafrom Level 0.5to Level 1. Looping over the scan linesto start building
up the map, we take the engineering products to calculate the BSM angles and the SPIRE pointing
product. We then perform a number of corrections to the data, after which we will have produced the
Level 1 pipeline dataproduct. The pipeline for Level 0.5to Level 1 processing involvesthe following
sequence of processing modules. The pipeline works on a Photometer Detector Timeline (PDT) and
requires the Nomina Housekeeping Timeline (NHKT). Additional auxilliary products are required
for the telescope pointing information. The figure below outlines the steps required to process the
Small Map pipeline.

75

Reprocessing your data

Nominal Spacecraft Spacecraft
Housekeeping Pointing Apertures

Timeline Timeline Product Product
T

\ Concatenate Timelines
\Electrical Crosstalk Matrix: Remove Electrical Crosstalk

Compute BSM Angles (—)'BSM positions |

|

' Flag Thermistor Jumps

irst Level Deglitching

IIiI

\._LPF Parameters Electrical Filter Correction
{_Unit Conversion - Convert to Flux Density Detector Angular/”
= KQstds v
Corralation Parameters Remove Bath Temp Fluctuations BSM / SPIRE
e —— o Ly e
__Filter Function Bolometer Time Response | Timeline / Bty
optet o e

h

Associate Sky Position

A

Separate Timelines

|

Photometer
Scan
Product

|

Baseline Removal

Detector Beams

_Chennel Noise Table Mapmaking
o P ~Tevel 7 Produet J
L Product

Ii

Figure 4.13. The SPIRE POF10 Photometer Small Map pipeline.

In order to execute these stepsin the most efficient manner possible, we execute anumber of pipeline
tasks within asingle loop. A simplified vesion of this loop, adapted from the POF10 pipeline script,
is given below:

From Level 0.5 to Level 1
if inputs.level =="Ievel 0" or inputs.|evel =="1evel 0_5"
Create Level 1 context
| evel 1=Level 1Cont ext (obsi d)
for key in level 0_5.neta. keySet():
if key -1= -"creator" and (not key.endswith("Date")) and key -!= -"fileNane" and \
key -!= -"type" and key -!= -"description"
| evel 1. et a[key] =l evel 0_5. net a[key] . copy()
| evel 1. creat or =cr eat or
bbi ds=I evel 0_5. get Bbi ds(0xal103)
nl i nes=l en(bbi ds)
print -"nunmber of scan lines:",nlines
#
Loop over scan lines
for bbid in bbids
bl ock=l evel 0_5. get (bbi d)
print -"processing BBl D="+hex(bbi d)
Now npve to engi neering data products

pdt = bl ock. pdt
nhkt = bl ock. nhkt
#

access and attach turnaround data to the nominal scan |line
bbCount =bbi d & OxFFFF
pdt Lead=None
nhkt Lead=None
pdt Tr ai | =None
nhkt Tr ai | =None
if bbCount >1
bl ockLead=l evel 0_5. get (Oxaf 000000L+bbCount - 1)
pdt Lead=bl ockLead. pdt
nhkt Lead=bl ockLead. nhkt
if pdtLead -!= None and pdtLead. sanpl eTi ne[-1] < pdt.sanpleTinme[0]-3.0
pdt Lead=None
nhkt Lead=None
if bbid < MAX(Longld(bbids)):
bl ockTrai | =l evel 0_5. get (Oxaf 000000L+bbCount)
pdt Trai | =bl ockTrai | . pdt

76

Reprocessing your data

nhkt Tr ai | =bl ockTr ai | . nhkt
if pdtTrail -!= None and pdtTrail.sanpleTime[0] > pdt.sanpleTinme[-1]+3.0
pdt Tr ai | =None
nhkt Tr ai | =None
pdt =j oi nPhot Det Ti nel i nes(pdt, pdt Lead, pdt Trai |)
nhkt =j oi nNhkTi nel i nes(nhkt, nhkt Lead, nhkt Trai |)
#
cal cul ate BSM angl es
bat =cal cBsmAngl es(nhkt, bsnPPos=bsnPos)
#
create the SpirePointingProduct
spp=cr eat eSpi r ePoi nti ng(det AngXxk f =det AngCf f, bat =bat , hpp=hpp, si amssi an)
#
run electrical crosstalk correction
pdt =el ecCrossCorrecti on(pdt, el ecCross=el ecCross)
#
run the deglitch
pdt =wavel et Degl i t cher (pdt, scal eM n=1.0, scal eMax=8.0, scal el nterval =5
hol der M n=-1. 9, \
hol der Max=-0. 3, correl ati onThreshol d=0. 69)
#
run electrical Low Pass Filter response correction
pdt =l pf ResponseCorr ecti on(pdt, | pf Par =I pf Par)
#

run the flux conversion

f I uxConv=f | uxConvLi st . get Product (pdt. met a[" bi asMbde"] . val ue, pdt. start Dat e)
pdt =phot Fl uxConver si on(pdt, f | uxConv=f | uxConv)

#

run the teneperature drift correction

tempDriftCorr=tenpDriftCorrlList.getProduct(pdt.neta["bi asMde"]. val ue, pdt. start Date)
pdt =t enperatureDriftCorrecti on(pdt, tenpDriftCorr=tenpDriftCorr)
#

run bol oneter tinme response correction

pdt =bol onet er ResponseCorrecti on(pdt, chanTi meConst =chanTi meConst)
#

run optical crosstalk correction

pdt =phot Opt Cr ossCor r ect i on(pdt, opt Cr oss=opt Cr 0ss)

#

add pointing

psp=associ at eSkyPosi ti on(pdt, spp=spp)

#

cut the tineline back to scan line range

|f you want include turnaround data in nmap nmeking, call the follow ng
task with the option -"extend=True"

psp=cut Phot Det Ti nel i nes(psp)

Store Photoneter Scan Product in Level 1 product storage
if tenpStorage
ref =Pr oduct Si nk. get | nst ance() . save(psp)
| evel 1. addRef (ref)
el se
| evel 1. addPr oduct (psp)
#
print -"Conpl eted BBl D=0x% (% /%)" % bbi d, count +1, nl i nes)
set the progress
count =count +1
i nputs. progress = 20+(60*count)/nlines
rai se M ssingDat aException("No scan |ine processed due to missing data. This
observati on CANNOT be processed!")
#
obs. | evel 1=l evel 1
pronote to LEVEL1 PROCESSED
obs. obsState = Observati onCont ext. OBS_STATE_LEVEL1_PROCESSED
el se
| evel 1=0bs. | evel 1
pass

To break this up into its constituent parts, first of all, we create the Level 1 context:

Create Level 1 context

7

Reprocessing your data

| evel 1=Level 1Cont ext (obsi d)
for key in level 0_5. neta. keySet():
if key -1= -"creator" and (not key.endswith("Date")) and key -!= -"fileNanme" and \
key -!= -"type" and key -!= -"description":
| evel 1. met a[key] =l evel 0_5. net a[key] . copy()
| evel 1. creat or =cr eat or
bbi ds=I evel 0_5. get Bbi ds(0xal03)
nl i nes=I en(bbi ds)
print -"nunber of scan lines:",nlines
#

We loop over the scan lines and attach the engineering data to the scan lines:

Loop over scan lines
for bbid in bbids:
bl ock=I evel 0_5. get (bbi d)
print -"processing BBl D="+hex(bbi d)
Now nove to engi neering data products
pdt bl ock. pdt
nhkt bl ock. nhkt

access and attach turnaround data to the nominal scan |ine
bbCount =bbi d & OxFFFF
pdt Lead=None
nhkt Lead=None
pdt Tr ai | =None
nhkt Tr ai | =None
i f bbCount >1:
bl ockLead=I evel 0_5. get (Oxaf 000000L+bbCount - 1)
pdt Lead=bl ockLead. pdt
nhkt Lead=bl ockLead. nhkt
if pdtLead -!= None and pdtLead. sanpl eTi me[-1] < pdt.sanpl eTi ne[0] - 3. O:
pdt Lead=None
nhkt Lead=None
if bbid < MAX(Longld(bbids)):
bl ockTrai | =l evel 0_5. get (Oxaf 000000L+bbCount)
pdt Trai | =bl ockTrai | . pdt
nhkt Tr ai | =bl ockTr ai | . nhkt
if pdtTrail -!= None and pdtTrail.sanpl eTi me[0] > pdt.sanpl eTi ne[-1] +3. 0:
pdt Tr ai | =None
nhkt Tr ai | =None
pdt =j oi nPhot Det Ti nel i nes(pdt, pdt Lead, pdt Trai |)
nhkt =j oi nNhkTi nel i nes(nhkt, nhkt Lead, nhkt Trai |)

Next, we calculate the BSM angles and compute the SPIRE Pointing Product:

cal cul ate BSM angl es

bat =cal cBsmAngl es(nhkt, bsnPPos=bsnPos)

#

create the SpirePointingProduct

spp=cr eat eSpi r ePoi nti ng(det AngOxf f =det AngCf f, bat =bat , hpp=hpp, si amrsi am)
#

We now perform anumber of correctionsto the data- electrical crosstalk correction, deglitching, elec-
trical Low Pass Filter response correction, flux conversion, temeperature drift correction, bolometer
time response correction. Most of these are dependent on the calibation products you imported earlier
in the pipeline, so to tweak, you must supply the updated relevant calibration product. The exception
is deglitching, where you can edit the input parameters to the module directly. Discussion of the pa-
rameters of this module is beyond the scope of this discussion - instead, please inspect the relevant
section of the SPIRE Users Manual for amore in-depth treatment of the paarmeters for this module.

