HIFI Pipeline Specification
Document: ICC2008-154

Do Kester
Odile Coeur-Joly
Andrea Lorenzani

Martin Melchior

...Mmaore...

HIFI Pipeline Specification: Document: ICC2008-154

Do Kester

Odile Coeur-Joly
Andrea Lorenzani
Martin Melchior
...more...

Revision History

Revision 0.1 1 February 2008

Outline on Dokuwikki

Revision 0.6 30 July 2008

Minor Updates

Revision 0.7 13 Nov 2009

Updatesto all sections

Revision 0.8 24 Nov 2009

Updates to HRS pipeline flow diagram, clarification of MkWhbsZero, change to manual properties for new documentation
framework

Revision 0.9 28 July 2010

Updatesto Level-1 and -2 pipelineflow diagram, split "Generic Pipeline” chapter into Level-1 and Level-2 Pipeline chapters,
rearrangement and additions of new sections to reflect status of pipeline.

Table of Contents

IO | oo [0 (o o I ORI 1
2. LeVE O PIPEIING v 2
2.1 DOHKCRECK ..oevtiieiiiiiie et 2
A B Lo o 11 g To L= P 7
3. HRS PIPEING ..o 12
3.1. Introduction t0 HRS PIPEIINEcceviiiiiic e e 12
3.2, dOHISSUBDENGSvvieiii e 12
3.3, HOHISOFFSEIPOW ... 13
I e o] 1 2= N o o o PP 15
3.5, AOHISQDCRUIL «.outiiiiii e e e e e e e eans 16
3.6, HOHISPOWECOIT ...ttt e e e e e et e e eaae e eeees 17
3.7, AOHISWINAOW ... e e e e e e aaens 18
G380 (o] 1SS0 2] 2 1 P 19
IS o 0 = e PR 21
3.10. AOHISSMOOLN ...t et e e e et e e e 22
G300 o (o 5 o 23
I o (0] o | £ O] PRSP 24
3.13. dOHISCUIBANAEAGES ... ccvuieiiieeii e e e e e e e e e e e e 25
4. WBS PIPEIING ..o 27
4.1. Introduction to the WBS PIPEIINE ...c.uuiiiiiiii e 27
4.2, DOWDSSCANCOUNLeeeveeeeeeii e e e et e e e et e e et e e e et e e e eate e e e eata e e e eete e eeeatnnaeeees 27
4.3. MKWDBSBEAPIXEIS ...t eeae s 28
4.4, DOWDBSBEAPIXEISvuiiiiiiiieeee ettt e 30
T 1o V] 1S I 1 31
A.6. DOWDSNONLIN ...ttt e et e e et e e e et e e e eaan s 33
A7 MKWDBSZEIO .o 34
A.8. DOWDSZEND ...ttt et e e et et e et 36
e B Y 1 T4 oS o = o 38
4.00. DOWDBSFTOO ..evuietiieiie ettt e e e e e e e e e e e e e e e e e ran s 41
Y T o= T N 1 o 43
4.12. DOWDSSUDDENGSceeevieee e 45
a1 T |V 26 o 46
5. GENENIC PIPEIINE ...t e 48
5.1 PrelimiNaries ... 48
5.1.1. Introduction to the Generic PIpelingcociveiiiiiiii e, 48
5.1.2. Configuration of the Generic PIpelingccovvviii i, 50
5.1.3. Standard ObsServing MOGESccuuiiiiieii e e e 51
5.1.4. Observing ModeS GrOUPSc.uuiveinieeiieeeiiieeeiiee e e e e e e e e e e eanaeeanas 53
5.1.5. Some Details on Spectrum Datacccevieiiieiiiieiiiecie e 53
5.1.6. Initialization of Chopper POSItIONSccvuviiiiiiiii e 54
5.1.7. PIpeline MOQUIESoeeieei e e 54

5.2, LeVE L PIPEIING oo 55
5.2.1. CheCKDEASITUCLUIEuiieiiiiiieeeeiie et e e e e e e 55
5.2.2. CheckFreqGriduu i e e 56
5.2.3. CheCKPNaSES .. .coieiiiicei e 59
5.2.4, MKFIUXHOLCOIouiiiiiiii et 61
5.2.5. DOChannelWEIGLSccvuiiiiici e e e 65
5.2.6. DOREFSUBLIACEieiiiiiii e 66
5.2.7. MKOFFSMOOLN ...coviiiiiii e 69
5.2.8. DOOFFSUDLIACTeeevtiieiiiii e 71
5.2.9. DOFIUXHOICOIAuiiiiic e 74
5.2.10. DOV EOCItYCOITECHIONevvieeei e e e e e e e e aaas 76
5.2.11. DORAAIAIVEIOCITYuuiiiiiieii e e e 79

5.3, LaVE 2 PIPEIING oo 80
LI 50 B 5 To == | o 81

HIFI Pipeline Specification

5.3.2. DOANENNATEMP ..oovniiiieiie e et 82
5.3.3. MKSIAEDANAGAINvuiiiiiiieiiii e 83
5.3.4. DOSIAEDANAGEIN ...t 85
5.3.5. CONVETFreqUENCYTASKiieeii ittt 86
5.3.6. MKFIEQGIIA ... 88
5.3.7. DOFFEAGIIT ..ttt 89
5.3.8. DOAVEIBOR .. .cetiiitieii ettt 91
5.3.9. DOFOIA ...t 95
5.3.10. DOSPULS ...ttt 96
5.3 11 DOSHECR ..ttt 96

Chapter 1. Introduction

This document will be helpful for those wishing to learn about the HIFI pipeline in depth in order
to, for example, modify the pipeline algorithms - or to otherwise understand precisely your data has
gone through. For those investigating the pipeline for the first time it is recommended to look in the
pipeline chapter in the HIFI User Manual first.

Each step of the HIFI data processing pipeline is described here in detail. For each pipeline task the
name, purpose, assumptions, mathematics and algorithm is given, the result of each step in terms of
changes to HIFI data and metadatais also given, as are possible errors and warnings that can arise.

Chapter 2. Level 0 Pipeline

2.1. DoHkCheck

* Purpose:

The Task checks the house-keeping values defined and contained inside an HifiCalibrationDataset
(asFpuTr endTabl e), theresult of the check isinserted asflagintheHi fi Ti nel i nePr od-
uct (HTP).

e Description

The Task checksif the House Keeping (HK) valuescontainedinaHi f i Cal i br ati onDat aset
(FpuTr endTabl e) are inside the thresholds limits that are defined by the Calibration Scientist
and contained in the CalHkThresholds. The result of that checks are inserted as bit flags in the
Col umm "hk flag" inthe Hi f i Ti mel i neProuct .

Moreover if some HK valueis Out of limit aBool eanPar anet er (= false) with the same name
will be added to the Met aDat a of the Hi f i Spect r unDat aset and the related quality flag is
raised.

Not all Hi fi SpectrunDat aset intheHi fi Ti mel i neProuct are checked, the default
are: {"stab", "hc" , "hot", "cold", "science", "other"}; but this set can be changed with the input
parameter "type".

Several utility methods have been added to the Task to have more user friendly check to be used
in the Interactive Analysis of the FpuTr endTabl e.

A requirement for the Task is that each HTP contains the checks for the Horizontal and Vertical
polarization, thisimpliesthat HK valuesraise adifferent bit in the "hk flag" and that both Cal Hk-
Thr eshol ds for "H" and "V" polarization have to be passed to the Task.

e Assumptions
Several assumption are defined for the name convention and the Cal HkThr eshods that will
be used from the Task.

In this document, by "HK mnemonics' we mean the mnemonics that can be used in a
TnSour cePacket to retrieve the value of a specific House keeping parameter , eq:
HF_AH1_MXBIAS C.

By "ColumnName" we mean the name (St r i ng) of anormal Col unm that isin the Tabl e-
Dat aset . In the Generi cPi pel i neCal Tabl e of the Cal HkThr eshods the Col um
are used to contains the thresholds of some physical quantity. e.g. "mixerCurrentMax" will con-
tain the upper limit of the mixer current in function of the LO frequencies.

By "ColumnRadix" we mean a sub-String that is in common in the initial part of 2 or more
ColumnNames and that refer to the same physical parameter to be checked, e.g. "mixerCurrent” is

the ColumnRadix of "mixerCurrent”, "mixerCurrentMax", "mixerCurrentMin”, "mixerCurrent-
Var".

» The difference between a ColumnRadix and a ColumnName is a "suffix" that determine the
type of threshold defined in the Column, the suffix recognized from the Task are: "Max" for the
upper limit, "Min" for the lower limit, "Var" for the upper limit of the Variance. A Column-
Name equal to the ColumnRadix indicate the nominal (expected) measurement for the specific
physical quantity. The Variance upper limit can be also defined as a coefficient that multiply
the nominal value, in this case that coeffients will be contained in a MetaData DoubleParam-
eter with name: ColumnRadix+"V arCoeff"

Level O Pipeline

* More than one HK mnemonics can be associated to the same ColumnRadix, eg.
"HF_AH1 MXBIAS C", "HF_AV1_MXBIAS C"are associated to the ColumnRadix "mix-
erCurrent".

» The HK mnemonics are associated to a specific bit to be raised in case that it's value is out of
limit, however because more than one HK mnemonics can be associated to aphysical quantity,
(e.g the resistance need the measurement of voltage and current from HK mnemonics) several
HK mnemonics can be associated to the same bit.

e The HK mnemonics that refer to the Horizontal polarization start with: "HF_AH" , the HK
mnemonics that refer to the Vertical polarization start with: "HF_AV.

Mathematics

Simple Mathematicsis used from the Task. Some utility method are provided to the user to allow
afast analysis of the Hk mnemonics stored in the FpuTr endTabl e.

The method get Mean, get Max, getM n and get Vari ance can return a Doubl eld
if the observing time and the integration time are passed as inputs. These will allow to the user
to easily compute those values for an HK parameter for all the spectra contained inaHi fi S-
pect runDat aset .

Algorithm
To work the Task needs 4 Products:

1)theHi fi Ti nel i nePr oduct ("htp") that containstheinterval times (the spectraintegration
time) where the HK parameters have to be monitored.

2) TheHi fi Cal i brati onDat aset ("ca") that contains al the HK parameters values for
the specific observation (e.g the FpuTr endTabl e).

3-4) The Cal HkThr eshol ds ("thresholdH" , "thresholdV") that contain the limits for the HK
parameters. If these are not passed some default CalHkThresholds are created on the fly. If only
oneispresent it will be used for both polarization.

The Task checksall theHi f i Spect r unDat aset withthe"type" (asretrieved from the Sum
mar yTabl e) that matches one of the St ri ng[] passed to the Task through the input param-
eter "type".

In function of the first observing time value of the Hi f i Spect r unDat aset the appropriate
Generi cPi pel i neCal Tabl esof theCal HkThr eshol ds areretrieved. Notethat for each
time more than one Gener i cPi pel i neCal Tabl e type (default is 2) are contained in the
Cal HkThr eshol ds.

All the ColumnRadix contained inthe Cal Hk Thr eshol ds are used to check if the related HK
parameters are inside the thresholds,, i.e. if the values of the parameter during the integration of
each spectrum is between the upper and lower limit.

If the variance suffix "Var" is present in the ColumnName or the variance coefficent is present in
the Meta Data, also the Variance of the parameter is checked. This check is made for each single
spectrum integration like the upper/lower check, but also the variance of the parameter along all
theHi fi Spect runDat aset observation timeis checked.

