The PACS Advanced User Manual

Herschel Data Processing

Issue 3.0

The PACS Advanced User Manual: Herschel Data Processing

Table of Contents

IO | oo [0 (o o I ORI 1
2. PACS spectroscopy standard data ProCeSSINGcvvvuevernieeeieeiieeieeeaiiereieeeeeesinseeaneeanaens 2
P20 O [oo [0 (o o PSPPSRI 2
2.2. QUICK NOLES/TO COMIB .. eviiitiit ettt ettt et e e e e e e e et et e e eeans 2
2.3. Summary of the PIPEIINE ... cooeie e 2
2.4. The dliced-products PIPEIINEiiiiie e e 4
2.5, Processing [EVEIScouuiii e 6
TV - = 2 PSPPSRI 7
2.7. Accessing data as an Observation CONtEXLceeeveieiiiieiiii e e e eeen 9
2.7.1. Populating the pool fromtm fileS........cccciiiiii i 10
2.7.2. GEtNG the dalalcevveiiii e e 11
2.7.3. Raw telemetry t0 Level Ocoevniiiiiiiic e 12
274, Level 0o Level 0.5 .o 14
275, Level 0510 LEVE L .o 23
276, 1eVel LHOIEVE 2 ..o 31
2.7.7. SPG Pipeline Chartcc.uoiiiiii e 33
2.7.8. Appendix: Spectrometer Flux Calibration Conceptccoevvvvveiiierinnennnnn. 42
3. PACS Photometry standard data proCeSSINGvvuueernerriiereiieeeieeeieeeiieeaineeaineeesnaeeanaeees 44
130 I [o o (0o 1o o T PPPPTPPPIN 44
3.2. DEfINITION OF TEIMIS ..uuiiiii e 14
3.3. Summary of the Photometry proCessing StEPScvvuvvreeeeireeeiieeeiieeeieeeaieeeaneeaens 44
3.4, Processing [EVEIScouuiii e 45
G 1 T 1 00100 £ 46
R U L= o 1Y = S 2 PR 46
BT7.Level D10 LeVEl 0.5 .ouniiiiiiiii e 47
3.7.1. Getting started: how to retrieve datain the Observation Context 47
3.7.2. The second step, understanding what there isin the observation: findBlocks
(jython prototype available)coceuiiiiiiii 48
3.7.3. Pre-processing of the calibration blocksccoooeiiiiiiii e, 52
3.7.4. PhotFlagBadPiXElS ... cove i 55
3.7.5. PhOtFlagSatUrationuiiieieiii e e e e e e 55
3.7.6. photCoNVDIGIt2V OISceii e 56
3.7.7. PhOtCrOSSCOIMTECHION . .evuieiiieeiieee e e e e e e e e e e e e e e e e anas 56
3.7.8. photMMTDeglitching and photWTMMLDeglitchingccoovvvviveiinnennnnn. 58
B.7.9. 80AUTC ..o 72
3.7.10. convChopper2Angle (jython prototype available)ccccoeveiiiiiviinnnnnn.n. 72
3.7.11. convXY Stage2Pointing (avallable)ccoiviiiiiiiii e, 73
3.7.12. photAddINStantPOINtINGueveeiieiieie e e 74
3.7.13. cleanPlateau (java prototype available)c.coeveviiiiiiiii e, 75
3.8. The AOT dependent PIPEIINESueiiiieii e e 76
3.9. POINE SOUICE AORR ...ttt ettt e et e e et e e e e et e e e eebe e eeeee 76
391 Level 0510 LEVE L .o 76
392, Level 11O LEVE 2 .oouniiiiiiiiiie e 85
3.10. SMaEll SOUICE AOR ...oeiiiiiii et 89
3.10.1. Level 0510 LEVE 1 .oooveeiiiiiieee e 89
3.10.2. Level LtOLEVE 2 ..ouniiiiiiieii e 89
3.11. Chopped REStEr AORcvuiiiiiiei e e 95
3111 Level 0510 LEVE 1 .o 95
3112 Level 1O LEVE 2 .oouiiiiiiiieeei e 95
312, SCAN MAP AODR oo 96
3121 Level 0510 LEVE 1 .oooueniiiiiieee e 96
3122 Level L0 LEVE 2 .oouniiiiiiiecei e 96
3.13. Trend Analysis Product gENErationcoceuueeeinieiiiieeiieeeine e e e e e e e eaenas 99
G300 T R o] o i =10 [99
3.14. Raw Telemetry tO LeVE Oiiveniiicc e e 101

The PACS Advanced User Manua

3141, AVEIBgEFTAIMESttt 101
3.14.2. readTm - reading Raw Telemetrycoovviiiiiiiiiiiei e 101
3.14.3. extractDataframes - decompress the science tm packetsccooeeevevennee. 101
3.14.4. decomposeDataframes - organize the raw decompressed datain Fr anes
and Phot Raw data StrUCLUIEScovnieiiieii e 102
3.14.5. readAttItUdEHISIONY ..oovven e 103
3.14.6. readTimeCorellationccouuiiiuieii e 103
3.15. SPG PIpeline Chartoeiiiiie e 104
3.16. ProdUCE SUMMIAIYcceetieeeeii ettt ettt e et e e et e e e e 110
L7, APPENTIX ettt 110
3.17.1. How to remove sky background and telescope emissioncocceuneeee.. 110

Chapter 1. Introduction

This PACS Advanced User Manual is the original PACS pipeline document. It has been written by
and for internal users, and hence the version on the 3.0 release of HIPE will be, in places, difficult for
genera astronomy usersto understand. There are sections of both chaptersthat include tasksthat were
used only for data collected before Herschel was launched, and sections that discuss pipeline tasks
that are still not ready for general usersto use. The photometry section isalso alittle out of date.

However, the detailed pipeline descriptions—the task parameters and the algorithms—are explained
here and these will be useful for general astronomy users to read, and they are for the most part well
explained. Consider thisto be areference document, where you look up the details for a pipeline task
you want to know more about. If you are starting to work on your PACS datafor thefirst time and want
to learn how to run the pipeline, what order to run the tasksin, and how to check on the intermediate
products, it is the PACS Data Reduction Guide that you should be reading.

By the 4.0 release the PAUM will be up-to-date and easier for all to understand.

Chapter 2. PACS spectroscopy
standard data processing

2.1. Introduction

This chapter describes the standard processing steps (current and some old) for the various spec-
troscopy observation modes of the PACS instrument. Details about how the procedures work, why
they are necessary, and the calibration tables used are given. This chapter is intended for advanced
(or at least intermediate) users of HIPE and those used to working with PACS spectroscopic data. A
first-time user should rather be reading the PACS Data Reduction Guide (the location of which in
the HIPE help is still TBD). Some of the processes described here will only be used by the PACS
calibration team, not the astronomy end-users, and the level of expertise assumed of the reader is
fairly advanced. However, as the descriptions of the tasks are more complete here than provided in
the basic data reduction guide, this chapter (indeed, this complete guide) could still be useful to the
beginning user. Additional information can be found in the URM (User's Reference Manual) and the
DRM (Developers Reference Manual, aka API), both accessible from the HIPE help page; these are,
please note, advanced-level documents.

We recommend you begin from Level O data extracted from the Observation Context, rather than
directly from telemetry (tm) files, although we do include here some processing steps for tm files,
which aremostly prior to the Level 0 stage. Working with tm files—extracting them out, investigating
them, etc.—was explained in previous chapters of this User Manual (Houskeeping; Summarising TM
files).

2.2. Quick notes/to come

Still to be covered: AOT s other than chop—nod; slicing; noise cal culation and propagation; new spatial
calibration concept; flux calibration including flatfielding and drift correction; toolsfor inspecting and
"editing" individual spectral time-lines before converting to a rebinned cube.

Some brief notes on some of these items (pipeline workshop 19-21 Oct 2009):

 Spatial Calibration: there will be acompletely new jython script that will attach the correct RA and
Dec to the central pixel and then the other pixels. Currently the positions coming out of the pipeline
are wrong. So at present (Nov 10 2009) the spatial calibration in the cubes should be considered
"browse" quality, rather than quantitative science quality. In addition, it isrealised that for al| (except
the central ?) spaxels the nod A and nod B may never be 100% aligned, this having consequences
for specAddNod and the subsequent pipeline processing.

» Noise: Noiseis calculated and propagated through the pipeline, however there are still issues over
the details of the calculation of errors, and in particular that from first source of noise (from Level
0/0.5 product). Currently the dominant noise is from the responset+dark. There is a script called
specEstimateNoise in CVS that you could look at if you like; one could a so inspect the workshop
presentations on the twiki.

2.3. Summary of the pipeline

Here we give an itemised overview of the pipeline data processing steps. The Level 0 data to work
on will usually be averaged ramps (Ramps class) or on-board fitted ramps (Frames class). Raw ramps
are unlikely to be downlinked from the spacecraft (S/C) during routine operations, but will sometimes
be downlinked during CoP and PV, and of course may be worked on from flight spare tests.

Level 0to 0.5 processing is the same for all AOTs (points 1 to 8) and many of the subsequent tasks
are also performed for most AOTSs. (An explanation of the terminology is provided later.)

PACS spectroscopy standard data processing

1. If working on Ramps data, flag for saturation. Then fit the slopes and convert the data to a Frames
product

2. Signal is converted from digits/sto Volts/s
3. Status entry for calibration blocks is added to
4. S/ICtimeisconverted to UTC

5. S/IC pointing is added to the Status table for the central pixel of the detector and chopper units are
converted to sky angle

6. Wavelengths for each pixel are calculated; Herschel's velocity is corrected for
7. Data"blocks" are recognised and the information organised in atable; Status table is updated.

8. Masking. Bad pixels will have already been masked. Masking for readouts taken during grating
and chopper movements is performed, and for saturation if the data reduction began on a Frames
product

9. Masking for glitchesis performed
10.Signal non-linearities are corrected for
11.Signal is converted to alevel that would be the minimum capacitance setting

12.The dark current and pixel response levels (their individual sensitivities) are calculated using dif-
ferential (internal) calibration source measurements to popul ate the absolute response arrays [(V/
9)]; A response drift is then calcul ated

13.Chop#nod AOT: the up- and down-chops are combined (i.e. a background+dark subtraction); the
signal isdivided by the relative spectral response function and then pixel responses (and their drift)
are corrected for; the nods are averaged, such that each nod-cycle (not each nod) becomes one.

14 Wavelength-switching AOT: TBD

15.0ff-map AOT: TBD

16.Calibrated 5x5xlambda data cubes are generated
17.The wavelength grid is created

18.0utliers are flagged (another glitch detection)
19.The data cube is spectrally resampled

20.The data cube is spatially rebinned, different pointings combined and (mosaicked), or 3D drizzled
(the 3d Drizzle task is not yet ready)

The steps described here follow those in the "ipipe" pipeline scripts (in the directory with the HIPE
software, these are located in /scripts/pacs/tool boxes/spg/ipipe [pipeline scripts including slicing are
in scripts/pacs/spg/pipeline/phot|spec/ipipe, but the slicing concept is still under construction]). In
addition, if you downloaded the complete HIPE software (asked for the upack=yes option when in-
stalling), you could also consult the HSC pipeline scripts (/src/herschel/pacs/tool boxes/spg/pacsspec-
tro), although these are not intended to beinteractive and should not be your first source of information
about the pipeline.

For large datasets the datawill probably have been sliced, that isorganised in distinct and separate, but
linked parts using an "astronomical" logic (e.g. separate the different rasters of a single observation;
keep together all data of the same spectral line). Once thislogic has been worked out and incorporated
in the pipeline scripts, that information will be included here.

PACS spectroscopy standard data processing

2.4. The sliced-products pipeline

The dliced pipeline, that iswhere theinput data are sliced according to line and raster in order to reduct
the memory load when running the pipeline, is more or less the same as the standard pipeline except
that the tasks have a "diced" in front of them and you need to add in a few extra commands near
the beginning of each level's reductions. If you want to see the scripts then go to the ipipe directory
of your HIPE installation: /scripts/pacs/spg/pipeline/spec|phot; we will not list the contents of these
scripts here, because the tasks being used are exactly the same as already here-described.

Note that the slicing concept and implimentation are in a beta stage.

These "dliced" tasks are ssimply a wrapper that loops the tasks over the individual slices in the input
product, which rather than being a Frames or Ramps or cube, are a SicedFrames, or a ListContext of
Ramps or cubes (we do not yet have a SicedRamps or SicedPacsCube).

The ipipe scripts FramesL05.py or RampsO5.py are first, then chopNodStarL1l.py and
chopNodStarL 2.py (and similarly for the other AOTS). The following is a description of the chop—
nod scripts: it isintended that you read these scripts as you go through this description.

» FramesL05.py: first you get out from the ObservationContext your data as a PacsContext
(levelO=PacsContext(obs.level0)), where a PacsContext is a class that is a wrapper for PACS
products. Extract out the various calibration information the pipeline needs (pointing prod-
uct etc.) and get a calibration tree. Then extract out from the PacsContext the Level O prod-
ucts (dlicedFrames=SlicedFrames(level O.fitted.getCamera(red).product)) and put them in a Siced-
Frames. Then you run the Level 0 to 0.5 pipeline tasks, but using the syntax

slicedFranmes = slicedWaveCal c(slicedFranes, cal Tree=cal Tree)

instead of

Frames = waveCal c(slicedFranmes, cal Tree=cal Tr ee)

Looking at the ipipe script you will notice that after the task slicedSpecFlagBadPixelsFrames the
slicedFrames product is then Level0.5-sliced, this being done according to a hard-wired logic

sl i cedFranes = pacsSliceContext(slicedFranes,|evel="0.5")
sl i cedDnmcHead = pacsSl i ceCont ext ByRef er ence(sl i cedDntHead, sl i cedFr anes)

Thelogic at Level 0.5 is currently that the slicing is done by raster, i.e. each new raster pointing is
anew dlice. If there was only one raster position in the observation, there will only be one slicein
the slicedFrames. The first command above does this, the second then dlices the DecMec header
according to the logic of the slicedFrames. In pacsSliceContextByReference, the first parameter
can be, in principle, any ListContext but it makes most sense if it is the DecMec header, and the
second must be aslicedFrames product. Thisis necessary because you will used thissliced DecMec
header in subsequent pipeline tasks and they must be sliced as your sicedFramesis.

Near the end the pipeline script showsyou how to save the slicedFrames back to pool asan Observa-
tionContext. Y ou do not need to do this step if you do not want to, you could continue straight on to
the next ipipe script. At thevery end of the script are two tasks that add information to the meta data
to explain what dlicing has been done. These are pacsPropagateM etaK eywords and addSliceM eta-
Data. Thefirst adds the meta data of the orginal ObservationContext to the new one (the sliced one)
and the second adds meta keywords to the meta header of the slices, such as aotM ode, lineDescrip-
tion, and rasterld. Very useful for you to later know what the slices are made of. These tasks work
on any List/MapContext.

RampL 05.py is so similar to FramesL 05.py that it is not separately explained here.

» chopNodStarL 1.py: the script begins by extracting from the ObservationContext that you saved at
the end of FramesL05.py the level0_5 product and then putting it in a slicedFrames. Y ou then are

PACS spectroscopy standard data processing

asked to dlice the data according to the hard-wired logic at Level 1, where now the dlicing is done
on the on raster and (spectral) line. Then the pipeline tasks are run through, and the slicedFrame
and/or slicedCube is saved to an ObservationContext. At the very end of the script are two tasks
that add information to the meta data to explain what dlicing has been done. These are pacsProp-
agateM etaK eywords and addSliceMetaData. The first adds the meta data of the orginal Observa-
tionContext to the new one (the sliced one) and the second adds meta keywords to the meta header
of the slices, such as aotMode, lineDescription, and rasterld. Very useful for you to later know what
the dlices are made of. These tasks work on any List/MapContext.

» chopNodStarL 2.py begins by grabbing from the ObservationContext the slicedCubes and dliced-
Frames. Soon therewill be alooping over linelD, so these IDs are extracted from the MasterBl ock-
Table (this being unique to a dicedFrames). Y ou then loop over these lines, taking them out of the
slicedCubes and running the Level 1 to 2 pipeline tasks on them. This is done because we do not
want to combine lines in the rebinned cube, so we make a cube per line and per raster. But we do
want to combine the raster positions in the final, projected cube, which is then made one per line.
Finally the products are again saved to an ObservationContext.

Note

@ The calibration tree that the ipipe script grabs is that from the data (the commands: cal-
Tree= obs.calibration and GetPacsCal DataT ask.setDefaultCal Tree(cal Tree)). Thisisnec-
essary in this script so that it can be run as awhole. Of course, if running manually you

can grab whichever calibration tree you want

The MasterBlockTable is a combination of the individual BlockTables of the Frames in the sliced-
Frames. It can be inspected with e.g.

nbt =sl i cedFr anes. mast er Bl ockTabl e

In the MasterBlockTable, be aware that, per block, the Startldx and Endldx entries are relative to the
dice that isthat block. The FramesNo entry contains the slice numbers relative to the whole Frames
product.

To extract a single Frames from a slicedFrames you use the syntax of a ListContext

frame=sli cedFranes. refs[0].product

But there is amethod that also doesthis.

For slicedFrames the following methods will work

» get(i), to get thei-th Frames product; getScience(i) to get thei-th Science Frames product; getCal (i)
to get the i-th calibration Frames product; getNumberOfFrame(), getNumberOf ScienceFrames(),
getNumberOf Cal Frames() to find out the number of Frames of the specified type. e.g.:

sl i cesFranes. get (0)

For the slicedTasks that slice data one can specify the following parameters

o scical="cal" to only use calibration dlices, scical="sci" to only use science dices, and
sliceSel ection=[python list] to select particular dlices,

slicedFranes = slicedWaveCal c(slicedFranmes, cal Tree=cal Tree, scical ="cal")
OR -- do not use these two paraneters together

sl i cedFranes = slicedWaveCal c(slicedFranes, cal Tree=cal Tree,

sliceSel ection=[0,1,2,3,6])

We now can store dlices automatically in a temporary pool. This can be turned on by setting the
following properties:

hcss. pacs. spg. usesi nk = true

PACS spectroscopy standard data processing

hcss.ia.pal.store.tenpstore = { tenppool -}
hcss.ia.pg.tnpstore = tenpstore

Without setting these the slices will still stay in memory. The user will be informed about this with
a one-time pop-up when they start to use slicing. Note that the user has to delete the temppool from
timeto time. It can grow quite fast and it will be not be deleted by the system.

To get the data from the ObservationContext use the following:

sl i cedFranmes=Sli cedFranes(| evel 0.fitted. get Canera('red'). product
or, shorter
slicedFrames = SlicedFranes(level 0.fitted. red. product)

Note

@ Thereisimplemented an iterator in SlicedFrames, but that one does not work properly in
Jython. Therefore, you have to loop over the frames as follows:

or i in range(0,slicedFrames. nunber O Franes) :
print slicedFranes. get(i).msk.activeMaskTypes

As soon asthe iterator works properly this should also work:

for franes in slicedFrames: print frames.nmask. acti veMaskTypes

2.5. Processing levels

There is a Herschel-wide convention on the processing levels of itsinstruments.
* Raw Telemetry:

Telemetry packets produced (and relayed to us) by the instrument in the course of the observation.
In PACS we work with thislevel as a class PacketSequence.

» Decompressed Science data:

Thisis an artificial level. The data are not stored and not visible to general user but are held in a
format that can be analysed for debugging purposes.

Telemetry dataas measured by theinstrument are minimally manipul ated and stored as DataFrames
interface. For PACS spectroscopy this level is stored/manipulated as class DataFrameSequence:
a sequence of PACS DataFrames, which are decompressed SPU (Signal Processing Unit) buffers.
What is contained in every decompressed SPU buffer depends on the SPU reduction mode. Typi-
cally thereare several reduced readoutsfor every active detector (pixel), i.e. averaged ramp readouts
and/or fitted slopesplusfull ("raw") 256Hz readouts for afew selected pixels and mechani sm/status
information sampled at 256Hz by the DecMec (detector and mechanism controller), the so-called
DMC Header. Raw readouts for every pixel will probably only be available for flight spare data
or specia flight model tests.

* Level O data:

Level Odataisacomplete set of minimally processed data, and includesthat held within Observation
Contexts. After Level 0 data generation there is no connection to the database from which the raw
datawas extracted (that is the database from where the tm files come; this database is unstructured,
being a series of packets with timestamps). Therefore the Level 0 data contain all the information
required.

* Science Data

Science data are organised in user-friendly classes. The Ramps class contain (i) raw channel data
(but usually only for a certain number of detector pixels, as these data are huge) (ii) averaged

PACS spectroscopy standard data processing

channel data, for all pixels, and the Frames class, for which on-board fitting of the slopes of the
raw ramps has already been done.

e Auxillary data

Auxiliary data for the time-span covered by the Level 0 data, such as the spacecraft pointing
(attitude history), the time correlation, selected spacecraft housekeeping, etc. The information
are partly held as status entries attached to the basic science classes (Ramp and Frame) and the
rest are available as separate products (e.g. the "pointing product") which you can access. It is
possiblethat the auxiliary pool will be held in adifferent store to where the Observation Contexts
can be found.

¢ Decoded HK Data

HK (housekeeping) datatables with raw and converted HK values (converted from raw to phys-
ical engineering values).

« Level 0dataof associated observations, e.g. flatfields or photometric checks or other Trend Anal-
ysis products taken through the operational day or before. Provision of thisis still under discus-
sion.

» Level 0.5 data:

Processing until Level 0.5is AOT independent. These data are also saved in the product pool that
you get e.g. from the HSA. At thislevel additional information has been added to the class (masks
for saturation and bad pixels, RA and Dec, the BlockTable,...) and basic unit conversions have been
applied (digital valuesto volts, chopper position to sky angle). We recommend that astronomy users
who wanted to reduce their data themselves begin from thislevel.

* Level 1 data:

Level 1datagenerationisAQOT dependent (although therewill be much overlap betweenthe AOTS).
Level 1 data are also saved in the product pool to be extracted if you so wish. Data processing at
thislevel isconcerned with cleaning and calibrating, and asthe end the data are converted to abasic
cube, of PacsCube class (the 16x25 useful pixels have been converted to 5x5 spaxels, each holding
16 individual spectra).

* Level 2 data:

Going from Level 1 to Level 2 the cube is spectrally and spatially rebinned and the cube is now of
class PacsRebinnedCube. At thislevel scientific analysis can be performed. Level 2 work ishighly
AQT dependent.

* Level 3 data:

Thisis simply alevel where the scientific analysis has been done by the data users (e.g. spectra
cubes converted to velocity maps, source catalogues), and it is hoped that users will import these
products back into the HSA.

2.6. Masks

Masks are created by various tasks to flag individual data-points that are or may be bad. Subsequent
tasks may use these masks. The masks that we currently have are:

» BLINDPIXELS: pixel masked out by the DetectorSelectionTable (applied already at Level 0)
» BADPIXELS: bad pixel masked during pipeline processing
» SATURATION: entire saturated pixels or individual saturated readouts

» GLITCH: readouts/signals affected by glitches (e.g. cosmic rays)

PACS spectroscopy standard data processing

» UNCLEANCHORP: masking of unreliable readouts/signal's taken during chopper transitions

e DEVIATINGOPENDUMMY : masking of an entire pixel column if the dummy or open channel of
that column shows deviating ramps or “weird' signals

* OBSWERR: masking if randomly checked deviations of onboard to onground reductions larger
than the expected noise occur

» BADFITPIX: masking of resets where the signal determination failed during fitting of the ramps
* GRATMOVE: masking of readouts/signals taken during grating movements
e OUTLIERS: masking of outliers for each wavelength bin in a PacsCube

* NOISYPIXELS: noisy pixelsmask isto be added: by thetask specFlagBadPixelsFrames, awarning
mask based on GeGa analysis

We recommend that all masking be done on the Frames product, except if you begin with a Ramps
product, in which case the saturation mask can be applied before fitRamps.

Oct 2009, the new masking concept: It is necessary to activate masks for them be used in any pipeline
task that uses masks. A task may still only use certain masks (i.e. those that make sense for the task's
job), but any inactive masks will certainly not be used. Once a mask has been created (by a mask-
creating task) it is automatically activated, so if you do not want to use it in a subsequent mask-using
task, you need to deactivate it.

To check if amask is active:

print franmes. mask. acti veMaskTypes
response will be sonething like
[" BLI NDPI XELS", " BADPI XELS", " UNCLEANCHOP" , " GRATMOVE"]

It is probably safest to simply always activate all the masks you positively do want a task to use,
and deactivate all others at the same time, before running each pipeline task that uses masks. In the
pipeline description that follows we will include the recommended activateMasks in each pipeline
task description where masks are used. If you stick to what we write here then you will be O.K (or for
amore rapidly updated pipeline description, see the i pipe scripts with your HIPE installation).

Activating and deactivate are done with the same task, in the following way:

for a ranp, deactivate all masks (by activating none)

ranp = activateMasks(ranp, Stringld([" -"]), exclusive = True)

for a frame, activate the masks listed in the Stringld, all

ot hers becone inactive

frame = activateMasks(franme, Stringld(["UNCLEANCHOP", "GLI TCH']),
excl usive = True)

This task works on Frames, Ramps, and PacsCubes. The parameter excl usi ve set to True means
that the masks specified will be set to active and therest to inactive (default), False meansthe specified
masks are activated and for the others their state is not atered.

Thereis also adeactivateMask task, but to be honest it is best to stick to the activateM ask task.

for ranp, deactivate the nasks listed in the Stringld, all others

becone active

ranp = deactivat eMasks(ranp, Stringld(["UNCLEANCHOP", " GLI TCH']),
excl usive = Fal se)

For deactivateM asksthe default Falsefor excl usi ve meansthat the specified masks are deactivated
and the rest untouched, while True means the specified masks are deactivated and all others activated.
One use for deactivateMask isif you then want to deactivate a single mask:

PACS spectroscopy standard data processing

frames = deactivat eMasks(frames, Stringld([' GRATMOVE]))

which deactivates GRATMOVE and leaves all others untouched.

To inspect the masks you can use the MaskViewer GUI, which displays an image of the detectors at
the top, where pixels are selectable for displaying as spectra (signal vs readout number) below,

from herschel . pacs. signal inport MskVi ewer
MaskVi ewer (myf r anme)

It is possible to set your own mask or edit current masks using the MaskViewer, the description for
thisisinthe MaskViewer entry of thismanual (currently Chap. 10). Therewill also be a more complex
mask GUI released in the near future

To inspect a mask as an array from the command line you can use the .getMask() method to extract
the data out, with syntax such as:

print ranp.get MaskTypes() # see what nasks are present
extract data to e.g. plot it

glitch=Int4d(ranp. mask["GLI TCH'] . dat a)

or

glitch=Int4d(ranp. get Mask(" GLI TCH"))

This gives you an Int4d dataset (glitch). The default output from the getMask method is a Bool4d. It
isalso possible to set or edit masks yourself on the command line. However, while this may be more
convenient for you (e.g. you want to identify bad readouts using an algorithm rather than viathe GUI),
it is more complicated because the syntax for Frames and Ramps differs, and there are many ways to
do this. Find a method you can understand and stick to it! A few examples:

to add a new type of mask

frane. addMaskt ype(" MYMASK", "expl anati on of mymask")
or to renpve a nask

franme. get Mask() . removeMask(" MYMASK")

add/ change the nmask value for a franme product (3 di nensions)
frane. set Mask(" MYMASK" , 4, 5, 2, 1)

will set to -"True" the nask value for pixel row 4, colum 5,
and readout 2 (where the dinensions of a frane is

18,25,z: z being the tine-line dinension)

to add/change a mask value for a ranp product (4 dinensions)
true=Bool 1d([1])

ranp. set Mask(" MYMASK", 4, 5, 2, true)

where 4,5,2 are the same as before (where the di mensions

of a ranp are usually 18, 25,64,z or 18,25,32,z). This sets to
-"True" ALL the readouts (all z) of ranp nunber 2

Truemeansthat this particul ar pixel and readout isbad, i.e. youwant aflag raised for it. Werecommend

you read the APl entry for Mask (not Masks) to learn more, in particul ar the setMask and set attributes
which tell you how to set flags for any range of data-pointsin 3 or 4 dimensions of aframe or ramp.

Note

@ as used in this chapter, X for a pixel follows the "row" direction (e.g. as seen when in-
specting data with the MaskViewer) and Y follows the "column" direction. There are 18
Xsand25Ys.

2.7. Accessing data as an Observation Con-
text

If you got your data (e.g. from the HSA) as atar file, you should untar it into a"pool”, into adirectory
located off of your "Istore" directory; by default HI PE expectsyour Istoredirectory to belocated at e.g.

PACS spectroscopy standard data processing

2.7.1.

[/Users/mef].hesg/Istorel. Y our datawill then be in the form in which you can access the Observation
Context. If instead you have a tm file, you will need to run a task to decompress it into a pool off
of /Istore.

The Observation Context can be thought of as a container of products (such as Ramps) that belong
to a specific observation. It provides associations between all the products you need to process that
single observation (e.g. pointing products, HK data). Y ou will need to extract out your data from the
Observation Context and can then run the pipeline tasks on them. Thiswill be explained here, but first
we will start with the few steps necessary when beginning from tm files.