run electrical crosstalk correction

pdt =el ecCrossCorrecti on(pdt, el ecCross=el ecCross)
#

run the deglitch

78

Reprocessing your data

pdt =wavel et Degl i t cher (pdt, scal eM n=1.0, scal eMax=8.0, scal el nterval =5,
hol der M n=-1. 9, \
hol der Max=-0. 3, correl ati onThreshol d=0. 69)
#
run electrical Low Pass Filter response correction
pdt =l pf ResponseCorrecti on(pdt, | pf Par =l pf Par)
#

run the flux conversion

f I uxConv=f | uxConvLi st . get Product (pdt. met a[" bi asMbde"] . val ue, pdt. start Dat e)
pdt =phot Fl uxConver si on(pdt, f | uxConv=f | uxConv)

#

run the teneperature drift correction

tempDriftCorr=tenpDriftCorrlList.getProduct(pdt.neta["bi asMde"]. val ue, pdt. start Date)
pdt =t enperatureDriftCorrecti on(pdt, tenpDriftCorr=tenpDriftCorr)
#

run bol oneter tinme response correction

pdt =bol onet er ResponseCorrecti on(pdt, chanTi neConst =chanTi neConst)
#

run optical crosstalk correction

pdt =phot Opt Cr ossCor r ect i on(pdt, opt Cr oss=opt Cr 0ss)

We then add the pointing product, and cut the timeline back to follow the scan line range:

add pointing

psp=associ at eSkyPosi ti on(pdt, spp=spp)

#

cut the tineline back to scan |ine range.

|f you want include turnaround data in nmap neking, call the follow ng
task with the option -"extend=True"

psp=cut Phot Det Ti nel i nes(psp)

#

00 Herschel PlotXY

Detector signal timeline

14.15 III|III|III|III|III|III|III|III|III|III|III|III|III|III

14.10

14.05

14.00

13.95

Signal [Jy]

13.90

13.85

13.80

13.75 III|III|III|III|III|III|III|III|III|III|III|III|III|III
466 468 470 472 474 476 478 480 482 484 486 488 490 492 494

Time [s]

Figure 4.14. Detector signal timelines

Finally for this stage of the pipeline, we shall store our product in the Level 1 context:

79

Reprocessing your data

if tenpStorage:
ref =Pr oduct Si nk. get | nst ance() . save(psp)
| evel 1. addRef (ref)

el se:
| evel 1. addPr oduct (psp)

obs. | evel 1=| evel 1
pronote to LEVEL1_ PROCESSED
obs. obsState = Cbservati onCont ext. OBS_STATE_LEVEL1_PROCESSED

And that brings us to the end of our Level 1 processing for Small Map.

4.3.4. Level 1to Level 2 Processing

Our next step is to convert our Level 1 photometer product into our final maps, which constitute the
Level 2 products for the Small Map pipeline.

if inputs.mapping -!= -'none':

#

Flag to switch on and off the baseline renoval
useRenoveBasel i ne=Tr ue

#

Create a SpireListContext to be used as input of nap naking
scans=Spi r eLi st Cont ext ()

#
Run baseline renoval and popul ate the nmap meki ng i nput
for i in range(levell.count):

i f useRenpveBasel i ne:
psp=Il evel 1. get Product (i)
psp=r enoveBasel i ne(psp, chanNum=chanNum)
if tenpStorage:
ref =Pr oduct Si nk. get | nst ance() . save(psp)
scans. addRef (ref)

el se:
scans. addPr oduct (psp)
el se:

scans. addRef (l evel 1. refs[i])
pass
#
Run napneki ng
if inputs.mapping == -'naive':

mapPl w=nai veScanMapper (scans, array="PLW)

i nput s. progress=85

mapPmw=nai veScanMapper (scans, array="PMN)

i nput s. progress=90

mapPsw=nai veScanMapper (scans, array="PSW)
el se:

chanNoi se=obs. cal i brati on. phot. chanNoi selLi st. get Product (| evel 1. get Product (0) . met a[" bi ashMbde"] . val u
\
| evel 1. get Product (0). startDate)
mapPl w=nmadScanMapper (scans, array="PLW, chanNoi se=chanNoi se)
i nput s. progr ess=85
mapPmw=nadScanMapper (scans, array="PMVN, chanNoi se=chanNoi se)
i nput s. progress=90
mapPsw=nadScanMapper (scans, array="PSW, chanNoi se=chanNoi se)
pass
#
Create a context with level 2 products (maps) and attach it to the observation
cont ext
| evel 2=MapCont ext ()
for key in level 1. neta. keySet():
if key -!= -"creator" and key -!= -"creationDate"
I evel 2. met a[key] =l evel 1. net a[key] . copy()
| evel 2. creat or =cr eat or
|l evel 2. type="1 evel 2cont ext "
| evel 2. descri ption="Context for SPIRE Level 2 products"
level 2. meta["l evel "] =StringParaneter("20", -"The |evel of the product")

80

Reprocessing your data

| evel 2. refs. put ("PLW, Product Ref (mapPl w))

I evel 2. refs. put ("PMN, Product Ref (mapPnw))

I evel 2. refs. put ("PSW, Product Ref (mapPsw))

obs. | evel 2=l evel 2

#

pronote to LEVEL2_ PROCESSED

obs. obsState = Observati onCont ext. OBS_STATE_LEVEL2_PROCESSED
#

Create browse product and i nmage

cr eat eRgbl nage=Cr eat eRgbl mageTask()

br owsePr oduct =cr eat eRgbl nage(r ed=mapPl w, gr een=mapPnw, bl ue=mapPsw, per cent =98. 0, r edFact or =1. 0,

greenFact or =1. 0, bl ueFact or =1. 0)
#
Popul ate nmet adata of the browse product
for par in QbsParaneter.val ues():

i f obs. neta.containsKey(par.key) and par.key -!= -"fil eNane":
br owsePr oduct . net a[par . key] =obs. net a[par . key] . copy()
pass

br owsePr oduct . st art Dat e=obs. start Date

br owsePr oduct . endDat e=obs. endDat e

br owsePr oduct . i nst rument =obs. i nst r unent

br owsePr oduct . nodel Name=obs. nodel Nane

br owsePr oduct . descri pti on="Browse Product"

br owsePr oduct . t ype=" BROASE"

#

Attach the browse product to the Observati onCont ext

obs. br owsePr oduct =br owsePr oduct

#

Generate the browse i nmage

from herschel .ia.gui.inage inport |nageltil

imageUtil = I mageltil ()

br owsePr oduct | mrage=i nageUti | . get RgbTi | edl mage(\

br owseProduct["red"]. data, browseProduct["green"].data,

br owsePr oduct [" bl ue"] . dat a)

obs. br owsePr oduct | rage=br owsePr oduct | mage. asBuf f er edl mage
pass

Assuming that we have requested mapping products, we first of all flag the pipeline to perform base-
line subtraction, set up a List Context to be used as input to the map making, perform the baseline
subtraction on our Level 1 product and storeit in our List Context:

Flag to switch on and off the baseline renoval
useRenoveBasel i ne=Tr ue

#

Create a SpireListContext to be used as input of nap naking
scans=Spi r eLi st Cont ext ()

#
Run baseline renoval and popul ate the nmap maki ng i nput
for i in range(level1l.count):

i f useRenopveBasel i ne:
psp=l evel 1. get Product (i)
psp=r enoveBasel i ne(psp, chanNum=chanNum)
if tenpStorage:
ref =Pr oduct Si nk. get | nst ance() . save(psp)
scans. addRef (ref)

el se:
scans. addPr oduct (psp)
el se:
scans. addRef (l evel 1. refs[i])
pass

We use this as input for the map maker. The type of map produced is dependent on your input at the
very start of the pipeline - naive or MadMap.

Run napneki ng
if inputs.mapping == -'naive':
mapPl w=nai veScanMapper (scans, array="PLW)

81

Reprocessing your data

i nput s. progress=85

mapPmw=nai veScanMapper (scans, array="PMN)

i nput s. progress=90

mapPsw=nai veScanMapper (scans, array="PSW)
el se:

chanNoi se=obs. cal i brati on. phot. chanNoi seLi st. get Product (| evel 1. get Product (0). neta[" bi asivbde"] . val u
\
| evel 1. get Product (0). startDate)
mapPl w=nmadScanMapper (scans, array="PLW, chanNoi se=chanNoi se)
i nput s. progress=85
mapPmw=nadScanMapper (scans, array="PMVN, chanNoi se=chanNoi se)
i nput s. progress=90
mapPsw=nadScanMapper (scans, array="PSW, chanNoi se=chanNoi se)
pass

Three maps are each produced for PSW, PMW and PLW, and are visible through the Product Viewer
by right-clicking on the required variable in the Variable pane and selecting 'Open With':

|||‘ g o
Hj Open =l

@ Product Viewer Ed Open With b
Wcs explorer for Images [=> Send to b

Standard Image Viewer Show methods

Rename
Delete 3}
(?) Help in URM F1
(?) Help in DRM
@ pdtlead

Figure 4.15. Selecting the Product Viewer

the actual map with fluxes (denoted as 'image);

Image
- _Meta Data

(& mappsw mapesul " dnage | B a

°
@ error
@ coverage
| (3 History i

230,317 N.A./ NA
AAETA] o [T]

Figure 4.16. Setting parametersfor processing

the statistical flux error map (denoted as 'error’):

82

Reprocessing your data

Statistical error on the pixel values
- _Meta Data

= mapPsw mapFsw["error”]

@ image
]

© coverage

: .

AJRIETR] 1o [T]

Figure 4.17. Setting parametersfor processing

and an image which shows the coverage map for our scans (denoted as 'coverage)):

Coverage
~_Meta Data

= mapPsw mapPsw| coverage”]
@ image
@ error
°

|*- (% History

AAJEIA] o0 [T]

Figure 4.18. Setting parametersfor processing

We can export our images to FITS files by right clicking on the respective variable in the Variable
pane (e.g. mapPsw), and selecting 'Send To -> FITSfil€.

We finally scan create a context to store our maps as Level 2 products, and attach them to the obser-
vation context.