While a generic HK mnemonics can be added from the user into the Cal HkThr esh-
ol ds and it's values will be automatically checked for the upper/lower/variance limits in-
side the HTP, special case are implemented in the Task for the HK parameters that need
some operations before the check is executed. The Column Radix of these parameters are:
"magnetResistance”,"fpuChopper"”,"diplexerResistance".

3

Level O Pipeline

Of course only the HK mnemonics related to the same polarization are combined to get the final
values to check.

* "magnetResistance": The Task assume that there is also a ColumnRadix "magnetCurrent"
whereit can retrieve the HK mnemonics assciated to the Magnet Current. The HK mnemonics
associated to the "magnetResistance” are related to the Magnet Voltage. The value checked
from the Task is the MagnetV oltage/M agnetCurrent.

 fpuChopper": The "chopper check" is to control that the executed chopper position is close
to the commanded one. Thus the upper and lower limits of the executed chopper are function
of the commanded. The Task checks that the difference between the measured and the com-
manded chopper positions are inside the threshol ds defined. The Task assume that thefirst HK
mnemonicsis related to the measured mnemonic and the second is related to the commanded
mnemonic.

 "diplexerResistance": The Task assumethat the related HK mnemonicsthat end with"V" have
to be used to retrieve the DiplexerV oltage, while the other mnemonicswill be used to retrieve
the DiplexerCurrent. . The value checked from the Task is the DiplexerV oltage/DiplexerCur-
rent.

 Cadlibration Inputs

The Calibration Inputs of the Task are the Cal Hk Thr eshol dsfor the Horizontal and Vertical
polarizations. and the FpuTr endTabl e containing the HK parameters to be analyzed:

e CalHkThresholds

The Cal HkThreshol ds is a Generi cPi pel i neCal Product thus it has all
the basicaly functionality of that Product. The main difference with a stan-
dard Generi cPi pel i neCal Product is that more than one "type" of Cener -
i cPi pel i neCal Tabl e can be associated with a specific time. This because the Gener -
i cPi pel i neCal Tabl e must have all the columns with the same length, and the HK Pa-
rameter limits are in function of frequency, thus the parameters can have different number of
limits defined/computed in function of frequency. Thus all the HK parameter that have the
same number of limits are grouped together in a Table with a specific "type" name. The user
can switch between the different tables (i.e. the table returned as default from the Gener -
i cPi pel i neCal Product) through the method set Wor ki ngType(String tabl e-
Nane) .

The Cal HkThr eshol ds fulfill the same"Assumptions' described in the DoHk Check sec-
tion.

The HK monitored are reported in the Met aDat aasLongPar anet er s, with "name" equal
the HK mnemonics, the"value" of the parameter isthe bit flag associated, and the " description”
of the parameter is the ColumnRadix.

Several methods in the Product help the user to recognize al the relations between the HK
mnemonics, the ColumnRadix and the related bit flag.:

» getWorkingType() the "type" of the Gener i cPi pel i neCal Tabl e that will bereturned
as default from the Cal HkThr eshol ds.

o getAllTypes() return all the types of Gener i cPi pel i neCal Tabl e contained.

» getFlagMap() return the Map that associate each HK Mnemonics to a specific bit flag po-
sition.

» getHkMonitored() return the Map that associate each ColumnRadix toaset (St ri ngld)of
HK Mnemonics.

Level O Pipeline

» getMnemonic(int bit) return the HK mnemonic associated with a specific bit flag position.
If more than one mnemonic have been forced to be associated with the same flag, only the
first mnemonic name is returned.

e getMnemonics() return al the HK mnemonic monitored. (in all the tables contained)

 addHkM onitored(String hkMnemonics, String columnRadix, int bit, boolean force) alow
to the users to add a new HKmnemonics to be monitored, with the associated columnRadix
and the hit flag to use, if the bit isalready used anew oneis assigned, but in case the method
parameter "force"=true.

* getFreeBit() return a bit position that is actually not used from any HK mnemonics.
e FpuTrendTable

The FpuTrendTabl e isan Hi fi Cal i brati onDat aset that contains the values of
some HK parameters in function of time for a specific observation. It can be founded in the
TrendAnalysis branch of the Cbser vat i onCont ext insidethe FpuTr endPr oduct .

The Col umrms of this table have as name the HK mnemonics.

Specific of this table is the possiblity to set the HK mnemonics to be monitored (thus the
Column that will be present in the Table) through the method set Mhenoni cs(Stri ngld
mmenoni cs) .

The pipeline set for default the mnemonics to be monitored with the values retrieved from the
Cal HkThr eshol ds. get Mhenoni cs() where the Cal HkThreshol ds is the
"H' polarization retrieved fromthe calibration-tree.

* Result:

The Task set the new column "hk flag" with the result of all the HK parameters checks performed.
If an HK parametersis out of limit a BooleanParameter with the HK mnemonics name is added
to the MetaData.

* MetaData

All The HK mnemonics can be added as BooleanParameter in the MetaData of Hi f i Spec-
t runDat aset if the relative check on the upper/lower limits is not passed. Also the related
ColumnRadix is added as BooleanParameter = false in the MetaDatas of Hi fi Spectrum
Dat aset andinthe MetaDataof Hi fi Ti mel i nePr oduct .

All The HK mnemonics where the variance is checked can be added as BooleanParameter in the
MetaDataof Hi f i Spect r unDat aset with name: "HKmnemonics variance"

In casethat the "diplexerResistance" isout of limit only therelated " currentDiplexer" mnemonics
is set in the metaData (not also the "voltageDiplexer" mnemonics)

¢ Columns

The Task add a new column to the HifiSpectrumDataset where the checks are performed, the
Column name is "hk flag" and it will contains the results of al the HK parameters checks per-
formed. Theresult isabit raised if the check is not passed. The correspondence between bit and
HK Mnemonics can be update/changed from the user changing the Cal HkThr eshol ds. Be-
low are listed the default correspondences bit position--> HK Mnemonics --> Column Radix

Bit HK Mnemonics Column Radix
0 HF AH1 MXBIAS C mixerCurrent
1 HF AV1 MXBIAS C mixerCurrent

Level O Pipeline

Bit HK Mnemonics Column Radix

2 HF_AH1 MXBIAS V mixerVoltage

3 HF_AV1 MXBIAS V mixerVoltage

4 HF_AH1 MXMG_C mixerMagnetCurrent
5 HF AV1 MXMG C mixerMagnetCurrent
6 HF_AH1_MXMG_V magnetResistance
7 HF_AV1 MXMG_V magnetResi stance
8 HF_APR_CH_ROT fpuChopper

9 HF DPR_CH_ROT2 fpuChopper

10 HF_AH1 DPACT_V diplexerResistance
10 HF_AH1 DPACT_C diplexerResistance
11 HF_AV1 DPACT_V diplexerResistance
11 HF _AV1 DPACT C diplexerResistance
12 HF_AH2 G FIF1 V LnaFIF1

13 HF_AV2 G FIF1 V LnaFIF1

14 HF_AH2_G FIF2_V LnaFIF2

15 HF_AV2_G FIF2_V LnaFIF2

16 HF_AH2 G SIF1 V LnaSIF1

17 HF_AV2 G SIF1 V LnaSIF1

18 HF_AH2_G_SIF2 V LnaSIF2

19 HF_AV2 G SIF2 V LnaSIF2

20 HF_AH2 G SIF3 V LnaSIF3

21 HF_AV2 G SIF3 V LnaSIF3

22 HF_AP_SCHS CT hotL oad

23 HF_AR_SCHS CT hotL oad

24 HF_APR_SCCS CT coldLoad

25 HF_APR_S2K_CT level0Temp

Flags

The flags raised from this Task are:
The flags described in the MetaData section above.
The flags described in the Column section above.

The following quality flags can be raised in the quality Context in function of the ColumnRadix
of the HK mnemonic checked:

e FPU_MIXER_CURRENT("mixerCurrent","FPU Check: Mixer current is Out Of Limit",
fase)

e FPU_MIXER_CURRENT_VARIANCE("mixerCurrentVariance","FPU Check: Mixer cur-
rent variance is Out Of Limit", false)

e FPU_MIXER_VOLTAGE("mixerVoltage","FPU Check: Mixer Voltage is Out Of Limit",
fase)

Level O Pipeline

* FPU_MIXER_MAGNET_CURRENT("mixerMagnetCurrent”,"FPU Check: Mixer Magnet
Current isOut Of Limit", false)

* FPU_MIXER_MAGNET_RESISTANCE("magnetResistance","FPU Check: Mixer Magnet
Resistance is Out Of Limit", false)

* FPU_CHOPPER("fpuChopper","FPU Check: chopper measured values differ from the com-
manded”, false)

* FPU_DIPLEXER_RESISTANCE("diplexerResistance","FPU Check: Diplexer Resistanceis
Out Of Limit", false)

e FPU_LNA("Ina","FPU Check: IF Amplifier values are Out Of Limit", false)
* FPU_HOT_LOAD("hotLoad","FPU Check: Hot load temperature is Out Of Limit", false)
 FPU_COLD_LOAD("coldLoad","FPU Check: Cold |oad temperatureis Out Of Limit", false)
« FPU_LEVEL_TEMP("I0Temp","FPU Check: Level O Temperatureis Out Of Limit", false)
« Cadlibration Outputs
None
e Errorsand Warnings

If theinput FpuTr endTabl e ismissing a SEVERE messageisraised: "Trend tableisnull. No
check ispossible” ;

If bothinputsfortheCal Hk Thr eshol ds aremissingaWARNING messageisraised: " CalHk-
Thresholdsis null. Generated one with default values for both polarization") ;

If some parameter required from the CalHkThresholds is not present in the FpuTr endTabl e
a SEVERE message is raised: "Following paremeters found in Table are not measured
(NaN) :"+HKmnemonics

2.2. DoPointingTask

* Purpose:
This module will add the pointing information to each spectrum of the HifiTimelineProduct.
» Description:

The pointing information of the telescope contained in the AuxiliaryContext (part of the Observa-
tionContext) are collected every 0.25s. These data are used together with the observing time and the
integration time to associate to of each spectrum the related point information (RA, Dec, position
Angle, Velocity). The parts of this chapter in italics describe functionality is available only from
version HCSS 2.0

¢ Assumptions:

» The Task requires that the PointingProduct, The OrbitEphemerid and the SiamProduct must
be contained inside the AuxiliaryContext passed as input to the Task. Each one of the Product
above can be passed separately to substitute the corresponding one in the AuxiliaryContext.
The AuxiliaryContext itself can be skipped if the other three inputs are filled.

* Only the HifiSpectrumDataset marked as"isLine" in the SummaryTable will be used to com-
pute the final average valuesin the MetaData of the HifiTimelineProduct.
7

Level O Pipeline

» The observationTime and the integration time used are contained in "obs time" (long) and
"integration time" (double) columns. The integration time can be a 1 dimensional array (case
WBS) or a 2 dimensional array (case HRS), in such a case there is an integration time for
each subband. However these times are similar enough that they make no difference for the
purpose of the computation of the pointing positions. Thusin case of 2 dimensional array the
integration time used isthe samefor all the subbands, and it is obtained from the average of the
times of all subbands. If there are no units in the time columns, it is assumed to be microsecs
in the case of "obstime" and seconds in case of "integration time".