Note
@ Syntax: things that are parameters of tasks will be written liket hi s; the namesyou give
them will be written in normal font; class names will be written like This; and the word
ramp, frame, and cube refers to products that are of class Ramps, Frames or Cube, but
when written in normal font we are referring to ageneric product, rather than its classtype
or the name you gaveit.

Populating the pool from tm files

Telemetry files are aformat where awhole lot of dataisheld in onefile, e.g. all the data collected for
one observation. It is necessary to decompress the file in order for the software (and the human) to
access the individual parts. When you decompress atm file to populate a pool, among the directories
of filesthat are created will be something with the name "ObservationContext" in it.

If you have asingle tm file you can populate a pool with the command:

popul at ePacsPool Fronti |l es(fil ename, obsid, pool Name [,startDirectory=<string>]
[,pattern=<string>] [,wal k=<bool ean>)] [, hklim t=<nunber>]
[,sclimt=<nunber>]

fil enane isastring and is the name of your tm file; obsi d isthe observation ID (a number with
"I"—el, not onettat the end); pool Nare isastring and isthe name that you want the pool to have (e.g.
mypool); st art Di r ect ory isthe starting directory for a pattern search; pat t er n is the pattern
for afile search (default is*.tm); wal k (default, False) is whether subdirectories will be considered
in the pattern searching; hkl i ni t isthe number (default 10000) of HK TmSourcePackets used for
apool entity; scl i m t isthe number (default 10000) of science SPU buffers used for a pool entity.
Itis perfectly possible to run this task with the default parameters.

One can populate the same pool sequentially with the contents of more than onetm file (and it isvery
useful to do that if you later want to extract into a single product #more than one dataset)

If you have atm database that is full of tm packets rather than tm files (a packet is the basic unit that
the spacecraft sends down, where atm file is a collection of packets) and you want to extract out all
the data that lie within certain limits, then you can use:

popul at ePacsPool Fr onDat abase(obsi d, dat abase, pool Nane
[,startti me=<nunber >, stopti me=<nunber >]
[, hklimt=<nunmber>] [, sclint=<nunber>])

Where obsid , database ,pool Nane,hklimt andsclinit areasabove; the optional
time parameters are in units of finetime and are, obviously, the start and stop time to extract data
between.

Note

@ Optional parametersin task calls: there are usually several optional parameters for tasks.
The syntax we use to indicate that is [,hklimit=<number>], where the word inside the
brackets is what you enter: a string (needing therefore ""); a number (integer or rea);
a calibration file (cafile); a boolean (True or False). Generally you can either use the
wording hklimit=100 or just write 100 in the appropriate place in the call (the parameters

10

PACS spectroscopy standard data processing

| listed in the call examples for the tasks discussed in this chapter should be in the correct
order).

2.7.2. Getting the data

The ObservationContext can be extracted from your pool by (1) defining the pool, (2) identifying and
extracting out the ObservationContext you want from that pool, (3) inspecting the ObservationContext
and pulling out the bit of it you want, e.g. the Level 0 or 1 or 2; red or blue; observation data; auxiliary
data; housekeeping data....

There are in fact several ways to do al of this, from the command line or GUIs. Here we explain
some of the methods.

If you know the observation identifier (obsid) then you can use the command

obs=get Cbservation(obsid [, od=<nunber>] [, pool Nane=<stri ng>]
[, pool Location=<string>] [,verbose=<bool ean>] [, useHsa=<bool ean>)

where obs is an ObservationContext, obsi d is a number ending in "L", od is the number of the
observation day, pool Nane isthe name of the pool, pool Locat i on isthe complete directory path
to the location of the pool, useHsa isfor external users, it will read the ObservationContext from the
HSA. By default, if you only specify the obsi d, it will search for the pool in anumber of predefined
locationswith predefined naming conventionswhich are specific to M PE or Leuven. Oneof the default
locations searched isalso your homedirectory, e.g. .hcss/lstore. If anerror "could not find OD number”
is returned, you need to also specify the OD number. If you have your pool elsewhere entirely you
can: specify pool Nane only, where it will look for that pool name in the default directories, or
pool Locat i on, anditwill look for the default pool namesin that pool location, or both pool Name
and pool Locat i on for aunique pool namein aunique place. (Everythingin[] is optional.)

The parameter useHsa isto be used if you wish to extract the data from the HSA. To do this your
username and password must have been set, before you start HIPE, by placing into the file user.props,
located in .hcsg/, the following

hcss. i a. pal . pool . hsa. hai 0.1 ogi n_usr
hcss. i a. pal . pool . hsa. hai o. | ogi n_pwd

<string>
<string>

Now, let's say you want to first inspect all the ObservationContexts in a pool:

nmypool = Local Pool (pool Nane) # a string
obsli st = nypool . all Cbservations

and then click on obglist in the Variable panel to see what isin there, and to extract any out (into an
ObservationContext). Alternatively you can extract parts out with:

myobs = obslist[0].product
or [1] or [2]... depending on which part of obslist you want

or get it straight fromthe pool, with the obsid you found from
| ooki ng at obsli st
myobs = mnypool .| oadCbser vat i on(obsi d)

Or, more straightforward is to use

al | Qbs = Local Pool ("Kul _Pacs_Data_Pool _90_1", -"/STER/ 118/ pacsman/
PacsPool s") . al | Gbservati ons

And the click on allObs in the Variables panel to inspect it.

Note that the directory name, the pool name, specified by pool Nane will be created if it does not
already exist. Y ou can save an observation with

nmypool . saveCbservati on(nyobs [, verbose=<bool ean>] [, pool Locati on=<di rect ory>]

11

PACS spectroscopy standard data processing

2.7.3.

[, pool Nane=<pool nane>] [, saveCal Tr ee=<bool ean>])

Where the final parameter allows you to save the calibration tree with the observation. Be aware that
saving an observation may take along time, because there are alot of associated products to save. If
instead you want to inspect everything that isin your pool viaa GUI you can use the product browser
GUI (although | have heard that this GUI will be deactivated soon):

obs = browseProduct (Product St or age(nypool))

(Noting that another product browser GUI, for extracting out ObservationContexts, is the Da-
ta Access View, but to use that you need to have defined a storage, using the command
mystorage=ProductStorage(" poolname™).)

Next you want to extract the particular part of the ObservationContext that you want. Y ou can inspect
"myobs" by clicking on it in the Variables panel to locate what bit of it you want. In this example we
then extract out the 1st set of averaged red rampsthat arein level 0.

ranpr =nyobs. | evel ["] evel 0"] . ref s["HPSAVGR'] . product . ref s[0] . product

If you could see more than one HPSAV GR when you clicked on it in the Editor panel (when you click
on myobs in the Variables panel it is sent to the Editor panel for further inspection) then you access
these by specifying 1 or 2.. in the refq 0] part of the command.

It is necessary to extract afew other products in order for the pipeline processing steps to be carried
out. Currently these are:

pp=nyobs. auxi | i ary. poi nting

orbi t ephem = nyobs. auxi |l i ary. orbi t Epheneri s

dntHead=nyobs.refs["l evel 0"]. product.refs["HPSDMCR'] . product . refs[0]. product
for the DMC header for red data

OR if you are working fromtmfiles (see 6.2 for what -"dfs" is)
dntHead=ext r act Dnt(df s, channel =<"red" or -"bl ue">)

where again, refg0] refers to the first thing that you put into "observation”, and the number in the
[] should correspond to the number in the [] that you extracted into "rampr" above. dmcHead is a
PacsDmcProduct and isrequired for some of the masking tasks; pp isaPointingProduct and isrequire
for the RA/Dec setting tasks; orbitephem is an OrbitEphemerisProduct and is the orbit ephemeris
required for correcting Herschel's velocity. If these products are not available it simply meansyou can
not run the relevant tasks on your dataset.

If your auxiliary productswere not in your datapool, but held in adifferent one, then use thefollowing
commands to extract the pp:

if you know where the auxiliary pool is and what it is called
nyauxpool = Local Pool (pool Nane, pool Locati on)

for the calibration pool this syntax is necessary

nycal pool = get Cal Pool ([ver bose=True])

(For the last command, see Sec "Level 0 to Level 0.5".) And then inspect the pools and extract out
your products e.g. with the product browser

pp = browseProduct (Product St or age([nydat apool , nyauxpool]))

this allows you to inspect the data pool and the auxpool, and you can locate the "pointing product”
and extract it in the same way you do the ObservationContext.

Raw telemetry to Level O

This is something that general users will never do. They can skip through to the next section. The
steps here are things you will need to do if you work straight from tm files rather than the Observa-
tionContext.

12

PACS spectroscopy standard data processing

2.7.3.1. readtm - reading raw telemetry

Reading raw telemetry from a PacketRecorder archivefile (tm file) is done as follows:

from herschel . pacs. share. uti | import FileSelection

filenane = Fil eSel ection. getFil enane()
seq = readtn(fil enane)

or just

seq=r eadt m()

Where seq is a PacketSequence containing raw telemetry and/or TC SourcePackets. FileSelection
will open a file selector box showing all files in your working directory; readtm() also does that,
allowing you to select al files that end with "tm". If the pacs. t m dat apat h property has been
set (in .hcss/user.props) to an existing directory, the file selector box will be opened in that directory
instead of the default home director. Alternatively you can use the command

fil enanme=Fil eSel ection. getFil enanel nDirectory(dir, pattern) # strings

which does not need the pacs. t m dat apat h property to have been set.

2.7.3.2. extractDataframes - decompress the science tm packets

This step generates the intermediate product decompressed science data. A compressed entity is dis-
tributed over many TmSourcePackets. This task collects all these, combines them appropriately, de-
compresses them and generates a dataframe. This dataframe is the raw result of the task, and isin a
raw format, containing the compressed entitys' information and more.

df s = extract Dat af rames(seq)

The result, dfs, is a DataFrameSequence, a collection of PacsDataFrame objects. These are the de-
compressed buffers of the two SPUs.

2.7.3.3. decomposeDataframes

This task organises the raw decompressed data into Frames and Ramps data structures.

pacsM x = deconposeDat af ranes(dfs [, channel =<string>] [, nbde=<string>]
[, ful |l Dc=<bool ean>])

pacsMix isaproduct container. What isin here depends on your selection (as defined by the optional
parameters node and channel) and the instrument algorithms that were enforced. It can contain
Frames and Ramps products. For Frames class the DecMec data are collapsed from the full readout
sampling to the frequency of the reduced data (the frame). So the following applies:

» OBSID, BBID: get the first entry of the associated block of DecMec data

» LBL: getsthe median (over the readouts) value and checks whether it is unique within aramp

VLD: getsthefirst value and checks whether it is unique within aramp

TMP1, TMP2, FINETIME, CRDC, CRCRMP, DBID, BSID: get the first value
* CPR, WPR, BOLST: get the mean value

The default for f ul | Dnt is False. The frame is in the form of a data cube (note, cube here means
in 3D, not a Cube class object), with the collapsed DecMec information, where the decoded L abel
information have been placed in the Statustable (note: al abel isatag that isgivento the data sequence
by the DecMec controller to mark whereit iswithin the observing sequence, e.g. "' chopper hasmoved",
"grating has moved"). The Ramps product contain channel data e.g. raw or averaged ramps and that
of the (rotating or maybe fixed) few additional raw channels, and the fully sampled DecMec data. The

13

PACS spectroscopy standard data processing

BLINDPIXELS mask has aready been applied to data extracted with this task; these are pixels that
have been deselected with the Detector Selection Table.

The optional parameters of thistask are: channel , astring with values "red”, "blue" or "both" (de-
fault); mode, astring with values"frames", "ramps", "subramps’ or "rawramps" and where the default
is"al"; f ul | Drc, aboolean, True or False, to ask for the full resolution DecMec header.

Cadlibration file used (the use of which is hidden from the user): filterBandConversion. This task
calls the tasks ExtractFrames which in turn cals photDfs2Frames, and it is there that the cdfile
filterWheel2Band (Common.FILTER_BAND_CONVERSION) is accessed.

2.7.3.4. readAttitudeHistory

Not yet available so information not complete
Read the attitude history.

attitude = readAttitudeH story(pdf)

Reads the instantaneous pointing product covering the same time as the dataframes in pdf. "attitude"
isapointing product.

2.7.3.5. readTimeCorrelation

Not yet available so information not complete
Reads the time correlation information.

ti mecor = readTi meCorrel ation(pdf)

Reads the time correlation product covering the same time as the dataframes in pdf. "timecor” is a
TableDataset containing the time correction values.

2.7.3.6. Extract out the raw or averaged ramps

2.7.4.

To get the Frames or Ramps product(s) which you will need in the next stage of the data reduction,
type:

print pacsM x

1s a listing of everything in pacsM x (see deconposeDat af r anes)
ldentify which frane or ranp you want; say Franmel and Ranpl
frame=m x[" Franel"]

ramp=m x[" Ranpl"]

In this way you can extract out the frame (fitted ramps), averaged ramps and/or raw ramps product,
depending on what you want and what is present. In the listing of pacsMix: a Frame product will
be described as a "Frames"; araw Ramps product will be described as a"Raw Ramps'; an averaged
Ramps product will be described as a " Complete (Sub-) Ramps".

Level Oto Level 0.5

The PACS SPU hastwo onboard datareduction modesfor spectroscopy: slopefitting of theintegration
ramps (to create a Frames class product) and averaging the samples of the integration ramps (whichis
aRampsclass product). Thereduction stepsin this section start with averaged or raw ramps but rapidly
move on to fit ramps; therefore those starting with Level O fit ramps should also start reading here.

Please note that in the task calls described below we will often use the convention
outRamps=Task(inRamp). However, note that for "outRamp" you could also type "inRamp", i.e. it is
not necessary to place the result of the task in a different product to the product the task was run on.

14

PACS spectroscopy standard data processing

We use this convention simply to make clear what went in and what came out. Hence, the outRamp
for one task is the same inRamp for the next task.

The very first thing to do is to define the calibration tree;

mycal Tr ee=get Cal Tree(" FM')

FM here meansflight model, and it isalso the default entry. FSwould beif you were working on flight
spare data. You will notice that for many of the flagging tasks which are described next, passing the
cal Treeisan option, where you either passthe cal Tree or individual calfiles. We strongly recommend
you always pass the cal Tree parameter anyway.

Note: HIPE contains afunction to load any version of acalibration product into memory: getCal Prod-
uct(). The following example should make this clear. If you load a calibration tree and print the pho-
tometer branch, the current versions of the products are printed. So,

f meget Cal Tree()
print fm photoneter

will give you output similar to

PacsCal Phot Cal i bration Products:

invntt -: FM 1

invnttBL -: FM 2
invnttBS -: FM 2
invnttRed -: FM 2

Loading a previous version of a calibration product can be done as follows:

cal = getCal Product ("Photoneter", -"lnvnttBL", 1)

and cal Fil eVersion can be used to check which versions of calibration
products you have

print cal.cal FileVersion 1

print fm photoneter.invnttBL.cal FileVersion 2

If you want to replace the calibration product temporarily in your calibration tree, e.g. for passing into
pipeline steps, you can simply replace the appropriate product as follows:

fm phot oneter.invnttBL = cal
print fm photoneter.invnttBL.cal FileVersion 1

2.7.4.1. compareRawWithReducedDataRamps

Note a pipeline task

Thistask isaquality control step and creates an information mask. It performs acheck on the onboard
(SPU) reduction, and not something general users will use. It requires the raw and averaged ramps
to be present.

out Ranp = conpar eRawW t hReducedDat aRanps(i nRaw anp, i nAver ageranp [, copy=<nunber>])
where i nRaw anp and i nAverageranp were extracted as was the -"ranp" in Sec. 6.6

TheinRawramp is a TRamps class product, being raw ramps, and inAverageramp is of class ARamps
(both of these are types of Ramps), being averaged ramps. When you get averaged (or fit) ramps
data, for free for 3 pixels you will also get raw ramps, and these will be held in a raw ramps Ramps
product of your ObservationContext (which you must naturally extract out). For these 3 pixels the
task averages their raw ramps and compares them to their on-board averaged ramps: a check that
the on-board averaging was done as expected. It sets aflag in the mask OBSWERR if a deviation is
found between the two. The mask is set for a detector pixel when a difference of more than 1 in the
integer-converted values of the two ramps is found for that pixel; such a difference could be due to

15

PACS spectroscopy standard data processing

rounding accuracy. This mask isquality control oriented and should not be applied during the pipeline
processing but carried through, and one should follow up for the reason for the deviation.

There is also a compareRawWithReducedDataFrames task, in which inFitramp will be compared to
inRawramp.

Depending on whether copy=0 (default) or 1, outRamp is, respectively, a copy of inAverageramp
with a new mask added, or a copy of the inAverageramp with no mask added.

2.7.4.2. specFlagSaturationRamps

out Ranp = specFl agSat ur ati onRanps(i nRanp [, cal Tr ee=<nycal Tr ee>]
[, rawRanp=<Ranps>] [, ranpSatLi mts=<cal fil e>]
[, copy=<nunber>] [, qualityContext = qualityContext])

Detects ramp readout values that are above the saturation limit and puts a flag in the corresponding
SATURATION mask for those readouts. Reads the saturation ADU value from a calfile, where the
four capacitance values and the power supply groups are distinguished (using data taken from the FM-
ILT test report PICC-MA-TR-043). The calfile contains conservative values close to the saturation
limit because sometimes the ramp values start rising again after hitting the saturation limit. qual i -
t yCont ext isaquality control product; currently it isby default anull fileand you canignoreit. Itis
also possible to ask the task to check for saturation from the few downlinked raw pixels, by specifying
the parameter r awRanp. Thisfillsthe boolean Status column "RAWSAT" (trueif saturation isthere
detected) and creates an additional mask "RAWSATURATION", which is set to true for al pixels
of areset interval if the raw ramp is found to be saturated for that readout, and within the task the
mask is set to inactivate.

Raw ramps: The task loops through al pixels and resets and find the readouts which ADU digits are
just below the corresponding saturation limit and flags them in the SATURATION mask.

Averaged sub-ramps: 1) Calculates the median of pairwise differences and adds half of the pairwise
differenceto each ramp value (each datapoint)#find thefirst ramp readout index wherethe signal isjust
below the saturation limit, flag this and the rest of the ramp. 2) Assume that first pairwise difference
of ramp is not saturation affected, construct amodel ramp using this pairwise difference and add half
of the pairwise difference to each ramp valuetfind the first ramp readout index where the signal is
just below the saturation limit, flag this and the rest of the ramp. The task tries method 1 and if that
does not work, then method 2.

There is an equivalent task than runs on a Frames product, specFlagSaturationFrames, and if you
extracted from the Level O the Frames, rather than Ramps, product, you should run this task after
fitRamps (Sec. 7.3). The only difference is that since it runs on data with slopes values in them, it
looks for where the signal, in V/s, exceeds the total possible dynamic range. Of course, the signal
saturation limits depend on the reset interval (the ramplength); the saturation limitsin the calfile refer
to al sec reset interval and the units are ADC (readouts/s). Unfortunately, this method applied to a
Frames product can not absolutely guarantee that all/real saturation pointswill have been found, since
after saturation the signal will start to decrease and these points will not be found with this method;
however, aflagging of high values will serve as awarning that saturation may have occurred.

Note
@ The best way to find saturation isto look at saturated raw ramps and find the signal limits
dependent on capacitance and reset interval (TBD) and put this information in a calfile;
€.g. use agrating scan of bright emission line, because there the signal should drop rapidly
after reaching saturation because the saturated part of aramp isflat.

The use of open and dummy channel in saturation detection: deviations of their signals
from normal noise is an indication of an FEE functional error, of which saturation is one
likely cause; one could raise software warnings if thisis detected

Calibration file used: rampSatLimits, the limit (in digits) per pixel and capacitance. As with the pre-
vious flagging tasks, either passthe cal Tr ee or passthe cafile.

16

PACS spectroscopy standard data processing

2.7.4.3. fitRamps

out Frame = fitRanps(i nRanp [, degree=<nunber>] [, firstReject=<nunber>]
[, ast Rej ect =<nunber >])

Thistask fits the slope of the integration ramp to convert to signal [readouts/s]. The output, outFrame,
isaFramesclass product, in which are placed thefit signalsand thefit uncertainties. Propagates/rebins
any attached masks from per ramp readout to a per reset interval. Propagates/rebins status words to
a status word at the reset interval frequency.

OBSID, BBID: get the first entry of the associated block of DecMec data

LBL: gets the median (over the readouts) value and checks whether it is unique within aramp

VLD: getsthefirst value and checks whether it is unique within aramp

TMPL, TMP2, FINETIME, CRDC, CRCRMP, DBID, BSID: get the first value
* CPR, WPR, BOLST: get the mean value

All masksarealso propagated by thistask. In addition, it createsthemask BADFITPI X, flagging pixels
where fits somehow failed (note that this mask is not created if the ramps were fitted on-board and you
start working on the HPSFITR/B product). Masks are applied asfollows: amaster mask is constructed
using the masks present in the Ramps obj ect except for OBSWERR and DEVIATINGOPENDUMMY .
Mask flag set to true are also not considered in the master mask. The master mask is then applied to
the indices and readouts before the signal is calculated.

first/| ast Rej ect arethe (integer) number of ramp readouts to exclude from the fit, e.g. it may
be a good ideato exclude the first few readouts: more detail is given later in this chapter.

Note that for all and any masked pixels, masked ramps and masked readouts, even when the mask
is considered by this task that entire ramp is still fit, individual readouts are not excluded from the
fitting. However, thefitted slope value of the readout till carriesthe mask, so the user can later decide
whether to ignore that data point in subsequent pipeline tasks.

Before running this task you should deactivate all masks:

i nRanp = activateMasks(i nRanp, Stringld([" -"]), exclusive = True)

2.7.4.4. specConvDigit2VoltsPerSecFrames

out Frame = specConvDi git 2Vol t sPer SecFranmes(i nFrane [, cal Tree=<nycal Tr ee>]
[, readout s2Vol t s=<cal fil e>] [, copy=nunber])

Thistask convertsthe signal to V/sfor inFrame:
frameSignal = frameSignal * 256Hz/rampL ength

wheretherampL ength isthelength of therampsor subrampsthat were enforced during the observation
(information which the frames product retains). The conversion for SPU signal values for the frame
depends on the reset length (and, in case of subramp fitting, the number of subramps). The SPU takes
the length of the ramp it fits (i.e. the complete ramp or the subramp) as unity. The slope numbers it
produces are therefore digital units per second, or digital units per numberOfRampsPerSecond. The
calfile SpecVoltsis then used to convert the units further to Volt/s:

frameSignal = -1*frameSignal * (endVolt - startVVolt) / (endDigit - startDigit)

the unit V/s of the signalsis set by using the herschel.share.unit methods. Multiplication by -1 is so
the units after fitRamps are correct.

The task takesinto consideration differences between the four power supply units but only in the volt-
to-readout conversion, for the red and blue arrays (each having two power supplies).

17

PACS spectroscopy standard data processing

Thereisan equivalent task that runs on a Ramps product, specConvDigit2V oltsRamps. This converts
the digital readouts to Volts and also multiplies by -1 so we will have positive signals after the ramps
arefit.

Calibration file used: readouts2Volts (default value of r eadout s2Vol t s). Pass either this calfile
or setthecal Tr ee.

2.7.4.5. detectCalibrationBlock

Thistask simply identifies the calibration blocks (i.e. where they lie in the datatime-line) and fillsthe
CALSOURCE entry in the status table.

out Frame = detect Cali brati onBl ock(i nFrane)

2.7.4.6. specExtendStatus

out Frame = specExt endStat us(i nFrame [, cal Tree=<nycal Tr ee>]
[, Chopper ThrowDescri pti on=<cal fil e>] [, copy=<nunber>])

Thistask adds useful information to the status table. These information are:
-GRATSCAN: acounter of grating scans, negative for down scans

-CHOPPER: a combination of CHOPPERPLATEAU (science plateau: 0, 1 [on] or 2 [off]) and CAL-
SOURCE (plateau on a calibration source: 0, 1 [CS1] or 2 [CS2]) status entries that resultsin 0: no
plateau, or 1: science on or CS1, or 2: science off or CS2

-CHOPPOS: +centre, small, medium, large, CS1, CS2
these being defined in acalfile asa Stringld. cal Tr ee and copy are as described before.

Cadlibration file used: chopperThrowDescription; either set this parameter or set thecal Tr ee.

2.7.4.7. addUtc

out Frame = addUtc(inFrane, tinecor, [,copy=<nunber>])

Converts from spacecraft on-board time (OBT) to coordinated universal time (UTC) using the time
correlation table (UTC, correlation gradient, correlation offset). Fills the UTC field in the Frames
dataset. copy means as before, and t i necor , the time correlation table, is a TableDataset.

2.7.4.8. specAddInstantPointing

out Frame = specAddl nst ant Poi nti ng(i nFrame, pp, [,cal Tree=<nycal Tree>]
[, copy=<nunber >]

[,siam = sian][, orbitEphemrorbitEphen] [, horizons=horizons][,isSso =
i sSs0]

[,nolnter=nolnter][,useGro = useGyro])

This task associates the PACS centre-of-field coordinates and the position angle (the RA and Dec of
the central detector pixel) to the raster point counter and/or nod counter of the input frame (which it
adds to depends on which are present, which depends on the AOT type), all of these being associates
of the frame and are necessary to track which raster or nod the associated readouts belong to. The task
isthe samefor photometer and spectrometer, and we refer you to the photometer chapter to learn more
about how it works. copy means as before, and pp, the pointing product, is from Sec. 5.2.

By default the Filtered Pointing information isused, but also the gyro propagated pointing information
may be used. This is done by using the Frames status entry FINETIME and extract the associated
information from the PointingProduct. Also the SIAM matrix is applied and aberration is done (if the
proper Products are passed). The result is added to the status entry of the Frames Product.

18

PACS spectroscopy standard data processing

Parameters: The orbit Ephemeris Product needed for aberration correction of non SSO objects. Hori-
zons Product is needed for the aberration correction of SSO objects. i sSso is"isit solar system” (de-
fault False/0)? nol t er iswhether to interpolate or not. useGyr o (False/0) isto use the Gyro prop-
agated information instead of the filtered.

iSSso (default False/0) is a switch for whether the target is solar system.

Cdlibration file used: siam

2.7.4.9. convXyStage2Pointing
Not a pipeline task
out Frame = convXySt age2Poi nti ng(i nFrame, seq [, nol nter=<bool ean>] [, copy=<nunber>])

This task is relevant only for ILTs (instrument level tests), where an "XY stage" was used to allow
satellite pointing to be simulated. It is the same step for the photometer, so see photometer standard
data processing chapter for a more detailed description. copy is as described before, nol nt er isa
boolean to specify to adopt (True) or not (False: default) interpolation in the fitting, seq is the same
as extracted from the datain Sec. 6.1.

2.7.4.10. convertChopper2Angle

out Frame = convert Chopper 2Angl e(i nFrane [, redundant =<nunber>] [, cal Tree=<nmycal Tree>]
[, chopper SkyAngl e=<cal fil e>] [, chopperAngl e=<cal fil e>]
[, chopper Angl eRedundant =<cal fi | e>] [, copy=<nunber>])

This task calculates the chopper position angle with respect to (i) the FPU optical zero and (ii)
the angle on sky. It reads the status DecMec parameter "CPR" and then populates new Status
words#CHOPFPUANGLE and CHOPSKY ANGLE#in the returned frame. Angles are in units of
armin. One should execute this task even if these was no chopping action during the observations,
because the chopper would have been in at least one position and that angle needs to be recorded.
copy meansasit hasawaysbefore, r edundant takeson 0 (use FPI, the default nominal field plate
calibration) or 1 (FPII, the redundant field plate).

Cadlibration files used: chopperSkyAngle, thelinear conversion between FPU angle and position onthe
sky; chopperAngle (the non-linear conversion between CPR and FPU angle, containing the nominal
readouts-to-angle calibration for the chopper); chopperAngleRedundant (ditto for the redundant unit,
to be used only if the redundant unit ever is). Aswith previoustasks, either set these calfile parameters
or set thecal Tr ee parameter.

2.7.4.11. specAssignRaDec

out Frame = specAssi gnRaDec(i nFrame [, cal Tree=<nycal Tr ee>]
[arrayl nstrunent =<cal fil e>]
[, modul eArray=<cal file>] [, copy=<nunber>])

This task takes the pointing previously added for the central pixel, of the centre of the field-of-view
coordinate, and assigns an RA and Dec to every pixel. If it finds the PV calibration which allows one
to distinguish between the chopper throws small, medium, large, then while looping over the resets it
picks the spatial calibration for that throw. The relative offsets of each spaxel with respect to module
12 iscalculated. Then the absolute positions of the spaxelsin RA/Dec on sky is determined using the
jsky.coords.WCSTransform tool of ESO and taking into account the roll angle. It returns aframe with
RA and Dec coordinates added.

Note that the spatial calibration isstill being validated.

Calibration files used: arraylnstrument (coordinate conversion from array to sky); moduleArray (co-
ordinate conversion from module to array). These are the default for their corresponding task param-
eters. Either set these parameters or set thecal Tr ee.