Create a context with level 2 products (nmaps) and attach it to the observation
cont ext
| evel 2=MapCont ext ()
for key in level 1. neta. keySet():
if key -!= -"creator" and key -!= -"creationDate":
| evel 2. net a[key] =l evel 1. net a[key] . copy()
| evel 2. creat or =cr eat or
| evel 2. type="1 evel 2cont ext "
| evel 2. descri pti on="Context for SPIRE Level 2 products"
level 2. meta["l evel "] =StringParaneter("20", -"The |level of the product")
I evel 2. refs. put ("PLW, Product Ref (mapPl w))
|l evel 2. refs. put ("PMN, Product Ref (mapPmw))
I evel 2. refs. put ("PSW, Product Ref (mapPsw))
obs. | evel 2=l evel 2
#
pronpte to LEVEL2_PROCESSED
obs. obsState = Observati onCont ext. OBS_STATE _LEVEL2 PROCESSED

Congratulations! You have now re-processed your Small Map data al the way to the final Level 2
maps!

83

Reprocessing your data

4.4. Reprocessing SPIRE Point Source Mode
Data

4.4.1. Prerequisites

For this data reprocessing example, we will be using the Point Source observation (obslD:
1342183474) of NGC 5315. We will in this example assume that you have received the engineering
pipeline processed Level 0.5 data products from the HSC, and have stored them in a storage pool
"1342183474 POF2_NGC5315", either by adirect download or through HIPE. Thefigure below out-
lines the steps required to process the Jiggle pipeline.

Level 0.5 Product A Level 0.5 Product

Photometer
Detector
Timeline

" Electrical
crosstalk Remove Electrical Crosstalk
First Level Deglitching
Unit

conversio Convert to Flux Density

| SPIRE

' | Bsm
z Instrument /. |
Associate Sky Position € < Angles

etector offsets)

xtract Chop &

Jiggle Positions

‘ BSM opsziom!

Demodulation

" Optical
Crosstalk Remove Optical Crosstalk

Average Nod Cycles

eve roauc

._‘ Jiggled
0 0 Phaotomete
M;hmg::_ﬂhd and Position Product d

Product

Figure 4.19. The SPIRE POF2 Photometer Point Sour ce pipeline.

You can access the POF2 pipeline processing script by clicling on 'Pipeline' on the top bar within
HIPE, selecting 'SPIRE' and then clicking on 'Photometer Point Source pipeline script (POF2)' - the
script will open up in the Editor window within HIPE.

84

Reprocessing your data

¢
File Edlit Run BEISEIGEY Window Help

Sal=0 @ Photometer Large Map pipeline script (POFS)

= -
L = i}
@ Photometer Parallel Mode pipeline script (PARALLEL)

ﬁ Editor x @ Photometer Small Map pipeline script (FOFL10)
T R I B P Photometer Point Squrce pipeline script (POF2)
115 @ spectrometer Point Source pipeline script (SOF1)
11& # Open a dia @ spectrometer Map pipeline script (SOF2) 15 not defined
117 try: @ Engineering pipeline script (eng)

113 obsid=0Ps.0bs1d

119 except MameError:

120 Toader=0bsLoader()

121 obs=Tloader.getObs().product

122 pass

123

124 # Check that the data are really SPIRE data

Figure 4.20. Selecting the POF2 pipeline script

To start processing, first, we need to make sure that you have imported all needed classes and task
definitions required to run the POF2/point source pipeline:

Inport all needed cl asses

from herschel .spire.all inport *
from herschel . spire.util inport *
from herschel .ia.all inport *

from herschel .ia.task. node inport *
fromjava.lang inport Long
fromjava.util inport *

Inport the script tasks.py that contains the task definitions
from herschel . spire.ia. pi peline.scripts. POF2. POF2_t asks inport *

Inport the script input.py that contains the input definitions
from herschel . spire.ia. pi peline.scripts. POF2. POF2_i nput inport *

Inport the script obsLoader.py that allows to | oad an Cbservati onContext froma
st or age.
from herschel . spire.ia.scripts.tools.obsLoader inport *

We must search our local pool "1342183474 POF2_NGC5315" for our observation context. We will
run the ObsL oader pop-up window and input the ObslD and the name of the local pool to load the
observation context, and open an pop up dialog box to take inputs such as if we wish to look at plots
of intermediately processed pipeline products:

Open the input dialog to enter inputs
i nput s. openDi al og()

Open a dialog to | oad the CbservationContext if -"obs" is not defined
try:
obsi d=obs. obsi d
except NaneError
| oader =CbsLoader ()
obs=l oader. get Obs() . product
pass

85

Reprocessing your data

plot: [] P | level: @ |Ieve|0 |

correctGlitches: @ |0 |

Clear || Accept

Figure 4.21. Using ObsL oader to load the observation
Al O =}n:-i.e_f£-i-'f_.1rnEE. dader el
Observation ID: | 1=42 1834?4|
Foaol 1D: 12183474 _POF2 _NGC5315

| search || Aot |

Figure 4.22. Using Obsl oader to load the observation

The pipeline aso includes a check that the datareally is SPIRE data, by raising a BadDataException
if the dataisn't:

Check that the data are really SPIRE data
if obs.instrunent -!= -"SPlIRE":

rai se BadDat aException("Thi s Cbservati onContext cannot be processed with this
pi peline: it contains -"+obs.instrunment+" data, not SPIRE data")

Next, we shall create we shall create a creator variable to store the relevant origin metadata for the
Level and Level 2 contexts, alogger to follow the progress of the pipeline's execution, set up the time
origin for any output plots and then finally, extract the Obsld of our observation and the calibration
and auxillary products required for processing the POF2 pipeline:

this is used to put in the creator netadata of level 1 and | evel 2 context the

version of SPG or of the pipeline

that was executed

creat or=herschel . share. util. Configuration.getProperty("hcss.ia.dataset.creator", -"$Revision:
1.68 $")

#create a | ogger for the pipeline
| ogger =TaskMbdeManager . get Mode() . get Logger ()

Shift of tinme origin for plots

t O=obs. st art Dat e. mi cr osecondsSi nce1958() * 1e- 6

obsi d=obs. obsi d

print -"processing OBSI D=", obsid, " ("+hex(obsid)+")"

Extract fromthe observation context the calibration products that
will be used in the script

bsnPos=obs. cal i brati on. phot . bsnPos

bsnOps=obs. cal i brati on. phot . bsnOps

det AngOxX f =obs. cal i brati on. phot . det AngCf f

el ecCross=obs. cal i brati on. phot. el ecCross

opt Cross=obs. cal i brati on. phot . opt Cr oss

Extract fromthe observation context the auxiliary products that
will be used in the script

hpp=obs. auxi | i ary. poi nti ng

si amFobs. auxi | i ary. si am

86

Reprocessing your data

4.4.2. Level 0to Level 0.5 Processing (Optional)

4.4.3.

If you do not have Level 0.5 products to hand, you will need to make the engineering conversion

fi
p

rst from the raw Level O products - basically, we are converting the raw telemetry in the form of
roducts into engineering units such as bolometer voltages and resistances timelines. We can run the

engineering conversion pipeline from the Level 0 products obtained from the HSA to obtain our Level
0.5 products using:

#

From Level 0 to Level 0.5

if inputs.level =="1]evel 0":
Run Engi neering Conversion of level O products

| evel 0_5= engConversi on(obs. | evel 0, cal =obs. cal i brati on)

Add the result to the observation in level 0.5

e

#
#
i

#
C

obs. | evel 0_5=l evel 0_5

| se:
| evel 0_5=obs. | evel 0_5

set the progress

nput s. progr ess=20

counter for conputing progress
ount =0

Level 0.5to Level 1 Processing

Now, we can process our data from Level 0.5 to Level 1. Looping over each BBID, we first convert
the BSM telemetry intoaY, Y and Z angle timeline and then into a chopper id/jiggleid timeline. We
can use these to create the SPIRE pointing product. We then perform a number of corrections to the
data, after which we will have produced the Level 1 pipeline data product. In order to execute these
stepsin the most efficient manner possible, we execute anumber of pipelinetaskswithin asingleloop.
A simplified vesion of thisloop, adapted from the POF2 pipeline script, is given below:

From Level 0.5 to Level 1

f inputs.level =="|evel 0" or inputs.|evel=="|evel 0_5"
#

dppar r =[Denodl! nput ()]

nrep=1

nbl ocks=I en(| evel 0_5. get Bbi ds(0xa321))

#

for bbid in |evel 0_5. getBbi ds(0xa321)
print -"Starting BBl D=", hex(bbi d)

bl ock=l evel 0_5. get (obsi d, bbi d)

Get basic engineering data products
pdt = bl ock. pdt
bsnt = bl ock. bsnt
run the task to convert BSMtelenetry in a Y angle and Z angle tineline
bat =cal cBsmAngl es(bsnt , bsnPPos=bsnPos)

run the task to convert BSMtelenetry in a chopper id & jiggle id tineline
cjt = cal cBsnFl ags(bsnt, bsmOps=bsnmOps)

#

#create the SpirePointingProduct

spp=cr eat eSpi r ePoi nti ng(det AngOf f =det Angxf f , bat =bat , hpp=hpp, si anrsi am
#

run the electrical crosstalk correction

pdt =el ecCrossCorrecti on(pdt, el ecCross=el ecCross)

#

run the deglitch

pdt =wavel et Degl i t cher (pdt, scal eM n=1.0, scal eMax=8.0, scal el nterval =5

hol derM n=-1. 6, \

hol der Max=-0. 1, correl ationThreshol d=0.6, correctditches=inputs.correctditches)
#
run the flux conversion

87

Reprocessing your data

fl uxConv=obs. cal i brati on. phot . f| uxConvLi st . get Product (pdt. net a[" bi asMbde"] . val ue, pdt. start Dat e)
pdt =phot Fl uxConver si on(pdt, f| uxConv)
#

associ ate the sky position

ppt =associ at eSkyPosi ti on(pdt, spp=spp)
#

run the Denodul ation task

dpp = denodul ate(ppt, cjt=cjt)

#

second | evel deglitching
dpp = secondDegl it chi ng(dpp)
#

average on jiggle position
dpp = jiggl eAver age(dpp)