» The velocity of the spacecraft reported are calculated in the reference system of LSR.
From version HCSS2.0 it is possible to the user to choose the reference system that will
be used, through the input parameter "correction”, that will accept the values defined in
Radial Vel ocityTask.Correction , i.e. NONE: the velocity will be given in the reference system
of the Earth, EARTHTOSUN will add the correction of the Earth's velocity with respect to the
un, and SUNTOL SR will add the correction of the vel ocity of the Sun with respect to the LSR,
SUNANDEARTH will add both correction SUNTOLSR and EARTHTOSUN.

« If the pointing data are obtained without using the integration time the pointing values are
obtained with the method getFiltered() from the Pointingltem. While in case they are obtained
taking in account the integration time they are calculated with the method getGyroPropagat-
ed(). From version HCSS2.0 both case will follow the user choice defined through the input
parameter "useGyro".

Mathematics:

If theintegration timeis used (through the input parameter "usel ntegration"): The Right Ascen-
sion (R.A.) , Declination (decl) and Position Angle (P.A.) are computed as the weighted aver-
age of al pointing information retrieved during the integration. The weight is the inverse of the
square of the error.

The R.A., decl and P.A. reported in the MetaData of each HifiSpectrumDataset is the weighted
average of the respective values of the spectrum contained. The weight is the integration time.

The R.A., decl and P.A. reported in the MetaData of the HifiTimelineProduct is the weighted
average of the respective values of the MetaData of the Hifi SpectrumDataset where the "isLing"
istrue. The weight is the total integration time of the HifiSpectrumDataset.

The errors of RA, dec, Pos Angle reported in the columns before version HCSS2.0 are wrong.
Fromversion HCSS2.0 it is possible to the user to choose the error propagation. As default the
error is: the variance of the measurement during the integration time, summed quadratically to
the maximum between the errors associated with the pointing measures.

Algorithm:

The PointingProduct, OrbitEphemerisProduct, SiamProduct are retrieved from the Auxil-
iaryContext passed in the input "aux", (or from the separated inputs "pointing” ,"orbit" ,"siam":
if these are present their value take precedence over the objects found in the AuxiliaryContext.)

A loop is performed on al the HifiSpectrumDataset in the Hifi TimelineProduct. In each HifiS-
pectrumDataset the information in the MetaData on " CoordinateSystem" and "equinox™ are up-
dated according to the values in the OrbitEphemerisProduct. The R.A., decl and P.A. reported in
the MetaData of each Hifi SpectrumDataset isthe weighted average of the respective values of the
spectrum contained. The R.A., decl and P.A. reported in the MetaData of the HifiTimelineProd-
uct is the weighted average of the respective values of the MetaData of the Hifi SpectrumDataset
wherethe "isLine" istrue.

For each row of each HifiSpectrumDataset the follow values are calculated and reported in the
columns: Right Ascensionin "longitude”; Declinationin "latitude"; Position Error in"posAngle”;
velocity in "velocity"; errors in Right Ascension in "longitudeError"; errors in Declination in

8

Level O Pipeline

"latitudeError"; and, errorsin PosAnglein "PosAngleError”. In the case that the PointingProduct
contains the information on the raster column number, raster line number, scan line number, and
nodding cycle Nnumber, they are added as column information as "rasterColumnNum", "raster-
LineNum", "scanLineNum", "nodCycleNum", respectively.

TheR.A. Decl, P.A. are caculated in adifferent way as afunction of theinput parameter "useln-
tegration".

* If "uselntegration” isfal se, the startDate and the endDate are retrieved from the M etaData of the
HifiSpectrumDataset. Then an iterator on the PointingProduct with these two datesis created.
For each row of the HifiSpectrumDataset the iterator is then used to find the two pointing
item closest in time to the observing time. A PointingLinearlnterpolator is used to compute
the Pointingltem at the observation time. From the PointingProduct also the "aperture" at the
observation time s retrieved and used together with the Siam to compute the pointed position
of each observation.

This pointed position is obtained in the following way: the Pointingltem is obtained with the
method getFiltered() (or getGyroPropagated() if the user sets the parameter "useGyro" =
true) , givesthe Quaternion of the uncorrected point. This Quaternion isrotated along the three
axes (X,Y,Z) following the values contained in the negation of the Matrix obtained from the
Siam , then the Quaternion is transformed in an equivalent Attitude and used to retrieve the
information of R.A, decl, P.A.

« If "uselntegration” is true, all the Points measured during the integration time are re-
trieved and used to obtain a pointed position in the same way as described above (for the
"usel ntegration"=false). Then all the R.A., dec, and P.A. obtained from these points are aver-
aged weighted by the error associated with each point.

From version HCSS 2.0, the error of RA., dec, P.A are computed according the user's choice
through the parameter "error Type". The default (VARIANCE, or 1) uses the variance of all the
point used to calculate a single value, summed quadrically to the maximumerror associateto the
points used. Other possible option are: (WEIGHTED, or 0) where the final error is calculated
taking in account that the inverse of the square of the error is used as a weight to compute the
final value of the position. Thusthe final error isthe inverse of the square root of the sum of the
weight. In the option (RANGE, or 2) the associated error is half of the maximum variation of the
values, e.g. RA.error = (MAX(R.A)-MIN(R.A))/2

Note: at the moment the correction in R.A., dec, P.A. , velocities for the chopper angleis NOT
included. (Work in progressto include themin the version HCSS 2.0)

The OrbitEphemerisProduct, the PointingProduct and the time of each pointing are used to re-
trieve the projected velocity of the telescope. All the velocity retrieved in the integration time
are averaged without any weight. An user set of ephemerids can be passed to the Task through
the input parameter "eph"”.

The velocities are given by default in the LSR reference system. From version HCSS2.0, the
reference systemwill be calculated in function of the input parameter "correction”, that accept
the values defined in Radial Vel ocityTask.Correction

The MetaData "ra","dec","posAngle" of each HifiSpectrumDataset are filled with the weighted
average of the values computed as described above. The weight used is the integration time.

TheHifiTimelineProduct MetaData"ra","dec"," posAngle" are computed astheweighted average
of the MetaData of the HifiSpectrumDatasets that have the attribute "inLine" = true, The weight
used is the sum of al the integration times contained in the Hifi SpectrumDataset.

 Calibration Inputs:

Level O Pipeline

The Object used as inputs for the Task is the AuxiliaryContext. From it, the task retrieves the
PointingProduct, the OrbitEphemerisProduct, and the SiamProduct. (Fromversion HCSS2.0 that
objects can be passed also as stand-alone inputs).

Asoptional input, an Ephemerides containing the ephemerides for planets and spacecraft can be
passed to the Task. It will be used to compute the velocities of the spacecraft along the obser-
vation.

* Reaults:
¢ MetaData:

In the Hifi TimelineProduct and in each HifiSpectrumDataset contained the following MetaData
are updated:

- "ra" containing the weighted average of the Right Ascension of the spectra included. For the
HifiTimelineProduct only the HifiSpectrumDataset where "inLine" = true are used.

- "dec" containing the weighted average of the declination of the spectra included. For the Hi-
fiTimelineProduct only the Hifi SpectrumDataset where "inLine" = true are used.

- "posAngle" containing the weighted average of the Position Angle of the spectraincluded. For
the HifiTimelineProduct only the HifiSpectrumDataset where "inLine" = true are used.

- "CoordinateSystem” Containing the coordinate system of the pointing information.
- "equinox" Containing the equinox used in the pointing information.

"noPointinglnserted” in case there is a failure in the Task to associate the pointing information
to the spectra.

e Columns:
The following column are added/updated from the Task

- "longitude" containing the Right Ascension of each spectrum calculated with the algorithm
described above;

- "latitude" containing the Declination of each spectrum calculated with the algorithm described
above;

- "posAngle" containing the Position Angle of the telescope for each spectrum calculated with
the algorithm described above;

- "velocity" containing the velocity of the telescopein the L SR reference system (in HCS2.0, in
the reference system defined by the input parameter "correction") for each spectrum, calculated
with the algorithm described above;

- "longitudeError" containing the error of the Right Ascension of each spectrum, calculated with
the algorithm described above;

- "latitudeError" containing the error of the Declination of each spectrum, calculated with the
algorithm described above;

- "PosAngleError" containing the error of the Position Angle of the telescope for each spectrum,
calculated with the algorithm described above;;

- "rasterColumnNum" the column position of the specific spectrum in araster map ;

- "rasterLineNum" the line position of the specific spectrum in araster map ;

10

Level O Pipeline

- "scanLineNum" the scan line number for the specific spectrum in the on the fly mapping;

- "nodCycleNum" the nodding cycle number for the specific spectrum;
* Hags:

In case of no pointing information the Task raisesin the quality context the flag:"POINTFAIL"
 Calibration Outputs:

None.

 Errorsand Warnings:
The following SEVERE errors can be raised:

- In the case of missing OrbitEphemerisProduct:
AttitudeReconstructionCategory.NotEnoughData: " OrbitEphemerisProduct cannot be retrieved
from AuxiliaryContext and ‘orbit’ input is null”;

- In the case of missing PointingProduct: AttitudeReconstructionCategory.NotEnoughData:
"PointingProduct cannot be retrieved from AuxiliaryContext and 'pointing’ input is null";

- In the case of missing SiamProduct: AttitudeReconstructionCategory.NotEnoughData:
SiamProduct cannot be retrieved from AuxiliaryContext and 'orbit' input is null";

- In the <case of eror in the computation of the velocities:
AttitudeReconstructionCategory.NotEnoughData" "Problem to retrieve velocity: probably in Or-
bitEphemerisProduct data are missing.";

- In the case of a generic exception/error in the Task:
AttitudeReconstructionCategory.NotEnoughData " Exceptions whileretrieving information from
PointingProduct. Latest error was. "+latestPointingException;

The following WARNING can be raised:

- In the case there is a failure to retrieve the raster/on the fly position of the spectrum:
AttitudeReconstructionCategory.NotEnoughData:" Exceptionswhileretrieving information from
PointingProduct on commanding. " + "Latest error was: "+l atestPointingExceptionMeta;

11

Chapter 3. HRS Pipeline

3.1. Introduction to HRS pipeline

This chapter describes the processing steps involved for data taken specifically with the HRS spec-
trometer. The steps can be graphically represented in the following figure.

3.2. doHrsSubbands

 Name:

doHrsSubbands

* Purpose:

Task that splits the HifiHrsDataFrames into HRS subbands.

* Description:

The HRS readouts, i.e. the columns "CF" of the HifiTimelineProduct (HTP) are split into HRS
subbands.

At the end of this Task, the Columns "subbandxx" are filled with the raw Correlation Functions
of the HRS.

The channels of the HRS readouts are re-organised, depending on the HRS resolution mode.

References:

CESR-HRS-SP-3162-045.

Assumptions:

The HTP has been already split into several HRS SpectrumDatasets (HSD), according to BBIDs.
The Columns "configuration™ and "blockSelection” are available for all HSDs.

Mathematics:

None.

Algorithm:

Takesin account the 16 HRS configuration words and the Block Selection parameter to find the
subbands.

The HRS configurations indicate how the circuits are chained, how many subbands and channels
per subband are available, and for every subband found, which sampler is used in order to find
the LO settings for that subband.

Cdlibration Inputs:

None.

* Result:

MetaData:

12

HRS Pipeline

If subbands have been found, the boolean MetaData"Valid" is added to the HSD and set to True.