19

PACS spectroscopy standard data processing

2.7.4.12. waveCalc

out Frame = waveCal c(inFrame [,filter=<string>] [, cal Tree=<nycal Tr ee>]
[,littrowPar=<cal file>] [, copy=<nunber>])

Thisis atask that calculates the wavelength corresponding to a grating position. For every pixel the
Littrow equation is evaluated. A 3rd order polynomial relates the grating position to alpha (incoming
anglein the Littrow equation) per pixel.fi | t er isastring, being "R1", "B2", "B3" for the red array
filter, blue array green filter, and blue array bluefilter.

Calibration file used: littrowPolynomes, which containsthe coefficients of fitted 3rd order polynomial
of the conversion of grating position to wavelength. Aswith all other tasks, either specify this calfile
orthecal Tr ee.

2.7.4.13. specCorrectHerschelVelocity

out Frame = specCorect Her schel Vel oci ty(i nFranme, orbitEphem pp)

This task corrects the wavelengths for Herschel's velocity. The parameters you pass, the products pp
and orbitEphem, were introduced in Sec. 5.2. If you were not able to extract out these products, then
don't run thistask. It wont affect anything except the accuracy, at alow level, of your wavelengths.

2.7.4.14. findBlocks

out Frame = findBl ocks(inFrane [, copy=<nunber >])

The work of this task alows the subsequent steps to find the applicable calibration source
measurement(s), the nod scans to differentiate, etc... A summary of the major 'blocks' in the observa-
tion is constructed and put into a BlockTable. This includes how many chop#nod cycles there were,
how many raster were taken, etc. It summarises information already contained in the Status. In afirst
version thisis done based on the LBL status word (the Label), the raster point counter and status in-
formation. copy isthe sameasin al other tasks described so far.

A new block isidentified for every changein:

» nod/raster position

* grating scan direction

» detector parameters, e.g. reset interval, integrating capacitance, ...

For a more detailed description see the photometer standard data processing chapter, as step is the
same for the photometer and spectrometer. (In the photometry chapter thisis currently in Sec. 13.7.2,
inthe"Level 0to 0.5" section)

2.7.4.15. specFlagBadPixelsFrames

out Frame = specFl agBadPi xel sRanps(i nFrane [, cal Tree=<mycal Tr ee>]
[, badPi xel Mask=<cal fil e>] [, copy=<nunber>])

This task flags the permanently damaged pixels and puts them in the BADPIXEL mask. outFrame,
inFrame, and copy are the same as for previous task descriptions. If the BADPIXEL mask does not
exist, it will be created. In principle, permanently damaged pixels should be known from module-level
tests, but they could multiply during flight. At present this task only flags bad pixels read in from the
calfile, it does not look for new ones. We expect three kinds of bad pixels (different masksfor different
sorts of bad pixels? TBD):

* dead pixels: behave like an open channel in that signal does not change with infalling flux#these
should pop up in measurements of the calibration sources (as the pixel to pixel variations, the flat-
field, should be known and be in the calfile)

20

PACS spectroscopy standard data processing

* spiking pixels: show strong signal variations with timetcould be identified in the same way that
glitchesare

» weird (noisy) pixels: high noise level and maybe varying with time#identify with the help of noise
limitsin the calfile

There is adifference between B and BADPIXEL masks:

* pixelsselected out by the Detector Selection Table are flagged and put in the BLINDPIXEL S mask
during Level O data generation

* additional bad or damaged pixels (which may change with time) are flagged out during this step
and put in the BADPIXEL mask

(There is @ so a specFlagBadPixel sSRamps task, the details of which are exactly the same as here.)

Calibration files used: flatfield, noiseLimits, badPixelMask. The latter is the default name for the
optional parameter badPi xel Mask, and you must either pass this parameter or passthecal Tr ee.

2.7.4.16. cleanPlateauFrames or flagChopMoveFrames

out Frame = fl agChopMveFranmes(i nFrane, dntHead=<dntHead> [, cal Tree=<nycal Tr ee>]

[, redundant =<nunber >] [, chopperJitter Threshol d=<cal fil e>]
[, chopper Angl e=<cal fil e>] [, chopper Angl eRedundant =<cal fi | e>]
[, qualityContext=<calfile>] [,copy=<nunber>])

Note: | think that what was called cleanPlateauFrames has been renamed to flagChopM oveFrames.

Thistask masks unreliable readouts at the chopper transition phases, that is data taken while the chop-
per isstill moving. It searches for chopper plateaux (i.e. where the chopper is not moving), and masks
thereadoutsthat deviate by more than specified thresholdsfrom the median plateau position. The mask
added called UNCLEANCHOP. The parameterschopper Ji t t er Thr eshol d,chopper Angl e,
chopper Angl eRedundanct are optional inputs, and can be set to the names of calfiles to use: it
is strongly advised you do not change these unless you know what you are doing (because the calfiles
you specify have to be in the right format and contain correct information). qual i t yCont ext isa
quality control product; currently it isby default anull file and you can ignoreit. The parameter copy
is as described before, and r edundant isan integer which sets whether the nominal field plate cali-
brationisto be used (0 for FPI: default) or the redundant (the on-board spare) isto be used (1 for FPII).

Be warned that this task will run without specifying dncHead but (and it will not tell you this) the
results will be wrong.

(Thereis aso acleanPlateauRamps task, the details of which are exactly the same as here.)

Cadlibration files used: chopperdJitterThreshold (contains the specs of the allowed deviations from the
final chopper positions for the science and calibration windows); chopperAngle (the calibration from
chopper position valuesto FPU (focal plane unit) angle); chopperAngleRedundant (the calibration for
redundant unit, the redundant unit being an on-board copy of PACS electronics...this task parameter
is unlikely to ever be required). It is necessary to pass either the cal Tr ee or the chopper Ji t -
t er Thr eshol d and chopper Angl e (or chopper Angl eRedundant).

2.7.4.17. flagGratMoveFrames

out Frame = fl agG at MoveRanps(i nFrane, dntHead=<dntHead> [, cal Tr ee=<cal Tree>]
[,gratingJditterThreshol d=<cal file>] [, qualityContext=<calfile>]
[, copy=<nunber >])

This task masks ramp readouts at grating transition phases, creating a mask called GRATMOVE. It
calculates the median grating position for each reset/readouts using the full resolution status grating
position information, and masks the individual readouts where a deviation of more than the specified
threshold is found. The parameters copy and qual i t yCont ext are as described before.

21

PACS spectroscopy standard data processing

Be warned that this task will run without specifying dncHead but (and it will not tell you this) the
resultswill be wrong.

(Thereis aso acleanPlateauRamps task, the details of which are exactly the same as here.)

Cdlibration file used: gratingJitterThreshol d, which contains the specsfor the allowed deviationsfrom
the final grating positions. Y ou can either set it by passing the cafile or by passing thecal Tr ee.

2.7.4.18. flagDeviatingOpenDummyFrames
Not a pipeline task

out Frame = fl agDevi ati ngQpenDunmmyFr ames(i nFranme [, si gma=<nunber >] [, copy=<nunber >])

This task looks at the behaviour of the open and dummy channel ramps and sets a mask flag (DE-
VIATINGOPENDUMMY) for the corresponding module if the ramps show aweird or deviating be-
haviour. (Thisismore an information mask than one to be considered in the subsequent data reduction
steps.) Currently thisisdone by comparing the mean and standard deviation of the pairwise differences
of each ramp with the overall mean and standard deviation of the pairwise differences of all ramps of
all open and dummy pixels. If behaviour such as non-zero or oscillating ramps in the open channel
are seen, this could indicate saturation or other problemsin the FEE electronics.

Note
@ It may be necessary to introduce acalibration file that containsthe normal noisethresholds
of the ramps of the dummy and the open channels to be able to detect non-normal devia-
tions; this has not yet been done. This could also be used for a long-term quality control
of the ramp shape (deviating first readouts, debiasing).

However,acloser investigation of the open and dummy channel signalsrevealed cross-
talk effects at the #3% level: chopped and non-chopped data on the open and dummy
channels have different standard deviations (factor about 100!), which could mean that the
chopper cycleisvisible in the signal of the open and dummy channels (otherwise these
would be no difference seen). Also, major differences in the signal level introduced by
different power supply groups has been established: this means we cannot simply track,
long-term, the noise values for each channel and store them in a calfile but rather we have
to determine a global noise level for each measurement distinguished by power supply
group, and track those. This presumesthat most of the modul es and/or resets show normal
behaviour. These points also mean that if we wish to understand the cross-talk better, we
need more tests.

The default value of si g, the factor of the standard deviation outside of which signal variations
are considered deviant, is 3. copy is as described before.

(There is also a flagDeviatingOpenDummyRamps task, the details of which are exactly the same as
here.)

2.7.4.19. pairDiffSigClip

Thisis not part of the pipeline, but an independent task. It is an alternative to fitRamps, but it is not
supported

out Frame = pairDi ffSigdip(inRanp [, si gma=<nunber >]

[,ignoreSaturati onMask=<bool ean>]
[, i gnoreUncl eanChopMask=<bool ean>] [, i gnored itchMask=<bool ean>]
[, 1 gnoreG at MoveMask=<bool ean>])

Thisisatask for calculating the signal of an averaged or raw ramp product to produce aframe[unit V/
9], i.e.itisaparallel task to fitRamps. It does this by working out the sigma (which value [a Doubl €]
can be set by the user; default value 3) clipped pairwise differences of the input ramp. It stores these
signalsand thefit uncertainties (the standard deviation of the sigma-clipped array) in the output frame.
It propagates/rebins masks from aflag per ramp readout to aflag per reset interval. Propagates/rebins

22

PACS spectroscopy standard data processing

masks per ramp readout to a flag per reset interval, and also propagates/rebins the status words to a
status word at the reset interval frequency: thisis as also done by fitRamps.

Masks are applied as follows. a master mask is constructed using the masks present in the Ramps
object except OBSWERR and DEVIATINGOPENDUMMY . Additionally, those masks having i g-
nor e XXX set to True are not considered in the master mask. The master mask is then applied to the
indices and readouts before the signal is calculated.

2.7.4.20. pairDiffHodLehEst

2.7.5.

Thisisnot part of the pipeline, but an independent task. It is an alternative to fitRamps, but it is not
supported

out Frame = pai rDi f f HodLehEst (i nRanmp [, i gnoreSat ur ati onMask=<bool ean>]
[, i gnoreUncl eanChopMask=<bool ean>]
[,ignoreditchMask=<bool ean>] [, i gnoreG at MoveMask=<bool ean>])

This task calculates the signal [V/s] by applying the Hodges#L ehmann estimator on pairwise differ-
ences of each ramp: itisalso atask parallel to fitRamps. The H—L estimator is defined as the median
of the mean of pairsof apairwisedifferencesarray, or in other wordsit cal culates a stable mean. These
signals and the fit uncertainties (standard deviation) are stored in outFrame. Propagates/rebins masks
per ramp readout to a flag per reset interval, and also propagates/rebins the status words to a status
word at the reset interval frequency: thisis as also done by fitRamps.

Masks are applied as follows: a master mask is constructed using the masks present in the Ramps
object except OBSWERR and DEVIATINGOPENDUMMY . Additionally, those masks having i g-
nor e XXX set to True are not considered in the master mask. The master mask is then applied to the
indices and readouts before the signal is calculated. By default no mask is applied.

Level 0.5t0 Level 1

The tasks taking data up to Level 0.5 are ramp fitting, flagging and organising of status information.
No user interaction is necessary, thusit is more than possible to extract Level 0.5 products from your
ObservationContext and begin your data reduction here.

2.7.5.1. specFlagGlitchFramesQTest

Whileit isnot strictly necessary to run this#you could run your own glitch removal task#it is strongly
recommended and is part of the pipeline

out Frame = specFl agd it chFranesQrlest (i nFrame [, copy=<nunber >]

[, gt est wi dt h=<nunber >]
[, threshol ds=<nunber>] [, gtestlow=<nunber>] [, gqtesthi gh=<nunber >]
[,splitChopPos=<bool ean>)

Thisisatask that masks responsivity jumpsthat are (presumed to be) dueto glitches (aka cosmic rays
and other sudden and unwanted events). It works at the slope level i.e. on aframe. The task creates
a"GLITCH" mask, which must not aready exist. It works on the entire time sequence of the slopes
(d), for each pixel individually. The statistical test that is used to look for outliersis the Q-test. The
basic way the task worksis:

» Compute two differential signals: dd = d[i] - d[i-1] and ds2 = dl[i+1] - dl[i-1], where i goes from
first to last datapoint.

» Compute two contrast functions based on Q-tests of dsl and ds2, giving g1 and g2 respectively. The
principleisto run the Q-test over a'box’ containing afixed number of data points (of width w) and
to dide the box over the whole time sequence (so each slope is visited w times). Each data point,
i.e. each slope, gets w values of the Q-score. The value of the "contrast” is taken as the highest of
those values: the result of this stageis an array of contrast values.

23

PACS spectroscopy standard data processing

» Apply somethresholding, specific to the kind of events produced by glitchesand responsivity jumps
(spikes w/ and w/o decays, and staircasestdetails that have been worked out from ILTs and PV
data). There are four threshold parameters currently used: t0, t1, t2, t3.

* For any detector, agiven slopei ismarked as affected by aresponsivity jumpin the following cases:
1. q1[i] > t0 and i-1 not flagged as jump

thisidentifies the strongest events (computationally) quickly and where they would be missed be-
cause of other strong events close by

2. qlfi] or gq1[i+1] >t1
g2[i-1] or g2[i+1] > t2
g2[i-1] and g2[i+1] > t3
g2[i-1] and g2[i+1] have opposite sign

these identify 'isolated' events, i.e. the classical spikes affecting only one ramp, with weak or no
long-term effect on the responsivity (more typical for low stress detectors, i.e. the blue detector)

3. qlfi] > t1
g2[i] or g2[i-1] > t2
g2[i] and g2[i-1] > t3
g2[i-1] and g2[i+1] have identical sign

these identify 'step’ events, i.e. those leading to along term modification of the responsivity (more
typical for high stress detectors, i.e. red detector)

4. if both neighbours of aslope are "events": because sometimes in these cases the central slopeis not
also flagged as a glitch (which it should be), we especialy mark the central one

Examples of use of this R}-flagging algorithm can be found in PICC-KL-TN-023. Although gt est -
wi dt h (integer: value of w), t hr eshol ds (Doubleld: values of t0,t1,t2,t3), qt est | ow (integer:
the number of low slope values to exclude from the Q-test in the box) and gt est hi gh (integer: the
number of high slope valuesto exclude) are optional parameters, at least for the first two we strongly
recommend you do not change them from default unless you are sure you know what you are doing.

Thedefault assumptionisthat the framethistask isworking on has choppinginit, and thisisaccounted
for by the task as it considers the various chopper positions as separate timelines and applies the
deglitching to each of those independently. If you are working on non-chopped data then you can set
the optional parameter spl i t ChopPos to False (the default is True, which means the data are with
chopping). In any case, glitch detection is still something being tested. Testing with data from staring
observations on a dark sky field, we find that this task works very well in finding slopes that in the
raw ramps can be seen as obviously glitched. In addition it sometimes flags some post-glitch ramps,
even if these ramps have a slope value is within the scatter of the rest of the slope values.

Currently this tasks requires that you deactivate all masks before calling it

inFranme = activateMasks(inFrane, Stringld([" -"]), exclusive = True)

2.7.5.2. specEstimateNoise

out Frame = specEsti mat eNoi se(i nFrane, [bi nWdth=<integer>] [, copy=<0|1>])

A jython task that estimatesthe noise at Level 1 for each pixel andfillsthe Noise dataset. First it selects
the frames according to chopperplateau position 1, 2 or 0. It computes the median filtered signal (using
bins with bin width bi nW dt h) after discarding the readouts masked by the Master mask, as these

24

PACS spectroscopy standard data processing

could propagate and fake very high noise in the neighbouring readouts. Running over all readouts, the
bin-medians are subtracted from each readout in the bins. The noiseisthen the square root of thesignal.

2.7.5.3. specCorrectCrossTalk

currently not part of the pipeline, as the calibration information for it to work are not available.
out Frame = specCorrect CrossTal k(i nFrame [, cal Tree=<mycal Tree>]

[,crossTal kMatri x=<cal file>] [, copy=<nunber>]

[qual i t yCont ext =<snt hng>])

This task subtracts the cross-talk contribution to a pixel from its neighbouring pixels, before any lin-
earity correction is applied. It reads the cross-talk ratios from a calibration file and subtracts from
every pixel the fraction of the signal that comes from a cross-talking neighbour. copy and qual i -
t yCont ext are as described before.

The calibration file should be created and edited with the script makeCalCrossTalkMatrix.py. The
calfile will contain an ArrayDataset with two Double2d arrays in it, one for the red and one for the
blue channel. The dimensions of the Double2d will be [number of cross-talks found, 5) where the
values are:

[k,0] : the row value of the original pixel

[k,1] : the column value of the original pixel

[k,2] : the row value of the cross-talking pixel
[k,3] : the column value of the cross-talking pixel
[K,4] : the cross-talking ratio

Example: let us assume that 50% of the signal of pixel (4,7) spreads to pixel (0,0) and 13% of the
signal of pixel (8, 10) appearsin pixel (5,1). Then the array will look like:

[0,0] = 4
[01=7
[0,21=0
[03]=0
[04] =05
[1,01=8
[1,1] =10
[1,2] =5
[1,3] =1
[1,4] =0.13

Thus the crosstalk corrected values of pixel (0,0) and (5,1) would be
realsig(0,0) = realsig(0,0) - 0.5*sig(4,7)

realsig(5,1) = realsig(5,1) - 0.13*sig(8,10)

These simple subtractions are applied by this task for the whole signal array.

Calibration file used: CrossTalkMatrix (which is currently a dummy filled with 0s). Specify it or the
cal Tree.

25

PACS spectroscopy standard data processing

2.7.5.4. specCorrectSignalNonLinearities

out Frame = specCorrect Si gnal NonLi nearities(inFrame [, cal Tree=<mycal Tree>]
[, nonLi nearity=<cal file>] [,copy=<nunber>])

This task corrects for intrinsic non-linearities in the shapes of the raw ramps of each pixel. The cor-
rection is a 2nd order polynomial fit using the coefficients from the calfile. This calfile was based
on testing done on the shapes of raw ramps, which produced a correction that could be applied to
Frames data.

Cadlibration file used: nonLinearity. Specify it or thecal Tr ee.

2.7.5.5. convertSignal2StandardCap

out Frame = convert Si gnal 2St andar dCap(i nFrane [, cal Tree=<nycal Tr ee>]
[, capaci tanceRati os=<cal file>] [, copy=<nunber>])

Thistask reads the capacitance ratios calfile and scales all the signalsin the frame to the lowest avail-
able integration capacitance, which is referred to as the standard capacitance. This is done because
the subsequent flux calibration and dark subtraction tasks use calibrations based on data taken at the
smallest capacitance value. It will also allow one to compare signals (from different observations, for
example) that were recorded using different integration capacitances.

Calibration file used: capacitanceRatios, the measured capacitance ratios (capacitance w.r.t the small-
est capacitance), for each pixel. Specify it or thecal Tr ee.

2.7.5.6. specDiffCs

csResponseAndDark = specDi ffCs(inFrame [, cal Tree=<mycal Tree>]
[, cal Sour ceFl ux=<cal fil e>]
[, rel Cal Sour ceFl uxProduct =<cal fil e>])

For each pixel, this task computes, for the calibration blocks(s) of your inFrame, the statistics (mean
and standard deviation) of the pairwise differences between the two chopper position (CS1 and CS2),
for each grating position. (Adopting chopping AB for OBCP 13 and ABBA for OBCP 35, in the case
of only 1 ramp per chopper plateau). Y ou can chose yourself to say which masks to include (True)
or ignore (False, the default). The output is a product which contains, for every pixel, the dark value
at the key wavelength of the calibration block and one or three responses: three in the blue (one for
each key wavelength for the bands B2A, B2B and B3A) and onein the red (which only has band R1).
These values are calculated by comparing the flux difference between the calibration sources with
their calfile recorded flux differences. We refer internal PACS members to Report PICCKLTNO34
if they want to know more.

specDiffCs also computes the errors on the response and dark, even if the Noise dataset is absent in
the input Frames.

We recommend the following activateMask call

inFrane = activat eMasks(i nFrane,
Stringld(["UNCLEANCHOP", -"GLITCH', -"BADFITPIX']),
exclusive = True)

Calibrationfilesused: cal SourceFlux: the measured flux of calibration sourcesin Jy (not yet available);
relCal souceFlux; keyWavelengths

2.7.5.7. specFitSignalDrift
responseDrift = specFitSignal Drift(inFrame, csResponseAndDar k=<product >)

This task will use the output of specDiffCs and establishes the pixels' responsivity during the entire
observation. It uses the starting response values determined by specDiffCs, and using the signal of

26

PACS spectroscopy standard data processing

the off-source chopper plateaux, it tracks the drift in the response during the observation. It fits a
background spectrum to all the off-source pointstogether after desel ecting actively masked datapoints.
Therefore we recommend the following activateMask call

i nFrame = activateMasks(inFranme, Stringld(["BADPI XELS", -"GLI TCH',
- " SATURATI ON', -"BADFI TPI X"]), exclusive = True)

2.7.5.8. decodeLabel
Not a pipeline task
out Frame/ out Ranp = decodelLabel (i nFrane/i nRanp [, copy=<nunber >])

Thisis not atask that is required any more, asit is applied inside decompseDataframe, but for com-
pleteness we keep the description. copy means the same as it has before, and this task will work on
Frames or Ramps class objects.

ConvertstheLabel entry into averboseform and putsit into the Status; it isthe samefor the photometer
and the spectrometer. (note: aL abel isatag that is given to the data sequence by the DecMec controller

to mark where it is within the observing sequence, e.g. "chopper has moved"”, "grating has moved").
-DMCSEQACTIVE Bitl

-SCIENCEPLATEAU Bit 2-4

-CALPLATEAU Bit 7-8

-SCANDIR Bit 5, non-zero: positive for up, negative for down, counting the scans

-WASWITCH Bit 6

-WASWITCHPOS

2.7.5.9. addOBCP2Frames
Not a pipeline task
out Frame = addOBCP2Fr anes(i nFranme, seq, [,copy=<nunber>] [, hkObcp=<calfile>])

Included here for completeness. The parameter hkQocp is a TableDataset and contains the OBCP
(on-board control procedure) parameters gotten from HK data (default value for this is "hkObcp").
This task adds the DP_WHICH_OBCP numbers to the Status dataset of a Frames object. It is now
done within decomposeDataframes. seq is as from Sec 6.1, and copy means the same as before.

2.7.5.10. specSubtractDark

Not yet mature

out Frame = specSubtract Dar k(i nFrame [, csResponseAndDar k=<pr oduct >]
[, cal Tree=<nycal Tree>] [, copy=<nunber >])

This task is for AOTs of type wavelength-switching and off-mapping. It subtracts the dark current
previously determined by specDiffCs.

2.7.5.11. subtractOffPosition
Not yet mature
out Frame = subtract O f Posi ti on(i nFrane)

Thistask subtracts the background (off-position) for off-mapping AOTS.

27

PACS spectroscopy standard data processing

2.7.5.12.

specAvgPlateau

No longer part of the pipeline, so do not run it

out Frame = specAvgPl at eau(i nFrame [, si gcli p=<nunber >] [, nean=<nunber >]

[, ignoreUncl eanChopMask=<bool ean>] [, i gnoreG at MoveMask=<bool ean>]
[, qualityCont ext =<snt hng>] [, copy=<nunber>])

Averages al valid signals on chopper plateaux and resamples signals, status, mask, stdev, wave, ral
dec words. Calculates the noise. Theresult is a Frames class with oneimage per every single chopper
plateau. mean isaninteger andif 1 usethemedian, if O (default) usethemean. si gcl i p isO (default)
to not do sigma clipping, otherwise use the sigma value input and do clip; it should only be set for
long chopper plateaux (> 3 readouts).

It reads the values of CHOPPERPLATEAU and CALSOURCE columns in the status table. Any
plateau is identified as a sample sequence of equal value of CHOPPERPLATEAU.

The mask UNCLEANCHOP and GRATMOVE is used to identified the samples to discard in the
estimation of the signal median (see cleanPlateauFrames/Ramps module for more details) due to
distortions by the chopper and grating transition

After the 'cleaning’ procedure, the median of the signal of each pixel is estimated over the chopper
plateau length. If the chopper plateau contains no valid data the signal is set to zero and the UN-
CLEANCHOPMASK to true.

The noiseis calculated by the following equation :

noisex,y,p] = STDDEV (signal[x,y,vaidSelection[p]]) / SQRT(nn)
p : one plateau

nn : Number of valid measurements

The noise result is stored in the Frames as Noise entry

The module adds the NrChopperPlateau column to the status table, which contains the number of
valid samples averaged over the Plateau. Additionally, an UnCleanChop column is added which
contains the number of discarded samples of each plateau.

The Status entries with different values over the chopper plateau length are modified with the fol-
lowing scheme:

« RESETINDEX, OBSID, BBID, LBL, FINETIME, CRDC, DBID, DMCSEQACTIVE, CHOP-
PERPLATEAU, CALSOURCE, SCANDIR, WASWITCH, BLOCKIDX, BAND, BBTYPE,
BBSEQCNT, DP_WHICH_OBCP, GRATSCAN, CHOPPER: value of the beginning of the
chopper plateau

* TMPL, TMP2, VLD, PIX, RCX, RESETCNT: removed

« CPR, WPR, GPR, CPCRMP, RRR, CRECR, WASWITCHPOS, CHOPFPUANGLE, CHOP-
SKYANGLE, XY_Stage X/Y_AXIS: median

* CHOPPOS: vaue of the beginning of the chopper plateau, if thisis "NoName" first valid name
istaken

» OnRasterCount, OffRasterCount, DithPos : Median
« others: median, strings: beginning of plateau

For all available masks a layer is associated to each chopper plateau. For each pixel the value is
set to True if the value is True in one or more frames over the chopper plateau length (except for
UNCLEANCHOP and GRATMOVE, see above)

28

PACS spectroscopy standard data processing

2.7.5.13. specDiffChop

out Frame = specDi ff Chop(i nFrane [, renoveCal Str=True>]
[, normal i ze=Fal se])

This task subtracts every off-source (chopped) signal from every consecutive on-source (chopped)
signal, at the same grating position and in the same scan. The result has one image per one chopper
cycle. Thetask first scans the status LBL and the GRATMOVE mask to determine where the grating
plateaux are and what the chopper pattern within these plateaux is (a variant of ABAB or ABBA).
Then it creates an array of al frame indices which need to be subtracted from each other, and the total

number of framesin the result. Then for each result frame it computes/stores the following:

Thesignal difference A-B, which may be normalised by setting the "normalize" option to true, when
rather (A-B)/(2* (A+B)) is computed.

Masks are merged with the OR operator. (Also, when one of the signals is masked then the mask
istransferred to the resulting frame).

The RA/Dec and WAVE of the ON position are stored in the result.
The Noise is propagated from both A and B noise.

The ON reset indicesare stored inthe RESETINDEX status column and the OFF reset indicesin the
OFF_RESETIDX column. In thisway users can check which frames the algorithm has subtracted
from which.

The ON and OFF LBL values of the original Status tables are merged into a new Int2d column
LBL2.

All other status columns are taken from the ON position frames.

The following may be old:

The task follows the scheme:

data with no DecMec running sequence are skipped (?)

the values of the columns CALSOURCE are read in the Status table to identify the consecutive
calibration blocks 1 and 2

consecutive calibration blocks are subtracted

awarning message appearsif the calibration blocks have different lengths or if one of the calibration
block isincomplete; in the latter case the calibration block isignored

the values of the columns CHOPPERPLATEAU are read in the Status table to identify the on#off
images (consecutive chopper positions)

for every couple of on#off images, the off-image is subtracted from the on-image; in case of an
asymmetric chopper cycle (an odd number of chopped images) the last image is skipped

for every pair of ON and OFF chopper positions the noiseis computed :
noise [X,y,K] = SQRT(noise[X,y,pON]**2 + noise[x,y,pOFF]*+2)

k : ON#OFF pair

pON : Plateau ON chop

pOFF : Plateau OFF chop (in general pON + 1)

The Statusentrieswith different values over the chopper plateau length are modified with thefollowing
scheme:

29

PACS spectroscopy standard data processing

» RESETINDEX: counter

« OBSID, BBID, FINETIME, CPR, CRDC, CRDCCP, DBID, DMCSEQACTIVE, CALSOURCE,
BAND, BBTY PE, BBSEQCNT: on-source value

* WPR: value of the beginning of the chopper plateau

e RESETCNT, BLOCKIDX, CHOPPERPLATEAU, RCX, PIX, BOLST, BSID, LBL, TMP1,
TMP2, VLD: removed

» DithPos, OnRasterCounts, Off RasterCount, others : on-source value

2.7.5.14. rsrfCal

out Frame = rsrfCal (i nFrame [, cal Tree=<nycal Tree>] [,rsrfRl=<cal fil e>]
[,rsrfB2B=<cal file>] [,rsrfB2A=<calfile>] [,rsrfB3A=<calfile>]
[, normal i se=<nunber>] [, copy=<nunber>])

This task corrects for the wavelength-dependent response of the system as mapped in the Relative
Spectral Response Function. Per band, it reads the RSRF calibration file; normalised the RSRFs over
the prime key wavelengths of the band; loops over all pixels and interpolates the normalised RSRF
to the wavelengths sampled in those pixels; divides the signal by the interpolated response. copy is
asfor all other tasks and nor mal i se isan integer, 0 to not normalise to the key wavelength, 1 (the
default) to normalise.