#
ncyc=((dpp. bbCount-1)/4) +1
if ncyc >= nrep+1
for k in range(ncyc-nrep):
dppar r. append(Denodl nput ())
dppar r[ncyc- 1] . addPr oduct (dpp)
nr ep=ncyc
el se
dppar r[ncyc-1] . addPr oduct (dpp)
print -"Conpl eted BBI D=0x% (% /%)" % bbi d, count +1, nbl ocks)
set the progress
count =count +1
i nputs. progress = 20+(60*count)/ nbl ocks
#
denoddi ng
ppps=[]
for i in range(nrep):
deni n=dpparr[i]
if denin.count ==

print -"nod cycle -",i," doesn't have any data"
| ogger.severe("nod cycle -"+i.toString()+" doesn't have any data")
conti nue

ppp=deNoddi ng(deni n)
ppps. append(ppp)
#

if len(ppps) ==
print -"No PPP produced due to missing data. This observati on CANNOT be
processed! "
| ogger. severe("No PPP produced due to missing data. This observati on CANNOT be
processed! ")
rai se M ssingDat aException("No PPP produced due to missing data. This
observati on CANNOT be processed!")
#
for i in range(len(ppps)):
run the optical crosstalk correction
ppps[i] =phot Opt CrossCorrecti on(ppps[i], opt Cross=opt Cr 0sSs)
#
averagi ng over nodding
appp = nodAver age(ppps)
#
Add |l evel 1 context to observation context
| evel 1=Level 1Cont ext (obsi d)
for key in level 0_5. neta. keySet():
if key -1= -"creator" and (not key.endswith("Date")) and key -!= -"fileNanme" and \
key -!= -"type" and key -!= -"description"
| evel 1. met a[key] =l evel 0_5. net a[key] . copy()
| evel 1. creat or =cr eat or
| evel 1. addProduct (appp)
obs.levell = levell

pronote to LEVEL1 PROCESSED

obs. obsState = Observati onCont ext. OBS_STATE_LEVEL1_PROCESSED
el se

| evel 1=0bs. | evel 1

appp=I evel 1. get Product (0)

pass

88

Reprocessing your data

To break up thisloop into its constituent parts, first of all, we set dpparr as an array to host input the
data after it has been demodulated later in the pipeline, and obtain the number of buidling blocks from
the Level 0.5 products:

dppar r =[Denodl! nput ()]
nrep=1
nbl ocks=l en(| evel 0_5. get Bbi ds(0xa321))

Next, we grab the engineering products from the Level 0.5 output product:

bl ock=I evel 0_5. get (obsi d, bbi d)

Cet basic engineering data products
pdt bl ock. pdt

bsnt bl ock. bsnt

The next required step is to convert the BSM telemetry into a 'Y angle and Z angle timeline, and a
chopper ID/jiggle ID timeline, respectively - using this ouput product in conjunction with the pointing
and the SIAM files, we can create the SPIRE Pointing Product:

run the task to convert BSMtelenetry in a Y angle and Z angle tineline
bat =cal cBsmAngl es(bsnt, bsnPos=bsnPos)

run the task to convert BSMtelenetry in a chopper id & jiggle id tineline
cjt = cal cBsnFl ags(bsnt, bsmOps=bsnmOps)

#create the SpirePointingProduct
spp=cr eat eSpi r ePoi nti ng(det AngOxk f =det AngCxf f, bat =bat , hpp=hpp, si anFsi am

BSM angle timeline for BBID=0xA3210008L

8(]IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII

_80 III|IIII|IIII|IIII|IIII|IIII|IIII|IIII
640 650 660 670 680 690 700 710 720

Time (sec)

60

40

20

=20

-40

-60

—
=
III|III|III|III|III|III|III|II

Chopper/Jiggle angle (arcsec)

| —— Chopper Jiggle |

Figure 4.23. BSM Angle Timeline

89

Reprocessing your data

We then in turn provide a number of corrections to our Level 0.5 datasets - electrical crosstalk cor-
rection, deglitching, flux conversion, sky position association, demodul ation of the data, second level
deglitching and averaging of the demodulated data. The deglitching task parameters can be tweaked
as required - see the SPIRE Users Manual for a more in-depth discussion of the parameters for this
task, and the ranges allowed.

run the electrical crosstalk correction
pdt =el ecCrossCorrection(pdt, el ecCross=el ecCross)

run the deglitch
pdt =wavel et Degl i t cher (pdt, scal eM n=1.0, scal eMax=8.0, scal el nterval =5
hol der M n=-1. 6, \
hol der Max=-0. 1, correl ationThreshol d=0.6, correctditches=inputs.correctditches)

run the flux conversion

fl uxConv=obs. cal i brati on. phot . f| uxConvLi st . get Product (pdt. net a[" bi asMode"] . val ue, pdt . st art Dat e)
pdt =phot Fl uxConver si on(pdt, f| uxConv)

associate the sky position

ppt =associ at eSkyPosi ti on(pdt, spp=spp)

run the Denodul ation task

dpp = denodul ate(ppt, cjt=cjt)

second | evel deglitching
dpp = secondDegl it chi ng(dpp)

average on jiggle position
dpp = jiggl eAver age(dpp)

Averaged Demodulated BBID=0xA3210008L

—S.H_IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII_
-88 -
-9.0 —
02 -
— 94 =
': : .
-9.6 F 3

E C]
= -98F 3
a0 C]
= -]
v -10.0]
~102 F -
-104 —
-10.6 - -
:IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII:

).8
640 645 650 655 660 G665 670 675 680 685 690 695 700 705
Time (sec)

Figure 4.24. Averaged demodulated data
Thisisrepeated over the full number of nod cycles, and the averaged, demodul ated output is appended
to the dpparr output product:

#
ncyc=((dpp. bbCount-1)/4) +1

90

Reprocessing your data

if ncyc >= nrep+1
for k in range(ncyc-nrep)
dppar r. append(Denodl nput ())
dppar r[ncyc- 1] . addPr oduct (dpp)
nr ep=ncyc
el se
dppar r[ncyc- 1] . addPr oduct (dpp)
print -"Conpl eted BBl D=0x% (% /%)" % bbi d, count +1, nbl ocks)

set the progress
count =count +1
i nputs. progress = 20+(60*count)/ nbl ocks

The demodulated data is then denodded, the optical crosstalk correction is applied and finally, the
datais nod averaged:

denoddi ng

ppps=[]

for i in range(nrep)
deni n=dpparr[i]
ppp=deNoddi ng(deni n)
ppps.gppend(ppp)

for i in range(len(ppps))

run the optical crosstalk correction

ppps[i] =phot Opt Cr ossCorrecti on(ppps[i], opt Cross=opt Cr 0SSs)
#

averagi ng over noddi ng
appp = nodAver age(ppps)

This nod averaged product forms the Level 1 output product, and is written out as such from the
pipeline. The Level 1 context is then added to the observation context, finishing Level 1 processing.

Add |l evel 1 context to observation context

| evel 1=Level 1Cont ext (obsi d)

for key in level 0_5. neta. keySet ()
if key -1= -"creator" and (not key.endswith("Date")) and key -!= -"fileNanme" and \
key -!= -"type" and key -!= -"description"
| evel 1. met a[key] =l evel 0_5. net a[key] . copy()

| evel 1. creat or =cr eat or

| evel 1. addProduct (appp)

obs.levell = levell

pronote to LEVEL1_PROCESSED
obs. obsState = Observati onCont ext. OBS_STATE_LEVEL1_PROCESSED

4.4.4. Level 1to Level 2 Processing

Inthefinal step of the POF2 Point Source pipeline processing, we can obtain thefinal Level 2 products
for Point Source Observations, by passing the APPto the" pointSourceF ux" module, and by inspecting
the output JPP product:

user products
j psfp poi nt SourceFit (appp)
jpp sour ceFl ux (j psfp)

This compl etes the standard POF2 pipeline.

Congratulations! Y ou have now successfully reprocessed your point source data from Level O to the
final Level 2 user products! Additional and more detailed information regarding the data processing
modules and the data at the various levels of processing can be found in the SPIRE Users Manual.

91

Reprocessing your data

4.5. SPIRE Spectroscopy Data Processing
4.5.1. Reprocessing SPIRE spectrometer data

In the standard processing applied at the HSC, the SPIRE spectrometer pipeline is divided into two
scripts - one for sparse observations (SOF1) and one for intermediate (4 point jiggle), or fully (16
point jiggle) sampled observations (SOF2). In either case the observation may consist of a set of
telescope pointingsin araster pattern on the sky. The sequence of processing steps applied to the data
areillustrated schematically in Figure 4.25.

Level 0.5 Products

pectromete
Detector /' oy eline
Timeline
ggElectrical Remove
: Electrical Xtalk

First Level
Deglitching

Auxiliary Products

House
BSM
keeping
Timeline Timeline

Spacecraft Spacecraft
Pointing Apertures
Product Product

Non-Linearity

Correction Calculate BSM

Angles
Bath Temp
Correction

Clipping
Correction
LPF params Correct Time
Domain Phase

Spectrometer /
Detector

il

Baseline
Correction

Second Level
Deglitching

Telescope SCAL Apodization
Subtraction

Fourier
Transform

' I “ f
e Phase Spectrometer

Correction Detector

Spatial
Regridding
ectrum (com Conversion
- Bea Preprocess
Apodization Wl Cube

Fourier
meter
Transform Seecito

| Spectrometer
~ Detector

Average
Spectra Crosstalk

Flux Conversion ——

Figure4.25. The SPIRE Spectrometer pipeline.

92

Reprocessing your data

4.5.2.

Reprocessing your observation using the simple steps described in this chapter may improve your
results significantly over the output of the standard pipeline for HCSS v4 (or earlier) for two main
reasons:

1. The standard pipeline up to HCSS v4 uses a single sky measurement to remove the telescope and
instrument background emission. In reality, both background levels vary from day to day. Day-
dependent reference observations are now available to subtract a background that better matches
the thermal conditions during the science observation.