The MetaData "subbandstart_xx" and "subbandlength_xx" are re-calculated according to the
HRS subbands found.

e Columns:;
For every HSD:
- asmany Columns "subbandxx" are added as subbands found, with xx=1 to 16.
- the Columns "CF" and "configuration" are removed.

- the Column "type" (0..4) is added, and corresponds to the mode (correlation, internal test) of
the subbands.

- the Column "sampler” (0..7) is added, and corresponds to the sampler input ASIC of the sub-
bands.

- the Column "channels" (255...4080) is added, and corresponds to the number of channels of
the subbands.

- the Column "resolution” (0..5) is added, and corresponds to the resolution (ultra-wide-band,
wide-band,...) of the subbands.

- the Column "colorindex" (0..7) is added, and corresponds to the default Color value when plot-
ting the subbands.

- the Column "offset" and "duration” are re-ordered according to the subbands order.
* Flags:
None.
 Calibration Outputs:
None.
 Errorsand Warnings:
For some HRS functional tests, this step is not allowed (configurations are set to 0).
If no subband isfound, the HRS pipeline can continue after thisstep but data arenot valid.

In this case, a SEVERE message is sent and the boolean MetaData "Valid" is added to the HSD
and set to False.

3.3. doHrsOffsetPow

* Name:
doHrsOffsetPow
* Purpose:
Task that computes the Offset and Power of the analog input signal seen by the digital part of HRS.

» Destription:

13

HRS Pipeline

Getsthefirst channel (channel 0), theintegration duration (duration) and the offset of the correlation
function, and computes the Offset (mSigma) and Power (vSigma) for this subband.

The column "subbandxx" remain constant after this Task, with raw Correlation Functions of HRS
in them.

* References:
CESR-HRS-SP-3F12-144.
CESR-HRS-SP-3F12-046.
e Assumptions:
The step "doHrsSubbands' has been performed.
e Mathematics:
The estimate of the Power uses the inverse of the error function (erfinv).
 Algorithm:
digital Offset = ((offset * 2.0) - duration) / duration
€0 = channel0 / duration
t3 = erflnv(2 + digital Offset - (2.0 * c0))
t4 = erflnv(2 - digitalOffset - (2.0 * c0))
vSigma = 0.5* Math.sgrt(2.0) * t3 + 0.5 * Math.sgrt(2.0) * t4
mSigma= 0.5 * Math.sqrt(2.0) * t3 - 0.5* Math.sqrt(2.0) * t4
e Cadlibration Inputs:
None.
Result:
* MetaData:
None.
e Columns:
For every HSD:
- the Columns "vSigma'" and "mSigma’ are added.
- the Column "offset” is removed.
* Flags:
None.
 Calibration Outputs:

None.

« Errorsand Warnings: 14

HRS Pipeline

None.

3.4. doHrsNorm

* Name:

doHrsNorm
* Purpose:

Task that normalises the Correlation Functions of HRS.
 Description:

Correction of the skew introduced by the internal multiplication table of HRS and Normalisation
by the first channel (channel 0) of the Correlation Function.

The Columns "subbandxx" still contain Correlation Functions at the end of this task.
* References:
CESR-HRS-SP-3162-045.
CESR-HRS-SP-3F12-146.
¢ Assumptions:
The steps "doHrsSubbands' and "doHrsOffsetPow" have been performed.
* Mathematics:
None.
 Algorithm:

Gets the first channel (channel0) of the Correlation Function, and the integration duration (du-
ration).

c0 = (channel0 * 2.0 - duration) / duration
normalized_channel = ((raw_channel * 2.0 - duration) / duration) / c0)
 Calibration Inputs:
None.
* Result:
* MetaData
None.
e Columns:

The Columns "subbandxx" are updated with the normalized Correlation Functions and their de-
scription has changed from "rawCF" to "normCF".

The Column "integration time" is added and filled with the integration duration converted into
Seconds, according to theformuta 15

HRS Pipeline

integration_time = duration * Math.pow(2, 9) / (LO7 * 1.e6) (where LO7 is the frequency value
of the Local Oscillator of HRS)

* Hags:
None.

« Cadlibration Outputs:
None.

 Errorsand Warnings:

None.

3.5. doHrsQDCFull

* Name:

doHrsQDCFull
* Purpose:

Task that corrects the quantization distortion of the correlation functions of HRS.
 Description:

Gets the Correlation Function (CF) for each subband. Gets the CalHrsQDCFull Product, and then
interpolates on the 3 dimensional table of this Product the CF for each correlation channel.

The Columns "subbandxx" still contains Correlation Functions at the end of this task.
* References:
CESR-HRS-SP-3F12-143.
¢ Assumptions:
The step "doHrsNorm" was performed before.
* Mathematics:
Analog offset is obtained after 3D interpolation of avalue read into the correction table.
« Algorithm:
1) Computes vector for the 3D interpolation.

Takes as input one value of the Correlation Function and the corresponding thresholds mSigma
and vSigma.

Provides the corrected values of : the Correlation Function, mSigma and V Sigma.

These corrected values are the 3D input vector (x,y,z) before interpolation with the correction
table.

2) Computes the Tri-linear interpolation of one input value(x,y,z), according to a 3D grid.

« Cadlibration Inputs: 16

HRS Pipeline

CaHrsQDCFull.

* Result:

MetaData:

None.

Columns;

For every HSD:

- the description of the Columns "subbandxx" has changed from "normCF" to "corrCF".
Flags:

NOQDC.

Calibration Outputs:

None.

Errors and Warnings:

The CalHrsQDCFull calibration product is mandatory as input.

If CalHrsQDCFull is not present or its contentsisinvalid, the HRS pipeline can continue
after thisstep but:

* HRS data can not be calibrated,
 no correction is applied,
« thequality flag NOQDC is raised,

* aSEVERE messageisdisplayed into the console.

3.6. doHrsPowCorr

 Name:

doHrsPowCorr

* Purpose:

Task that applies the gain non-linearity correction to the power of HRS.

The Columns "subbandxx" still contain Correlation Functions at the end of this task.

 Description:

Gets the input signal power, gets the CalHrsPowCorr Product, and then corrects the input signal
power with this Product.

* References:

CESR-HRS-SP-3F12-316.

e Assumptions:

The step "doHrsQDCFull" was performed before.

17

HRS Pipeline

* Mathematics:

The corrected value of the power is obtained after 1D interpolation of a value read into the cor-
rection table.

e Algorithm:
1) Reads the gain correction into the correction table.
2) Computes linear interpolation of one input value(x), according to a 1D grid.
 Calibration Inputs:
CaHrsPowCorr.
* Result:
* MetaData:
None.
e Columns:
The Column "vSigma" is removed at the end of this Task, and is replaced by "corrVSigma'.
* Flags:
NOPOWCOR.
 Calibration Outputs:
None.
« Errorsand Warnings:
The CalHrsPowCorr calibration product is mandatory as input.

If CalHrsPowCorr is not found or its contents is invalid, the HRS pipeline can continue
after thisstep but:

» HRS data can not be calibrated,
 no correction is applied,
« the quality flag NOPOWCOR israised,

« aSEVERE message is displayed into the console.

3.7. doHrsWindow

* Name:
doHrsWindow

* Purpose:
Task that applies a Hanning windowing on the Correlation Functions of the HRS.
The Task parameter "window" is optional and set to " none" by default.

 Description:

18

HRS Pipeline

For each subband, gets the Correlation Function (CF) and applies a Hanning windowing of on all
channels of the CF of the HRS.

The Columns "subbandxx" still contain Correlation Functions at the end of this task.

The equivalent Task for applying a Hanning windowing on HRS spectrais named "doHrsSmooth".

References:

None.

Assumptions:

The step "doHrsPowCorr" was performed before.
Mathematics:

Hanning algorithm.

Algorithm:

length = size of the Correlation Function

hann = 0.5 * (1.0 + Math.cos(Math.PI * i / length))
Each channel of the Correlation Function is multiplied by hann
Cdlibration Inputs:

None.

* Result:

MetaData:
None.
Columns:

The Columns "subbandxx" are updated with the CF after hanning windowing, and their descrip-
tion has changed from "corrCF" to "winCF".

Flags:

None.

Calibration Outputs:
None.

Errors and Warnings:

None.

3.8. doHrsSymm

* Name:

doHrsSymm

* Purpose:

19

HRS Pipeline

Task that symmetrises the Correlation Function of HRS and add zeros to it if necessary.
The Task parameter "zeros" is optional and set to " multiple" by default.
Description:

For each subband, gets the Correlation Function (cf), duplicates the channels of the CF except
channel 0, inverts them, and adds them to the CF.

A modifier allows the user to choose if the set of zeros added to the CF is a "multiple" of 2 or a
"power" of 2.

At the end of this Task the Columns "subbandxx" still contains Correlation Functions
* References:
None.
e Assumptions:
The step "doHrsPowCorr" was performed before.
The step "doHrsWindow" is not mandatory before this Task.
e Mathematics:
None.
 Algorithm:

Duplicates the channels of the CF except channelO, inverts them, and adds them at the end of
the CF.

 Calibration Inputs:
None.
Result:
* MetaData:
None.
* Columns:
The Columns"symmCF" are added.
The Columns "subbandxx" remained unchanged
* Flags:
None.
 Calibration Outputs:
None.
 Errorsand Warnings:

None.

20

HRS Pipeline

3.9. doHrsFFT

* Name
doHrsFFT

* Purpose:
Task that appliesaFFT processing on the Correlation Function to in order to obtain the HRS spectra.
The Task parameter "algo” is optional and setto " FFT" by default.

TheTask parameter "algo" isobsolete, asthebest FFT algorithmisautomatically sel ected according
to the array size.

 Description:

For each subband, gets the Column "symmCF", gets the type of FFT to apply and appliesit to the
contents of symmCF.

At the end of this Task, the Columns "flux_xx" are created and contain raw HRS spectra.
* References:
None.
e Assumptions:
The step "doHrsSymm" was performed before.
e Mathematics:
The FFT agorithm used is found in ia.numeric.tool box.
 Algorithm:
1) Convert datainto Complex1d
Complex1d fftData = new Complex1d(data)
2) Compute FFT in place
FFT fft(fftData)
3) Take only thereal part of the FFT result
spectrum = fftData.getReal ().get(new Range(0, data.getSize() / 2))
« Cadlibration Inputs:
None.
* Result:
* MetaData:
None.
e Columns:

The Columns"symmCF" are removed.

21

HRS Pipeline

The Columns "subbandxx” are removed
The Columns "flux_xx" are added.
Flags:

None.

Calibration Outputs:

None.

Errors and Warnings:

None.

3.10. doHrsSmooth

 Name:

doHrsSmooth

* Purpose:

Task that applies a Hanning smoothing on the spectra (equivalent to Hanning on Correlation Func-
tion).

The Task parameter "window" is optional and set to " hanning" by default.

No other type of windowing isimplemented yet.

 Description:

For each subband, gets the HRS spectra and applies a Hanning windowing on all spectral channels.

The equivalent Task for applying a Hanning windowing on HRS Correlation Function is named
"doHrsWindow".

References:

None.

Assumptions:

The step "doHrsFFT" was performed before.
Mathematics:

Hanning smoothing.

Algorithm:

Set thefirst channel to O.