Calibration files used: rsrfB2B, rsrfR1, rsrfB2A, rsrfB3A, one calfile per pixel, containing the wave-
length/response. Either specify cal Tr ee or the particular calfilesto use.

2.7.5.15. specRespCal

out Frame = specRespCal (i nFrane [, cal Tree=<nycal Tree>] [, responseDrift=<product >]
[, csResponseAndDar k=<pr oduct >] [noni nal Response=<cal fil e>]
[, copy=<nunber >])

This task divides by the best known and most recent responsivity values. The optional inputs r e-

sponseDri ft and csResponseAndDar k are the products that were created by the tasks spec-
FitSignal Drift and specDiffCs. If you did not (or could not) run those tasks, then this will still work
but will take standard calfile values for its work, rather than those worked out from the dataset you
are working on.

Calibration file used: nominal Response, containing the nominal response values. Either specify this
orthecal Tr ee.

2.7.5.16. specAddNod

out Frame = specAddNod(i nFrane [, useWei ght edMean=<i nt eger >])

At present this task does not use masks, but that will change in the future.

Thistask combines the nod positionsfor achop#nod observation. It adds every upscan on nod A to the
subsequent upscan on nod B. It retainsthe pointing and chopper positionsof nod A. It then doesexactly
the same for the downscans. By default it combines using a non-weighted mean, i.e. it combines the
average of nod A and B of each nod cycle, separately, it does not average the grating up and downscan
(i.e. these are retained as separate time-lines). If there is an error array present it is added to as the
standard deviation of the mean. If you want to use the error-weighted mean and you have an error
array to do that, then specify the parameter useVei ght edMean, with value >0 (value=0, the defaullt,
corresponds to using the standard mean), at the same tme the error array is propagated accordingly.

Warning: before running this task you should check that the nod A and nod B for the opposite chops
are actually really pointing at the same place on the sky (by overplotting the signal from a spaxel/pixel
for e.g. chop-nodB and chop+nodA and seeing if they are the same). As of Nov 2009 we have rarely

30

PACS spectroscopy standard data processing

found that these pointings are exactly the same. Depending on what you want to get from the data, a
dight offset may not be important, but if it is then you should not run this task; rather you will need
to separate the data of nod B and A and treat them separately until you create the cube: how you then
combine the nods is something we have still not fully established.

2.7.5.17. specFrames2PacsCube

2.7.6.

cube = specFranmes2PacsCube(i nFrane)

Thistask convertsaframeto afully calibrated, oversampled 5x5xn PacsCube, which isthe end of the
Level 1 stage. The cube dimensions are 5x5xlambda, where within each spaxel al the spectra of the
16 modules that contribute to that spaxel. It does ho manipulation of the spectra.

War ning: Asof Nov 2009 you should consider these cubesto be of "browse", not astronimical quality
asthe spatial calibration (and hence pixel—spaxel combining) is still incorrect.

level 1 to level 2

The generation of Level 2 data products starting from Level 1 productswill be dependent onthe AOT.
The AQTs for which the pipeline tasks will work are:

* Line spectroscopy
 pointed: chop/nod or wavelength switching
« pointed with dither: chop/nod or wavelength switching
« mapping: chop/nod or wavelength switching
* Range spectroscopy
* pointed: chop/nod
« pointed with dither: chop/nod
* mapping: chop/nod or off-position
* SED Mode
 pointed: chop/nod
« pointed with dither: chop/nod
« mapping: chop/nod or off-position

This information will most certainly change during and after PV phase.

2.7.6.1. wavelengthGrid

grid = wavel engt hGri d(pacsCube [, over sanpl e=<nunber >]
[, upsanpl e=<nunber >] [, cal Tree=<nycal Tree>])

This task calculates the wavelength bins for your dataset, which are dependent on the actual wave-
lengths present and the requested over sanpl i ng factor (the default value of which is 2.0; type:
double, and can be sub-integer in value). upsanpl e (type: double) is how much you shift forward
by when creating the bins; the default value is 3.0 and it can take on values 1.0, 2.0, or 3.0. The grid
created by thistask isaproduct. Note: if you makeover sanpl e >upsanpl e theresulting spectral
binning will be horrible.

The oversample factor is used to increase the number of wavelength bins by the formula
bins* oversampl e, where the number of binsis based on the theoretical resolution of your observation.

31

PACS spectroscopy standard data processing

The upsample factor specifies how many shifts per wavelength bin to make while rebinning. Each
bin is sampled "upsample" times, shifting forwards by 1/upsample. An upsample value of 2 means
sample, shift by binwidth/2, and sample again. In this example, since both samples are the width in
wavelength of the original wavelength bin, the second sample will overlap the next bin.

Note

@ up and oversampling: if you know that a the data series contains no frequencies higher

than X, you know that you don't loseinformation if you (over)sampleit morethan every 1/
(2* X) (Shannon or Nyquist sampling). Y ou may want to sampleit in smaller intervals, e.g.
to verify that there areindeed no higher frequenciesin the data. So in general, you sample
the data every 1/(n*2* X), where n is the oversampling factor. Or, in other words, if you
know the instrumental resolution (FWHM) isdl, you would rebin to wavelength intervals
of width dI/n* 2, where n is the oversampling factor. For practical purposes, rebinning (or
grid making) routines take n* 2 as a parameter (i.e. the width of the bin size as a fraction
of FWHM rather than afraction of half the FWHM).

A spectrum rebinned with an oversampling factor >2 has all the information that isin the
unrebinned spectrum. But if you shift the bins by half a bin width, do the rebinning again,
and plot the data together with the first rebin result, you get a spectrum where spectral
profiles are more clearly recognised, making it easier to see the difference between e.g. a
spectral line and aglitch. Thisis upsampling with afactor 2.

2.7.6.2. specFlagOutliers

cube = specFlagQutliers(cube, grid [,nSi gnma=<nunber>] [, nlter=<nunber>]
[,ignoreMasks=<string>] [, saveStatus=<bool ean>])

This task flags outliers in each wavelength bin and introduces the mask OUTLIERS. It should not
mask data already masked (hence: see below). nSi gma (default value 5.0) isthe sigma value to flag
at, nl t er ishow many repeats (iterations) of the outlier hunting you want to do (default value 1 but 2
would be a better first try value). i gnor eMasks isa Stringld of mask names that you want the task
not to takein to account. Thetask getstheflux and wavelengths, for each spaxel, sortsthewavel engths,
appliesthe masks, cal culates the median and median absol ute deviation of the flux in each wavelength
bin, and clips outliers (+ and -) using that information. saveSt at s set to True (not the default) will
save the median and deviation values calculated as ArrayDatasets attached to the cube.

The activating of masks recommended is

inFrame = activateMasks(inFranme, Stringld(["GI TCH', " UNCLEANCHOP",
- " SATURATI ON', " GRATMOVE", -"BADFI TPI X"]), exclusive = True)

2.7.6.3. specWaveRebin

rebi nnedCube = specWaveRebi n(cube, grid)

Thistask constructs 5x5xlambda data cube which isthe integral field view of the PACS spectrograph.
It rebins the fluxes of the spectra held in each spaxel of the input cube, using the grid constructed by
the wavelengthGrid task. The end result of thistask isacube of 5x5xlambda, where lambda now is of
dimensions on your input grid, and in the course of the rebinning the 16 spectra that were originally
stored in each spaxel have been merged into 1 spectrum per spaxel. By default any masks that are
present are considered, except DEVIATINGOPENDUMMY and OBSWERR.

The activating of masks recommended is

inFrame = activateMasks(inFranme, Stringld(["G.l TCH', " UNCLEANCHOP",
- " SATURATI ON', " GRATMOVE", " BADFI TPI X", "OQUTLI ERS"]), excl usive = True)

2.7.6.4. specProject

proj ect edCube = specProj ect (rebi nnedCube [, out put Pi xel Si ze=<nunber >]

32

PACS spectroscopy standard data processing

[, use_mi ndi st =<bool ean>] [, norm fl ux=<bool ean>]
[, threshol d=<nunber>] [,filter_nans=<bool ean>]
[, debug=<bool ean>] [interacti ve=<bool ean>]

[qual i t yCont ext =<snt hng>])

Thistask projects arebinned cube (the output of SpecWaveRehin) onto aregular RA/Dec grid on the
sky. Thegrid (the corners and dx,dy) will be determined by thetask using the RA and Dec information
in rebinnedCube. Input and output both are SmpleCubes. The parameters are: out put Pi xel Si ze
is the output spaxel side in arcsec (default 3.0); use_mi ndi st tells the task whether it should use
the minimum spaxel distance rather than the average (default False); nor m f | ux (default True) tells
the task whether it should divide by the exposure map to normalise fluxes; t hr eshol d (default 2.0)
is used only if a PacsCube is input, rather than a PacsRebinnedCube, and is the minimum jump, in
arcsec, which triggers a new raster position; fi | t er _nans (default False) if True al frames with
one or more NaN valueswill be discarded; debug (default False) set to Truewill create extra datasets
in the output product for debugging purposes; i nt er act i ve (default False) set to true will produce
several plotswhilerunning; qual i t yCont ext (default None) isonly used in SPG mode.

The task:
1. scans all the RA/Dec values in the input cube and selects (all) the unique scan position(s). Store
for each scan position the frame numbers which match these positions, the RA and Dec and rotation

matrix of the spaxels (method: selectUniquePositions).

2. computes aregular RA/Dec grid which encompasses all the raster positions from the previous step
(method: computeGrid).

3. loops over al raster positions and do for each position the following: i) compute the weights for
projecting the input spaxels to the output grid. These weights determine which input spaxel(s) the
output spaxel(s) overlap and by how much. Theresults are stored in two 3D arrays, one containing the
overlapping modules for each output RA/Dec, and one with their corresponding weights. ii) compute
for each frame at each position in the cube the output fluxes on the new regular grid. Thisis done by
adding up for each spaxel the fluxes of the contributing spaxels multiplied by their overlap weights.

4. Combine the projected images from different raster positions and normalise by dividing with the
sum of the weights of all positions.

5. Write the resulting projection to the output cube.
This task is worth running even if you only have one pointing in your observation because it does
not just add together, or mosaic, multiple pointings, but also sets the correct spatial grid for each

wavelength of your cube. For the PACS spectrograph, each wavelength seesadlightly different spatial
position, even for spectrawithin asingle spaxel.

2.7.6.5. 3dDrizzling

Sill to come

dri zzl edCube = 3dDri zzl i ng(cube)

More to come.

2.7.7. SPG Pipeline chart

Note: these are updated |ess frequently than the text

33

PACS spectroscopy standard data processing

2.7.7.1. color coding

PACS spectroscopy standard de

Color coding:
input/output object:

(>

Available method:

Prototype method available:

_— Method not yet available:

PACS spectroscopy standard data processing

2.7.7.2. from raw telemetry to level O

From raw data to ley

1) Level
SPU m

eRaw rar

*Average
oFitted re

sstatus: I

DPU/SPU/DB
Raw Telemetry

getConverted Measures(["]

Pm:ketﬂT

DataFrameSequence

PACS spectroscopy standard data processing

2.7.7.3. from raw telemetry to level O

From raw ¢

PointingProduct

Data

PACS spectroscopy standard data processing

2.7.7.4. from level 0 to level 0.5

from level 0 to level 0.

2 SPU reduction methoc
saveraged sub-ramps
sfitted slopes

Ramps

—

compareRawWithReducedData

quality check of onboard reduction

F— 1
:ﬁ_ﬂmﬂﬁﬂﬂ% !
| E————— e '
—3—1—51—1—5[—1—3—5!&—5—1—1—].—1-1{-5—-

=

flagDeviatingOpenDummyRamps
flag modules if deviating open/dummy :
ramps show up, quality check
specFlagGlitchRamps —oitehhreshatd—

I

PACS spectroscopy standard data processing

2.7.7.5. from level 0 to level 0.5

from level 0 to level 0.5
flagging/adding of information

==
| ot g
| i
| i
e
[B

PACS spectroscopy standard data processing

2.7.7.6. from level 0.5to level 1

from level 0.5 to level 1

Calibrations on Frames inc
start of slicing of Frames a

level 0.5 Frames

PACS spectroscopy standard data processing

2.7.7.7. from level 0.5to level 1

from level 0.5 to level 1

Combinations of Frames dependei
Available AORs result in 4 different pi
1) Chopping + staring (Line/Range Sc
2) Chopping + dithering or mapping (
3) no chopping + mapping with OFF(
4) wavelength switching + mapping ->

Chopping AORs (1+2) Wave ¢

Applies .
active

masks

responseDrift

PACS spectroscopy standard data processing

2.7.7.8. from level 1 to level 2

from level 1 to level 2
Data cube building dependei

Lev

Chop/Nod and
off-mapping

Applies active masks

Aiilies active masks

PacsRebinnedCube

(based on SimpleCube)
5x5 spectra cube per pointing y

Level 2

PACS spectroscopy standard data processing

2.7.8. Appendix: Spectrometer Flux Calibration Con-

cept

In the sections below we outline the spg steps necessary to get to absolutel flux densities. We briefly
outlinethe overal flux calibration concept for PACS spectroscopic observations. Thisinformation will
probably change afer PV phase.

A PACS spectroscopic observation typically consists of the following sequence:

* Internal cal source measurement: short grating scan around a key wavelength in the band observed.
At every grating position the chopper is moved to the two calibration sources.

» At Nod position A: grating scan up (increasing wavel engths) over the desired wavelength range. At
every grating position the chopper moves between the source (S) and the background (B).

» At Nod position A: grating scan down (decreasing wavelengths) over the desired wavel ength range.
At every grating position the chopper moves between the source (S) and the background (B).

» At Nod position B: (nod position is choosen such that the source is in the previous background
position inthefield of view). grating scan up (increasing wavelengths) over the desired wavelength
range. At every grating position the chopper moves between the source (S) and the background (B).

» At Nod position B: grating scan down (decreasing wavel engths) over the desired wavel ength range.
At every grating position the chopper moves between the source (S) and the background (B).

The signal we measure during the different sky grating scans is the following:
* NodA/chopl:Al1=R[T1+S+B]

* NodA/chop2:A2=R[T2+B]

* NodB/chopl:B1=R[T1+B]

* NodB/chop2:B2=R[T2+S+B]

with R the system response at the observed wavelength, T1 the flux from the tel escope thermal back-
ground at chop position 1, T2 the flux from the telescope thermal background at chop position 2, S
the flux from the source, and B the flux from the sky background.

In order to get the flux from the source from A1, A2, B1 and B2, we calculate:
[A1-A2]-[B1-B2]=R[T1+S+B-T2-B-T1-B+T2+S+B]=2RS

The SPG stepstherefore differentiate the scans at the on/off chopper position in the two nod positions,
and then differentiate between the two nod positions.

Obvioudly, only signals sampled at the same wavelength can be differentiated. Per grating position
there are typically a few signals on source and a few signals off source. There are two extreme ap-
proaches to subtracting these.

The extreme reduction approach would be to average the signals on source, average the signals off
source and subtract the two averages. If we have 4 samples per grating position, thiswould reduce the
size of the Frames dataset by afactor 8 after the chopper plateau subtraction, and a factor 16 after the
nod subtraction. A noise filter could be applied before averageing, but the redundancy in the data is
low at this point, so the filter needsto be conservative.

The other extreme is to subtract every off-source signal from every on-source signal. In the case of
4 samples per grating position, this increases the size of the Frames dataset by a factor of 2 after
the chopper plateau subtraction, and a factor of 16 after the nod subtraction. The advantage of this

42

PACS spectroscopy standard data processing

approach is that the noise filter / rebinning can be applied at alater stage, when combining data from
several scang/observations, over wavelength bins that are tuned to the instrument resolution.

The pipeline steps alow to choose between these two extreme approaches, and different flavoursin-
between (e.g. average the signals of the off positions only). For practical reasons, we therefore cal-
culate [Al - A2] + [B2 -B1], i.e. we aways subtract off source from on-source and co-add the two
nod positions.

Theresponse R is disentangled in arelative wavel ength-dependent component which is stable and an
absolute flux scaling to correct for detector drifts. The wavelength dependent response is determined
per detector in the Relative Spectral Response Function (RSRF). As to get the absolute scale of the
response, the differential signal of the internal cal source measurement at a key wavelength can be re-
lated to the same differential signal in calibration observationswhen celestia calibrators are observed.
The differential calibration source signal measured in the observation is looked up in a calibration
table and gives the conversion from Volts/Sec to Jansky.

43

Chapter 3. PACS Photometry
standard data processing

3.1. Introduction

This chapter describes the standard processing steps for the different photometry observation modes
of the PACS instrument. For every step it gives a rough algorithm (optimizations of complexity are
beyond the scope of this document) and calibration tables that are needed as input. The different
intermediate conceptual formats of the PACS photometry data throughout the reduction are described
aswell.

3.2. Definition of terms

3.3. Summary of the Photometry processing
steps

We summarize here the basic steps of the PACS photometry data reduction. The aim of this chapter
isto explain the user how to reduce the PACS photometry data starting by different "Level Product".
We assume here that the user isfamiliar with the concept of the " ObservationContext". So we assume
that the user will start the data processing by accessing different levels of data Productsin her/hislocal
store. Under these assumption the basic steps of the data processing starting from Level 0 Products
are the following:

1. accessthelocal storeand retrieve the Frames of agiven observation and the rel ated pointing product

2. identify the structure of the observation and identify the main block (Calibration and Science
blocks)

3. pre-process the calibration block and extract useful information for the further calibrations

4. perform data cosmetics: flag bad/saturated pixels and flag/correct cross talk and glitches

5. convert signal from digitsto volts

6. covert chopper position from engineering units into angle

7. satellite pointing info are added to frames (sky coordinates of reference pixel for each readout)

8. the astrometry is calculated on the basis of spatial calibration files (spatia distortions are taken
into account)

9. in case of chopped observation the chop-nod cycle is reduced to remove sky and telescope back-
ground

10.theflat field and flux calibration are applied and corrected for possible drifts
11.The spacecraft on-board time is converted to UTC
12.in case of scan map observation, the signal is filtered to remove 1/f noise

13.A stack/mosaic of framesis constructed

PACS Photometry standard data processing

3.4. Processing levels

There is a Herschel-wide convention on processing levels of the different instruments. Here we list
the content and the properties of the different Product Level for the PACS Photometry mode.

* Raw Telemetry : Thisisthe format of the raw PACS photometry data. The telemetry file is com-
posed of telemetry packets produced by the instrument in the course of the observation. These data
are pre-processed and compressed on board of Herschel. For pre-processing we mean asimple av-
eraging any 4 readouts for a final sampling of 10 Hz. This data product will not be visible in the
pipeline processing and it will not be delivered to the end user.

» Decompressed Science Data :

This is an "artificial level". The data are not stored and not visible for general user. But in the
interactive step by step data analysis the data product can be analyzed for debugging purposes.

Telemetry data as measured by the instrument, minimally manipulated and stored as Data Frames.
For PACS photometry, this level is stored/manipulated in a DataFrameSequence : a sequence of
PACS dataframes, which are decompressed SPU buffers.

Wheat iscontained in every decompressed SPU buffer depends on the SPU reduction mode. Typical-
ly there are several reduced readouts for every active detector (averaged detector signals), 40Hz or
20Hz readouts for a few selected pixels and mechanism/status information sampled at 40Hz/20Hz
by the DecMec, the so-called DMC Header.

» Level O data:

Level O datais a complete set of data requested to do the scientific data reduction. It issaved in a
Level 0 DataPool inform of Fitsfiles. After Level 0 datageneration no connection tothe Databaseis
possibleany more. Therefore Level 0 dataneed to contain all information needed from the Database
(e.g. uplink information).

* Science data

Science data are organized in user friendly classes. The Fr ames class for reduced data and the
Phot Rawclassfor additional raw channel datawill bethe basic data productsfor thisprocessing
steps. The so-called Status table of the Frames class stores the info carried by the DMC header
which are necessary for the data reduction (chopper position, identification of internal calibration
observation and scientific observations).

e Auxiliary data

Auxiliary data for the time span covered by the Level 0 data, such as the spacecraft pointing
(attitude history), the time correlation, selected spacecraft housekeeping, etc

Theinformation is partly merged as status entriesinto the basic science classes Frames and Pho-
tRaw or available as Products (Pointing)

¢ Decoded HK Data
HK data Tables with converted and raw HK values.

 Calibration files and data of 'associated' observations - e.g. photometric checks or other Trend
Analysis results taken throughout the operational day or even before (till to be clarified!).

* Level 0.5data:
Processing until Level 0.5is AOT independent These data are saved in the Product Pool.

On this Level additional information is added to the Frames class (Flags for Saturation, Flags Bad
Pixel, BlockTable,...) and basic unit conversion are done (digital valuesto Volts, chopper angle).

45

PACS Photometry standard data processing

* Level 1 data:
Level 1 datagenerationis AOT dependent. Level 1 data are saved in the Product Pool.

Detector readouts calibrated, converted to physical units and grouped into blocks. For PACS pho-
tometry this is a data cube with flux densities with associated sky coordinates. Mostly every step
before actual Image construction is done.

TheFranes or FranmesStack classwill bethebasic Level 1 product of photometer data

Possibly the Level 1 data generation can be done automatically to alarge extend after theinstrument
has been calibrated.

* Level 2 data:
Further processed level-1 datato such alevel that scientific analysis can be performed.

The noiseisfiltered and the map is reconstructed with different methods/al gorithms depending on
the AOT mode.

For optimal results many of the processing steps involved to generate level-2 data may require
human interaction, based both on instrument understanding aswell as understanding of the scientific
aims of the observation.

Theresult is an Image Product.

e Level 3 data:

These are the publishable science products where level-2 data products are used as input. These
products are not only from the specific instrument, but are usually combined with theoretical mod-
s, other observations, laboratory data, cataloguers, etc. Their formats should be VO compatible
and these data products should be suitable for VO access.

3.5. Imports

To be able to execute the commands in this document, you need to import the necessary java classes
and jython toolboxes:

>> fromall inport *

3.6. Used Masks

The following Masks are used by default during Pipeline processing, additional masks can be added
by the user when necessary:

BLI NDPI XEL -: Pi xel masked out by the DetectorSel ectionTable (already in Level 0)
BADPI XEL -: Bad Pixel masked during pipeline processing

SATURATI ON -: Saturated Readouts

GLI TCH -: Gitched Readouts

UNCLEANCHOP -: Fl agging unreliable signals at the begin and end of a ChopperPl at eau

All the masks created by the pipeline are 3D masks. This is true even for the cases when it is not
necessary such asin the BLINDPIXEL, BADPIXEL and UNCLEANCHOP masks. Moreover al the
masks are boolean: unmasked pixels are saved as FAL SE and masked pixels are saved as TRUE. Be
careful that the Datasetlnspector in jide and the Editor in hipe are not able to properly transform a
boolean mask into integer mask. Due to this bug, the table shown by the jide Datasetl nspector and the

46

PACS Photometry standard data processing

hipe Editor for each mask has wrong dimension. Only the MaskViewer is able to properly display the
masks (see section 10.6.6.2 for details about the use of the MaskViewer).

3.7. Level Oto Level 0.5

We assume that the reader is starting the data reduction from Level 0 Products. Tasks and procedures
related to creation of pools from telemetry files or from database need a deeper knowledge of the
system and are included at the end of this chapter. The PACS Photometer pipeline is composed of
tasks written in java and jython. In this section we explain the individual steps of the pipeline up to
Level 0.5. Up to this product level the data reduction is AOT independent. The only AOT dependent
task executed in this part of the data reduction is the CleanPlateau task, which is executed only for
chopped observations (Point-Source, Small source and Chopped Raster AOT).

3.7.1. Getting started: how to retrieve data in the Ob-
servation Context

We assumethat the reader got atar file containing all the chosen observations and associated datafrom
the HSA. Unpacking thistar file should automatically create a'so called' local store with one or more
pools. Any pool contains a number of directories containing data products of different level (Level
0,1,2) and calibration files for each observation. A special pool contains the Auxiliary products with,
in particular, the Pointing and the SIAM products which are needed for the astrometric calibration.
We list here few commands that need to be executed to retrieve a given observation from a pool and
start the data reduction:

| store Local StoreFactory. get Store("test_pool ")

store Pr oduct St or age()

store.register(lstore)

result = browseProduct (store)

#in alternative

quer y=Met aQuer y(Cbservati onContext,'h',"' h. neta["obsi d"].val ue == 3221226006l ")
resul t =store. sel ect (query)

The first three commands listed in the window above access and register a test pool (“test_pool™).
The fourth command calls the Product Browser to inspect the content of the Observation Context and
choose a given observation. We refer the reader to Chapter 12.1.10 for a detailed description of the
Product Browser and its use. The observation chosen in the Product Browser is, then, stored in the
variable "result". In aternative, if the content of the pool is already known, we can query a particular
observation on the basis of its OBSID, which isauniqueidentification number. Theresult of the query
is, then, stored in the result variable as done in the case of the Product Browser.

obs=resul t[0] . product

frames=obs. | evel 0. ref s["HPPAVGB"] . product . ref s[0] . pr oduct
hkdata = | evel 0. refs["HPPHK"] . product . refs[0]. product["HPPHKS"]
pp=obs. auxi |l i ary. poi nting

cal Tree = getCal Tree("FM', -"BASE")

After selecting our favorite observation, we can store a given product (Level 0, 1 or 2 if they exist in
the considered pool) inthe "obs" variable, as shown in the first command in the window above. In our
example we sdlect all the information relative to the Level 0 product to start with the first step of the
data processing. The second command selects the frames of the Blue bolometer and store them in the
variable "frames'. The string "HPPAVGB" needs to be changed to "HPPAVGR" to select products
of the Red bolometer. The frames class is composed of a data cube containing all the readouts of
our observation, the so-called Status table with several entries for each readout, the BLIND-PIXEL
mask and several metadata. With asimilar syntax we storein the"hk" variable several House Keeping
values of our observation. This variable will be used directly in the next step of the data reduction.
Thisinfo is needed for the further data calibration. The last two commands store the Pointing Product
in the variable "pp" and the Calibration Tree in the cal Tree variable.

47

PACS Photometry standard data processing

3.7.2.

The second step, understanding what there is

in the observation: findBlocks (jython prototype avail-

able)

>> out Frames = findBl ocks(i nFranes)

Franmes out
Frames in

Franmes -:
Franmes -:

out Franes -:
inFranes -:

Thistask isnot essentia for the datareduction. We can reduce the data even without executing the task
findblock. However, we suggest to execute thistask just after getting the datato understand what there
isinthe dataset. Theresult of thistask isatable, called BlockTable, containing info about the structure
of the observation: how many calibration blocks were executed during the observation, how many
chop-nod cycles or scan legs are contained in the data, etc. Basically, the BlockTable summarizes per
observation block several info aready contained, per readout, in the Status Table. Thisinfo can help
us in checking if the data contains the observation as we have designed it, to select just part of the

observation for a preliminary data reduction, to slice the data as we desire, etc.

Obcp DMSActive | ChopperPlateau | CalSource Filter Startldx Endldx Mrldx
0 0 0 0 1 0 152 152 0.0
4 1 0 2 0 142 4562 270 0.0
4 0 0 0 0 452 505 43 0.0
0 0 0 0 0 505 S46 41 0.0
3 1 I 0 0 546 743 157 0.0
3 1 E| 0 0 743 G943 200 0.0
3 1 5 0 0 943 1143 200 0.0
3 0 0 0 0 1143 1192 49 0.0
0 0 0 0 0 1192 1455 263 0.0
3 1 1 0 0 1455 1634 1789 0.0
3 1) 0 0 1534 1834 200 0.0
3 1 5 0 0 1534 2034 200 0.0
3 0 0 0 0 2034 2081 47 0.0
0 0 0 0 0 2081 2142 Bl 0.0
3 1 1 0 0 2142 2335 193 0.0
3 1 3 0 0 2335 2535 200 0.0
3 1 5 0 0 2535 2735 200 0.0
3 0 0 0 0 2735 2788 53 0.0
0 0 0 0 0 2788 3031 243 0.0
3 1 1 0 0 3031 3226 185 0.0
3 1 3 0 0 3226 3426 200 0.0
3 1 5 0 0 3426 3626 200 0.0
3 0 0 0 0 3026 3656 30 0.0
Figure3.1.