2. The calibration products evolve rapidly at this point. It is very likely that your standard pipeline
results were generated using an older calibration tree version. Updated calibration products can be
applied using the latest calibration context.

While the data reprocessing described here usually results in an improvement to the final spectrum,
there may still be some spectral artifacts (particularly for weaker sources). These will be further dealt
with in HCSS v5.

Currently, the reprocessing steps outlined here apply only to sparsely sampled observations. Further
details of the additional processing needed for mapping observations will be added for HCSS v5.

In order to reprocess your data, you have to do the following:
1. Download the raw data from the HSA
2. Update the calibration tree attached to the observation to spire cal_4 0

3. Get the SCal SpeclnterRef calibration product closest in time to your observation from the SPIRE
ICC website

4. Re-run the pipeline from level-0.5 data using updated calibration files

The following sections explain these steps in more detail using an interactive pipeline script that is
reproduced in full at the end of the chapter. The two standard pipeline scripts for the Spectrometer
are also available from within Hipe (from the "pipeline" button in the taskbar), but they contain many
lines of code specific to automated processing in the standard processing environment. Eventually,
the simpler interactive script will also be available from the taskbar in Hipe, but not yet in HCSS vA4.

Options available to the user

1 Set your OBSID and pool name
Specify the observation ID (obsid) and data pool name that contains the level 0.5 data for your
observation, i.e. the pool name where you have stored the data downloaded from the archive.

myQbsl D
my Dat aPool

[obsi d]
[pool nane]

2 Chooseto limit the number of detectors

Setting this option to be true will result in only the central detectors SLWC3 and SSWD4 being
processed. If this option is set to be false, all the detectors will be processed. Selecting only the
central detectors saves both processing time and memory usage.

processOnl yCenterDetectors = 1

3 Select thedark sky reference interferogram

Using a reference interferogram which was taken under different conditions is the main cause of
errorsin the resulting spectra. To produce an accurate spectrum, areference interferogram taken in

93

Reprocessing your data

similar conditions to that of the source observation must be subtracted. Often, the best choice for a
reference interferogram is the one which was taken closest in time to the source observation. The
reference interferogram calibration files can be downloaded from the SPIRE ICC website http://
www.spire.rl.ac.uk/icc/InterRefFiles.html The reference observations taken each day may be shal-
lower than the source observation and introduce noise. Eventually, the goal is to provide deep ref-
erence observations that match the thermal conditions during the science observation.

nylnterRef = -"[Enter path here + filenane]"

For example:

nyl nter Ref =\
" SCal Specl nt er Ref _CR_noni nal _20050222_50002AA3_average_fourier ALL DETS.fits"
4 Chooseto apodize interferogramsor not

Choosing apodize = 1 will apply the standard apodization function to the interferogram, reducing
the ringing in the instrument line shape wings at the cost of spectral resolution. Setting apodize
= 0 will avoid apodization altogether and preserve the best spectral resolution available from the
SPIRE spectrometer.

apodi ze = 0

5 Definethe output directory

The output directory defined here will be used to save the resulting FITS files containing the final
spectra.

outDir = -"[Enter path here]"

4.5.3. Detailed description of the processing script
4.5.3.1. Define some Jython "Methods"

The methods shown at the beginning of the script are used for merging the observation building blocks
together. These methods are needed for data taken prior to OD 302 since a calibration building block
was sometimes inserted into the middle of an observation. Since OD 302, calibration building blocks
areonly placed at the end of each observation, and the spectral scans are not divided up.

def mer geNnkt (nhkts):

for i in range(l, len(nhkts)):
nhkts[0] [' signal'].addRowsByl ndex(nhkts[i]['signal'])
nhkt s[0] [' mask']. addRowsByl ndex(nhkts[i][' mask'])

nhkts[0] . meta[' endDate'].val ue = nhkts[-1].neta[' endDate']. val ue
return nhkts[0]

def mergeSdi s(sdis):
bi gSdi = SpectroneterDetectorlnterferogranm)
bi gSdi . mreta = Met aDat a(sdi s[0] . net a)
scanNunbers = []
for sdi in sdis:
scanNunber s. append(sdi . get NunScans())
if len(sdis) == 1:
return sdis[0]
i =0

94

http://www.spire.rl.ac.uk/icc/InterRefFiles.html
http://www.spire.rl.ac.uk/icc/InterRefFiles.html

Reprocessing your data

for sdi in sdis:
t oAdd = SUM scanNunbers[i +1: 1 en(scanNunbers)])
for scanNunber in sdi.getScanNunbers():
thi sScan = sdi.renpoveScan(scanNunber)
t hi sScan. set ScanNunber (t hi sScan. get ScanNunber () +t 0Add)
bi gSdi . set Scan(t hi sScan)
i=i+1
return bi gSdi

4.5.3.2. Define the central detectors and thermistors and dark pix-

els

Thevalue of the boolean variable " processOnlyCenterDetectors' was defined in the user input section.
Here, we specify the names of the central detectors, thermistors, and dark pixels so that if "proces-
sOnlyCenterDetectors" was set to 1, we know which detectors to keep and which to remove later in
the script.

det sToKeep = ["SLWC3", -"SSWM4"]
therms = ["SLWI1", -"SLWIr2", -"SSW1", -"Sswrz2", \
-"SSWDP1", -"SSWDP2", -"SLWDP1", -"SLWDP2"]

firstCut = therns
firstCut.extend(det sToKeep)

45.3.3. Load an observation context into HIPE

The following lines read in the observation from the local storage.

Pr oduct St or age(myDat aPool)
st or age. sel ect (Met aQuer y(Qoser vati onCont ext , \
-"p","p.neta[' obsid].value == % L"%yCOosl D)) [0]. product

st orage
obs

4.5.3.4. Attach the latest calibration tree to the observation

In general, the appropriate calibration fileswill be included with the observation data. However, only
very recent data in the HSA have the latest calibration files attached. Therefore, the following two
lines fetch the v4 calibration tree from the HSA (will ask for username and password), and update the
observation context by attaching them. If you run the script for many observations, you could read the
calibration context from the HSA, saveit asalocal pool to disk, and read it in from there (rather than
fetching from the HSA for every observation).

cal = spireCal (cal Tree="spire_cal _4_0")
obs. cal i brati on. update(cal)

4.5.3.5. Start processing from the Level 0.5 products

Use the following code in HIPE to load in the Level 0.5 products relevant to an FTS Scan building
block (bbid = 0xal06X XX X: the first scanning building block is 0xal060001) - there is usually only
one scanning building block that contains the observation data (except for long observations before
OD302 - see above). The following lines set up empty Jython lists to contain the results for each
building block, and starts aloop over the scanning building blocks.

sdis =[]
nhkts = []
idin obs.|evel 0_5. get Bbi ds(0xal06):

95

Reprocessing your data

4.5.3.6. Extracting the Spectrometer Detector Timeline

The following line extracts the detector timeline product from the observation context. In the sample
data given below, the observation contains 20 spectral scans, see Figure 4.26. The data taken during
one scan are described in more detail in Figure 4.27.

sdt = obs. | evel 0_5. get (nyQosl| D, bbi d). sdt

0.0068 T T LI — L L

0.0067
0.0066
0.0065

= 0.0064

<%
S8 0.0063
el
2 0.0062
-
0.0061
0.0060

0.0059

. L |
1200

. |
1400

100707 S T T S O B
=200 0 200 400 600 800 1000

sampleTime[s]

.
1600

Figure 4.26. Thetimeline of the SLWC3 detector for 20 scans.

| RN FN O T T T 1T 11 | FO I P | I oF T d T T T 1 T T 1171 T 1 1T]

0.00639 - ’ '] [W =

g F Glitches =

GH00as C / A strong CO ladder in the spectral domain &

0.00637 F ' produces a set of cosine wavesin the]

— ot = interferogram which produce the "beat” ?

Z 0.0063 E structure seen here.]

%ﬁ 1
+ 0.00635

—_— -

- :

0.00634 F 3

0.00633 E— Low frequency features of the Fringing _E

E spectrum which give its general 1]

0.00632 shape. =

| N | l 1 1 [L 1} l L1 1 | j Y Sl ‘ | T J | - | 1 1 17

150 160 170 180 190 200 210 220
sampleTime[s]

Figure 4.27. Annotated interference pattern for one scan.

4.5.3.7. Nominal House Keeping Timeline
The following line extracts the nominal housekeeping timeline product from the observation context.

This product contains the instrument "housekeeping" data - for example, temperatures of various in-
strument components, as well as voltages, phases, etc.

nhkt = obs.|evel 0_5. get (nyCbsl D, bbid). nhkt

For example, follow the steps below to view instrument thermometry:
1. Open the nhkt file from the variableslist by double clicking on it.

2. Right-click on"Signal" and open with "TablePl otter"

96

Reprocessing your data

3. Activate the drop-down menu for the different axes to plot any of the instrument sensor measure-
ments, e.g. SCALTEMP.

4.755 + Fumn- m— S - *
T+ r— F R — e - +
+ - AeEE HE SRR HE 5 B b e P
spes - . AN B R b
4.750 marm m b frishet W mm mes o e
A — v e - m [N eA—
o " s +r + P v s b
_1'7_13 A - AHHE -+ A +
= & - o - + -
. +
PV
4.740 - R
- s
-
S P
= 4.735 I
X FrT—
% W e
4.730 s
w - ohy
= i \"(772,4.725)
+
5 4.725 i
v e
+
——
4.720 F
P
e
e -
4.715 B
-
.
4710 -
-
-
-
4.705 [urmme
e jed (1% % g [ges & [Tg fesp g] o Grmos @l g g% | g g W 4§
| | | | | | |
vl
0 200 400 600 800 1000 1200 1400

sampleTime(TAl)

Figure 4.28. SCALTEMP, a good indication of the temperature of the optical bench, asa function of time
during the observation.