Replace all x channelsby : x = 1/4 (x+1) + 1/2 (x) + 1/4 (x-1)
Keep the last channel unchanged
Calibration Inputs:

None.

22

HRS Pipeline

* Result:
* MetaData:
None.
* Columns:;

The Columns"flux_xx" are updated with the smoothed spectra, and their description has changed
from "rawSP" to " Smoothed Spectra’.

* Hags:
None.

 Calibration Outputs:
None.

» Errors and Warnings:

None.

3.11. doHrsFreq

* Name:
doHrsFreq
* Purpose:
Task that computes the frequency of the HRS spectra.

The Task parameter "model" permits to choose between the creation of frequency columns or the
creation of the HRS frequency Linear Model.

The Task parameter "model" is optional and set to " column™ by default.
* Description:

If the model is chosen, the parameters of the model are the LOs values and the sampler name for
every spectrum.

If the columns are chosen, this task will create the frequency columns corresponding to the HRS
spectra.

For USB spectra, the frequency values are increasing, for LSB spectra, frequency values are de-
creasing.

The MetaData "channel Spacing” is added for later processing during level2, and computed from
the LO7 value of HRS and the size of the spectra.

The cut limits of each spectrum is processed according to the filter response, and will be used later
by the Task DoHrsCutBandEdges.

* References:

None.

s ASSUmptions; 23

HRS Pipeline

The step "doHrsFFT" was performed before.
» Mathematics:
None.
 Algorithm:
None.
« Cadlibration Inputs:
None.
* Result:
* MetaData:
The parameter channel Spacing is added, computed from: (LO7 / 2) / number of channels.
If "model” is used, the MetaData "model” is filled with "HRS: linear 1D".
e Columns:
The Columns "frequency_xx" are added, unit = MEGAHERTZ.
e Hags:
None.
 Calibration Outputs:
None.
 Errorsand Warnings:

None.

3.12. doHrsCorrSP

* Name:

doHrsCorrSP
* Purpose:

Task that corrects HRS spectra from |F non-linearity errors.
 Description:

For each spectrum, gets the number of channels and the corrected power, and applies 2 correcting
factors to the spectrum.

The Task parameter "in_db" is optional and set to 0 by default.

If the Task parameter "in_db" is set to 1, the spectrum is computed relatively to the nominal power
in dB. In this case no further pipeline processing is allowed, but this mode is used to display QLA
spectra.

* References:

24

HRS Pipeline

None.

Assumptions:

The steps "doHrsFFT" and "doHrsPowCorr" were performed before.
Mathematics:

None.

Algorithm:

1) Scaling factorl : divide al channels by the size of the spectrum, except for channelO which
isdivided by (number of channels* 2).

2) Scaling factor2 : multiply all channels by thresholds value and divide them by power vSigma:

spectrum = spectrum * Math.pow(THRESHOLDS VALUE / vSigma, 2), with
THRESHOLDS VALUE =0.160V.

Calibration Inputs:

None.

* Results:

MetaData:
None.
Columns:

The Columns"flux_xx" are updated with the corrected spectra, and their description has changed
to "Corrected Spectra’.

Flags:

None.

Cadlibration Outputs:
None.

Errors and Warnings:

None.

3.13. doHrsCutBandEdges

 Name:

doHrsCutBandEdges

* Purpose:

Task that cuts the edges of the HRS spectra, according to the bandpass of the filters.

 Description:

Removes the first channel of the spectrum.

25

HRS Pipeline

Getsasinput the"cuts' frequency limits processed by DoHrsFreq, and truncatesthe spectrum edges.
Updates accordingly the MetaData subbandstart_xx and subbandlength_xx.
Creates the frequency columns even if a HRS frequency model has been used before.
e Assumptions:
The Task DoHrsFreq has been performed.
* Mathematics:
None.
e Algorithm:
None.
e Cadlibration Inputs:
None.
Result:
* MetaData:
The MetaData subbandstart_xx and subbandlength_xx are updated after the cut of the spectra.
e Columns:
The columns "frequency_xx" and "flux_xx" have a different size after the truncation.
e Hags:
None.
 Calibration Outputs:
None.
e Errorsand Warnings:

None.

26

Chapter 4. WBS Pipeline

4.1. Introduction to the WBS pipeline

This chapter describes the processing steps involved for data taken specifically with the WBS spec-
trometer. The steps can be graphically represented in the following figure.

4.2. DoWbsScanCount

* Name:

DoWbsScanCount
* Purpose:

Normalize the integration time of all spectrato 10 milliseconds.
* Description:

The flux columns of al WhsSpectrumDatasets contained in a HifiTimelineProduct are divided by
the scan count column values. The scan count value is the number of integration frames stored in
asingle ccd readout. Each frame is equivalent to an integration time of 10 milliseconds. Thus the
division is equivalent to anormalization of all spectrato an integration time of 10 millisecond.

A new column named "integration time" is added to the HifiSpectrumDataset. It contains the inte-
gration time of each spectrum in seconds. These values are calculated as: the scan count divided
the number of scans made in one second, i.e. 100.

The"dark™ column, which contains the dark measurement values, is also divided by the scan count
values.

e Assumptions:
Each scan count is equivalent to an integration time of 10 milliseconds.
The second bit of the MetaData " Pipeline applied” flag is applied.
* Mathematics:
A simpledivision of "flux" and "dark" columns by "scancount" is performed.
« Algorithm:
The Task works with spectra that are split into subbands and aso unsplit spectra.

There is an internal check to verify if the scan count division has already been applied to the
spectra: the MetaData "Pipeline applied” is retrieved, the second bit is checked and if the value
is equal to 1 the ScanCount division is not applied. If the MetaData "Pipeline applied" doesn't
exist anew oneis created.

After the division is performed the second bit of "Pipeline applied” will be set to 1.

Thisimplementation will be used until a proper History mechanism can be used. At this moment
(January 2008) the history mechanism doesn't work with the HifiTimelineProduct.

e Cadlibration Inputs:

27

WBS Pipeline

No Calibration Input is needed.
* Result:
* MetaData
The MetaData "Pipeline applied” is checked; if it does not exigt, it is created.
The second bit of this MetaData is set to 1 after the Task is applied
e Columns:
Columns "flux" (or "flux_subband") and "dark" are changed.
A new Column, "integration time", is created.
* Flags:
Noflagis set.
 Cadlibration Outputs:
None.
e Errorsand Warnings:

If the data are adready corrected a warning Quaity Message is raised:
QCFlags.DataProcessing.UnprocessedData.

If the scancount value is less or equal to zero a warning Quality Message is raised:
QCHags.DataProcessing.Calibrationl ssues.WrongExposureCorrection.

4.3. MkWbsBadPixels

* Name

MkWhsBadPixels
* Purpose:

Checksfor saturated pixels. Setsthe "saturated” flagsin the spectra.
 Description:

Thetask goes through the WhsSpectrumDataset and checks the flux values of each pixel. If the flux
value is above the physical range of possible valuesin a 10 bit CCD (i.e. (2*10)-1=1023), the flag
of that specific pixel at that specific timeis marked as "saturated".

If a specific pixel isflagged as saturated more than 90% of the time (this default can be modified),
then the pixel isflagged as "bad".

The output of the Task is a calibration product, CaWbsBadPixel. CaWhsBadPixel contains an
array inwhichall "bad" pixelscalculated from all WhsSpectrumDatasetsin the Hifi TimelineProduct
aremerged in a 1-Dimensiona array.

A previously calculated "bad pixel mask", CalWbsBadPixel, can be also used as input. The output
will be an array with the merged "bad" pixels of both masks.

e Assumptions:

28

WBS Pipeline

The CaWbsBadPixel used asinput (if oneis not supplied a default is generated) indicates:
e Threshold value for pixel saturation.

» Threshold value (as a percentage) of number of scans in which a pixel may be marked as
saturated beforeit is marked as "bad".

» Thevaue of the flag for saturation.
e Mathematics:
Thelogic operation "OR" is used between flags.
The Task also definesalogical operation (method public static) makeOr for Int1d and also for an
array with different lengths. The "OR" between integer is the standard java"|" operator, where

the numbers are converted to their binary representation.

When merging arrays of different lengths, the unmatched elements of thelongest array are copied
(unchanged) in the result.

 Algorithm:

The Task retrieves the "bad pixel Mask", the threshold values and the saturated flag value from

CaWbsBadPixel, which is passed in the "cal" input. If the user does not set a specific CalWbs-

BadPixel, a default oneis used.

For each WhsSpectrumDataset the following operation are performed:

 Each pixel of each spectrum is checked against the saturation threshold values

» From the results of the previous operation, the Task sets the "flag" column in the WhsSpec-
trumDataset: if that column already exists, an "OR" operation is performed between the newly
calculated flags and the existing flags, otherwise, a new column is created.

» TheTask adaptsthe bad pixel mask to the valuesfor the band startsand length of the considered
WhsSpectrumDataset

e Then it calculates the number of times that each pixel is saturated inside each WhsSpectrum-
Dataset.

» The Task computes an array, "saturated mask”, that indicates which pixels have been flagged
as saturated in more than 90% (this default can be changed) of spectra

e The"saturated mask" is merged with the "bad pixel mask" in a new "bad pixel mask".

The new "bad pixel masks' computed from all WhsSpectrumDatasets are merged in the resulting
"bad pixel mask”. Thisfinal "bad pixel mask" will be put in the resulting output.

The Task works with spectra split into subbands and also unsplit and also unsplit spectra. The
result is always a single array equivalent to joined ccds

 Calibration Inputs:

The calibration product, CalWhsBadPixel, which is either one generated by default or a previ-
oudly calculated "bad pixel mask".

* Results:

¢ MetaData:

29

WBS Pipeline

No new MetaData are defined or changed.
* Columns;
Sets or creates "flag"/"flag_N" column/s.
* Hags:
The Saturated flag value is retrieved from CalWbsBadPixel.

The CaWbsBadPixel saturation value isthe static variable SATURATION_VALUE with value
=2 (January 2008).

 Calibration Outputs:

The CaWbsBadPixel passed in the input is merged with the bad pixel mask calculated from
saturated pixels.

 Errorsand Warnings:

None

4.4. DoWbsBadPixels

* Name
DowWbsBadPixels
* Purpose:
Masks bad pixels.
 Description:
Task that applies the masking pixel list. Configurable to select/unsel ect masks.
¢ Assumptions:
The following definition (from January 2008) of WhsSpectrumDataset subbands is used:

When the subbands arejoined, theresulting array has always alength = 2048* 4 =8192. (Numbers
defined in the DefaultValues class). When the subbands are split, their lengths are given from
the subbandlength_X MetaData, thus the total number of the channels of all subbands can be
less than 8192.

If the task marks the unobserved channels with a flag (vaue =
CaWbsBadPixel . NOT_OBSERVED), when the WhsSpectrumDataset is split into subbands the
corresponding flag columns will be also split and the above flag value will be removed. If the
WhsSpectrumDataset subbands are split and rejoined, the flag val ues of the unobserved channels
will belost.

Thefirst 4 pixelsof each CCD, used for the dark calibation, are marked with the appropriate flag:
HifiMask.DARK_PIXEL

¢ Mathematics:

Thelogic operator "OR", as defined in the makeOr method of the Task MkWhsBadPixels, isused.

30

WBS Pipeline

 Algorithm:
The Task works with unsplit spectra and also when the spectra are divided into subbands.