Thefigure above shows a BlockTable example for achopped observation, in particular a point-source
AQT. The main ingredient of the BlockTableisthe OBCP/DMC number (first column in the example
above). This number identifies what PACS photometer is doing for a given time, that is between the
time indexes Startldx and Endldx of our observation. A verbal translation of the OBCP/DMC number
isgivenintheldand Description columns. For instance, we can easily seein which part the observation
the calibration block was executed (id="PHOT_CHOP_CS"), or when the PACS photometer is prepar-
ing itself fo the next command (Id="OBCP and DMC preparation” or |d="Undefined") and when the
real scientific dataare taken and thefirst chopper sequenceisexecuted (Id="PHOT_CHOP_TRG_1").
Satellite pointing information/mode (staring, nod-position A or B, raster point M-N, scan leg number,
tracking, hold position, etc.) can also be included in the BlockTable if findBlockd is executed after
the execution of the AddlnstantPointing task which adds the pointing information to the frames class.

48

PACS Photometry standard data processing

Typical AOT observations might contain several OBCPs and some of the OBCPs might be executed
many times within one AOT observation (as in the example above). A block contained in a given
OBCP/DMC sequence might correspond to different labels. In some cases a change in label does
not necessarily mean a change in chopper position, e.g. see below, block 2 in OBCP 04 "chopper
photometry sequence on target” can havelabels 1,3, and 5. Here, labels 3 and 5 correspond very likely

to the same chopper position.

We list here the OBCP/DMC sequences and the blocks associated to them (taken from PACS-ME-

L1-005, Issue 1.1, 08-Mar-2005) :

OBCP 01: Bolometer transition to IDLE state ---> no DM C sequence, no blocks

OBCP 02: Bolometer operation for unregulated state ---> no DM C sequence, no blocks

OBCP 03: Fixed-Fixed Chopped Photometry ---> DM C sequence 14 blocks:
e OBCP and DMC preparation (label undefined, 0)
« first chopper sequence on target (Iabels 3,5)

 second chopper sequence on target (labels 7,9)

third chopper sequence on target (labels 11,13)

« DMC and OBCP Reset (label 0, undefined)

OBCP 04: Chopped Photometry ---> DM C sequence 1 blocks:

e OBCP and DMC preparation (label undefined, 0)

 chopper sequence on target (labels 1,3,5)

 chopper sequence on CSs (labels 65,129)

» DMC and OBCP Reset (label 0, undefined)

OBCP 05: Chopped Photometry with Dither ---> DMC sequence 2 blocks:
¢ OBCP and DMC preparation (Iabel undefined, 0)

» chopper sequence on target (labels 1,3,5)

 chopper sequence on CSs (labels 65,129)

e DMC and OBCP Reset (label 0, undefined)

OBCP 06: Freeze Frame Chopping Photometry ---> DM C sequence 4 blocks:
* OBCP and DMC preparation (label undefined, 0)

« freeze frame sequence on target (label 63)

* DMC and OBCP Reset (label 0, undefined)

OBCP 07: Staring Photometry for Line Scans ---> DM C sequence 3 blocks:
« OBCP and DMC preparation (label undefined, 0)

 staring sequence on target (Iabel 1)

» DMC and OBCP Reset (label 0, undefined)

OBCP 08: Grating Spectral Line Scan Chopped ---> DM C sequence 8 blocks:

49

PACS Photometry standard data processing

¢ OBCP and DMC preparation (Iabel undefined, 0)

« chopped up-scan sequence on target (labels 3,5,7)

« chopped up-scan sequence on CSs (labels 65,129)

« chopped down-scan sequence on target (labels 19,21,23)
 chopped down-scan sequence on CSs (labels 81,145)

« DMC and OBCP Reset (label 0, undefined)

OBCP 09: Grating Spectral Line Scan Chopped with Dither ---> DMC sequence 9 blocks:
* OBCP and DMC preparation (Iabel undefined, 0)

« chopped up-scan sequence on target (labels 3,5,7)

« chopped up-scan sequence on CSs (labels 65,129)

« chopped down-scan sequence on target (labels 19,21,23)

« chopped down-scan sequence on CSs (labels 81,145)

« DMC and OBCP Reset (label 0, undefined)

OBCP 10: Photometry Calibration | ---> DM C sequence 5 blocks:

e OBCP and DMC preparation (label undefined, 0)

« variable-variable chopped sequence on CSs (labels 65, 129)

* DMC and OBCP Reset (label 0, undefined)

OBCP 11: Photometry Calibration Il ---> DMC sequence 6 blocks:
* OBCP and DMC preparation (label undefined, 0)

« fixed-variable chopped sequence on CSs (labels 65, 129)

» DMC and OBCP Reset (label 0, undefined)

OBCP 12: Photometry Calibration 111 ---> DM C sequence 7 blocks:
¢ OBCP and DMC preparation (Iabel undefined, 0)

« fixed-fixed chopped sequence on CSs (labels 65, 129)

» DMC and OBCP Reset (label 0, undefined)

OBCP 13: Internal Calibration Spectroscopy ---> DM C sequence 11 blocks:
¢ OBCP and DMC preparation (Iabel undefined, 0)

 chopped up-scan sequence on CSs (labels 65,129)

 chopped down-scan sequence on CSs (labels 81,145)

* DMC and OBCP Reset (label 0, undefined)

OBCP 14: Acquire Non-Sequencer Science Data ---> no DM C sequence, no blocks

OBCP 15: DMC Test Mode ---> no DM C sequence, no blocks

50

PACS Photometry standard data processing

OBCP 16: Switch Spectroscopy to Photometry ---> no DM C sequence, no blocks
OBCP 17: Switch Photometry to Spectroscopy ---> no DM C sequence, no blocks
OBCP 18: Prepare for Switch-off ---> no DM C sequence, no blocks

OBCP 19: Start 1355 link ---> no DM C sequence, no blocks

OBCP 20: Write in EEPROM ---> no DM C sequence, no blocks

OBCP 21: Start HLSW ---> no DMC sequence, no blocks

OBCP 22: Wavelength Switch Grating ---> DM C sequence 10 blocks:

e OBCP and DMC preparation (label undefined, 0)

« first grating switch sequence (1abel 33)

 second grating switch sequence (label 97)

third grating switch sequence (label 161)

» DMC and OBCP Reset (label 0, undefined)

OBCP 23: Ge:Ga Set-up ---> no DM C sequence, no blocks

OBCP 24: Switch to SAFE ---> no DMC sequence, no blocks

OBCP 25: Time Synchronisation Test 1 ---> no DMC sequence, no blocks
OBCP 26: Time Synchronisation Test 2 ---> no DM C sequence, no blocks
OBCP 27: Grating Line Scan Chopped 2 ---> DMC sequence 12 blocks:

¢ OBCP and DMC preparation (Iabel undefined, 0)

 chopped up-scan sequence on target (labels 3,5)

« chopped up-scan sequence on CSs (labels 65,129)

« chopped down-scan sequence on target (labels 19,21)

 chopped down-scan sequence on CSs (labels 81,145)

 DMC and OBCP Reset (label 0, undefined)

OBCP 28: Grating Line Scan Without Chopping ---> DMC sequence 13 blocks
* OBCP and DMC preparation (label undefined, 0)

e up-scan sequence on target + CSs (labels 3,65,129)

« down-scan sequence on target + CSs (labels 19,81,145)

« DMC and OBCP Reset (label 0, undefined)

OBCP 29: Generate dummy science packets ---> no DM C sequence, no blocks
OBCP 30: SPU test mode SPEC ---> no DM C sequence, no blocks

OBCP 31: SPU test mode PHOT ---> no DMC sequence, no blocks
OBCP 32: BION ---> no DMC sequence, no blocks

OBCP 33: OBMO ---> no DMC sequence, no blocks

51

PACS Photometry standard data processing

3.7.3.

» OBCP 34: ACWE ---> no DMC sequence, no blocks

Pre-processing of the calibration blocks

In the current observation design strategy a calibration block is executed at the beginning of any
observation. It is possible that in the future the current design will be changed to include more than
one calibration block to be executed at different times during the observation. In order to take into
account thispossible change, the pipelineincludesasavery first step apre-processing of thecalibration
block(s) that is planned to work under any possible calibration blocks configuration. The calibration
block pre-processing is done in three steps:) the calibration block(s) isidentified and extracted from
the frames class, b) it is reduced by using appropriate and pre-existing pipeline steps, c¢) the result
of the cal block data reduction is attached to the frames class to be used in the further steps of the
data reduction.

3.7.3.1. photCSExtraction

Thisisthefirst step of the calibration block pre-processing. Thistask identifiesthe calibration block(s)
of the given observation and it storesit in an additional Product class (csbasket example below). The
input frames remain unchanged.

>> cshasket = phot CSExtracti on(Franmes i nFranes)

csbasket -: Phot TrendProducts -: |ist of frames containing calibration bl ocks. One
bl ock per frame
i nFrames -: Franes -: Frames in

PhotTrendProducts contains two kinds of container : the first one gathers frames related to the cali-
bration blocks, second one keeps compiled housekeeping information for the further trend analysis.
Here is some useful command to explore this product :

print csbasket.cs -: PhotCSProducts is a list of frames and gi ve an overvi ew of
the cs bl ocks
print csbasket.cs.get(0) -: Franes conatins information on the first calibration

bl ock (index 0)
print csbasket.trend -: Phot TrendProducts is a |list of PhotTrendProduct. This
product is avail able after Phot CsProcessing task execution

-"print" gives a summary of the avail abl e commands and an
overview on all calibration bl ocks
print csbasket.trend. get(0) -: PhoTrendProduct contains conpiled hk information on
the first cs block (index 0)
print csbasket.trend. get(0).cslTenperature is an average of the tenperature of csl
print csbacket.trend. get(0).cs2Tenperature is an average of the tenperature of cs2
print csbasket.trend. get(0).cs1lCpr is an average of the chopper position on csl
print csbasket.trend. get(0).cs2Cpr is an average of the chopper position on cs2
print csbasket.trend. get (0).cslTenperat ureStdDev
print csbasket.trend. get (0).cs2Tenper at ur eSt dDev
print csbasket.trend.get(0).nmode {"Direct", -"DDCS"}
print csbasket.trend. get(0).bias average of Vh-V in Volt
print csbasket.trend.get(0).gain {"high","low'}
print csbasket.trend.get(0).startTine finetine at the begi nning of the calibration
bl ock
print csbasket.trend. get(0).endTine finetine at the end of the calibration block

Please see also Trend chapter.

3.7.3.2. photCSProcessing

Once the calibration block isidentified and stored in a proper frames class the calibration data can be
reduced. The input of thistask are the product containing the calibration block (csbasket of previous
task), the House Keeping (hkdata as in section 7.1). The output of the task is the differential image
of the two calibration sources plus several House K egping values extracted from the hkdata variable.
Those info are necessary to correct any drift in the flat-field and flux calibration (see sections related
to this tasks for more details).

>> out CsBasket = phot CSProcessi ng(i nCsBasket, hkdata[, cal Tree=cal Tree]
[,sigclip=True| Fal se][, nsgi ma=n][, quality])

52

PACS Photometry standard data processing

i nCsBasket -: Phot TrendProducts -: list of raw calibration blocks -- the result
of the nodul e phot CSExtraction
out CsBasket -: Phot TrendProducts -: |ist of processed frames containi ng
cal i bration bl ocks.
hkdat a -: Tabl eDat aset -: housekeeping informati on extracted fromthe
observation cont ext
cal Tree -: CalibrationTree -: calibration tree with current calibration
product s
sigclip -oint -
0 -- sigma clipping is disable
1 -- sigma clipping is applied on the calibration blocks
nsi gma -: double -: if sigclip is activated nsigma gives the maxi mum standard

devi ation authorized. Pixels out of range are flagged

in DCsMask dataset and excluded from noi se conputation (DCsNoi se) --
This operation is done by PhotCSDi ff task.
quality -: QualityContext -:

Sincethe calibration block is nothing el se than a chopped observation, the calibration data are reduced
in analogy to the Point-source data. Thus, this module call all the remaining tasks described in the
current section up to level 0.5 and few specific tasks of the Point-source pipeline between level 0.5
and 1. We list below the tasks called in the execution of this module:

- photFlagBadPixels adds badpixel mask to the frames

- photFlagSaturation adds a mask containing pixels saturated according to the bolometer settings.
- photConvDigit2V olts converts the calibration block signalsinto Volt

- photCorrectCrossTalk corrects the crosstalk of each pixel

- photM M TDeglitching flags/removes glitches found in the signal

- photCleanPlateau identifies chopper plateau at the calibration source

- photAvgPlateau cal cul ates the average of each plateau

- photCSDiff calculates the differential image of the two calibration sources CS1-CS2, in addition it
collects the housekeeping data relative to the calibration, such as gain and bias settings of the obser-
vation. blocks

Output : after the execution of this task each frames stored in csFrames contains five more pieces
of information :

DCs differential image of the calibration sources (CSl-CS2)

DCsNoi se noi se i mage of the CS1-CS2 subtraction

DCsTabl e a Tabl eDat aset cont ai ni ng housekeeping data relative to the calibration
bl ocks

DCsMask a mask of the pixel always masked in the calibration bl ocks

DCsCoverage a wei ght pixel image

We point out that DCs, DCsNoise, DCsTable, DCsMask are used by photDriftCorrection moduleonly.

photCSDiff (photDiffCal former task)

Among the tasks used for the reduction of the calibration block and listed above, only photCSDiff is
specifictothiscase. All the other taskswill be described in the point-source and small-source pipelines.
Here we describe what thistask is doing in detail.

photCSDiff adds a TableDataset named DCsTable to the frame. For each calibration block encoun-
tered new rows is added to the table. Each column contains one type of information such as the CPR
position, start time and end time of the calibration block and so on). This table is reused later on by
photDriftCorrection. Here is briefly the name of the columns:

» index : calibration block index for this obsid

+ channel : channel currently processed by the pipeline

53

PACS Photometry standard data processing

o dtartTime: start time of the calibration block (finetime)

» endTime: end time of the calibration block (finetime)

» middleTime : mean time of the calibration block (finetime)

» cslTemperature : average of CS1 temperature found inside the calibration block

e c2Temperature : average of CS2 temperature found inside the calibration block

» cslTemperatureStdDev : gives the standard deviation of the temperature of CS1

e cs2TemperatureStdDev : gives the standard deviation of the temperature of CS2

» ¢s1Cpr : the average of the chopper position when PACS looks at its first calibration source
» ¢s2Cpr : the average of the chopper position when PACS looks at its second calibration source
» mode : median of the readout mode (Direct or DDCYS)

 bias: average of <VH-VL> for al BU

» gain:low or high (1 or 0)

» cprFrequency : velocity of the chopping between CS1 and CS2 in Hz

 Filename possible reusable file name
"PTrendPhotometer_ d|ffCS 'Date=YYMMDD_hhmmss FM "

PhotCSDiff adds as well two additional computations to the frame : the difference of the calibration
source (indexed with 'DCs' keyword) and the noise computed for each calibration block (indexed with
'DCsNoise’ keyword).

Here are the formulas used to compute the noise "DCsNoise" :

" for each difference dnoise = SQRT(noise;’+noise,?) and globaly DCsNoise=SQRT (<dnoise®>)/
SQRT(n)

"noise; and noise, parameters above, are the noises computed by photAvgPlateau during respectively
CS1 and CS2 observation. While n parameter is the number of samples of csl-cs2 measurements
averaged on the calibration block interval.

PhotCSDiff adds as well amask of the pixel always masked in the master mask inside the calibration
block

At last, this task adds a dataset named DCsCoverage, this latter contains the weight of each pixel

3.7.3.3. photCSClean

We pointed out in the description of the PhotCSExtraction task, that the input frames remain un-
changed. That frames is the class where we stored al the Level 0 products, including the calibration
block. Since we already reduced the cal block in the previous task and we extracted the useful info
fromit, we now want to removeit from the original framesin order to keep only the scientific dataand
to store only the essential information about the calibration sources. Thus, this task simply removes
the cal block from the original frames and replaces it with the output of the previous task. The output
frameswill contain the scientific data plusthe DCsand DCsNoiseimagesand DCsTable (see previous
task).

>> out frames = phot CSC ean(i nFr anes)

out Frames -: Franes -: Franes out
inFranes -: Franes -: Frames in
csFrames -: Phot TrendProducts -: calibration block encapsul ated into frane --
result of photCSProce55|ng nmodul e
cl ean -oint -
0 -- keep calibration block

54

PACS Photometry standard data processing

3.7.4.

3.7.5.

1 -- renove calibration blocks fromthe franes

photFlagBadPixels

The purpose of this task is to flag the damaged pixels in the BADPIXEL mask. The task
should do a twofold job: &) reading the existing bad pixel mask provided by a calibration file
("PCaPhotometer_BadPixelMask_FM_v1.fits' for thefirst release), b) identifying additional bad pix-
elsduring the observation. In the current version of the pipeline only thefirst functionality isactivated.
The algorithm for the identification of additional bad pixelsisnot in place. So the task isjust reading
the bad pixel calibration file and transforming the 2D mask containedinitinthe 3D BADPIXEL mask.

>> out Franes = phot Fl agBadPi xel s(i nFranmes [, cal Tree=cal Tree] [, copy=copy] -)

out Frames -: Frames -: Franmes out
i nFrames -: Frames -: Franes in
cal Tree -: PacsCalibrationTree -: calibration tree containing all calibration
products used by the pipeline
copy - int -
0 -- return reference
1 -- return copy

photFlagSaturation

This task checks saturation based on the readout electronics saturation (called CL saturation) and
ADC converter (called ADC saturation). By default both kinds of saturation are checked. Checking
is control by the option "check” in the command line.

CL saturation : isbased on the knowledge of the transfer function of the readout electronics. Electronic
settings are extracted from housekeeping data and injects in the transfer function. Two saturation
images are computed (low and high saturation) and compared to the signal. Thus two masks are
generated respectively "CL_SATURATION_HIGH" and "CL_SATURATION_LOW".

ADC saturation checking isvery straight forward :thistasks identifies the saturated pixels on the basis
of saturation limits contained in a calibration file. Before doing that, the task identifies the reading
mode led by the warm electronic BOLC (Direct or DDCS mode) and the gain (low or high) used
during the observation. These information are provided for each sample of the science frames by the
BOLST entry in the status table. The task compares the pixel signal at any time index to the dynamic
range corresponding to the identified combination of reading mode and gain. Readout values above
the saturation limit are flagged in two masks called respectively "ADC_SATURATION_HIGH" and
"ADC_SATURATION_LOW".

At last, Saturation task merges all masksin a3D "SATURATION" mask. For analysis purpose, ad-
ditionnal masks are kept and contain intermediate merging operation: "SATURATION_HIGH" and
"SATURATION_LOW"

>> out Frames = phot Fl agSat urati on(i nFrames[, cal Tree=cal Tr ee]
[, hkdat a=hk] [, check=check] [, satLi mts=satLimts][,clLimts=clLimts]
[, cl Transfer Functi on=cl Tr anf er Functi on] [, copy=copy])

out Frames -: Frames -: Franes out
i nFranes -: Frames -: Franes in
cal Tree -: PacsCalibrationTree -: calibration tree containing all calibration
products used by the pipeline
hkdat a -: Tabl eDat aset -: housekeeping informati on extracted fromthe
observation cont ext
check -1 String -: { -"adc","cl", -"full" (default)} is the kind
saturati on checki ng done by the task
satLimts -: SatLimts -: is the ADC saturation limts (cal product)
used according to the node used.
clLimts -: O SaturationLimts -: is the CL saturation limts (cal product)
cl TranferFunction -: d TransferFunction -: is the CL transfer function (cal product)
copy - int -

0 -- return reference

1 -- return copy

55

PACS Photometry standard data processing

3.7.6.

3.7.7.

Valid calls -

frames = phot Fl agSat urati on(franes, cal Tr ee) --- adc checking

by defaul t

frames = phot Fl agSaturati on(franes, cal Tree, hk, "cl") --- ¢l checking only
frames = phot Fl agSat urati on(franes, cal Tree, hk, "adc") --- adc checking
only

frames = phot Fl agSaturati on(franes, cal Tree, hk, "full") --- ¢l & adc
checki ng

Literaturereference:
Saturation limits for the PACS Photometer - M.Sauvage, N.Billot, K,Okumura- July 22, 2008

Detecting and flagging saturated pixels in the PACS pipeline - M.Sauvage - February 10, 2009

photConvDigit2Volts

Thetask convertsthe digital readoutsto Volts. Asinthe previoustask, asafirst step the task identifies
the reading mode and the gain on the basis of thethe BOL ST entry in the status table for each sample
of the frame. Thisis redundant and this step will be skipped when mode and gain will be stored in
the metadata of the Level O Product. The task extracts, then, the appropriate value of the gain (high
or low) and the corresponding offset (positive for the direct mode and negative for the DDCS mode)
from the calibration file (PCalPhotometer_Gain_FM_v1.fits for the first version). These values are
used in the following formula to convert the signal from digital units to volts:

signal(volts) = (signal(ADU) - offset) * gain

>> out Frames = phot ConvDi gi t 2Vol t s(i nFranes [, cal Tree=cal Tr ee€]
[, phot Gai n=phot gai n] [, copy=copy])

out Frames -: Frames -: Franmes out
i nFrames -: Frames -: Frames in
cal Tree -: PacsCalibrationTree -: calibration tree containing all calibration
products used by the pipeline
phot Gai n -: gain -: nomnal gain (1, 100 uV/step), |low gain (5, 20 uV/step) or
hi gh gai n(20, 5uV/ step)
copy -oint -
0 -- return reference
1 -- return copy

Reference : BOLC TO DMC ELECTRICAL INTERFACE CONTROL DOCUMENT (SAp-PACS
cca-0046-01)

photCrossCorrection

The phenomenon of electronic crosstalk was identified, in particular in the red bolometer, dur-
ing the testing phase. The working hypothesis of this task is that the amount of signal in the
crosstalking pixel is a fixed percentage of the signal of the correlated pixel. A cdibration file
(PCa_PhotometerCrosstalkMatrix_FM_v2.fits in the current release) reports a table containing the
coordinates of crosstalking and correlated pixels and the percentage of signal to be removed, for the
red and the blue bolometer, respectively, . The task reads the calibration file and use the info stored
in the appropriate table to apply the following formula:

Signal_correct(crosstalking pixel)) = Signal (crosstalking pixel) - a* Signal(correlated pixel)
where 'd is the percentage of signal of the correlated pixel to be removed from the signal of the

crosstalking pixel.The task is still under investigation, in the sense that invariability of 'a is still an
assumption to be tested in further tests.

56

PACS Photometry standard data processing

Crosstalk in the left red Bolometer Matrix
as seen In PacsQla for
FILT PhotRaster31x6l Aperl.5mm chopper+664 200706

Before correction After correction

I I

Column 1 Column 16

Crosstalk in the left red Bolometer Matrix

as seen in PacsQla for
FILT ExtBB4dmm_25x25raster 20061222 01.tm

Before correction After correction

Figure 3.2. Brosstalk before and after the crosstalk correctidh task has been applied

—— Column 1 Column 16

PACS Photometry standard data processing

In the above two images we show two examples of electronic crosstalk in the red bolometer for dif-
ferent source fluxes. The left side shows the situation before the correction. The right side shows the
result after the correction. The task removes succefully the fraction of the signal in column 1 due
to the correlated column 16. However, it is worth to notice that in the second case, the crosstalk is
somehow over-corrected. This would imply that 'a could depend also on the signal of the correlated
pixel. Moreover it isknown that the amount of crosstalk can beinfluenced a so by the photometer bias
voltage settings. Future tests are planned to explore all these possibilities, in particular, @) finding a
bias settings able to minimize/avoid the crosstalk or, in aternative, b) studying the dependence of 'a
on the bias settings and providing a new calibration file which takes into account this dependence.

>> out Frames = Phot Correct Crosstal k(i nFrames [, copy=copy])

out Frames -: Franes -: Franes out

i nFranes -: Franmes -: Franes in

copy -oint -
0 -- (False) return reference
1 -- (True) return copy

Reference: D. Lutz, P. Popesso. Bolometer Spatial Calibration, PACS Test Analysis Report FM-ILT
Version 0.0 from October 25/2007

3.7.8. photMMTDeglitching and photWTMMLDeglitch-

ing
These tasks detect, mask and remove the effects of cosmic rays on the bolometer. Two different tasks
are implemented for the same purpose: photMM TDeglitching is based on the multiresolution median
transforms (MMT) proposed by Starck et a (1996), WTMMLDeglitching is based on the Wavelet
Transform Modulus Maxima Lines Analysis (WTMML). The former task isin the testing phase. The
testsaim at identifying suitable ranges of parametersfor different scientific cases. Thelatter task isstill
under investigation and debugging phase. At this stage of the datareduction the astrometric calibration

has still to be performed. Thus, the two tasks can not be based on redundancy. Both tasks have to
overcome the following problems:

« signal fluctuation of each pixel,

* the movement of the telescope,

the hitsreceived by one pixel dueto several cosmic rayshaving different signaturesand arrival time,

* the non-linear nature of each glitch.

3.7.8.1. Deglitching using the Multiresolution Median Transform
(photMMTDeglitching)

This task is based on the method developed by Starck et al. (1998) for the detection of faint sources
in ISOCAM data. The method relies on the fact that the signal due to a real source and to a glich,
respectively, when measured by a pixel, shows different signaturesin its temporal evolution and can
be identified using a multiscal e transform which separates the various frequenciesin the signal. Once
the "bad" components due to the glitches are identified, they can be corrected in the temporal signal.
Basically, the method is based on the multiresolution support. We say that a multiresol ution support
(Starck et al. 1995) of animagedescribesin alogical or boolean way if animagef containsinformation
at agiven scalej and at agiven position (x,y). If the multiresolution support of f isM(j,x,y)=1 (or true),
then f containsinformation at scale j and position (x,y). The way to create a multiresolution support is
trough the wavelet transform. The wavelet transform is obtained by using the multiresolution median
transform. The median transform is nonlinear and offers advantages for robust smoothing. Define the
median transform of an image f, whit the square kernel of dimension n x n, as med(f,n). Let n=2s
+1; initially s=1. The iteration counter will be denoted by j, and S is the user-specified number of
resolution scales. The multiresolution median transform is obtained in the following way:

58

PACS Photometry standard data processing

1. Let ¢j = f with 5 =1.
2, Determine ¢j41 = med(f,25+1).

3. The multirezclution coefficients w;y 1 are defined az: wjy1 = ¢ — g4,

4, Tetj—j34+1;5- 2z, Return tostep 21 5 < 5.

Figure3.3.

A straightforward expansion formulafor the original image (per pixel) is given by:

cofx, ¥) = ¢ (x,y) + z wx, v

Figure3.4.

where, cp is the residual image. The multiresolution support is obtained by detecting at each scale
the significant coefficient wj. The multiresolution support is defined by:

1; if wix, v) is significant;

Mij,x,v) = o ; o, o
M, X, y) 0, if w (x,y) is not significant.
Figure 3.5.
Given stationary Gaussian noise, the significance of thew_j coefficientsis set by the following con-
ditions:
if |w;| 2 ko, then w, is significant:
if |w | <ke, then w, is not significant.
Figure 3.6.

wheresigma,_j isthe standard deviation at thescalej and k isafactor, often chosen as 3. The appropriate
value of sigma j in the succession of the wavelet planesis assessed from the standard deviation of the
noise, sigma_f, in the original f image. The study of the properties of the wavelet transform in case of
Gaussian noise, reveals that sigma_j=sigma.f*sigma_jG, where sigma_jG is the standard deviation
at each scale of the wavelet transform of an image containing only Gaussian noise. The standard
deviation of the noise at scalej of theimageisequal to the standard deviation of the noise of theimage
multiplied by the standard deviation of the noise of the scale j of the wavelet transform. In order to
properly calculate the standard deviation of the noise and, thus, the significant wj coefficients, the
tasks applies an iterative method, as donein starck et al. 1998:

calculate the Multiresolution Median Transform of the signal for every pixel

calculate a first guess of the image noise. The noise is estimated using a MeanFilter with boxsize
3 (Olsenset a. 1993)

calculate the standard deviation of the noise estimate
calculate afirst estimate of the noise in the wavel et space

the standard deviation of the noise in the wavelet space of the image is then sigma(j) =
sigma(f)*sigma(jG) (Starck 1998).

the multiresol ution support is calculated

the image noise is recal culated over the pixels with M(j,x,y)=0 (containing only noise)

59

PACS Photometry standard data processing

» the standard deviation of the noise in the wavelet space, the multiresolution support and the image
noise arerecalculated iteratively till (noise(n) - noise(n-1))/noise(n) < noiseDetectionL imit, where
noiseDetectionLimit is a user specified parameter

(Note: if your image does not contain pixels with only noise, this algorithm may not converge. The
same is true, if the value noiseDetectionL imit is not well chosen. In this case the pixel with the
smallest signal istaken and treated asif it were noise)

At the end of the iteration, the final multiresolution support is obtained. This is used to identify the
significant coefficientsand , thus, the pixels and scales of the significant signal. Of course, thisidenti-
fiesboth glitches and real sources. According to Starck et al. (1998), at this stage a pattern recognition
should be applied in order to separate the glitch from the real source components. Thisis done on the
basis of the knowledge of the detector behavior when hit by aglitch and of the different effects caused
in the wavel et space by the different glitches (short features, faders and dippers, see Starck at a. 1998
for more details). This knowledgeis still not available for the PACS detectors. At the moment, areal
pattern recognition is not applied and the only way to isolate glitches from real sourcesisto properly
set the user-defined parameter scales (S in the description of the multiresolution median transform
above). The method works reasonably well till the maximum number of readouts of a glitch is much
smaller than the one of areal source (scales < 5, seethe aphairradiation example below). For higher
value of scales (< 5), also part of the signal of area bright source can be identified as a glitch (see
proton irradiation example below).