4.5.3.8. Spectrometer MEChanism Timeline

Thefollowing line extracts the spectrometer mirror mechanism timeline product from the observation
context. This product contains data concerning the position of the mirror that is mounted on the linear

trangl ation stage mechanism.

smect = obs. | evel 0_5. get (nmyObsl D, bbid). snect

The TablePlotter can be used in the same fashion as with the NHKT product to produce a sample plot
of the mirror scan distance during the observation.

[
i

TT767, 2.1

encoderCoarse(cm)
N

1.0

0.5 u
MR N BT TR | L I | .
1400

0 200 400 600 800 1000 1200
sampleTime(TAl)

Figure4.29. The position of the stage mechanism as a function of time during the observation.

97

Reprocessing your data

The correlation between the SCALTEMP plot in Figure 4.28 and the mirror stage mechanism plot in
Figure 4.29 indicates that the instrument temperature is affected by the operation of the stage mech-
anism.

4.5.3.9. Removing unnecessary channels

At this point, we remove the detectors that are not required (using the list of detectors to keep which
was defined above).

if (processOnlyCenterDetectors):
for chan in sdt.channel Nanes:
if chan not in firstCut:
sdt . removeCol utm(chan)

4.5.3.10. Apply first level deglitching

The waveletDeglitcher removes the effects of cosmic rays from the SDT and replaces the gaps with
a polynomial fit since an interferogram with gaps cannot undergo a correct Fourier transform. We
recommend not altering the parameters of this correction.

sdt = wavel et Degl i t cher (sdt, reconstructi onPoi nt sAfter=3, \
reconstructi onPoi nt sBef ore=2, \
correctd itches=Bool ean. TRUE, \
scal eM n=1, scal eMax=8, scal el nterval =5, \
hol der M n=-1. 4, hol der Max=-0. 6, \
correl ati onThreshol d=0. 85, \
opti onReconstructi on="pol ynom al Fitting",\
degr eePol y=6, fitPoints=8)

4.5.3.11. Apply the Non-linearity and Temperature Drift Correc-
tions
The non-linearity correction is required because the response of the bolometric detectorsis non-linear

for substantially increased flux rates. The reponse of the bolometers also depends upon their operating
temperature. Therefore temperature drift and non-linearity corrections must be applied together.

sdt = specNonLinearityCorrection(sdt, \
nonLi nCorr =obs. cal i brati on. spec. nonLi nCorr)
sdt = tenperatureDriftCorrection(sdt, \

tenpDri ft Corr=obs. cal i brati on. spec. tenpDriftCorr)

45.3.12. Remove the thermistor channels

After the temperature drift correction the thermistor channels can be removed.

if (processOnlyCenterDetectors):
for chan in sdt.channel Nanes:
if chan not in detsToKeep:
sdt . renoveCol um(chan)

4.5.3.13. Correct the detector signals for clipping

Thedetectorshave afinite dynamic range and can saturate when observing aparticul arly strong source.
This results in an interference pattern peak which has been "clipped" off, eventually leading to an

98

Reprocessing your data

incorrect spectrum. Consequently, saturated detector signals must be reconstructed prior to the Fourier
transform.

sdt = clippingCorrection (sdt)

4.5.3.14. Correct the detector signals for time shifts

The thermal response of the detectors and the read-out electronics is not instantaneous and imparts a
time delay to the recorded signals that is corrected here.

sdt = ti neDomai nPhaseCorrection(sdt,\
| pf Par =obs. cal i brati on. spec. | pf Par, \
chanTi meConst =obs. cal i brati on. spec. chanTi neConst)

4.5.3.15. Create a Spire Pointing product
The SPIRE pointing product alows the calculation of the position on the sky that the instrument
detectorswereviewing. Thisisdifferent from theline of sight of the Herschel telescope for potentially
three reasons:
1. The detector arrays are offset from the boresight of the Herschel telescope.
2. If you are using more than just the central detectors, these are offset by a different angle.
3. The beam steering mirror can also ater the angular offset of the detector.

bat
spp

cal cBsmAngl es(nhkt, bsnPos=obs. cal i brati on. spec. bsnPos)
creat eSpi rePoi nti ng(hpp=obs. auxi | i ary. poi nting, siamrobs. auxiliary.siam \
det AngCOxf f =obs. cal i brati on. spec. det AngOf f, bat =bat)

4.5.3.16. Interpolate SDT and SMECT to create Interferograms

With the knowledge of the optical path difference from the SMECT combined with the SDT that has
been corrected for non linear response, temperature drift, clipping and signal time delay, alevel-1in-
terferogram can produced. Theinterferogram (i.e. thesignal asafunction of optical path difference) for
each scanning building block is appended to the list of Spectrometer Detector Interferograms (SDIs)
which isthen merged into asingle SDI outside of the loop.

sdi = createl fgn(sdt=sdt, snect=snmect, nhkt=nhkt, spp=spp, \
smecZpd=obs. cal i brati on. spec. smeczpd, \
chanTi meOf f =obs. cal i brati on. spec. chanTi nreCf f , \
snecSt epFact or =obs. cal i brati on. spec. smecSt epFact or, \
i nt erpol Type= -"spline")

sdi s. append(sdi)

nhkt s. append(nhkt)

mer geSdi s(sdi s)

mer geNnhkt (nhkt s)

sdi
nhkt

4.5.3.17. Subtract the interferogram baseline and apply second
level deglitching

By running the pipeline script line by line, you can inspect the results at each stage to gain a more
visual representation of the alterations from each processing step. If you compare the SDI before and

99

Reprocessing your data

after baseline correction, you will notice that the baseline after the correction should be at zero (but
note that once the correction has been applied it overwrites the input variable!).

sdi
sdi

basel i neCorrection(sdi, type="fourier", threshol d=4)
deglitchl fgm(sdi, deglitchType="MAD"', threshol dFact or=4)

4.5.3.18. Subtract the reference interferogram from the source in-
terferograms

The following step subtracts the reference interferogram contained in the calibration file specified in
the user input section of the script.

interRef = fitsReader(nylnterRef)
sdi = tel escopeScal Subtraction(sdi, interRef=interRef, nhkt=nhkt)

The resulting interferogram is shown in Figure 4.30.

20 1073 L T T T T T T T T T T T T T T T TT]
15405 —

1.0 107 |- —

2. so010°F -
e 7 .
= C]
= B]
on 0.0 -]
o - "
V] C]
-5.010° | —
-1.010° —
—1.5 10'3 C 111 | L1 I ‘ 111 | 11 | ‘ 111 | 11 | ‘ 111 | | ‘ 11 1 1
-4 -2 0 2 4 6 8 10 12 14

OPD [cm]
Figure 4.30. The sour ce interferogram.

4.5.3.19. Apply Interferogram Phase correction

Since the strong signal in the SDI is not always exactly centred at zero in optical path difference,
this must be corrected before the Fourier transform to produce the final spectrum. This correction is
achieved by extracting the symmetric double-sided portion of the SDI (see Figure 4.31), followed
by a Fourier transform which will produce a spectrum containing both real and imaginary parts (see
Figure 4.32). The arctan of the ratio of the imaginary over the real part of the complex spectrum
is commonly referred to as phase. The phase correction adjusts the central position of the extracted
symmetric portion of the SDI so asto eliminate the imaginary part of the spectrum. Once this phase
correction is found, the same correction is applied to the whole SDI prior to the Fourier transform to
produce the almost finalised spectrum.

100

Reprocessing your data

2.0 107 (A r e e T
15107
1.010°
5.010°

0.0

Signal [V]

-5.0 10

-1.0 107

IllllIIII|IIlI|IIII|IIII|IiII|IIII|IIII|IIII|IlII|IJIi|III

-3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 05 1.0 15 20 25

OPD |cm]

-1.5 10

L
=

Figure 4.31. Thedouble-sided portion of the interferogram.

5.5 10"
5.0 10*
4.510"

4.0 10"
3.510"
3.0 10™
2.5 107
2.0 10"
1.5 10"
1.0 10"
5.0 107

Signal [V/cm™]

\I\|\I\Irlill‘I\II|III1|\III|IIII|IIII|IIII|IIII‘I\I
\I\|\I\I[IIII‘I\II|IIIll\III|IIII|IIII|IIII|IIII‘I\I

0.0F
_3‘01()"‘:III{ILJ|IIIIIlLIJIIlIIIIlJI|III|ILLIJII|IIIIIJI|I:
10 12 14 16 18 20 22 24 26 28 30 32 34
Wavenumber [cm™!]

Re(SLWC3 - 1) ——— Im(SLWC3 - 1) |

o

'z;
5

I\l

Figure 4.32. The complex spectrum from the double-sided interfer ogram.

presdi = apodi zel fgn(sdi, apodType="prePhaseCorr", apodNane="aNB_20")
dsds = fourierTransforn(sdi =presdi, ftType="prePhaseCorr", zeroPad="None")
sdi = phaseCorrection(sdi, sds=dsds, \

pol yDegr ee=2, pcfSize=127, \
nl p=obs. cal i brati on. spec. nl p, \
phaseCorr Li mrobs. cal i brati on. spec. phaseCorrLim

Also, if the "apodize" variableis set to True, the interferogram is apodized prior to the Fourier trans-
form using the standard apodization function.

101

Reprocessing your data

if apodi ze:
sdi = apodi zel fgn(sdi, apodType="post PhaseCorr", apodNane="aNB_15")

4.5.3.20. Transform the Phase-corrected interferograms

The phase corrected SDIs can now undergo the Fourier transform to produce the almost finalised
spectrum (see Figure 4.33). The spectrum stretches from 0 to approximately 200 wavenumbers for
both detectors, covering a much wider spectral range than the optical passband of the instrument.

ssds = fourierTransforn(sdi =sdi, ftType="postPhaseCorr", zeroPad="standard")

2.2

2.0 107" = -
—
~ 18107 3
5 1.6 10" =
> l410'
— 1210
g
o0 1.0 10 F
- E
1 8010°

6.010°

4010°F

2010° - e | d i fll‘ W

E m -u’n.‘"‘\"?W\H‘zﬁwml i
0.0 b

TN [T ST S T N WO T | 1 L P R ' FEa— PR I B
15 20 25 30 35 40 45 50
Wavenumber (cm-!)