If the WhsSpectrumDataset is not split into subbands, the unobserved channels are marked with
the value CalWhsBadPixel.NOT_OBSERVED.

The MetaData"isMasked" is created with the value defined by the Task input parameter "apply".

For each row of the flags of all WhsSpectrumDataset contained in the HifiTimelineProduct a
logical OR is performed with the flags of the "Bad Pixel Mask" passed in the Input.

« Cadlibration Inputs:

The calibration product CalWhsBadPixel containing the "bad pixel map" calculated in MkWh-
sBadPixels.

* Result:
¢ MetaData:

The MetaData "isMasked" (BooleanParameter) is created, with the value defined by the input
parameter "apply".

* Columns:;
Set or create "flag"/"flag_N" column/s.
« Hags:

The Not Observed Flag is set in unobserved channelsif the data are not split into subbands, the
value of the flag isretrieved from CalWbsBadPixel.NOT_OBSERVED.

A logical OR is performed with the flag contained in the CaWhbsBadPixel passed as Input.

Thefirst 4 pixels of each CCD are Marked with the appropriate flag: HifiMask. DARK_PIXEL
 Calibration Outputs:

None.

« Errors and Warnings:
There is notification message when there are unobserved channels.

4.5. DoWbsDark

* Name:
DoWbsDark
* Purpose:
Subtract the dark values from the "flux" values.
* Description:
Each subband has 4 valuesthat contain the dark measured for the specific spectrum. The odd and the

even pixels have different dark values. Thus the appropriate darks are selected for the subtraction
from the flux values. The user can select which dark has to be used for the subtraction:

31

WBS Pipeline

"darkKind" Odd Channels: Even Channels:
DARK1 2=0 The 1% dark pixel (default). | The 2™ dark Pixel (default).
DARK3_4=1 The 3" dark pixel. The 4" dark pixel.

DARK_AVERAGE=2

The average of the 1¥ and 3“
dark pixels.

The average of the 2™ and
4"dark pixels.

e Assumptions:

Thefirst four pixels of each subband contain the dark values (if the subbands have not been cut).

In case of discrepancy between these values and the dark values, the values used are a function
of the input parameter "usePixel". If true (default) the values of the pixels are used, but only if
they are different from 0O, else (usePixel=0) the "dark" values will be used.

Mathematics:
The task performs a simple subtraction of the dark values from al channels.

Algorithm:

The Task works with both spectra split into subbands and unsplit spectra.

Thereisaninternal check to verify if the dark subtraction has already been applied to the spectra:
the MetaData "Pipeline applied” is retrieved, the third bit is checked and if the valueis equal to
1 the dark subtraction is not applied. If the MetaData "Pipeline applied" does not exist a new
oneis created.

If the subband has been cut, the first channel in the subband could be an even pixel [not an odd
one]. The darks for the even/odd channels are selected as a function of the real channel position
inside the ccd.

The first four pixels of each subband contain the dark values (if the subband has not been cut).
In case of discrepancy between these values and the dark values, the values used are a function
of the input parameter "usePixel". If true (default) the values of the pixels are used, but only if
they are different from O, else the "dark” values will be used.

After the subtraction is performed the third bit of "Pipeline applied" will be set to 1.

Thisimplementation will be used until a proper History mechanism can be used. At this moment
(January 2008) the history mechanism doesn't work with the HifiTimelineProduct.

Calibration Inputs:

No Calibration Input passed.

* Result:

¢ MetaData:

The MetaData "Pipeline applied” is checked. If it does not already exist, it is created.

The third bit of thisMetaDatais set to 1 after the task is applied

¢ Columns;

Column(s) "flux" (or "flux_X") is (are) changed.

32

WBS Pipeline

None.
 Errorsand Warnings:

There is an internal check between the first four pixels of each subband and the dark
values in the "dark" column. If they have different values a warning message is raised:
QCHags.DataProcessing.Calibrationl ssues.WrongOffseDark CurrentCorrection.

If the Task is applied to data already dark-subtracted a warning message is raised advising that
the dark correction will be NOT applied.

4.6. DoWbsNonLin

* Name
DowhbsNonLin
* Purpose:
Perform the correction for the non-linearity in response of the CDD for even and odd WBS pixels.
 Description:
e Assumptions:
The ccd pixels have a non-linearity that can be corrected with a polynomial.
There are different corrections for odd and even pixels.

The measured coeffients of the polynomia needed for the non-linearity correction are stored in
acdibration product, CalWbsL inearCoeff

Before the non-linearity correction, the pixels have been bit-shift corrected, scan-count corrected
and dark-subtracted.

* Mathematics:
The pixel count values are divided by their maximum possible value (1023)

Then two polynomials are applied to the even and odd pixels. The new flux (f') of each channel
will be afunction of the old flux (f) and the coeffients of the polynomial(Cy,Cq, Cy, C3),i.€.:

f'=Co+Cy*f+Co*f* +C*f°

Finally the pixel count values are multiplied by their maximum possible value (1023).
 Algorithm:

The Task works with spectra both split into subbands and also unsplit.

Thereisan internal check to verify if the non-linearity correction has already been applied to the
spectra: the MetaData "Pipeline applied” is retrieved, the 4th bit is checked and if its value is
already equal to 1 the non-linearity correction is not applied. If the MetaData " Pipeline applied”
does not exist, anew oneis created.

If the subband has been cut, the first channel in the subband could be an even channel (not an
odd one). The coefficientsfor the even/odd channels are selected as afunction of thereal channel
position inside the ccd.

All channels are normalised, i.e they are divided by the maximum count value that a pixel can
have(1023). This assumes that the scan count and dark correction has already been applied.

33

WBS Pipeline

For each subband the relative polynomials are applied to the even and odd pixels.
All channels are then multiplied by the maximum value that a pixel can have(1023).

After the correction is performed the fourth bit of "Pipeline applied” will be set to 1. Thisimple-
mentation will be used until a proper History mechanism can be used. At this moment (January
2008) the history mechanism does not work with the Hifi TimelineProduct.

« Cadlibration Inputs:
The calibration product CalWhsL inearCoeff contains the coefficients for the polynomial of each
subbands.

* Result:
* MetaData
The MetaData "Pipeline applied” is checked. If it does not already exist, it is created.
The fourth bit of this MetaData is set to 1 after the Task is applied

e Columns:
Column(s) "flux" (or "flux_X") is (are) changed. The non linearity correction is applied.

* Hags:
No flags changed from this Task.

¢ Calibration Outputs:
None.

« Errors and Warnings:

If the Task is applied to data already corrected for the non-linearity, a warning message advises
that the correction will be NOT applied.

4.7. MkWbsZero

* Name:

MkWbsZero
* Purpose:

Check the zeros and compute an interpolation to represent the zero correction as afunction of time.
 Description:

e Assumptions:

Thefirst row (of each pair of rows) in the "Combs" dataset is used asthe "Zero" if the On Board
Software version is greater than or equal to the version 4.03.03. (Condition met during routine
operations.)

The"Zeros" wil be extracted from the "Combs" and used unless the On Board Software version
islessthan version 4.03.03, in which case the Zeros that are present in the HifiTimelineProduct
will be used.

The String parameter alowed for the interpolation are the String fields defined in
herschel.ia.toolbox.spectrum.utils.interp.Interpol Rule.

The threshold values for the "Zero" checks are contained in the Quality product QWhbsZero.

WBS Pipeline

e Mathematics:
Each "Zero" spectrum is checked:

- The value of each channel should be inside the range determined from the
minimum(QWhbsZero.getThresholdMin()) and maximum(QWhbsZero.getThresholdMax()) val-
ues allowed.

- The average of the Zero should be insde the range de
termined from the average minimum(QWhbsZero.getThresholdAverageMin()) and
maximum(QWbsZero.getThreshol dAverageMax()) values allowed.

- If there is more than one "zero", al the "Zeros' after the first should pass a variance
check: the variance between a Zero and the previous one should be below a threshold value
(QWhsZero.getThresholdVariance()). The variance between two Zerosis calculated as:

#[(ZoZ1)-#Zy Zi#]

where Z, and Z; are the Zero "flux", where only the channels with the flag value (in Z1 or Zy)
different from O are used.

No interpolation is performed in this Task. It just setsthe interpolation parameter in the Calibra-
tion.

« Algorithm:
The Task detects the number of the "zero" SpectrumDatasets in the HifiTimelineProduct.

If there are not any "zero" SpectrumDatasets the Zeros from "comb™" are used. If the "comb"
datasets are also missing the Task returns an error message and exits.

A WhsSpectrumDataset containing all the Zeros of the HifiTimelineProduct is assembled.
The Zeros are checked by the following procedure:

The threshold ranges are retrieved from the QWbsZero passed in the Input/Output.

A mask is created for each zero spectrum as a function of the flag pixel value equal to 0.
The zero "flux" values are retrieved and masked.

For each zero it calcul ates the minimum, the maximum and the average.

If the values calculated are inside the allowed range, the zero is marked as "good"

If there is more than one zero spectrain the dataset, the variance of the zerosfollowing thefirstis
calculated and checked. The varianceis checked in the following way: The previous "good" zero
isretreived, the masks of the 2 zeros are merged (with AND operation), and then the two fluxes
are masked with this merged mask. Then, the variance between the two zeros is calculated with
the formula above. Finally, the task checks that the variance value is below the threshold value.

Only the zeros that pass also the variance check are marked as "good".

The Task sets the resultsin the Quality Product QWbsZero.

35

WBS Pipeline

The"good" and "bad" zeros (the zeros that didn't pass the checks) are put in the CalWhsZero as
two different Hifi TimelineProducts.

The task sets the interpolation in the CalWbsZero as a function of the input parame-
ter "interp" of the Task. If the interpolation type is not recognized, an error of type
Calibrationl ssuesCategory.WrongFlatFiel ding. is returned.

Finally the Task sets the the CaWhbsZero in the "cal" output and the QWbsZero in the "ze-
roCheck" output.

« Calibration Inputs:
A QWhbsZero is used to retrieve the threshold values. If no QWhsZero is passed through the
"zeroCheck" parameter, a default QWhsZero is created.
* Result:
* MetaData:
Set the BooleanParameter "checkZero" equal to the same MetaData parameter of QWhbsZero.

e Columns:
No changes in the HifiTimelineProduct.

* Flags:
No changes in the Hifi TimelineProduct.

 Cadlibration Outputs:

A new calibration Product, CalWbsZero.

A Quality Product QWhsZero in the "checkZero" output.
 Errorsand Warnings:

If thereare no "zero" spectrainthe HTP an error, Calibrationl ssuesCategory.WrongFlatFielding,
israised.

If the interpolation required is not implemented an error,
Calibrationl ssuesCategory.WrongFlatFielding, is raised.

4.8. DoWbsZero

¢ Name:
DoWbsZero
* Purpose:

Subtract the zero spectra from all spectra present in the observation. The zero spectra from other
observations can also be used, if required.

 Description:

The zeros from the zero calibration measurement are interpolated and subtracted from the spectra
in the observation. The possible interpolations are those defined in Interpol Rule.

e Assumptions:

A CaWbsZero containing the zero is passed to the Task.

36

WBS Pipeline

* Mathematics:

The zeros areinterpolated as afunction of time using the Arraylnterpolator. A simple subtraction
isthen performed.