When the glitches areidentified the signal of the pixel affected is corrected by interpolating the signal
before and after the glitch event. In addition, the task al so produces the 3D GLITCH mask which flags
the deglitched pixels at any time (due to a bug of the task the GLITCH mask is not always produced,
thisisunder investigation). However, it is required that the task does not correct by default the signal
of the pixels affected by glitches. It is foreseen that the task will provide the user the possibility to
choose whether to correct or not the signal or to have only the GLITCH mask as aresult.

Literaturereferencefor thisalgorithm:

ISOCAM DataProcessing, Stark, Abergel, Aussel, Sauvage, Gastaud et. al., Astron. Astrophys. Suppl.
Ser. 134, 135-148 (1999)

Automatic Noise Estimation from the Multiresolution Support, Starck, Murtagh, PASP, 110, 193-199
(1998)

Estimation of Noise in Images: An Evaluation, Olsen, Graphical Models and Image Processing, 55,
319-323 (1993)

Details and Results of the implementation

Thisisthe signature of the task:

>> outframes = mMIDeglitching(inFranmes [, copy=copy] [, scal es=scal es]
[,mt _startenv=mt _startenv] [,incr/fact=incr/fact] [, mt_node=mmt _node]
[, mt _scal es=mmt _scal es] [, nsigna=nsi gma])

out Frames -: the returned Frames object
i nFranmes -: the Franes object with the data that shoul d be deglitched
copy -: bool ean. Possible values: false (jython: 0) -- inFranes will be
nodi fi ed and returned

true (jython: 1) -- a copy of inFrames will be
returned
scal es -: int. Number of wavel et scales. This should reflect the maxi mum
expect ed readout nunmber of the glitches. Default is 5 readouts.
mt _startenv -: int. The startsize of the environnent box for the nedian
transform Default is 1 readout (plus/mnus).
incr/fact -: float. Increment resp. factor to enhance the mmt _startenv. Default
is 1.
mt _node -: int. Defines how the environnment should be nodified between the

scal es. Possible values: 1 (ADD) or O (Multiply). Default is 1.

60

PACS Photometry standard data processing

exanpl e: the environnment-size for the subsequent nedian transform
envi ronment boxes will be env(0) = mt_startenv, env(n) = env(n-1) mmt_node incr/

fact

default neans then: env(0) =1, env(l) =1 + 1, env(2) =3
etc.
noi seDetectionLimt -: double. Threshold for determ ning the inage noise. val ues
between 0.0 and 1.0. Default is 0.3.
nsi gna - int. Limt that defines the glitches on the wavel et | evel. Every

val ue | arger than nsigma*sigma will be treated as glitch. Default is 5.

Results of example data

To examine the result of this algorithm, areal Bolometer signal has been taken and artificial glitches
with awidth of 1, 2, 3, 4 and 5 pixels have been added to the signal of one of the pixels. The analysis
has then been done with 6 wavelet scales.

Signal before and after deglitching

-l i |

signal

180000 270000 360000 450000

90000
|

| | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 <4

sample

signal with glitches -+ deglitched signal

61

PACS Photometry standard data processing

A closer look at the signal and the deglitched signal shows the quality of the processing.

Signal before and after deglitching

44905
|

44900
|

signal
44895
|

44890
|

44885
|

| | | | |
2160 2180 2200 3220 2240

sample

signal with glitches -+ deglitched signal

The wavelet coefficients are crucial for this deglitching process.

62

PACS Photometry standard data processing

signal

180000 270000 360000

90000
|

Wavelet Coefficients

<-1

<- 3

<-4

-=|=-5P

0
|

0 500 1000 13500 2000 2500 000 3300 4
sample

CORIT(])
CORIT(D) —

coeff(l)
Coeff(d)

CORTT(Z)

CORTT(T)

From the image it is obvious, that the glitches are placed according to their width into the wavelet
coefficients. Thisfact is due to the choice of the median transform and the configuration of the envi-
ronment (plus/minus 1 for coeff 1, plus/minus 2 for coeff 2 etc.). Please note also that coefficient 6
does not contain data (glitches have widths up to 5). Please find details of the Multiresolution Median

Transform in Starck et al. (1999).

The baseline of the coefficientsiszero, not the signal level. Thesignal level appearsonly in coefficient
0! Coefficient 0 has also been used to remove the background from the image while the noise has been
estimated. From this plot it is obvious, why coeff(0) has been used.

Hereisacloser look at the wavel et coeficients:

63

PACS Photometry standard data processing

Wavelet Coefficients

44888 44896 44904 44912

signal
0 3

-3

-6

| | | | | | | |
0 00 1000 1500 2000 2500 3000 =500

sample

coeff(d)
Coelf(s)

coelf(l)
CoelT(E)

coeff(2) COBT(3) w—

Although the wavelets basgline is zero alittle noise is there. Its even in the same order of magnitude
as the origina Signals noise. Thats why it is important to have a good noise estimate to remove the
glitches.

Alpha and Proton Irradiation Tests

Here are the results of the Multiresolution Median Transform deglitching applied to the Bolometer
irradiation test with alpha particles and protons from (CITATION NEEDED).

PACS Photometry standard data processing

Alpha Irradiation Tests

29960
|

h

29940
|

signal
2
==

299

29900
|

29880
|

| | | | | | | |
/80 800 820 &40 860 880 900 92

sample

signal with glitches =— =— deglitched signal

The glitches of the apha particles do not differ significantly from the artificia glitches. Their width
isaround 1-3 readouts and their signal is much higher than the average signal, so the nsigma method
works as well as expected.

The proton tests have a distinctly different pattern. The glitches are much higher in number and their
width can also be large. The image shows, that increasing the wavelet scales from 6 to 12 leadsto a
better removal of the glitch structures. The problem in these measurements is that the number of the
glitchesis so high, that a good estimate of the noise is hard to do. There is no pixel without a glitch.
Thus the estimated noise will be high and small glitches are not removed.

Anyhow, experimenting with the settings is in every case worth a try as the 12 wavelet scale inset
shows.

65

PACS Photometry standard data processing

Proton Irradiation Tests

signal

36800 37000 37200 37400 27600 37800

12 Wavelet Scale:

| | | | | | | | |
0 100 200 =00 400 500 600 700 800

sample

signal with glitches =— =— deglitched signal

3.7.8.2. Wavelet Transform Modulus Maxima Lines Analysis
(photWTMMLDeglitching)

During the mission, Herschel observatory and PACSinstrument will beirradiated by alot of particles
coming from any directions. When particles hit the telescope shield or materials near the detectors,
PACS can see these impacts which pollute the interesting signal. These traces are called glitch signa-
tures. Several kinds of signature can exist. In general glitch can be characterized by a variation of the
signal where the raising time equals about the decay time. There are the 'fader' glitch types character-
ized by araising time greater than the decay e-(t .I,,) and at last the 'dipper' types where the energetic
particles produce a very long time constant. In this case the signal stay polluted during a long time
period. These kinds of signature and terminol ogies have come from ISOCAM papers.

66

PACS Photometry standard data processing

In order to see the behavior of the detector, on May 26th and 27th,2005, irradiation tests have been
carried out at Orsay/France with Tandem accelerator. Orthogonal irradiation with alpha and proton
have been carried out. Data obtained during thesetests are agood start to check deglitching algorithms
but can be insufficient.

Thanks to previous missions, we have now some models of the cosmic particles into our considered
space area. Despite of these model s and the knowledge of the behavior of our detector, it isn't possible
to know exactly the glitch signatures that will be encountered in the space, hence it is important to
have aflexible deglitching algorithm. The MM T method showed aboveiswell adapted because there
is no assumption about the glitch signature.

Nevertheless, one can try to work on the shape of the glitch. This direction has been explored by the
Spire's developers with the ' WTMML' analysis (Wavelet Transform Modulus Maxima Lines). This
method tries to recognize the temporal shape of the glitches. With their courtesy permission, their
agorithm has been adapted for PACS. This section tries to give an evaluation of the algorithm with
its strength, its weakness and the limits of its applicability.

Overview

Status : first version - not ready yet. Author b.Marin based on WTMML software developed by
C.Ordenovic, C.Surace, B.Torresani, A.Llebaria

Reference literature for this algorithm and data used:

» Faint source detection in ISOCAM images, J.L. Starck, H. Aussel, D. Elbaz, D. Fadda, and C.
Cesarsky, A&A Suppl. Ser. 138,365-379 (1999)

« Glitches detection and signal reconstruction using HAflder and wavelet analysis, C.Ordenovic,
C.Surace, B.Torresani, A.Llebaria STAMET-D-07-00048

» A wavelet tour of signal processing, Mallat
* Glitch effectsin ISOCAM detectors A.Claret, H.Dzitko, J.Engelmann and J.-L. Starck

» Herschel/PACS Description desirradiations Tandem 2005 [Ref: SAp-PACS-BH-0470-05 ver 1.1]
Benoit HOREAU

Principle
For each pixel(X,y), the method consists of doing the following steps::
1. set s(t) = D(x,y,t) ; where D represents sampling data and t the time

2. A multi-resolution decomposition of the signal is done using Mexican Hat wavelet. the result is
Ws(b,a)

3. Signa irregularities aretagged by the study of the evolution of [Ws(b,a)| in thetime-scale plane(b,a)

4. noiseis estimated

5. Irregularities not identified as noise are tagged as glitches

6. Glitch contributions are estimated and removed from the decomposed signal

7. Signal isrebuilt

Details and results of the implementation

>> out Frames = wt nm Degl it chi ng(i nFranes [, copy=copy] [, scal eM n=2. 0] [, scal eMax=6. O]
[, hmin=-1.3][, voi ces=5.][, hol der Thr eshol d=-0. 6] [, Cor r Thr eshol d=0. 985]
[, reconstructi on=True]

inFranes -: the input frame object containing signal to analyse

out Frames -: the returned Frane object containing signal deglitched and a nask of
pi xel s nodified

67

PACS Photometry standard data processing

copy -: boolean with the possible values -:
false (jython: 0) -- inFranes will be nodified and returned
true (jython: 1) -- a copy of inFrames will be returned
scaleMn -: signal continuous wavel et transformis conputed from scal eMn
scal eMax -: signal continuous wavel et transformis conputed till scal eMax
Voi ces -: voi ces nunber by octave
hm n -: the mnimal hol der val ue al |l owed
hol der Threshol d -: nust be greater than hmn -- the threshol d hol der exponent
corr Threshol d -: correlation coefficient threshold (around 1.) is a criteria used
to identify an irregularity of the signal
reconstuction -: Bool ean: {true|false} = {inFranes is changed -| inFrames is not
changed}

More parameter descriptions

Wavelet transform will be computed from scaleMin to scaleMax. Octave number (nOct) is
log(scaleMax)/log (2) (dyadic decomposition) and there are nV oice voices by octave. The scale a of
the octave 0 and the voice v is a= 2*(nOct* (0-1)+v/nVoice)

Correlation threshold (close to value 1.) is a criteria used to identify a potentially irregularity of the
signal as apossible glitch.

holderThreshold gives an upper limit of the acceptable holder exponent found

hmin gives alower limit of the acceptable holder exponent found

hmin < holder exponent found < holderThreshold

Algorithm description

1.

Multiresolution signal decomposition is performed from minScale to maxScale. The Mexican hat
wavelet is used here.

. Along each scale, locally maxima are identified. In other words, if dWs(b0,a0)/db = 0 the point

b0,a0 isalocally maximum.

. Acrossthe scales, 'maximalines areresearched. A maximalineisany curve a(b) in the scale-space

plane (b,a) along which all points (previoudly identified) are modulus maxima.

. Singularities are detected by finding the abscissa where the wavelet modulus maxima converges

at fine scale

a. glitch signature can be characterized as a Lipschitz function (HAfIder). HAIder exponent is
evaluated thanks to the Mallat inequalities:

log2[|Ws(b,a)[] <= log2 (A) + 1+ log2(a) for a-> 0 ; 1+ isthe local HAfIder exponent ; Ws(b,a)
isthe wavelet coefficient of the signal s at the scale a and the time b along the maxima line

b. anirregularity of the signal can produce a cone in scale/time referential, so the coefficient cor-
relation C is calculated on the set of points (log2(|Ws(bi,ai)|),log2 (ai))

c. when C isgreater than our corrThreshold, the linear regression is performed between minScale
and maxScale and the slope of the linear regression can give a holder exponent

d. if the holder exponent found is between hmin and holderThreshold, a singularity/detection has
been found, and we know the contribution of the cone on the signal through wavelet coefficients

. false detections provided by the noise are identified and removed by sigma clipping algorithm

applied to the wavelet coefficients

a. white noise is a stationary process having the same spectral density whatever the frequencies.
Thanksto Donoho, one can compute from the lowest scale (a=1) and wavel et coefficients found
at this scale, an estimator of the noise variance :

68

PACS Photometry standard data processing

2 - | W.s (bﬂ:lj |
c° = \med\—

b. From the detections found by the maxima line analysis, one can considered white noise contri-
bution when the wavelet coefficient are lower than 3i f.

W (b,a) <30

6. Glitch wavelet coefficient contributions are calculated and removed from the signal

glitch contribution ‘J

7. Signa is rebuilt with the following synthesis equation

Wl : glitch contribution, Ws : wavelet coefficients of the signal
]. -
s(f) = —Z[Ws (t,a,)-W, (f:- a, |2
C, 5

Wavel et used

69

PACS Photometry standard data processing

Mexican hat wavelet shape

; i

06 08

0,4
|

0,2

0,0

-0,2
|

-0,4
|

| | | | | | | | | | |
-0 -8 -6 -4 -2 0 2 4 6 8 10

support

Mexican Hat |

Results

The following figure gives an overview of the deglitching process. wtmmlDeglitching task has been
run with the default parameter. At the top, one can see the input signal extracted from the real data
got during the alphairradiation tests. In the middle (in orange), the wavelet coefficients according to
the scale are plotted. At each signal variation, one can see a cone. This cone is analyzed, glitches are
identified, removed, then the signal is rebuilt. At the bottom, the signal has been deglitched. On the
right, the glitch located at position 710 has been removed, while the glitch at position 332 is still there.
Beware that y axis at the top and at the bottom, are not identical.

70

PACS Photometry standard data processing

Input Signal & Wavelet coefficients

Signal
33280 33320 33360 300 3340
|

I

i

|| || I | I | | I | i
(%] (EETH] =TS TH EIRTH] RN AR (RIS TH] F LS R D

Time index

After deglitching

Signal
3 A
|

1 Ll) L 1 T T L) L]
L] i draw “EA R LS TE] e L e LS LS TS] LR AR LT]

Time index

Conclusion

The tuning of the parameters of this software is tricky. One's want to remove efficiently the glitches
encountered, one can run several timesthe WTMML a gorithm with various parameters.

Application domain

If the deglitching of the data delivered by the MMT method is considered as insufficient, one can
use wtmml Deglitching task with various parameters. This task will be useful for alimited usage, ran
individually according to the glitch signature.

Test harness

Test harness carries out a lot of tests issued from real data obtained during Tandem irradiation tests
and from data built with mathematical model.

Test 1: from real data - remove alpha glitch signature
Test 2: from real data- remove proton glitch signature

Test 3: data are built with positive glitch effect (the detector wall has received the particle)

71

PACS Photometry standard data processing

3.7.9.

Test 4 : data are built with negative glitch effect (the detector grid has received the particle)

Test 5 : data are built with modulated signal, a gaussian noise gsigma higher than the signal and ng
negative glitch effects, gaussian noise

Datalocation of the irradiation tests : [CV S]pacs/devel op/data/pacs/data/glitchmodels

Status : is under development. Author : b.morin

>> success = wtnml DeglitchingTest ([signal Level =1e-12] [, si gnal Shape=0]

[, noi se="gaussi an"] [, noi seLevel =5.][, gl itchNunber=3][, glitchLevel =8.]
[,glitchShape="1ipschitz"))

success -: bool ean: {true|false} = {successful tests|tests have fail ed}
Optional paraneters are only for Test5 -:

signal Level -: whatever val ue

si gnal Shape -: {0,4} = {0:

noi se -: {"gaussian","white"}

noi seLevel -: sigma value fromthe signal

glitchNunmber -: nunber of glitch generated

glitchLevel -: sigma value fromthe signal (nmust be higher than the noi seLevel)

glitchShape -: {"lipschitz","anortizedSi ne"}

Datalocation : [CV S]pacs/devel op/data/pacs/data/glitchmodels

addUTC

Convert from spacecraft on-board time (OBT) to UTC, using the time correlation table. Fill the UTC
field in the frames dataset.

>> out Frames = addUTC(i nFranmes frames, timecor, [,copy=copy] [,calVersion =
cal Version])

out Franes -: Franes -: Franes out
i nFranes -: Franes -: Franmes in
timecor -: Tabl eDataset -: Tinme corrections
copy -oint -
0 -- return reference
1 -- return copy
cal Version -: String -: Version of the calibration files used

Calibration File: Time correlation table

3.7.10. convChopper2Angle (jython prototype avail-

able)

Thistask convertsthe Chopper position expressed in technical unitsto angles. Thisisdone by reading
the CPR entry in the Status table and express it in two ways. a) as angle with respect to the FPU
(CHOPFPUANGLE entry in the Status table) and b) as angle in the sky (CHOPSKY ANGLE). Both

72

PACS Photometry standard data processing

angle are in arcseconds. In particular, the CHOPFPUANGLE is a mandatory input for the PhotAssig-
naRaDec task, to be executed after Level 0.5 for the final step of the astrometric calibration. Thus,
the convChopper2Angle task must be executed even if the chopper is not used at all asin the scan
map (chopper maintained at the optical zero). CHOPFPUANGLE corresponds to the chopper throw
in arcseconds in HSpot.

>> out Frames = convChopper 2Angl e(i nFranmes [, copy=copy] [, cal Version = cal Version])
out Frames -: Frames -: Franmes out
i nFranes -: Frames -: Franes in
copy -1 int -
0 -- return reference
1 -- return copy

cal Version -: String Version of the calibration files used

The calibration between chopper position in technical units (voltages) and anglesis give by a 6th oder
polynomial. The calibration is based on the calibration file containing the Zeiss conversion table.

Reference: "Angular Calibration and zero-point offset determination of PACS FS Chopper for cold
Hell (T=4.2 K) conditions.", PICC-MA-TR-009, U. Klaas, J. Screiber, M. Nielbock, H. Dannerbauer,
J. Bouwman.

3.7.11. convXYStage2Pointing (available)

During the so-called PACS ILT tests in the lab, there was no info about satellite pointing informa-
tion. So this step is used to simulate pointing information for this particular test-case. For real PACS
Herschel data the next task, "photAddlnstantPointing”, should be used instead. The coordinates of
the used point source, called XY stage, are included in the Status table and used later as input for a
simulated astrometric calibration (photAssignRaDec).

>> out Frames = convXYStage2Poi nti ng(i nFrames, seq [, nolnter=nolnter] [, copy=copy])
out Frames -: Frames -: Franmes out
inFrames -: Frames -: Frames in
seq -: Packet Sequence -: Packet Sequence hol ding the TnPackets of the period
of Frames
nol nt er -: bool ean -: True -: wthout Interpolation
False -: with Interpolation (default -!)

copy -oint -

0 -- return reference

1 -- return copy

The coordinates of the XY stage are contained in the XY HK. Thisinfo is extracted from there and
theinternal time is used to merge the coordinates to the individual frames.

TheHK packetshave areadout frequency lower than theframesreadout. So thetask by default (nol nter
= false) interpol ates between the available XY stage coordinates to obtain coordinates for each frame.
With the keyword "nolnter=true”" no interpolation is done.

New entriesin the Frames Status :

XY_Stage EvType: Event Type (regular, start , stop)

XY_Stage Mode: Mode (idle local single, local raster, single position move, single raster)

XY _Stage TimeSec : Time seconds

XY_Stage TimemS: Time miliSeconds

XY _Stage LV_Sis:

73

PACS Photometry standard data processing

XY_Stage Status: XY Stage Status

XY_Stage X_Axis: X axisposition

XY_Stage Y_Axis: Y Axisposition

XY_Stage X_idx

XY_Stage Y _idx

XY _Stage Stage Nod_cnt : Nodding count

XY_Stage Nod_pos: Nodding position (on raster , off raster)
XY _Stage column : Column count

XY_Stage line: Line count

This task allows also to include info about the nod cycle by adding a nod position counter (entry
XY_Stage Stage Nod cnt) and the anod on or off position identifier (entry XY _Stage Nod_pos).

3.7.12. photAddInstantPointing

The purpose of this task is to perform the first step of the astrometric calibration by adding the sky
coordinates of the virtual aperture (center of the bolometer) and the position angle to each readout as
entry in the status table. In addition the task associates to each readout raster point counter and nod
counter for chopped observations and sky line scan counter for scan map observations.

out Frames = phot AddI nst ant Poi nti ng(i nFranmes, scPointing, [,cal Tree=<mycal Tree>]
[, copy=<nunber >]

[,siam = siani[, orbitEphemrorbit Epheni [, horizons=horizons][,isSso =
i sSs0]

[,nolnter=nolnter][, useGyro = useGyro])

Thisfirst part of the astrometric calibration deals with two elements: the satellite pointing product and
the SIAM product. Both are auxiliary products of the observation and are contained in the Observation
context delivered to the user. The satellite pointing product gives info about the Herschel pointing.
The SIAM product contains the a matrix which provides the position of the PACS bolometer virtual
aperture with respect to the spacecraft pointing. In the current version of the pipeline this task used a
SIAM matrix contained in a calibration file and not the one of the SIAM product. However, thiswill
be changed in the future and the SIAM product will be used for the astrometric calibration. The time
is used to merge the pointing information to the individual frames. scPointing is the pointing product.

By default the Filtered Pointing information is used, but also the gyro propagated pointing information
may be used. This is done by using the Frames status entry FINETIME and extract the associated
information from the PointingProduct. Also the SIAM matrix is applied and aberration is done (if the
proper Products are passed). The result is added to the status entry of the Frames Product.
Parameters: The orbit Ephemeris Product needed for aberration correction of non SSO objects. Hori-
zons Product is needed for the aberration correction of SSO objects. i sSso is"isit solar system” (de-
fault False/0)? nol t er iswhether to interpolate or not. useGyr o (False/0) isto use the Gyro prop-
agated information instead of the filtered.

iSSso (default False/0) is a switch for whether the target is solar system.

The task adds the following entries to the status table:

- RaArray: ra coordinate of the virtual aperture (deg)

- DecArray: dec coordinate of the virtual aperture (deg)

74

PACS Photometry standard data processing

- PaArray: position angle (deg)

- raArrayErr: ra coordinate inaccuracy of the virtual aperture (deg)

- decArrayErr: dec coordinate inaccuracy of the virtual aperture (deg)

- PaArrayErr: position angle inaccuracy(deg)

- Mode: PacsPhoto, in the bolometer case

- RasterLineNumber, for chooped observation only

- RasterColumnnumber, for chooped observation only

- NodcycleNum, for chopped observation only

- OnTarget, on source position identifier, for chooped observation only (flase or true)
- AbPosld, for chooped observation only (false or true)

- IsSlew, identifies satellite slewing (false or true)

- |SOffPos, identifies off position (false or true)

- ScanLineNumber, identifies the scan line number for scan map observation
- AcmcMode

- Aperture

- IsAposition, identifies A position in nod cycle

- IsBPosition, identifies B position in nod cycle

- IsOutOfField

- IsSerendipity

- RollArray, any difference with PAArray???

3.7.13. cleanPlateau (java prototype available)

This task is executed before Level 0.5 only for chopped observations (point-source, small-source,
chopped raster modes).

>> out Fr anmes
[, cal Version

cl eanPl at eauFr anes(Franes i nFranes[, dncHead=dntHead] [, copy=copy]
cal Version])

out Frames -: Frames -: Frames out w th mask UNCLEANCHOP
i nFranes -: Frames -: Frames in
copy -oint -

0 -- return reference -: overwites the input franes by
addi ng the additional -'DithPos' colum

1 -- return copy -1 creates a new output without
overwiting the input
cal Version -: String -: Version of the calibration files used

Themoduleflagsthe readouts at the beginning of achopper plateau, if they correspond to thetransition
between two chopper positions. In the chopper transition phase, the chopper is still moving towardsto
proper position and the signal of this readouts does not correspond to the on or off position. Usually

75

PACS Photometry standard data processing

the chopper is moving so fast that only one readout needs to be masked out. The module just adds the
3D UNCLEANCHOP mask to the input frame.

The task identifies the chopper plateaus on the basis of the CHOPPERPLATEAU (for the science
data) and CALSOURCE (for the calibration block) entriesin the statustable. For each chopper plateau
the readouts with a chopper position deviating from the mean position (threshold provided by the
calibration file Chopditter Threshold) are flagged in the UNCLEANCHOP mask.

3.8. The AOT dependent pipelines

After level 0.5, the pipelineis AOT dependent. In the following sections we will describe separately
thedifferent AOT pipelines, point source, small source, chopped raster, scan map AOTS, upto Level 2.

3.9. Point Source AOR

3.9.1. Level 0.5to Level 1

3.9.1.1. photMakeDithPos (jython prototype available)
The task just checks if exists a dithering pattern and identifies the dither positions. The task adds a

dither position counter, "DithPos’, to the Status table. Frames with the same value of 'DithPos are
at the same dither position.

>> out Frames = phot MakeDi t hPos(i nFranes [, copy=copy] -)

out Frames -: Frames -: Franes out with one image per every single chopper plateau
i nFranes -: Frames -: Frames in
copy -oint -: This has to be done by

O -- return reference -: overwites the input franmes

1 -- return copy -: creates a new output without

overwiting the input

3.9.1.2. photMakeRasPosCount (jython prototype available)

The task adds raster position counter to status table.

>> out Frames = phot MakeRasPosCount (i nFrames [, copy=copy])

out Frames -: Frames -: Franes out with one image per every single chopper plateau
i nFrames -: Frames -: Frames in
copy -oint -: This has to be done by

O -- return reference -: overwites the input franes

1 -- return copy -: creates a new output without

overwiting the input

The task needs the output of the photAddinstantPointing task to be executed otherwise an error is
raised saying that the pointing information are missing for the observation. The module uses the vir-
tual aperture coordinates and the raster flags in the status table to identify different raster positions.
The raster positions are identified in the Status table by the new entries 'OnRasterPosCount’ and 'Of -
fRasterPosCount'.

3.9.1.3. photAvgPlateau (java prototype available)

The task averages all valid signals on chopper plateau and resamples signals, status and mask words
for the photometer. It calculate noise map but not the coverage map. The result is a Frames class with
one image per every single chopper plateau.

76

PACS Photometry standard data processing

>> out Frames = phot AvgPl at eau(i nFranmes [, sigclip=0] [, mean=0]
[, qualityContext=QualitxContext] [,copy=0] -)

out Frames -: Frames -: Franes out with one inage per every single chopper

pl at eau

i nFrames -: Frames -: Frames in

sigclip -: Value for sigma clipping (default = 0 -: no sigma clipping)

mean -: nmean = 1 -: use MEAN instead of AVERAGE (default mean = 0 -:

use AVERACE)

qual i tyContext -: QualityContext

copy -oint -: This has to be done by
O -- return reference -: overwites the input frames (default)
1 -- return copy -: creates a new output without

overwiting the input

The module uses the status entry CHOPPERPLATEAU (CALSOURCE in case of calibration block
pre-processing) to identify the chopper plateau in the same way as CleanPlateau. Then it computesthe
average (sigmaclipping if sigclip > 0, and median if mean =1) for each pixel over the chopper plateau .