Figure 4.33. The phase-corrected spectrum from a single scan.

4.5.3.21. Read in the appropriate flux conversion calibration prod-
ucts

Thefollowing lines get the correct flux conversion and beam parameter calibration products depending
on whether apodization has been selected in the user input section.

if apodi ze:
fluxConv = obs.calibration. spec.fluxConv
beanPar am = obs. cal i brati on. spec. beanPar anLi st . get Product (1, -"nom nal", \
obs. start Dat e)
el se:
fluxConv = obs.calibration. spec.fluxConvLi st. get Product ("HR', -"unapod", \
-"nom nal ", obs. startDate)
beanPar am = obs. cal i brati on. spec. beanPar anLi st . get Product (0, -"nom nal", \

obs. start Dat e)

4.5.3.22. Average the spectra and remove out-of-band data

The spectra can be averaged by combining all of the observed scans, or by combining forward and
backward scans of the mirror separately. In the following line, " separateScanDirections” is set to zero,
indicating that all scans are to be averaged together. If it was set to 1, forward and backward scans
would be kept separately. The keyword boolean "INCLUDE_OOB" is set to O to truncate spectral
data to the optical passband, the scientifically useful wavenumber range - see the resulting spectrum
in Figure 4.34. If this keyword was set to 1, the spectral data would not have been truncated. The
dlight undulation of the spectrum is caused by the Relative Spectral Response Function of the SLW
and SSW filters.

102

Reprocessing your data

ssds = averageSpectra(ssds, separateScanDirections=0, \
| NCLUDE_OOB=0, bandEdge=obs. cal i brati on. spec. bandEdge)

3510 |
3.010" -

2510 —

[mé M¢Mw~ ‘ WMMMMLWMMMWﬂ}J%W*M%MWW*Vﬂ é

Signal (V/cm')

5.010° -

15 2 30 35 40 45 50
Wavenumber (cm-!)

Figure 4.34. The aver age spectrum from the sour ce observation.

45.3.23. Flux conversion

The following commands correct the flux values for the RSRF and convert them into units of Janskys
(10%° W/m?Hz). The initial conversion applies a correction assuming a uniformly extended source.
Thisisthen savedin acopy caled "extended". Theoriginal datafor the central detectorsisthen further
corrected (using the beam parameters calibration product) assuming a point source, see Figure 4.35.

ssds = specFl uxConversi on(ssds, fl uxConv=fl uxConv)
ext ended = ssds. copy()
poi nt Sour ceSds = specFl uxConver si on(sds=ssds, fl uxConv=fluxConv, \
beanPar amrbeanPar am APPLY_PQO NT_SOURCE=1)

The variable "extended" is a copy of the ssds product prior to the point source flux conversion, since
the pointSourceSds command would overwrite the original ssds variable.

103

Reprocessing your data

P07 | N e o I
200
180
160
140
120
100
80
60
40
20

T

Flux [W/m?2/Hz]

-20

-40
1

15 20 25 30 35 40 45 50
Wavenumber [cm™1]

=)

1¥] |
i

Figure 4.35. Thefinal, flux-calibrated sour ce spectrum.

in HCSS v4, the label for the flux unit for point sources is incorrect. Currently, the labeled specifies
W/m?/Hz, when in actual fact, the unit should be Jy (10%° W/m?/Hz).

There may still be some effects of incorrect telescope and instrument subtraction (particularly for
weaker sources). In the spectrum shown here, there is a slight flattening below 20 cm™ due to a mis-
match in instrument temperatures. The step between the signal from the two detector arrays may either
be dueto incorrect telescope temperature in the reference, or to the source being extended in the beam.
These remaining corrections will be addressed in HCSS v5.

4.5.3.24. Save the resulting spectra

4.5.4.

The following lines store the extended and point source calibrated spectral products into fits files for
further analysis.

i f apodi ze:
sinpl eFi tsWiter(extended, -"%% _final Spectrum extended_apodi zed. fits"\
% outDir, myQbsl D))
si npl eFi t sWiter(poi ntSourceSds, -"%% _final Spectrum poi nt_apodi zed. fits"\
% outDir, myQbsl D))
el se:
sinpl eFi tsWiter(extended, -"%% _final Spectrum extended.fits"\
% outDir, myQbsl D))
si npl eFi t sWiter(poi ntSourceSds, -"%% _final Spectrum point.fits"\
% outDir, myQbsl D))

The processing script

HHEHHHH TR A A A AR AR R R R R R R R R R A R H R i i

Purpose: A sinplified version of SPIRE SOF1 pipeline script distributed

with HPE 4.0. This is for data reprocessing by a user using

the latest SPIRE calibration products and a user specified background
interferogramfor tel escope and instrunment subtraction.

In addition, the user has the options of (i) processing only
the central detectors (SSW)4/SLWC3) to speed up processing and

HHHHHH

104

Reprocessing your data

to lighten the menory | oad, and (ii) producing either unapodi zed
or apodi zed spectra.

The results are two FITS files containing the final spectra with
ext ended- source and point-source flux calibration, respectively.

Usage: The user needs to specify the options in the sinple user input
section at the beginning of the script.

#
#
#
#
#
#
#
#
#
Updated: 29/07/2010

#

HHHHH AR HHHHH A AR R AR R AR R H AR AR H AR R

B]
>>>>>>> User _sel ect abl e_opti ons:

#

(A) Specific OBSID and the nanme of the data storage in your Local Pool:
myQbsl D = [obsi d]

nmyDat aPool = [pool nane]

#

(B) Only processing the center detector if processOnlyCenterDetectors = 1,
or all detector channels otherw se:

processOnl yCenterDetectors = 1

#

(C Provide the file nane for the dark sky reference interferogram
nyReflnter = -"[Enter path here + filenane]"

#

(D) The final spectrumw |l be unapodized (if apodize = 0) or apodi zed (if
apodi ze = 1):

apodi ze = 0

#

(E) Specify the output directory for witing the resulting spectruminto a
FITS file:

outDir = -"[Enter path here]™

#

>>>>>>> End_of _user _choi ces

HUHHHHBHHBHH B R R R R R R R R R R R R R R R R R

Define sone Jython -"nethods" (to nerge building bl ocks together):
def mer geNnkt (nhkts):
for i in range(l, |len(nhkts)):
nhkts[0] [' signal'].addRowsByl ndex(nhkts[i]['signal'])
nhkts[O] [' mask'] . addRowsByl ndex(nhkts[i]["' mask'])
nhkts[O0] . meta[' endDate'].value = nhkts[-1].neta[' endDate']. val ue
return nhkts[0]

def mergeSdi s(sdis):
bi gSdi = SpectroneterDetectorlnterferogranm)
bi gSdi . mreta = Met aDat a(sdi s[0] . net a)
scanNunbers = []
for sdi in sdis:
scanNunber s. append(sdi . get NunScans())
if len(sdis) ==
return sdis[0]
i =0
for sdi in sdis:
t oAdd = SUM scanNunbers[i +1: 1 en(scanNunbers)])
for scanNunber in sdi.getScanNunbers():
thi sScan = sdi.renpoveScan(scanNunber)
t hi sScan. set ScanNunber (t hi sScan. get ScanNunber () +t 0Add)
bi gSdi . set Scan(t hi sScan)
i=i+1
return bi gSdi
B B R e e b eSS e b G e b ebiebidebadetedidedisedisdisdisdisdid

Define the central detectors and thermistors and dark pixels:

det sToKeep = ["SLWC3", -"SSW4"]
therns = ["SLWI1", -"SLWr2", -"SSWri1", -"Sswr2", \
-"SSWDP1", -"SSWDP2", -"SLWDP1", -"SLWDP2"]

firstCut = therns
firstCut.extend(det sToKeep)

105

Reprocessing your data

st or age Pr oduct St or age(nyDat aPool)
obs st or age. sel ect (Met aQuer y(Qoser vati onCont ext , \
-"p","p.neta[' obsid'].value == % L"%yQosI D))[0]. product

Load in an observation context into H PE

get the latest calibration tree relevant to HCSS v4 fromthe HSA
cal = spireCal (cal Tree="spire_cal _4_0")

attatch it to observation context

obs. cal i bration. updat e(cal)

Start to process the observation fromLevel 0.5
Process each SMEC scan buil di ng bl ock (0xal06) individually, append to a list,
and then nerge.

sdis =[]

nhkts = []

for bbid in obs.level 0_5. get Bbi ds(0xal06) :
sdt = obs. | evel 0_5. get (nyQosl| D, bbid). sdt
nhkt = obs.|evel 0_5. get (nyQobsl D, bbi d). nhkt
smect = obs. | evel 0_5. get (myCbsl D, bbid). snect

renmove all detectors except the center ones, term stors and dark channels:
if (processOnlyCenterDetectors):
for chan in sdt.channel Nanes:
if chan not in firstCut:
sdt . renoveCol unm(chan)

Do the 1st |evel deglitching:

sdt = wavel et Degl i tcher (sdt, reconstructi onPoi nt sAfter=3, \
reconstructi onPoi nt sBef ore=2, \
correctd itches=Bool ean. TRUE, \
scal eM n=1, scal eMax=8, scal el nterval =5,\
hol der M n=-1. 4, hol der Max=-0. 6, \
correl ati onThreshol d=0. 85, \
opti onReconstructi on="pol ynom al Fitting",\
degr eePol y=6, fitPoints=8)

Run the Non-linearity and Tenp Drift correction steps
sdt = specNonLi nearityCorrection(sdt, \
nonLi nCorr =obs. cal i brati on. spec. nonLi nCorr)
sdt = tenperatureDriftCorrection(sdt, \
tenmpDri ft Corr=obs. cal i bration. spec.tenpDriftCorr)

Now al so renpve thermi stors and dark pixels if the user wants process
the central detectors only:
if (processOnlyCenterDetectors):
for chan in sdt.channel Nanes:
if chan not in detsToKeep:
sdt . renoveCol unm(chan)