 Algorithm:
The Task works with both spectra that are split into subbands, and also spectrathat are unsplit.
If the zeros contained in the calibration are split into subbands, they are joined to calculate the
appropriate channel position for the interpolation. After the subtraction is performed the bands
are split again, if they were previoudly divided.
Thereisaninternal check to verify if the zero subtraction has aready been applied to the spectra:
the MetaData "Pipeline applied” is retrieved, the fifth bit is checked and if its value is equal to

1 the zero subtraction is not applied.

If the CaWbsZero is null or has empty data the spectra are unchanged and a warning message,
DataProcessingCategory.UnprocessedData, is raised.

For each spectrum of the observation a zero is obtained from an interpolation of the zeros in
the calibration: if the interpolation has type NEAREST or PREVIOUS the appropriate Zero is
selected, if the interpolation has a different type an Arraylnterpolator is created with the times
and fluxes of the calibration, then the Arraylnterpolator is used to calculate the Zeros for all the
spectra.

The obtained zeros are subtracted from the flux of the spectra.

After the subtraction is performed the fifth bit of "Pipeline applied” will be set to 1. If the Meta-
Data "Pipeline applied" doesn't exist anew oneis created.

 Cadlibration Inputs
A CaWbsZero obtained from the present observation or from another observation.
Result:
* MetaData:
The MetaData "Pipeline applied” is checked. If it does not yet exist, it is created.
Thefifth bit of this MetaDatais set to 1 after the Task is applied.

e Columns:
Column(s) "flux" (or "flux_X") is (are) changed. The zero subtraction is applied.

* Flags:
No flags changed by this Task.

 Calibration Outputs:
None.

 Errorsand Warnings:

If the Calibration is empty a warning message, DataProcessingCategory.UnprocessedData, ad-
vises that the zero correction has not be performed.

If the Task is applied to data that has already been corrected for the zero subtraction awarning
message, DataProcessingCategory.UnprocessedData, advises that the correction will be NOT

applied.

37

WBS Pipeline

4.9. MkWDbsFreq

¢ Name:
MkWhsFreq

e Purpose:
Derives the frequency scale from the comb spectra.

 Description:

This task uses the comb spectra to derive the scale for frequency calibration, and defines how to
proceed if there are errors with the comb measurement.

Thereisadifference between "comb spectrawith some errors' (e.g. some comb line are not detect-
ed) and "no fitted comb". The latter will return an exception when the Task attemptsto fit them as
no information is available from that comb.

To use "comb spectrawith some errors’, the Signature parameter "use _bad" must be set as as true.

HRS data can be also used for frequency calibration of the WBS. At the moment, HRS data will
only be used instead of Combs to create the WhsFreqCal if none of the combs can be fitted, or if
no combs are present in the observation.

¢ Assumptions:

The first row (of each pair of rows) in the "comb" dataset is a"zero" if the On Board Software
version is greater equal to the version: 4.03.03. (This condition is met in routine operations.)

¢ Mathematics:

The Median and the Rms of the CCDs are calculated with the Basic MEDIAN and Basic.RMS
of the numeric package.

The Task uses the LevenbergMarquardtFitter with a Gaussian Model and the Fitter with a Poly-
nomialModel from herschel.ia.numeric.toolbox.fit to fit the data.

« Algorithm:
The Task checks the number of Comb present.

- If thereisat least onefitted comb, the Task writesto the output calibration Product, CalWhbsFreq,
the computed CalWhbsFreqCoeff and the input CalWhbsFreqTuning.

- Otherwise, it will try to use the HRS data to create a CalWhbsFreq and to set it as output. See
the section below "Get frequency Calibration from HRS Algorithm®.

Creating CalWbsFreq from the comb:

e The task removes the "zero" row(s) from all combs dataset and creates a new WhsSpectrum-
Dataset containing only the combs [called whsSpectrum in this document].

« If the whsSpectrum still has a"flux" column it will be split into subbands;

» Then the Task checks each row of the whsSpectrum to find the approximate position of the
lines. See the section below "Rough Check Channel Algorithm™.

« A rough check is then made on channels to find possible spikes and missed lines. See the
section below " Spikes and missed line Algorithm".

 Then each row of the whsSpectrum is fitted. See the section below "Fitting Comb Algorithm™.

38

WBS Pipeline

From the fitting result, the task fills the datain the Quality product QWhsFreq.

The MetaData " checkComb", "spikeNumber", " spikeNumberFlaf" in the Hifi TimelineProduct
are also set to tag the quality of the Comb contained.

If the wbsSpectrum was originally unsplit, the CCDs are then rejoined.

From the fitting result, the Task creates the calibration Product, CalWbsFreqCoeff, to be in-
serted in the Frequency Calibration.

The quality product, QWbsFreq, is set in the output "combCheck".

Rough Check Channel Algorithm:

Thisis acheck on each single subband to find the approximate line positions in each CCD.
The Task calculates the median of the ccd.

If the threshold value input is zero the task cal cul ates the threshold value: it cal culates the rms
of the CCD, then recalculates it after removing pixels with values three times or more greater
than the previous rms. The threshold value is the median value plus three times the second
rms calcul ated.

A number of pixels equal to CaWbsFreqTuning.getStartCed() and
CalWbsFreqTuning.getEndCcd() are removed from the borders of the CCD.

All masked pixels are removed from the CCD.
The remaining pixels are scanned to find possible lines.

A line candidate is found if a channel fulfills al following conditions: The value minus the
median isgreater than thethreshold, thevalueis greater than the neighbors pixelswith distance
=1, the values of the pixels at adistance less or equal to 5 minus the square root of the median
are smaller of the values of a Gaussian with the peak in the examined pixels and a sigma equal
to CalWhbsFreqTuning.getLineWidth().

If the number of lines detected in this way is greater than the number of line
expected plus the maximum number of spike alowed the Task returns a warning
Calibrationl ssuesCategory.WrongWavel engthScaleGain.

If the number of lines detected is equal to the number of line expected plus one,
the first or the last line will be not used. The line not used is the line with a posi-
tion, respect to the border of the ccd, with a distance smaller than half of the expect-
ed distance between 2 lines [i.e. CaWhbsFregTuning.getLineStep()]. A warning message
Calibrationl ssuesCategory.WrongWavel engthScaleGain is raised.

Spikes and missed line Algorithm:

The possible line positions founded from the Rough Check Channel Algorithm are checked to
found if there are spikes or if some lines are missed.

The parameters wused are: the expected distance between two lines
CalWbsFreqTuning.getLineStep() [here:lineStep] and the tollerance allowed in this distance
CalWbsFregTuning.getLinesStepTollerance() [herelineTol]

In general to identify spikes and missed lines two consecutive guessed lines are examined. If
they arethefirst two lines of the ccd (ordered from left to right) the next lineistaken in account
to identify which one of the two lines is the spike or the missed line, else the second line is
marked as spike/missed line.

39

WBS Pipeline

If the distance between two consecutive guessed lines is greater than (2
x lineStep - linetol), it is identified as missed linee A warning message
Calibrationl ssuesCategory.WrongWavel engthScaleGain is raised. A guessed line position is
added to the possibleline position (with position equal to thefirst line position plusthelineStep
value).

If the distance between two consecutive detected lines is smaller than
(lineStep - linetol), the line is identified as spikes. A warning message
Calibrationl ssuesCategory.WrongWavelengthScaleGain is raised. The spike position is re-
moved from the possible line positions.

If the distance between two consecutive guessed lines is greater than (lineStep + linetol) and
smaller than (2 x lineStep - linetol), they are identified as missed line plus a spikes. A warning
message Calibrationl ssuesCategory.WrongWavel engthScaleGain israised. The spike position
(the second line as above) isremoved from the possible line positions. A guessed line position
is added to the possible line positions (with position equal to the first line position plus the
value of lineStep).

If the final number of line detected is smaller than the expected number of line a warning
message Calibrationl ssuesCategory.WrongWavelengthScaleGain is raised.

Fitting Comb Algorithm:

For each comb the Task loops on the subbands to fit each CCD.

It use the possible line positions founded with the rough Check Channel Algorithm and the
Spikes and missed line Algorithm.

It select aregion of pixels equal to 2 X CalWbsFregTuning.getGaussianRange() around each
line.

It remove the masked pixels from these regions.

It subtract the minimum of the region from the pixel values.

It fit the resulting regions with a LevenbergMarquardtFitter with a GaussModel where the
initial values for each region are: {the maximum value of all selected regions, the position of
the maximum of the specific region, the expected line width} .

From the LevenbergM arquardtFitter it cal culates the amplitude of the gaussians, the resolution
of the gaussians, the standard deviation of the gaussian fit, the power of the gaussians and the
position of the peak of each gaussian.

Only gaussians with amplitude above the threshold are used in the following steps. Thisavoids
that possible line positions, inserted from the Spikes and missed line Algorithm, are used when

the lines are effectively not present.

It use a Polynomia M odel with degree equal to CalWhsFreqTuning.getPolynomia Degree() to
fit the line positions in function of the expected line frequency values.

It use a Polynomia M odel with degree equal to CalWhsFreqTuning.getPolynomia Degree() to
fit the expected line frequency values in function of the line positions.

It store in the results the RM S of the frequency fit.
It obtains the powerReduct removing the first and last line from the line powers.

It calculates the ripple as: 10* L og(M ax(powerReduct)/MIN(powerReduct))

40

WBS Pipeline

* It obtains the dynamic range calculated as: (2 * scanCount * 1023/ RMS(noise)) with the
following meaning of the symbols: *scanCount* is the number of scan Count added in the
frame and it is proportional to the total integration time of the frame; RMS(noise) isthe RMS
calculated from the pixels that are not used to fit the lines.

» Theé€fficiency is calculate as the mean of the powerReduct.
* Theresolution is calculated as the mean of the resolution of the lines.
Get frequency Calibration from HRS Algorithm.
TBD: Work in progress
 Calibration Inputs

A CaWhbsFreqTuning isused to retrieve all the parameter needed for the fitting of the comb lines
and for the threshold parameters used in the Quality Product.

The Signature parameters
"COMB_FIRST_LINE_POSITION","COMB_LINES_STEP","COMB_THRESHOLD" are us-
er convenience shortcut to overwrite the equivalent parametersin the input CalWhbsFregTuning.

An HrsHifiTimelineProduct containing the spectrato be used in the calibration of Wbswith Hrs.
* Result
¢ MetaData
Set the BooleanParameter "checkComb" equal to the same MetaData parameter of QWhbsFreq
Set the LongParameter "spikeNumber" equal to the same MetaData parameter of QWhbsSpikes

Set the BooleanParameter "spikeNumberFlag" equal to the same MetaData parameter of QWb-
sSpikes
* Columns
No changes in the HifiTimelineProduct.
* Flags
No changes in the HifiTimelineProduct.
 Calibration Outputs:

CaWhsFreq, containing the CalWbsFreqTuning and the CalWbsFreqCoeff, isfound in the "cal"
output.

Inthe "checkComb" output: A quality QWbsFreq that isaMapContext containing a QWhbsComb
for each comb present in the observation. Each QWhbsComb is also a MapContext that contains
4 QWhbsCcd with the quality result of the fit of the ccds.

 Errorsand Warnings:

Cadlibrationl ssuesCategory.WrongWavelengthScaleGain error and/or warning problems are
found in the comb.