Figure 3.7. Simplified Example : Chopper Plateaus

The signal of the bad pixels, identified by the BADPIXEL mask, is set to 0. The pixels flagged in the
other available masks (SATURATION, GLITCH, UNCLEANCHORP) are discarded in the average. If
the chopper plateau contains no valid data (all pixels masked out) the signal is set to zero. The noise
is calculated for each pixel (x,y) and each plateau (p) as:

noise[x,y,p] = STDDEV (signal[x,y,validSelection[p] 1) / SQRT(nn)

where nnisthe number of valid readoutsin the chopper plateau. This number isthen stored as addition
entry (NrChopperPlateau)in the status table. The noiseis stored in the Noisemap

The Statusentrieswith different values over the chopper plateau length are modified with thefollowing
scheme;

» OBSID: value of the beginning of the chopper plateau

» BBID: value of the beginning of the chopper plateau

* LBL : removed

* TMP1: removed

* TMP2: removed

* FINETIME: value of the beginning of the chopper plateau
* VLD : removed

» WPR: value of the beginning of the chopper plateau

* BOLST: removed

* BSID : removed

» CRDC: value of the beginning of the chopper plateau

» CRDCCP: vaue of the beginning of the chopper plateau

» DBID: value of the beginning of the chopper plateau

7

PACS Photometry standard data processing

» DMCSEQACTIVE: value of the beginning of the chopper plateau

* CHOPPERPLATEAU : Sum

* CALSOURCE : Sum

* PIX: removed

» RCX: removed

e RESETCNT: Just counting 1 to x

* BLOCKIDX: removed

» BAND: value of the beginning of the chopper plateau

» BBTYPE: value of the beginning of the chopper plateau

» BBSEQCNT: value of the beginning of the chopper plateau

* UnCleanChop: Sum

» DithPos: Median

* OnRasterCount : Median

» OffRasterCount : Median

NOTE: the masks are still not properly treated in the pipeline. This task (and the following as well)
is somehow reducing the masks as the images. So the information carried by the individual mask is
not propagated into the pipeline. At this point of the data reduction the masks should be combined in
a master mask. photAvgPlateau should use the master mask to create the exposure (weight) map of
any chopper plateau: that means, if aplateau has 10 frames and apixel is 3 timesflagged in the master
mask(e.g. it is twice saturated and once hit by a glitch), its weight will be 0.7 instead of 1, if a pixel
isabad pixel, itsweight is zero. The Product of photAvgPlateau has to contain the averaged plateau

images with exposure and noise maps without any mask. The information carried sofar by the masks
should now be condensed and transfered into the exposure map. Developers still working on that.

3.9.1.4. photDiffChop (java prototype available)

Subtract every off-source signal from every consecutive on-source signal. Theresult isa Frames class
with one image per one chopper cycle.

>> out Frames = phot Di f f Chop(i nFranmes -, hkdat a=hkdat a
[, qualityContext=QualityContext] [,copy=0] -)

out Fr ames -: Frames -: Franes out with one inmage per one chopper cycle
i nFranes -: Frames -: Frames in
hkdat a -: Tabl eDat aset -: issued from HPPHK product (Herschel PACS
Phot onet er HK)
qual i t yCont ext -: QualityContext
copy -oint -

O -- return reference -: overwites the input franes
(defaul t)

1 -- return copy -1 creates a new output without

overwiting the input

To better subtract the telescope background emission and the sky background the ‘off-source' image
is subtracted from the 'on-source' image (consecutive chopper positions). The modul e accepts asinput
the output of photAvgPlateau module. It returns as output a Frames class with the differential image

78

PACS Photometry standard data processing

of any couple of on-off chopped images. The module resamples the status table and the the masks
accordingly (see NOTE in photAvgPlateau section).

The on and off images are identified on the basis of the status entries added by the photAddinstant-
Pointing task. The noisemap is computed in the following way:

noise [x,y,kK] = SQRT(noise[x,y,pON]** 2 + noise[X,y,pOFF]* +2)
where k isthe frame number of the differential on-off image, pOn isthe frame number of the on source

image, pOFF is the frame number of the off source image, and noise[x,y,pON] and noise[x,y,pOFF]
are the error map at the on and off source images, respectively (output of the previous pipeline step).

Figure 3.8. Simplified Example : Chopper Plateaus

3.9.1.5. photAvgDith (jython prototype available)

Thechop cycleisrepeated severa times per any A and B nod position. Thistask cal cul atesthe mean of
the on-off differential chopped images per any A and B position within any Nod cycle. If the dithering
is applied in the point-source mode as offered by HSpot, the average is done separately per dithered
A and B nod positions.

>> out Frames = phot AvgDi t h(i nFrames [, qual ityContext=QualityContext] [, copy=0] -)

out Fr ames -: Frames -: Franmes out with one inage per chopper plateau per
noddi ng position
i nFrames -: Frames -: Frames in
qual i tyCont ext -: QualityContext
copy -oint :

O -- return reference -: overwites the input frames
(defaul t)

1 -- return copy -: creates a new output without

overwiting the input

The task uses the entries in the status table regarding the dithering pattern (DithPos) and the ones
regarding the A and B nod position and Nod cycleidentifier (see entries added after Addl nstantPoint-
ing) to identified al the differential on-off images belonging to the A or B position with the same nod
cycle and at the same dither position. Since only the average of the identified images is performed,
the noise is propagated as follows:

For "c" chopper cycles (c=k), we average the n/2 differences

noise [X,y] = SQRT(MEAN(noise[x,y,:]**2)) / SQRT(n)

79

PACS Photometry standard data processing

Frames :

(ON and consecutive OFF subtracted)
(Averaged nfr Dither position)

Dith_3 Ditt
Dith 2 Dith_2
Dith_1 Dith_1 —‘ H
Nod 1 Nod 2

Figure 3.9. Simplified Example : Chopper Plateaus

80

PACS Photometry standard data processing

3.9.1.6. photDiffNod (java prototype available)

This task is performing the last step of the background (sky-+telescope) subtraction. It subtracts the
images corresponding to the A and B positions of each nod cycle and per each dither position. The
module needs as input the output of photAvgDith.

>> out Frames = phot Di f f Nod(i nFrames [qualityContext=QualityContext] [,copy=0] -)

out Fr ames -: Frames -: Frames out with one inage per nod cycle
i nFrames -: Frames -: Frames in
qual i tyCont ext -: QualityContext
copy -oint -
O -- return reference -: overwites the input frames
(defaul t)
1 -- return copy -: creates a new output without

overwiting the input

The noiseis propagated as follows:
noise [X,y,k] = SQRT(noiselx,y,A]** 2 + noise[x,y,B]* +2)

where the A and B indexes refer to the A and B nod position.

81

PACS Photometry standard data processing

Images :

Figure 3.10. Simplified Example: Chopper Plateaus

Nod_1

82

Nod_ 2

PACS Photometry standard data processing

3.9.1.7. photCombineNod (java prototype available)

The nod cycles are repeated many times per any dither position. This task is taking the average of
the differential noda-nob images corresponding to any dither position. The results is a frames class
containing a completely background subtracted point source image per any dither position.

>> out Frames = phot Conbi neNod(i nFrames [qual ityContext=QualityContext] [copy=0] -)

out Fr ames -: Frames -: Frames out w th one inage

i nFrames -: Frames -: Frames in

qual i tyCont ext -: QualityContext

copy -oint :
O -- return reference -: overwites the input frames (default)
1 -- return copy

The noiseis propagated as follows:
noise[x,y,d] = STDDEV/(signal[x,y,nd]) / SQRT(nd)

where d is the index of the dither position and nd is the number nod cycles per dither position.

83

PACS Photometry standard data processing

Image :

D 3

Figure 3.11. Simplified Example: Chopper Plateaus

| I R

PACS Photometry standard data processing

3.9.2. Level 1to Level 2
3.9.2.1. photDriftCorrection

Applies drift correction of the flat field and controls the photometric stability

>> out Frames = photDriftCorrection(inFrames [, cal Tree=cal Tree] [, dCSsRef =dCSsRef]
[t hreshol d=t hr eshol d] [al go=al go] [, copy=copy] -)

out Fr anmes -: Franes -: Frames out in Jansky photonetricaly
cal i brated
i nFranes -: Frames -: Frames with signal in Volt
cal Tree -: PacsCalibrationTree -: calibration tree containing all calibration
products used by the pipeline
dCSs Ref -: DCSRef -: 1700 reference point is the difference of
the internal calibration source conputed during the determ nation of the flat field
threshol d -: PhotonetricStabilityThreshol d
al go -: String -: algorithmused when many calibration bl ocks
exists {"first","last","mean" [default] -,"median","interpolation"}

-"first" -- only the first calibration block
is applied on the science data bl ock

-"last" -- only the last calibration block is
applied on the science data bl ock

-"mean" -- the nmean of calibration block is
applied on the science data bl ock

-"medi an" -- the median of the calibration
bl ock is applied on the science block

-"interpolation" -- an
interpolation is done between the calibration block and applied at each
map
copy -0 int -

0 -- return reference

1 -- return copy
Literature

Photometric calibration of PACS bolometer - K.Okumura, D.Lutz, M.Sauvage and B.Morin - October
11,2007

Photometric calibration products - B.Morin, K.Okumura, D.Lutz, M.Sauvage - February 08,2008
Principle

PhotDriftCorrectionTask has the goal to multiply signal (t) in Volt by theratio 1"C0/i” Cs. This factor
corrects possible drift of theflat field T} or CS emission. Reference point 1"CO is computed during the
determination of the flat field. T"Cs coming with the frame gives an evaluation of the possible drift of
the flat. This evolution can be either an alteration of the internal calibration sources or an evolution
of the detector pixels. The drift is compared with photometric stability threshold parameters (stored
in the calibration files). If the ratio overtakes these thresholds, a 'DriftAlert' keyword is added to the
metadata . For each pixel having aratio in error, the ratio is collected, the average done and stored
in the metadata. Collected at the end of the pipeline, a specific action will be triggered with it (such
as mail and so forth).

Hereafter the formula managing the photometric adjustement :

(8Z) . 1

(&) ()

L) = &))"

Tf(t) isthe flux in Jy

85

PACS Photometry standard data processing

T's(t) isthe signal in Volt

1"Cy is the difference of the calibration sources got during a calibration campaign. Computed during
the flat field determination the unitisin Volt

T"C isthe difference of the calibration sources computed by the pipeline. Unitisin Volt
Jisaflux calibration factor which contains the responsivity and the conversion factor to Jansky
1! isthe normalized flatfield - dimensionless

Ratio 1/Ji! converts the signal s(t) in Volt to f(t) in Jansky

Ratio T"Co/l” C corrects the drift of the ratio 1/Ji!

Quick chopping between calibration source will remove one part of the offset. CS1 and CS2 measure-
ments are always done at the same chopper position (-21350 for CS1 and +21200 for CS2). Theusing
of the same chopper reference, the ratio 1"Cy/I"C is agood way to free of the pixel distortions.

Hereafter the formula used to compute the noise
‘noise = SQRT(sou® * [(If1N°S) + (IfI' CI'CH + (If1'CN'CH])

wher e

1”s is the input signal in Volt, Tfl"s is the input noise (frane.getNoise() -)
1700 is our reference in Volt see above and | f1 Cy is the noise of our reference
1”Cs conputed by photDriftCorrection contains the drift in Volt while 1f1"Csis
the associ ated noi se

Sout IS the output signal in Volt, nodified by PhotDriftCorrection

noise is the new noise in Volt available with the command -: frane. get Noi se()

Calibrationsfiles : DCRef (I"CO in the formula) and PhotometricStability Threshold.

Addendum: the first 1"Cq has been determined with data collected during IL T test campaign. The fol-
lowing biases have been used: 2.6 V for both the blue and green channel, 2.0 V for the red one. These
bias are not used during flight operation so we pay attention for using PhotDriftCorrection. Thislatter
normaly corrects the drift, but due to bias divergence between dCo and dcs, one part of the response
isincluded in the ratio applied. For the photometry we should apply PhotDriftCorrection. Neverthe-
less, PhotDriftCorrection shouldn't use when the reponsivity calibration product version 4.0 is

applied.
3.9.2.2. photRespFlatFieldCorrection

Appliesflat field corrections and converts signal to aflux density

>> out Franmes = phot RespFl at Fi el dCorrection(inFranmes [, cal Tree=cal Tree]
[.flatField=flatField][,responsivity=responsivity][, copy=copy] -)

out Fr anmes -: Frames -: Frames out in Jansky photonetricaly
cal i brated
i nFrames -: Frames -: Frames with signal in Volt
cal Tree -: PacsCalibrationTree -: calibration tree containing all calibration
products used by the pipeline
flatField -: FlatField -: FlatField calibration product
responsivity -: Responsivity -: Calibration product converting the signal
in Flux density (Jansky)
copy - int -
0 -- return reference

86

PACS Photometry standard data processing

1 -- return copy

Literature

Photometric calibration of PACS bolometer - K.Okumura, D.Lutz, M.Sauvage and B.Morin - October
11,2007

Photometric calibration products - B.Morin,K.Okumura,D.L utz, M.Sauvage - February 08,2008
Principle
photRespFlatFieldCorrection divides 1"s(t) by the flat field T! and the responsivity J.

Hereafter the formula managing the photometric adjustement :

(8Z) . 1

(&) ()

L) = &))"

(Please have alook also on the PhotDriftCorrectionTask)

1/J1! converts signal in Volt to jansky. The conversion is done for a 1»0 wavelength related to the
central filter band used. Bandwith and T»0 information is stored in the Responsivity calibration product
available from the calibration Tree (cal Tree).

Calibration Files: FlatField and Responsivity
FlatField calibration product

This product contains the flat field and the noise for the red, the green and the blue channel. Here is
briefly a description of the product :

» Animage of theflat field - the physical unit is dimensionless and around 1

» animage of the noise - the physical unit is dimensionless - Noise has to be multiply by the respon-
sivity in order to have a physical dimension

» The average of the fluxes used to compute the flat in Jansky
» Thedifference of the fluxes used to compute the flat in Jansky
» The creation date of the flat in microsecond since the 1 jan 1958

» Text field given the coordinates of the calibration source used to make the flat or during the ILT
the OGSEs with their temperatures in Kelvin and filter.

Useful commands to explore this calibration product

from herschel . pacs.cal inmport *

caltree = getCal Tree("FM)

flat = caltree. photoneter.flatField

channel = -"red" # or -"green" or -"blue"

print flat[channel].getMta().get("ManFl ux")
print flat[channel].getMeta().get("DeltaFl ux")
print flat[channel].getMeta().get("Summary")
print flat[channel].getMeta().get("CreationDate")
or sinply

87

PACS Photometry standard data processing

print flat[channel].getMta()

Di spl ay(flat[channel]["Fl at Fi el d"] . dat a)

Di spl ay(fl at[channel]["Noi seMap"] . dat a)

or

resp = cal tree. photoneter.responsivity

Di spl ay(fl at[channel]["Noi seMap"].data.nultiply(resp[channel"]
[Responsivity].data[0]) # in V/Jy

Overview
Noise

a’f o’s | a?oC, | o2oC | o’k or o'
F= 5 s O i K? r? @

withifk=0

Responsivity calibration product

This product contains the responsivity. Signal in volt multiply by the coefficient found in this product
convertsthe signal in Volt into flux density in Jansky. Here is briefly the content of this product :

* responsivity coefficient V/Jy

« Reference wavelength 1»0 in micrometer used to compute the flux - in general the central wave-
length of thefilter

« Effective aperture in square meter - the diameter of the primary telescope miror

» Effective bandwidth in Hertz - see formula below

Elfective bandwith ¢

i -

_ '(A) .
Ao=M*A'v¥ ['_’”M
=

M = mirror's transmission
(%) 15 the filter transmission

Useful commands to explore this product

from herschel . pacs.cal inport *

caltree = getCal Tree("FM)

resp = cal tree. photoneter.responsivity

channel = -"red" # or -"green" or -"blue"

print resp[channel]. Responsivity.getMeta().get("RefWavel ength")
print resp[channel]. Responsivity.getMeta().get("EffectiveAperture")
print resp[channel]. Responsivity.getMta().get("EffectiveBandw dth")
or sinply

print resp[channel]. Responsivity.getMeta()

print resp[channel].Responsivity.data[0] # in V/Jy

3.9.2.3. photShiftDith

The dithering pattern offered by HSpot is just a 1/3 pixel shift. Thus the coaddition of the 3 dithered
doubledifferential imageisdone only in pixel coordinates by thistask. Thisis not the definitive result

88

PACS Photometry standard data processing

of the pipeline since also for the Point-source mode a final astrometric calibrated image should be
provided. Thisisawork in progress and still under investigation.

3.10. Small Source AOR

Many of the tasks of this session are the same already described in the Point-Source pipeline. Thus,
the description will not be repeated here. For those tasks the user can refer to the previous section.

3.10.1. Level 0.5to Level 1
3.10.1.1. photMakeRasPosCount (jython prototype available)

See description of the same task in the Point-source pipeline

3.10.1.2. photAvgPlateau (java prototype available)
See description of the same task in the Point-source pipeline

3.10.1.3. photDiffChop (java prototype available)
See description of the same task in the Point-source pipeline

3.10.1.4. photAvgNod (jython prototype available)

See description of the same task in the Point-source pipeline

3.10.1.5. photDiffNod

See description of the same task in the Point-source pipeline

3.10.1.6. photDriftCorrection (java prototype available)

See description of the same task in the Point-source pipeline

3.10.1.7. photRespFlatFieldCorrection (java prototype available)

See description of the same task in the Point-source pipeline

3.10.2. Level 1to Level 2
3.10.2.1. photAssignRaDec

This task performs the last step of the astrometric calibration. Sofar only the sky coordinates of the
virtual aperture (center of the bolometer) and the position angle are available in the status table for
each frame. the astrometric calibration is done by estimating the sky coordinates of the center of each
pixel. This information is then stored into two cubes, one for RA and one for DEC, with the same
dimensions of the frame class to be atrometrized.

>> out Franes = phot Assi gnaRaDec(i nFranes, cal Tree=cal Tree, [,copy=0] -)

out Frames -: Frames -: Franes out with one inmage per one chopper cycle
i nFranmes -: Frames -: Franes in

cal Tree -: PacsCalibrationTree -: calibration tree containing al

calibration products used by the pipeline

89

PACS Photometry standard data processing

copy -oint -

0 -- return reference -: overwites the input franes
(defaul t)

1 -- return copy -: creates a new output w thout

overwiting the input

This step of the astrometric calibration is done in two steps. In the first step the subarray coordinate
system, that is the the integer coordinates (p,q in the figure below) of the pixel centers as displayed
in A, have to be transformed into the the cartesian coordinate system of the PACS foca plane (u,
v, respectively, in mm), which reproduces the real misalignment and rotation of the submatrices, as
shown in the bottom figure below. The transformation coefficient between p,q to u,v coordinates are
contained in the spatial calibration file PCalPhotometer SubArrayArray _version fits.

g — appreximately negative instrument y on sky —>

[p.q]=[0.0] [0.16] [0.32] [0.48]
o - J . J
3
. |
-0
=
3
2%
N3
¥y
= L1BOTE
>
=7q
Hs
a
=
m
J"[Jl.{l]__ -
[31,63]
Figure 3.12.

As a second step the coordinates u,v on the PACS focal plane have to be transformed into orthogonal
local coordinates on the tangential plane on the sky, y,z. The coordinatesy,z, as shown in the figure
below, correspond to the offset in arcsecond of theindividual pixel coordinates with respect to the the
virtual aperture. They are approximated by two polynomialsin the three-dimensional space of u,v and
chopper and alpha (CHOPFPUANGLE entry in the status tabl e output of convertchopper2angle task):

N M O

Y= Z Z Z aijkuiujak

=0 3=0 k=0

Figure 3.13.

the coefficients of the two polynomials are contained in the spatial calibration file
PCalPhotometer_Arraylnstrument_version.fits. Oncethe Instrument coordinates are avail able, the sky
coordinates of the center of each pixel are smply obtained by spherical trigonometric for any given
RA and DEC of the virtual aperture and position angle PA (listed for each framesin the status table),
as shown in the figure below.

90

PACS Photometry standard data processing

'Il:]l:]_' L AL L L L L L L AL L L A LA L '2' T | LN AL L L L L L AL A B L L L L AL L L L B
50—
o B
0
N L
4] L
=S 0 :
& i Positionte which
| -+ PA apply
3 B aperture}
-50—
—100_....|.........|.........|.........|.........|....
200 100 0] -100 —200

ARA * cos(DEC) [arcsec]

Figure 3.14.

3.10.2.2. photProject

The protProject task provides one of the two methods adopted for the map creation from a given set
of images (in the PACS case, aframe class). The second method is MadMap which will be discussed
in the ScanMap pipeline section.

>> si = phot Proj ect (i nFranes, [outPixel Si ze=out Pi xel si ze,] [copy=1,] [nonitor=1]
[optim zeOrientati on=optim zeOri entation]
[mapcoor di nat es=mapcoor di nat es] [cali brati on=calibration])

Si -: final map (Sinplelnmge) with WS
i nFrames -: Frames -: astronetric calibrated input frames
out Pi xel Si ze -: double -: the size of a pixel in the output dataset in

ar cseconds.

Default is the same size as the input (6.4 arcsecs for
the red and 3.2 arcsecs for the blue photoneter)
copy -: default is O (no copy of inFrames). Option is 1, if inFranes
shoul d be copi ed

optim zeOrientation:rotates the map by an angl e between 1 and 89 degrees in order
to avoid huge output maps with |ots of

zero-signal pixels. Possible vaules: false (default, no
automatic rotation), true (automatic rotation)

mapcoordi nates: allows to specify the coordinates of the output map. Required
val ues: mapcenterra (deg), mapcenterdec (deg),

mapwi dt hra, mapw dt hdec, angle. |If mapcoordi nates are given the
opti mazeOrientation will be ignored even if set to true.

noni t or -: shows the map nontor that allows a close visual inspection of
the map buil ding process.

default value is O (no map nonitor). monitor = 1 shows the map
noni t or

calibration -: default O to cal cul ates pixel corners with standard bol oneter
astronmetric calibration; 1 for geonetrical calcul ation
(test purposes)

The task perform a simple coaddition of images. Thusit can be applied to raster and scan map obser-
vations without particular restrictions. The only requirement is that the input frame class must be as-

91

PACS Photometry standard data processing

trometric calibrated, which means, in the PACS case, that it must include the cubes of raand dec coor-
dinates of the pixel centers. Thus, photAddlnstantPointing and photAssignRaDec should be executed
before PhotProject. There is not any particular treatment of the signal in terms of noise removal. The
background noise and 1/f noiseis supposed to be removed before the execution of thistask, e.g. by the
previous steps of the pipeline in the case of chooped-nodded observations and by the photHighPass-
Filter or similar tasks in the scan map case. The simple projection is shown in the following picture.

Pixels

Projected image _| /\ .-— \

output Pixelsize { (-><\I\

(customizable) o e \

weights

Figure 3.15.

First the task defines the dimensions of the output image on the basis of the input images. The size of
the output pixel can be specified by the user in arcseconds by setting the outPixelsize parameter. By
default thisisthe sameastheinput pixel (3.2" for theblueand 6.4" for the red bol ometer, respectively).
The user can set this parameter on the basis of the raster or dithering pattern and on the scan map
speed. In order to map any input pixel into the output map as shown in the bottom-right corner of the
figure above, the task calculates the sky coordinates of the pixel corners. If the parameter calibration
is set to true (default), the task uses for this purpose the same method used by photAssignRaDec for
calculating the sky coordinates of the pixel center, that is by using the distortion calibration files (see
the description of that task for moredetail). If calibration isset to fal se, than theinput pixel issupposed
to be a square and the coordinates of the corners are calculated by geometry on the basis of the pixel
center coordinates and position angle. Thefirst method is preferable under all pointsof view: itismuch
less time consuming and it takes into account the distortions of the PACS bolometers. The second
method is still available for test purposes and it is very time consuming. Once the corner coordinates
are available, first the task transform the signal from flux(Jy) per input pixel into flux(jy) per output
pixel. Thisisdone by dividing theinput pixel signal by the areamapped by an input pixel in the output
image (the colored region in the bottom-right corner of the figure above). After this step the coadded
image is obtained with the following method:

92

PACS Photometry standard data processing

15 .
D i1 AxyWaylxy
lyy =
i Wx" v
N,
u{\{’ }."' = E HI}JW Ty
i=1
Figure 3.16.

where 1(X'y") is the flux of the output pixel (X',y"), a(xy) is the geometrical weight of the input pixel
(x,y), w(xy) istheinitial weight of the input pixel, i(xy) is the flux of the input pixel and W(x'y") is
the weight of the output pixel (x'y"). The geometrical weight a(xy) is given by the fraction of ouptput
pixel area overlapped by the mapped input pixel (the 4 regions with different colors shown in the
bottom-right corner of the figure above), so 0 < a(xy) < 1. The initial weight w(xy) depends on the
observation. In case of chooped-nodded observations (point-source, small-source and raster mode),
w(xy) should be given by the coverage or exposure map which takesinto account the different number
of readouts used, pixel by pixel, inthe previous averaging processes (averaging of the chopper plateau,
averaging of differential on-off images, etc). In the case of scan map observations, w(xy) isjust equal
to O if apixel is masked out in the available masks (BADPIXEL, SATURATION, GLITCH) and 1
in th opposite case. Thus, the signal Ix'y" of the output image at pixel (x',y") is given the sum of all
input pixels with non zero geometrical (a(xy)) and initial weight w(xy), divided by the total weight
(sum of the weight of all contributing pixels).

The task provides as output the final map, the coverage map and the noise map. Only the final map
has a correct wcs (...well, amost!), the other images are not provided yet with WCS.

93

PACS Photometry standard data processing

3.10.2.3. Features of the Map Monitor

The currently processed frame (n¢

slide through all buffered frames and
see, how the map is constructed

94

PACS Photometry standard data processing

The use of the Map Monitor is straight forward. After PhotProject is started with the option monitor=1,
the Map Monitor appearsand shows how the mapis constructed. It hasabuffer for all processed frames
and maps. The dlider moves through this buffer and displays the map in all stages of construction.
Here are some remarks:

» autodisplay: if thisis selected, the map isimmediately displayed, while PhotProject processes the
data. Uncheck this option and the buffer initially fills much faster.

» memory: depending on the size of the processed Frames class the buffer may use alot of memory.
Start PhotProject with all memory you can afford. If the Map Monitor runs out of memory, it will
deleteits buffer to avoid out of memory situations and go on showing only the currently processed
map. Inthislow memory modethe slider isdisabled (but it still indicatesthe number of the currently
processed frame).

3.11. Chopped Raster AOR
3.11.1. Level 0.5to Level 1

3.11.1.1. photMakeRasPosCount (jython prototype available)

See description of the same task in the Point-source pipeline

3.11.1.2. photAvgPlateau (java prototype available)

See description of the same task in the Point-source pipeline

3.11.1.3. photDiffChop (java prototype available)

See description of the same task in the Point-source pipeline

3.11.1.4. photDriftCorrection (java prototype available)

See description of the same task in the Point-source pipeline

3.11.1.5. photRespFlatFieldCorrection (java prototype available)
See description of the same task in the Point-source pipeline
NOTE: In the case of chopped raster mode, only the chop cycles and not the nod cycles are defined
for any raster position. Usually, the user can specified the raster observations to reproduce aso the

nod cycle. This makes the observation dependent on the user observation design. Therefore, the data
reduction after this step and up to Level 1 of the pipeline can not be generalized.

3.11.2. Level 1to Level 2

3.11.2.1. photAssignRaDec

See description of the same task in the Point-source pipeline

3.11.2.2. photProject

See description of the same task in the Point-source pipeline

95

PACS Photometry standard data processing

3.12.

Scan Map AOR

3.12.1. Level 0.5to Level 1

3.12.1.1. photDriftCorrection (java prototype available)

See description of the same task in the Point-source pipeline

3.12.1.2. photRespFlatFieldCorrection (java prototype available)

See description of the same task in the Point-source pipeline

3.12.2. Level 1to Level 2
3.12.2.1. photAssignRaDec

See description of the same task given in the Small-source pipeline

3.12.2.2. The map reconstruction

At thisstage of the datareduction the scan map pipelineisdivided in two branches: asimple projection
given by Photproject and theinversion given by MadMap. The two methods areimplemented to satisfy
the requirements of different scientific cases. See following subsections for more details.

The simple projection

filterSlew

Thistask isremoving from the science data the readouts corresponding to the satellite slewing, e.g. at
the beginning of the science block or between different adjacent scan legs. These readouts need to be
discarded in the map reconstruction because they correspond to a satellite acceleration.

>> out Franes = filterSl ew(i nFranes, [,copy=0] -)

out Fr anmes -: Frames -: Franes out with one inmage per one chopper cycle
i nFranes -: Frames -: Frames in
copy -oint

0 -- return reference -: overwites the input franes
(defaul t)

1 -- return copy - creates a new output without

overwiting the input

Thetask is just reading the Status table entry "IsSlew" (see description of "photAddlnstantPointing"
task for more details). Thisflag is set to "true" for readouts corresponding to the satellite slewing and
"false" elsewhere. The readouts with |sSlew=true are removed from the frames class.

photHighPassfilter (jython prototype)

Thistask isonly a prototype. The purpose is to remove the 1/f noise. Several methods are still under
investigation. At the moment the task isjust using aMedian Filter by removing arunning median from
each readout. Thefilter box size can be set by the user (filterbox parameter in the scheme below). By
default isis 200 readouts.

>> out Franmes = phot Hi ghPassfilter(inFrames, [filterbox=filterbox], [,copy=0] -)

out Frames -: Frames -: Franes out with one inmage per one chopper cycle

96

PACS Photometry standard data processing

i nFranmes -: Frames -: Franes in
filterbox= - int -: nedian filter box size, by default is 200 readouts
copy - int -

0 -- return reference -: overwites the input franmes
(defaul t)

1 -- return copy -: creates a new output w thout

overwiting the input
A real high passfilter is still under implementation and its use is under investigation.

photProjects

See description of the same task given in the Small-source pipeline
The MadMap case

makeTodArray

Builds time-ordered data (TOD) stream for input into MADmap and derives meta header information
of the output skymap. Input data is assumed to be calibrated and flat-fielded. Also prepares the "to's"
and "from's" header information for the InvNtt (inverse time-time noise covariance matrix) calibration
file.