Do clipping repair if needed:
sdt = clippingCorrection (sdt)

Time domai n phase correction:
sdt = ti neDomai nPhaseCorrection(sdt,\
| pf Par =obs. cal i brati on. spec. | pf Par, \
chanTi meConst =obs. cal i brati on. spec. chanTi neConst)

Add pointing info:
bat = cal cBsmAngl es(nhkt, bsnmPos=obs. calibration. spec. bsnPos)

spp = createSpirePointing(hpp=obs. auxiliary. pointing, siamrobs.auxiliary.siam \

det AngOxf f =obs. cal i brati on. spec. det AngOi f, bat =bat)

Create interferogram

sdi = createl fgn(sdt=sdt, snect=snmect, nhkt=nhkt, spp=spp, \
smecZpd=obs. cal i brati on. spec. smecZpd, \
chanTi meOFf f =obs. cal i brati on. spec. chanTi neOf f , \
smecSt epFact or =obs. cal i brati on. spec. smecSt epFactor, \
i nterpol Type= -"spline")

Append this building block to the list:
sdi s. append(sdi)
nhkt s. append(nhkt)

106

Reprocessing your data

Merge all the building blocks into one:
sdi = mergeSdi s(sdis)
nhkt mer geNhkt (nhkt s)

Baseline correction and 2nd-|evel deglitching:
sdi = baselineCorrection(sdi, type="fourier", threshol d=4)
sdi = deglitchlfgn(sdi, deglitchType="MAD', threshol dFactor=4)

Subtract a background in the interferogram donain:
interRef = fitsReader(nyReflnter)
sdi = tel escopeScal Subtraction(sdi, interRef=interRef, nhkt=nhkt)

Phase correction:
presdi = apodi zel fgn(sdi, apodType="prePhaseCorr", apodNane="aNB 20")
dsds = fourierTransforn(sdi =presdi, ftType="prePhaseCorr", zeroPad="None")
sdi = phaseCorrection(sdi, sds=dsds, \
pol yDegree=2, pcfSize=127, \
nl p=obs. cal i brati on. spec.nlp, \
phaseCorr Li mrobs. cal i brati on. spec. phaseCorrLim

Creat the apodi zed interferogram
i f apodi ze:
sdi = apodi zel fgn(sdi, apodType="post PhaseCorr", apodNane="aNB 15")

Fourier transformto the spectral domain:
ssds = fourierTransforn(sdi, ftType="postPhaseCorr", zeroPad="standard")

Get the flux conversion calibration products:

i f apodi ze:
fluxConv = obs. calibration. spec. fl uxConv
beanPar am = obs. cal i brati on. spec. beanPar anLi st. get Product (1, -"nom nal", \
obs. start Dat e)
el se:
fluxConv = obs.calibration. spec. fluxConvLi st.get Product ("HR', -"unapod", \
-"nom nal ", obs.startDate)
beanPar am = obs. cal i brati on. spec. beanPar anLi st. get Product (0, -"nom nal", \

obs. start Dat e)

Average scans together and apply flux conversion:
ssds = averageSpectra(ssds, separateScanDirections=0, \

| NCLUDE_OOB=0, bandEdge=obs. cal i brati on. spec. bandEdge)
ssds = specFl uxConversi on(ssds, fl uxConv=fl uxConv)

keep a copy of the level-1 spectra (extended source calibration):
ext ended = ssds. copy()

Al so apply point-source flux calibration:
poi nt Sour ceSds = specFl uxConver si on(sds=ssds, fl uxConv=fluxConv, \
beanPar amrbeanPar am APPLY_PO NT_SOURCE=1)

Save the final spectra to FITS (both extended and poi nt source calibrated):
i f apodi ze:
sinpl eFi tsWiter(extended, -"%% _final Spectrum extended_apodi zed. fits"\
% outDir, myQbsl D))
si npl eFi t sWiter(pointSourceSds, -"%% _final Spectrum poi nt_apodi zed. fits"\
% outDir, myQbsl D))
el se:
sinpl eFi tsWiter(extended, -"%% _final Spectrum extended.fits"\
% outDir, myQbsl D))
sinpl eFi t sWiter(poi ntSourceSds, -"%% _final Spectrum point.fits"\
% outDir, myQbsl D))

End of the script

107

	SPIRE Data Users Manual
	Table of Contents
	Preface
	1. Versioning
	1.1. Changelog

	Chapter 1. Introduction
	1.1. Scope of this Data User's Manual
	1.2. SPIRE observing Modes
	1.3. Structure of this document

	Chapter 2. Looking at your data
	2.1. SPIRE Observation Context Data Structure
	2.1.1. Anatomy of a SPIRE Observation: Products, Pools, Storage, and Building Blocks
	2.1.2. Linking it altogether: Introducing the Context
	2.1.3. Looking at your Observation Context in HIPE

	2.2. SPIRE Large Map and Parallel Mode Data Structure
	2.2.1. A first look at your image maps (The Level 2 Data Product)
	2.2.2. Saving a map as a FITS file and reading it in again
	2.2.3. Looking at the Level 1 Timeline Data
	2.2.4. Looking at the Level 0.5 Timeline Data
	2.2.5. Looking at the Raw Level 0 Data

	2.3. SPIRE Small Map Mode Data Structure
	2.3.1. A first look at your image maps (The Level 2 Data Product)
	2.3.2. Saving a map as a FITS file and reading it in again
	2.3.3. Looking at the Level 1 Timeline Data
	2.3.4. Looking at the Level 0.5 Timeline Data
	2.3.5. Looking at the Raw Level 0 Data

	2.4. SPIRE Point Source Mode Data Structure
	2.4.1. The Point Source Observation Mode
	2.4.2. Reading the JPP into memory and saving it as a FITS file and reading it in again
	2.4.3. Looking at the Level 1 Data for Point Source Observations
	2.4.4. Looking at the Level 0.5 Timeline Data for Point Source Observations
	2.4.5. Looking at the Raw Level 0 Data

	2.5. SPIRE Spectroscopy Data Structure
	2.5.1. SPIRE spectrometer introduction
	2.5.2. The Spectrometer Observation Context
	2.5.2.1. Load an observation context into HIPE
	2.5.2.2. Inspect an observation context in HIPE

	2.5.3. The Spectrometer Level 1 Data Products
	2.5.3.1. Extract the Level 1 data products
	2.5.3.2. Inspect the Level 1 data products
	2.5.3.3. Extract and plot Level 1 data

	2.5.4. Using SpecExplorer
	2.5.4.1. Starting SpecExplorer
	2.5.4.2. SpecExplorer Layout
	Bolometer Detector Arrays Display
	Control Panel
	Scan Selection
	Thumbnails
	Colour Scheme Range

	Preferences Panel

	2.5.4.3. Example 1: Plotting and Overplotting
	2.5.4.4. Example 2: Making a Thumbnail Image

	2.5.5. The Spectrometer Level 0.5 Data Products
	2.5.6. Looking at the Raw Level 0 Data

	Chapter 3. SPIRE Calibration Data
	3.1. SPIRE Calibration Explained
	3.1.1. The SPIRE Calibration Context
	3.1.2. The SPIRE Calibration Tree
	3.1.3. SPIRE Calibration Product Editions
	3.1.4. Updating a Calibration Tree
	3.1.5. Updating Individual Calibration Products
	3.1.6. Removing Calibration Products from the Tree
	3.1.7. Further Information

	Chapter 4. Reprocessing your data
	4.1. Introduction
	4.2. Reprocessing SPIRE Large Map and Parallel Mode Data
	4.2.1. Prerequites
	4.2.2. Level 0 to Level 0.5 Processing (Optional)
	4.2.3. Level 0.5 to Level 1 Processing
	4.2.4. Level 1 to Level 2 Processing

	4.3. Reprocessing SPIRE Small Map Data
	4.3.1. Prerequites
	4.3.2. Level 0 to Level 0.5 Processing (Optional)
	4.3.3. Level 0.5 to Level 1 Processing
	4.3.4. Level 1 to Level 2 Processing

	4.4. Reprocessing SPIRE Point Source Mode Data
	4.4.1. Prerequisites
	4.4.2. Level 0 to Level 0.5 Processing (Optional)
	4.4.3. Level 0.5 to Level 1 Processing
	4.4.4. Level 1 to Level 2 Processing

	4.5. SPIRE Spectroscopy Data Processing
	4.5.1. Reprocessing SPIRE spectrometer data
	4.5.2. Options available to the user
	4.5.3. Detailed description of the processing script
	4.5.3.1. Define some Jython "Methods"
	4.5.3.2. Define the central detectors and thermistors and dark pixels
	4.5.3.3. Load an observation context into HIPE
	4.5.3.4. Attach the latest calibration tree to the observation
	4.5.3.5. Start processing from the Level 0.5 products
	4.5.3.6. Extracting the Spectrometer Detector Timeline
	4.5.3.7. Nominal House Keeping Timeline
	4.5.3.8. Spectrometer MEChanism Timeline
	4.5.3.9. Removing unnecessary channels
	4.5.3.10. Apply first level deglitching
	4.5.3.11. Apply the Non-linearity and Temperature Drift Corrections
	4.5.3.12. Remove the thermistor channels
	4.5.3.13. Correct the detector signals for clipping
	4.5.3.14. Correct the detector signals for time shifts
	4.5.3.15. Create a Spire Pointing product
	4.5.3.16. Interpolate SDT and SMECT to create Interferograms
	4.5.3.17. Subtract the interferogram baseline and apply second level deglitching
	4.5.3.18. Subtract the reference interferogram from the source interferograms
	4.5.3.19. Apply Interferogram Phase correction
	4.5.3.20. Transform the Phase-corrected interferograms
	4.5.3.21. Read in the appropriate flux conversion calibration products
	4.5.3.22. Average the spectra and remove out-of-band data
	4.5.3.23. Flux conversion
	4.5.3.24. Save the resulting spectra

	4.5.4. The processing script