>> PacsTodProduct todProd = makeTodArray(inFrames [, scal e=scale] [, crota2=crota2]
[, t odnanme=t odnane] [,toddir=toddir])

inFranes -: Data frames in units of mly/pixel. Requi red i nput neta-data:
(1) RA Dec cubes associated with the frames including the effects of
distortion. Assune this step has
been previously done by Phot Assi gnRaDec.
(2) input mask cube which identifies bad pixels.
(3) information on band (BS, BL, RED), npde (scan/chopped raster), and
| ocations between scan | egs for data
- "chunki ng".

scal e -: Y%ixel scale of output skymap in relation to nom nal PACS detector
size, e.g., 3.2" for Blue and 6.4" Red.

For scale = 1, the skymap has square pixels equal to nom nal PACS
det ector size.

crota2 -: CROTA2 of output skymap. Default = 0.0 degree.

todnane -: Filenane of TOD file.

toddir -: Directory that contains the above TOD file.

t odPr od -: Qutput product representing the TCOD binary bit-stream and associ at ed

met a data keywords.

Body of todProd is TOD bit stream binary data file consisting of binary header
informati on and TOD data

(Reference: http://crd.|bl.gov/~cnc/ MADmap/ doc/ man/ MADmaep. htmi). The bi nary
header is four 8byte integers

(1) First sanple index for TOD data, set to O.
(2) Last sanple index for TOD data chunk, set to (n_good_detectors *
n_sanpl es) --1.
(3) nnGbs = Nunber of detector values per sky pixel during each tinme sanple (for
def aul t one-to-one mappi ng of
detectors on to sky pixels, nnCbs=1).
(4) total nunber of sky pixels with good data.

The binary header is followed by the data in the order of:
For each input GOOD detector pixel ("observation"):

val ue (double, 8-byte float) ==v
For each sky pi xel observed:

97

PACS Photometry standard data processing

wei ght (4-byte float) == w
skypi xel index (4-byte int) == p

(e.g.,.) for good detectors ii=1,nd and time sanples kk=1,nt, TOD order is

gi ven by:
for ii=1,nd
for kk=1, nt
v[ii,kk]
for jj=1, nnCbs
wii,kk]
plii,kk]
Initially for the SPG we will set nnOBS=1, i.e., use the default one-to-one

mappi ng of input detectors onto sky pixels.

The TOD hinary data file is built with format given above and the tod product includes and the as-
trometry of output map using meta data keywords: CRVAL1 : RA Reference position of skymap

CRVAL2 : Dec Reference position of skymap

EQUINOX : 2000.

CTYPEL: RA---TAN

CTYPE2 : DEC--TAN

CRPIX1: Pixel x value corresponding to CRVAL1

CRPIX2 : Pixel y value corresponding to CRVAL2

CDELTZ1 : pixel scale of sky map (=input as default, user parameter)
CDELT2 : pixel scale of sky map (=input as default, user parameter)
CROTAZ2 : PA of image N-axis (=0 as default, user parameter)

The weights are set to 0 for bad data as flagged in the mask. Dead/bad detectors (detectors which are
always {or usually} bad), are not included in TOD calculations.

The skypix indices are derived from the projection of each input pixel onto the output sky grid. The
skypix indices are increasing integers representing the location in the sky map with good data. The
skypixel indices of the output map must have some data with non-zero weights,must be continuous,
must start with 0, and must be sorted with O first and the largest index last.

Future planned parameters that may be implemented include:
medianSub : True/False; Flag to subtract median value from input data (default = false).

nnObs : Number of detector values per sky pixel during each time sample (for default one-to-one
mapping of detectors on to sky pixels this value is one (i.e., the value for each sky pixel for one time
sample is based on only one detector value). If value for a sky pixel for one time sampleis based on
multiple values, then nnObs > 1 and one needs to assign the appropriate weights (e.g., fractional area
of detector pixel seen by sky pixel, and conserve surface brightness.

maxGap : Maximum size of gap (in samples) before chunking is done.
otfName : On-target-flag name (ONTARGET, HSC-DOC-0662 [PACS-PTREQ-G08] which will be
a status flag from the pointing product. Required for data chunking of scan data by scan leg.

runMadMap

98

PACS Photometry standard data processing

3.13

The module runMadMap is the wrapper that runs the JAVA MADmap module. MADmap uses a
maximum-likelihood technique to build amap from an input Time Order Data (TOD) set by solving a
system of linear equations. It is used to remove low-frequency drift (" 1/f") noise from bolometer data
while preserving the sky signal on large spatial scales. (Reference: http://crd.Ibl.gov/~cmc/MADmap/
doc/man/MADmap.html). The input TOD data is assumed to be calibrated and flat-fielded and input
InvNtt noise calibration file is from calibration tree.

>> Sinpl el mage map = runMadMap(todProd, [cal Tree=cal Tree]
[,filterLength=filterLength]

[, maxRel Er r or =maxRel Err or]
[, maxlterarions=naxlterations] -)

t odPr od -: The PacsTodProduct from makeTodArray

cal Tree -: PacsCalibrationTree containing calibration InvNtt information
stored as an array of size

max(n_correlation+l) x n_all_detectors. Each row represents the
InvNtt information for each detector.

filterLength -: Specifies the length of the FFT's that will be done; code w |l
make a best guess if not provided.

maxRel Error -: Maximumrelative error allowed in PCG routine (default is 1le-6).
maxlterations -: Maxi mum nunber of iterations in PCGroutine (default is 50).
map -: Sinple i mge sky map includi ng header information fromthe tod

product neta-data. Products al so include
the naive map (map without corrections), a coverage nmap, and a
representative noise map (product definition is TBD).

The filterLength, which is calculated by the module, must be larger than 2* bandWidth, and can be
much longer. For optimum performance filterLength should be the smallest power of two such that
filterLength/ (In(filterLength) + 1) >= bandWidth - 1. But, note that for best performance filterLength
should not be longer than the stationary time scale of the the noise.

Future planned parameters that may be implemented include:

bandWidth : Width of the non-zero band along the diagonal of inv(N); code will derive from noise
fileif not provided. The bandWidth is 2*n_correlation +1.

maxMemory : Maximum number of bytes of memory that each process can allocate (default is 1GB).

medianSub : Flag to subtract median of the input data values before MADmap computation, and then
the median level is added back into the output sky map. May be helpful for data of limited dynamic
range where background >> signal.

Trend Analysis Product generation

This section is dedicated to the trend analysis product generation. The concept and the scheme of this
product generation hasto be still finalized. At the moment only the calibration blocks and several HK
of each observation are saved as trend analysis products. The tasks responsible for these products are
listed and described below. However, it isworth to mention that the implementation of these tasks and
their results is prone to change on the basis of calibration scientist requirements.

3.13.1. photTrendCS

Thistask is not mandatory for the pipeline.

99

PACS Photometry standard data processing

For trend analysis purpose, photTrendCS collects, reduces and stores useful data about the internal
calibration sources. This processis applied for each calibration block encountered.

Facultative, thistask |eaves the frames unchanged and is usualy called by the task PhotCSProcessing.

>> out Frames = phot TrenCSTask(Franes i nfranes, trend=t rend[, hkdat a=hk] [, seq=seq]
[, cal Tree=cal Tree][rt Converter=rt Converter][, copy=copy])

out Fr ames -: Frames -: unchanged input franes
i nFranmes -: Frames -: input frames
trend -: Phot TrendCSProducts -: (csbasket) list of franes containing
calibration blocks -- Slots of this product are filled by the Phot TrendCS
hkdat a -: Tabl eDat aset -: housekeeping informati on extracted fromthe
observation cont ext
seq -: Packet Sequence -: alternative choice when hkdata is unavail abl e
cal Tree -: PacsCalibrationTree -: calibration tree containing all calibration
products used by the pipeline
trConverter -: CsResistanceTenperature -: Calibration product given resistor to
t enperature conversion
copy -oint -

0 -- return reference (default)

1 -- return copy

Content of CS product generated :

CS product contains three parts { red, green, blue}. While the red part is aways filled, blue and green
depends on the current observation. A keyword called ‘channel' and stored in the metadata, keeps
information on the valid filling part (green or blue). Here are the keywords and information stored:

» "Csl" involt, contains CS1 data stored in one calibration block.
» "Cs2" involt, contains CS2 data stored in one calibration block.
e "CslTime" givesthetimein microseconds (since 01Jan1958) of each layer of CS1 data cube.
e "Cs2Time" givesthe timein microseconds (since 01Jan1958) of each layer of CS2 data cube .
+ Metadata

e "channdl" = { red,green, blue} tell usthe dataset currently filled.

» "cs1Cpr" contains the mean of the chopper positions extracted during an observation of the CS1
in command unit (CU)

e "cs2Cpr" contains the mean of the chopper positions extracted during an observation of the CS2
in command unit (CU)

e "cslTemperature" isthe average of the csl temperaturein Kelvin

» "cs2Temperature” isthe average of the cs2 temperature in Kelvin

o "cslTemperatureStdDev" isthe standard deviation of csl temperature in Kelvin

e "cs2TemperatureStdDev" is the standard deviation of cs2 temperature in Kelvin

« "bhias" isthe average of Vh-VI found on al BU (Buffer Unit).This quantity isin Volt

* "mode" gives the reading mode led by the warm electronic BOLC .This quantity is a string =
{Direct,DDCS} takes from the median of the calibration block.

e "gain" of the warm electronic, possible valuesare { 0 = high gain, 1=low gain} . Thisvalueis
based on the median of the value found in the calibration blocks

Exploring PhoTrendCSProducts: please have alook on PhotCSExtraction task

100

PACS Photometry standard data processing

3.14. Raw Telemetry to Level O

Usually the pipeline data reduction is supposed to start directly from the Level O products. However,
this tasks can still be usefull for test purposes.

3.14.1. averageFrames

Average Photometer detector signals (avgNr readouts) for the raw data instrument modes .

>> Franes out Frames = aver ageFranes(Franes i nFranmes, int avgNr)

out Frames -: Franes -: Franes out
inFrames -: Frames -: Franmes in
avgNr - int -: Nunmber of sanples to average
copy - int -
0 -- return reference
1 -- return copy

» Frame Signals (double) are just averaged
» Frame Wavelengths (double) are just averaged

» The Frame Masks (boolean) are reduced. Optional user may reduce this data by "AND" or "OR"
operations against True.

» The Frame Status (int) are averaged. But the then rounded to the nearest Integer.
» The Frame Status (boolean) are treated as Frame Masks

» The Frame Status (string) are selected by majority, in case of no majority the first oneis taken

3.14.2. readTm - reading Raw Telemetry

Reading raw telemetry from a PacketRecorder archive file (.tmfile) .
>> seq = readtm()

seq -: Packet Sequence -: Packet Sequence contai ning raw Tm and/ or TC Sour cePacket s

In the operational environment this steps will be hidden for the general user. But, of course, within
interactive onsit ois possible to execute every single step and examine the intermediate results.

Thiswill open afile selector box showing al filesin your working directory that end with". t ni'. The
telemetry is then loaded from the selected file into a PacketSequence variable called seq.

If the pacs.t m dat apat h property is set to an existing directory, the file selector box will be
opened in that directory which makes it easier to navigate from there to your data. The r eadt n()
also accepts a filename in which case no file selector box will pop up.

3.14.3. extractDataframes - decompress the science tm
packets

This step generate the intermediate Product Decompressed Science data.

>> df s = extract Dat af ranes(seq)

seq -: Packet Sequence -: Packet Sequence containing raw Tm and/or TC
Sour cePacket s

101

PACS Photometry standard data processing

df s -: DatafraneSequence -: Sequence containing the raw, deconpressed DataFranes

Again this step is hidden in the pipeline Level 0 data generation.
User may useit aslong asthe pipeline Level 0 generation is not available or for debugging purposes.

The extractDatafranes task groups the science telemetry packets per group that can be
decompressed together and decompresses them.

Theresult is a DataFrameSequence, a collection of PacsDataFrame objects. These are decompressed
buffers of the two Signal Processing Units (SPU).
3.14.4. decomposeDataframes - organize the raw de-
compressed data in Frames and Phot Raw data
structures

Deconpose the raw DataFranmes into Products suitable for further pro-
cessi ng.

>> pacsM x = deconposeDat af ranes(dfs [, channel =channel] [, nrode=npde] [, cal Version
= cal Version])

pacsM x -: PacsM x -: Container for the Products (Franes, Ranps, Phot Raw)
df s -: Dataf raneSequence -: Sequence of Pacs Dat afranes
channel -: String -:

-"red" -- red channel only

-"blue" -- blue channel only

-"both" -- both channel (default)
node - String -: default is all nopdes

-"frames"” -- only frames

-"ranps” -- only Ranps

-"subranps" -- only Subranps

-"rawr anps" -- only Raw Ranps
cal Version -: String -: Version of the calibration files used

PacsDat aFr ames contain the result of the Decompression (reduced data, raw data, DecMec data
and Compression Header data).

This pipeline step isrestructuring the datain aproper format for further scientific analysis. This proper
formatted products are Fr anes and Phot Raw, depending on the instrument algorithm and com-
pression mode.

Franmes contain the reduced data as data cube, collapsed DecMec information, and decoded L abel
information in the associated Status. The Phot Raw product contain raw channel data (non averaged
data) e.g. of the rotating additional raw channels. Pi xel desel ected with the Detector
Sel ection Table are nasked by the BLI NDPI XEL nask.

deconposeDat af ranmes returna PacsM x . Depending on the (possibly different) :

* Instrument Algorithms
» Compression Modes
» User selections (Red channel and / or blue channel)

the user the PacsM x contain one or more Fr anes and/or Phot Raw products. For Fr anes the
DecMec data are collapsed from the full readout sampling to the frequency of the reduced data :

102

PACS Photometry standard data processing

» OBSID : first entry of the associated block of DecMec data
e BBID : first entry of the associated block of DecMec data

» LBL : first value + decoded value + check whether it change
* TMPL1: first value

o TMP2: first value

* FINETIME : first value

» VLD : first value + check it is not changing

* CPR: meanvalue

* WPR : mean value

* BOLST : mean value

* CRDC: first value:

* CRDCCP: first value

» DBID : first value

» BSID : first value

Cdlibration Files:

* Fil terBandConver si on : Filter to Band Conversion.

» Label Descri pti on : label description.

Going from Level 0to Level 0.5 implies extracting/collecting the necessary auxiliary data.

3.14.5. readAttitudeHistory

Read the attitude history.

>> attitude = readAttitudeH story(pdfs)

attitude -:
pdf s -: Dat af rameSequence -: Sequence of Datafranes

Reads the instantaneous pointing product covering the same time as the dataframes in the Dataframe-
Sequence pdfs.

3.14.6. readTimeCorellation

Read the Time Correlation information.

>> tinmecor = readTi meCorel |l ati on(pdfs)

timecor -: TableDataset -: Tinme correction val ues
pdf s -: Dat af raneSequence -: Sequence of Datafranes

Readsthetime corellation product covering the sametime asthe dataframesin the DataframeSequence
pdfs.

103

PACS Photometry standard data processing

3.15. SPG Pipeline chart

LevelOtoLevel05 .- --— —--___
Level 0 Products
"‘-...h__E:EiEI'IEE. HK, Pointing, Qua!ity,,.._,_

T

B

PhotBadPixelsMask - photFlagBadPixel
PhotSatLimits o photFlagSaturation
PhotGain - photConvDigit2Volts
PhatCrosstalkMatrix e | photCorrectCrosstalk
photCorrectGlitch

(photMMTDeglitching)

\ findBlocks |

ChopperskyAngle

Chopperangle — ‘ conve I‘I:Ch-:::p FIEFEJE"I.HQIE
ChopperangleRedundant e

ChopliterThreshold - cleanPlateauFrames
| | Under inv---n_
—— [implemented e
| | Prototyp |

PACS Photometry standard data processing

Level 0.5 to Level1 and Level 2 : Point Source AOR

wan Map AOR - -

‘ photMakeDithPos |

photMakeRasPosCount |

photAvgPlateau |

photDiffChop
&

photAvgDith |

imall Source ADOR oo
Zhopped Raster AQR

photDiffNod |

photCombineMNod

FlatField |photRespFlatﬂeldCcrr‘ectiun|

| photDriftCorrection

photShiftDith photProject

Frames (Level 2) -

Under investigation

= Implemented el § e
Prototype DataPool

B 1o be done ey

105

PACS Photometry standard data processing

Level 0.5 to Levell and Level 2 : Small Source AOR

Scan Map AOR = ' .

photMakeRasPosCount
photAvgPlateau
photDiffChop
Point Source ADR
Chopped Raster AOR™ *
photAvgNod
photDiffNodSmall
FlatField - photRespFlatFieldCorrection
photDriftCorrection
SubarrayArray —_— = 5
PhotArraylnstrument ———————® pthAsS'Q”RaDEC
(ILT version)
ST 2 ; Frames (Level1) 1
DataPool S
R RS photProject
el Simplelmage (Level 2) |

| | LUnder investigation

_ Implemented T T T s - e
| | Frototype

DataPool
_ To he done

106

PACS Photometry standard data processing

Level 0.5 to Levell and Level 2 : Chopped Raster AOR

Scan Map AOR - &

photAvgPlateau

photDiffChop
Pgoint Source AQR

Small Source AOR - o

Subarrayarray . photAssignRaDec
PhotArraylnstrument B~ (ILT version)
makeTodArray
Intermediate - -
Files
e runMadMap
: = T

TZ2TMNoiseCorrelation -

| | Under investigation gz

[] Implemented

| Frototype

_ To be done o

PACS Photometry standard data processing

Level 0.5 to Levell and Level 2 : Scan Map AOR inversion

Point Source ACQR
Small Source AQR g
Chopped Raster ACR

DataPool - Frames (Level 1)
SubarrayAtray —p photAssignRaDec
PhotArraylnstrument - (ILT version}

Simple processing - &
e makeTodArray
Interlg_ile;iiate . .

les
- runMadMap
N : e 4
T2TNoiseCorrelation -~

——

ImageProduct (Level

5 =mal

| Under investigation

_Implemented B S

| Prototype DataPool

_ To be done S _

PACS Photometry standard data processing

Level 0.5 to Levell and Level 2 : Scan Map AOR simple

Folnt Source AQR
Small Source AOR -l 8
Chopped Raster ACR

DataPool e Frames (Level 1)
Inversion processing = .
SubarrayArray B pthASSigHREDEE
PhotArrayinstrument - (ILT version)

photHighPassFilter

(. Simplelmage (Level

| Under investigation e A e

I implemented DataPool

PACS Photometry standard data processing

3.16. Product summary

Table 3.1. Overview - last updated 2006/06/09

Level Product name Status

0 readTm Done

0 extractDataframes Done

0 decomposeDataframes Done

0.5 readAttitudeHistory toDo

0.5 readTimeCorrelation toDo

0.5 extractDMC toDo

0.5 extractFrames Done

05 photFlagSaturation Done

0.5 photConvDigit2Volts Done

0.5 photFlagBadPixels Done
0.5 photFlagGlitch toDo
05-1 decodel_abel prototype
05-1 findBlocks prototype
1 convChopper2Angle Prototype
1 convXY Stage2Pointing Done

1 photAddInstantPointing toDo

1 photCorGlitch toDo

1 cleanPlateau Prototype
1 photAvgPlateau Prototype
1 photSpatial Cal toDo

1 photDiffChop toDo

1 photAvgNode toDo

1 photFuxCal toDo

1 photSkyRespCal toDo

1 photCsRespCal toDo

1 adduTC toDo

1 constructStack toDo

1 photCorrZeroL evel toDo

3.17. Appendix

3.17.1. How to remove sky background and telescope
emission

Telescope emission is the major flux received by the detector. During his life telescope temperature
should be to 80A%K on average and his emissivity to 4%.

In order to remove instrumental error, chopping and nodding mode are used. If the chopper doesnA’t
move, the optical path in PACS doesnA’t change when the tel escope pointing is running. Successive
pointing positions in the sky are lead by the satellite pointing and are called nodes. If the chopper

110

PACS Photometry standard data processing

is moving, the optical path in PACS instrument change. So that, the flux received by the detector
doesnA’t have the same tel escope emission.

Three sky areas are used:
* one containing a brightness source,

» and two others with no source

111

PACS Photometry standard data processing

Confi guration
Configuration
Confi guration
Configuration

A W DN R

- first
-: after
-: after
-: after

position -: point-source is observed @
choppi ng (2]
noddi ng and choppi ng (3]
choppi ng (4]

{.iray,decy), Bagper 1 }J

/

i

Configuration 1

|

{.0rag,deca), Bapper 1 }DJ

4

Configuration 3

Confl to Confd ; chopping

Confd to Confd - chopping

. .

Conf? to Conf3 ; chopping and nodding

{Lrardecy), Bauyy

\

e

Configuration

1Lrag,deca), Bay

s

Configuratio:

The Arrowrs show the central paxel of the detector during chopping and noddis

f = foreground (telescope emission)

B, ~RAEHOEBI A 08 (RIS EACEREPHIRE AHEIE i's changed in order to have brightness source in

112

PACS Photometry standard data processing

Glossary

Stack sorted list of the observations of an astronomical object got in a
given context. All of these observations can be processed in the
same way.

Plateau data sequence got during an elapsed time while the chopper and
telescope pointing are unchanged.

Cycle one ON/OFF chopper sequence

Node telescope pointing isfixed (only slight motion dueto thejitter can

be found)

113

	The PACS Advanced User Manual
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. PACS spectroscopy standard data processing
	2.1. Introduction
	2.2. Quick notes/to come
	2.3. Summary of the pipeline
	2.4. The sliced-products pipeline
	2.5. Processing levels
	2.6. Masks
	2.7. Accessing data as an Observation Context
	2.7.1. Populating the pool from tm files
	2.7.2. Getting the data
	2.7.3. Raw telemetry to Level 0
	2.7.3.1. readtm - reading raw telemetry
	2.7.3.2. extractDataframes - decompress the science tm packets
	2.7.3.3. decomposeDataframes
	2.7.3.4. readAttitudeHistory
	2.7.3.5. readTimeCorrelation
	2.7.3.6. Extract out the raw or averaged ramps

	2.7.4. Level 0 to Level 0.5
	2.7.4.1. compareRawWithReducedDataRamps
	2.7.4.2. specFlagSaturationRamps
	2.7.4.3. fitRamps
	2.7.4.4. specConvDigit2VoltsPerSecFrames
	2.7.4.5. detectCalibrationBlock
	2.7.4.6. specExtendStatus
	2.7.4.7. addUtc
	2.7.4.8. specAddInstantPointing
	2.7.4.9. convXyStage2Pointing
	2.7.4.10. convertChopper2Angle
	2.7.4.11. specAssignRaDec
	2.7.4.12. waveCalc
	2.7.4.13. specCorrectHerschelVelocity
	2.7.4.14. findBlocks
	2.7.4.15. specFlagBadPixelsFrames
	2.7.4.16. cleanPlateauFrames or flagChopMoveFrames
	2.7.4.17. flagGratMoveFrames
	2.7.4.18. flagDeviatingOpenDummyFrames
	2.7.4.19. pairDiffSigClip
	2.7.4.20. pairDiffHodLehEst

	2.7.5. Level 0.5 to Level 1
	2.7.5.1. specFlagGlitchFramesQTest
	2.7.5.2. specEstimateNoise
	2.7.5.3. specCorrectCrossTalk
	2.7.5.4. specCorrectSignalNonLinearities
	2.7.5.5. convertSignal2StandardCap
	2.7.5.6. specDiffCs
	2.7.5.7. specFitSignalDrift
	2.7.5.8. decodeLabel
	2.7.5.9. addOBCP2Frames
	2.7.5.10. specSubtractDark
	2.7.5.11. subtractOffPosition
	2.7.5.12. specAvgPlateau
	2.7.5.13. specDiffChop
	2.7.5.14. rsrfCal
	2.7.5.15. specRespCal
	2.7.5.16. specAddNod
	2.7.5.17. specFrames2PacsCube

	2.7.6. level 1 to level 2
	2.7.6.1. wavelengthGrid
	2.7.6.2. specFlagOutliers
	2.7.6.3. specWaveRebin
	2.7.6.4. specProject
	2.7.6.5. 3dDrizzling

	2.7.7. SPG Pipeline chart
	2.7.7.1. color coding
	2.7.7.2. from raw telemetry to level 0
	2.7.7.3. from raw telemetry to level 0
	2.7.7.4. from level 0 to level 0.5
	2.7.7.5. from level 0 to level 0.5
	2.7.7.6. from level 0.5 to level 1
	2.7.7.7. from level 0.5 to level 1
	2.7.7.8. from level 1 to level 2

	2.7.8. Appendix: Spectrometer Flux Calibration Concept

	Chapter 3. PACS Photometry standard data processing
	3.1. Introduction
	3.2. Definition of terms
	3.3. Summary of the Photometry processing steps
	3.4. Processing levels
	3.5. Imports
	3.6. Used Masks
	3.7. Level 0 to Level 0.5
	3.7.1. Getting started: how to retrieve data in the Observation Context
	3.7.2. The second step, understanding what there is in the observation: findBlocks (jython prototype available)
	3.7.3. Pre-processing of the calibration blocks
	3.7.3.1. photCSExtraction
	3.7.3.2. photCSProcessing
	photCSDiff (photDiffCal former task)

	3.7.3.3. photCSClean

	3.7.4. photFlagBadPixels
	3.7.5. photFlagSaturation
	3.7.6. photConvDigit2Volts
	3.7.7. photCrossCorrection
	3.7.8. photMMTDeglitching and photWTMMLDeglitching
	3.7.8.1. Deglitching using the Multiresolution Median Transform (photMMTDeglitching)
	Details and Results of the implementation
	Results of example data
	Alpha and Proton Irradiation Tests

	3.7.8.2. Wavelet Transform Modulus Maxima Lines Analysis (photWTMMLDeglitching)

	3.7.9. addUTC
	3.7.10. convChopper2Angle (jython prototype available)
	3.7.11. convXYStage2Pointing (available)
	3.7.12. photAddInstantPointing
	3.7.13. cleanPlateau (java prototype available)

	3.8. The AOT dependent pipelines
	3.9. Point Source AOR
	3.9.1. Level 0.5 to Level 1
	3.9.1.1. photMakeDithPos (jython prototype available)
	3.9.1.2. photMakeRasPosCount (jython prototype available)
	3.9.1.3. photAvgPlateau (java prototype available)
	3.9.1.4. photDiffChop (java prototype available)
	3.9.1.5. photAvgDith (jython prototype available)
	3.9.1.6. photDiffNod (java prototype available)
	3.9.1.7. photCombineNod (java prototype available)

	3.9.2. Level 1 to Level 2
	3.9.2.1. photDriftCorrection
	3.9.2.2. photRespFlatFieldCorrection
	3.9.2.3. photShiftDith

	3.10. Small Source AOR
	3.10.1. Level 0.5 to Level 1
	3.10.1.1. photMakeRasPosCount (jython prototype available)
	3.10.1.2. photAvgPlateau (java prototype available)
	3.10.1.3. photDiffChop (java prototype available)
	3.10.1.4. photAvgNod (jython prototype available)
	3.10.1.5. photDiffNod
	3.10.1.6. photDriftCorrection (java prototype available)
	3.10.1.7. photRespFlatFieldCorrection (java prototype available)

	3.10.2. Level 1 to Level 2
	3.10.2.1. photAssignRaDec
	3.10.2.2. photProject
	3.10.2.3. Features of the Map Monitor

	3.11. Chopped Raster AOR
	3.11.1. Level 0.5 to Level 1
	3.11.1.1. photMakeRasPosCount (jython prototype available)
	3.11.1.2. photAvgPlateau (java prototype available)
	3.11.1.3. photDiffChop (java prototype available)
	3.11.1.4. photDriftCorrection (java prototype available)
	3.11.1.5. photRespFlatFieldCorrection (java prototype available)

	3.11.2. Level 1 to Level 2
	3.11.2.1. photAssignRaDec
	3.11.2.2. photProject

	3.12. Scan Map AOR
	3.12.1. Level 0.5 to Level 1
	3.12.1.1. photDriftCorrection (java prototype available)
	3.12.1.2. photRespFlatFieldCorrection (java prototype available)

	3.12.2. Level 1 to Level 2
	3.12.2.1. photAssignRaDec
	3.12.2.2. The map reconstruction
	The simple projection
	filterSlew
	photHighPassfilter (jython prototype)
	photProjects

	The MadMap case
	makeTodArray
	runMadMap

	3.13. Trend Analysis Product generation
	3.13.1. photTrendCS

	3.14. Raw Telemetry to Level 0
	3.14.1. averageFrames
	3.14.2. readTm - reading Raw Telemetry
	3.14.3. extractDataframes - decompress the science tm packets
	3.14.4. decomposeDataframes - organize the raw decompressed data in Frames and PhotRaw data structures
	3.14.5. readAttitudeHistory
	3.14.6. readTimeCorellation

	3.15. SPG Pipeline chart
	3.16. Product summary
	3.17. Appendix
	3.17.1. How to remove sky background and telescope emission
	Glossary