4.10. DoWbsFreq

 Name:

41

WBS Pipeline

DoWhbsFreq
* Purpose:

Appliesthe frequency Calibration to al datain the observation.
 Description:

Thefrequency calibration supplied in the input is used to create a Whs2DFreqM odel, then from the
model the frequencies are calculated and set as new Columnsin the HifiTimelineProduct.

e Assumptions:
A CaWhbsFreq is passed to the Task.
The CalWbsFreq contains the CalWhbsFreqTuning and the Cal WhbsFreqCoeff.
If anull frequency Calibration is passed, the Task will create and apply a default Frequency
calibration. The default frequency calibration is created with the frequency coefficients defined
inside the defaults of CalWbsFreqCoeff.

* Mathematics:
A Whs2DFregModel is used to calculate the frequencies.

« Algorithm:

The Task works with spectra that are both split into subbands and also still unsplit.

For theinterpolationintime, if thefirst timein the WbsFregCal isuequal to zero then all thetimes
of thecalibration will be shifted by thetimevalue of thefirst spectrumin the Hifi TimelineProduct.

The Wbs2DFregModel is created in function of the number of combs present in the observation,
the time parameters of the calibration, the start and the end of each subband and the degree of
the polynomial set in the calibration.

Then the mode! is set in each WhsSpectrumDataset

Then the method toTabulated() in the WhsSpectrumDataset is called to create the new Colums.

Then the model is removed.

The MetaData "Pipeline applied” in the WhsSpectrumDataset is retrieved, the six bit is set equal
to 1.

« Cadlibration Inputs
A CaWhbsFreq obtained from the present observation or from another observation.
* Result
* MetaData
The sixth bit of the MetaData "Pipeline applied" is set equal to 1 after the Task is applied.
* Columns
New columns containing the frequencies are added. The number of culumns added is equal

to the number of "flux" Columns. The basic name of the columns is defined by the method
WhsSpectrumDataset.toTabulated() that retrieve the information from the Metadata "wave-

name". 42

WBS Pipeline

* Flags

No flags changed from this Task.
¢ Calibration Outputs

None.
e Errorsand Warnings

If the Cadlibration is empty a warning message
Calibrationl ssuesCategory.WrongWavel engthScaleGain advice that a standard frequency cali-
bration will be applied

If the Cdlibration times start from zero a warning message
Calibrationl ssuesCategory.WrongWavelengthScaleGain advice that the time of the calibration
will be shifted to the present time of the observation.

4.11. MkWbsFluxAtten

 Name:
MkWhbsFluxAtten
* Purpose:

Provides the technical CalWhsAttSpecific that will be used to calculate the Intensity calibration as
afunction of the attenuator settings.

» Description:
A CalWbsAttSpecific is created as a function of the Attenuator measurement in the HTP.
e Assumptions:
The CaBbid contains the name "att" to indicate the bbtype of the attenuators.
The"att" SpectrumDatset will contain Columns with names: "HW _IN_ATT" and "Band_ATT"
Attenuator spectra are in the sequence ABABAB...
* Mathematics:
The resulting spectrum for each pair of spectra, A and B, is calculated as
(Flux_a i/Flux_b i)/(att_i_B-att_i_A), where
Flux_a i isthe flux of the subband i of the attenuator spectra A,
Flux_b i istheflux of the subband i of the attenuator spectra B,
att_i_A isthe attenuation coefficient for subband i of the attenuator spectrum A,
att_i_B isthe attenuation coefficient for subband i of the attenuator spectrum B.
 Algorithm:
If no CaWbsAttSpecific is provided a default oneis created.

The Task will loop on all SpectrumDatset contained in the HTP to find the attenuators bbtype.

43

WBS Pipeline

The Task will use a CalBbid to retrieve the appropriate bbtype in each SpectrumDataset.

The row positions of the attenuator spectra are recorded.

For each pair of attenuator spectra the following procedureis applied:

From the Column "HW_IN_ATT", the Task retrieves the attenuation values for the spectra of

type A and B. Then it calculates the general attenuation coefficients as a function of the last 4
bits. If b0,b1,b2,b3 identify the last 4 bits start counting from the right, the result is:

att = b0 + b1* 2+b2* 4+b3*8.
From the Column "Band ATT" the Tasks retrieves the attenuation values of the specific subb-

bands. Then it calculates the specific band attenuation coefficients as afunction of thelast 3 bits.
If b0,b1,b2 denote the last 3 bits start counting from the right, the result for the band i is:

att_i = att+ bO* 1 + b1* 2+b2* 4.
Where att is the general attenuator coefficient.
The resulting spectrum is calculated as (Flux_a i/Flux_b_i)/(att_i_B-att i A), as above.

In the case that at i A is equal to at i B a
Calibrationl ssuesCategory.WrongExposureCorrection is rai sed.

Thetime of the resulting spectrum is cal cul ated as the average of the times of the spectraA and B
All the resulting spectra are written in CalWbsAttSpecific in the output.
« Calibration Inputs:
A CalWbsAttSpecific containing the basic multiplication factors for the operations on the bits.
* Result:
* MetaData:
No new MetaData are defined or changed in the HTP.
e Columns:
No new Columns are defined or changed in the HTP.
e Hags:
No new flags are defined or changed in the HTP.
 Calibration Outputs:

A CalWbsAttSpecific containing the spectrum coefficients (one for each channel for each couple
of attenuator spectra) to be used in the Intensity calibration.

» Errorsand Warnings:

WBS Pipeline

In the case that the attenuator coefficents for the specific band of the spectra A and B are equal,
a Calibrationl ssuesCategory.WrongExposureCorrection is rai sed.

4.12. DoWbsSubbands

* Name:

DoWbsSubbands

* Purpose:

Split the spectrainto subbands.

* Description:

Perform splitinCcd() on all WhsSpectrumDataset contained in the Hifi TimelineProduct.

Assumptions:

The name of the frequencies column is given by the SpectrumDataset method, getWaveName().
Mathematics:

None.

Algorithm:

A loop on al WhsSpectrumDataset contained in the Hifi TimelineProduct is performed.

If the WhsSpectrumDatasets is not already split, the method splilnCced is invoked.

If the WhsSpectrumDatasets have the frequencies column they are split using the method splitin-
Segments.

Cdlibration Inputs:

None.

* Result:

MetaData:

No MetaData are defined or changed inthe HTP.

Columns:

The Column "flux" is replaced by 4 columns with names "flux_1","flux_2","flux_3","flux_4".
The Column "flag" is replaced by 4 columns with names "flag_1","flag_2","flag_3","flag_4".

The Column "frequency"” (or the name returned from the method getWaveName) is replaced by
4 columns with names "frequency_1","frequency_2","frequency_3","frequency_4".

Flags:
No Flags are changed in the HTP.
Calibration Outputs:

None.

45

WBS Pipeline

 Errorsand Warnings:

No Errors are thrown by this Task.

4.13. MkSpur

* Name:

MkSpur
* Purpose:

Checksfor spursin the cold calibration spectra. Returns a proposed list of spur channel candidates.
* Description:

The Task isatrandation to Java of the jython script WhbsSpurFinderTask Written by C. Borys

This routine will loop through all hot/cold datasets in a HifiTimeLineProduct and catal ogue spurs.
It is best run after the WBS branch but before the generic pipeline.

e Assumptions:
That hot and cold are contained only in "hc" datasets and they have only 2 rows.
Thefirst row isthe cold load, and the second row isthe hot.

¢ Mathematics:
See the Algorithm section.

« Algorithm:

The Hot-Cold SpectrumDatset (or the passed SpectrumDataset) are retrieved and copied from
the HifiTimelineProduct. Then a Smoothing with filter type = "box" and "width"=3 is applied
to the spectra.

First, all fluxes above the saturation threshold are flagged. The routine then determines the width
of each saturated region, cataloging them as they are found. A region larger than the saturated
pixelsis flagged as bad, since the wings of the spur are not saturated yet clearly part of the spur.
The excess region flagged is 75% the width of the spur on either side of it.

Next, the second derivative of the flux is calculated and its RM S determined. Using a threshold
of sigma* RMS, the point in the second derivative that deviates the most isfound, and a Gaussian
isfit to the original flux. The spur isflagged, and then the process repeated for other pointsin the
second derivative until none are found that deviate more than the threshold.

The spurs are returned as a table dataset, and flag column in each hot/cold dataset in the HTP
are set appropriately.

The option to pass a Spectrum2d to the Task instead of an HifiTimelineProduct has been added
as an optional input. The Task will perform the calculations and flag the value for the first row
of the passed Spectum2d. This is never used in the pipeline, but it is required to use the task
interactively.

 Calibration Inputs:
No Cadlibration Input are passed to the Task.

However severa input parameter can be passed:

46

WBS Pipeline

* "threshold": The flux above which the WBS is considered saturated

« "sigma': The threshold used to determine if something is a spur is given by sigma* X, where
X isthe RMS of the second derivative of the flux. The default of 10.0 was determined from
TV/TB and Gascell observations.

« "fwhm": Spursarefit usingaGaussian profile. Theinitial guess at thewidth of the spurisgiven
by this variable. The default of 15 was determined from TV/TB and Gascell observations.

* Result:

« MetaData:
None.

¢ Columns;
None.

* Flags:
The flag bit (with value defined from "HifiMask.SPUR_CANDIDATE") is set in the flags for
the channels in which a spur candidate is found.

 Calibration Outputs:

The output of the task is a Cal Spur Object, which is a Product containing a TableDataset with
name "spur", and with the following Columns:;

» "obsid" aLongld that containsthe obsid from the MetaData of the SpectrumDataset analyzed.
» "hcid" aLongldthat containsthe"ds_id" from the MetaData of the SpectrumDataset analyzed.
« "apid" aLongld that contains the apid from the MetaData of the SpectrumDataset analyzed.

» "Band" a Stringld that contains the "band" from the MetaData of the SpectrumDataset ana-
lyzed.

* "LO" aDoubleld that contains the values of the "L O Frequency” of the first row of the Spec-
trumDataset analyzed.

 "subband" aLongld that contains the subband analyzed

» "Pixel" aDoubleld that contains the pixel centre of the spur obtained from the Gaussian fit

» "IF" aDoubleld that contains the frequency centre of the spur obtained from the Gaussian fit
« "amp" aDoubleld that contains the amplitude of the spur obtained from the Gaussian fit

« "width" aDoubleld that contains the width in MHz of the spur obtained from the Gaussian fit

* "Type" a Stringld that contains the type of the spur (negative or positive) obtained from the
sign of the amplitude of the spur

e Errorsand Warnings:
A NullPointerException is thrown if neither a dataset or a HTP have been passed to the task.

47

Chapter 5. Generic Pipeline

5.1. Preliminaries

We start with some first remarks on what data the pipelineis configured to work with.

5.1.1. Introduction to the Generic Pipeline

This chapter describes the processing stepsinvolved for data already processed to Level 0.5to Levels
1.0and 2.0.

The two figures provide a graphical representation of the steps.

48

Generic Pipeline

- .
: " FreqRanges .~
@ —> " Checkrregenid || —>

Alternative:
3 | | DoVelocitycorrection| | DoRadialVelocity

And the final processing steps...

49

Generic Pipeline

Al ive:
| vomtemateny || Qe Temp
MKSidebandGaln CalsidebandCoefF
DoSidebandaln
ﬁfTM/ ﬂmln/
lﬂl;mrﬁrquncm.:hl |
fre-use / ,;ﬁm-qin/
| ikereqerd | | ——> 7 calfreqerid

Jimsn) firor/

' | DoFreqGrid [|

prrovs/ fareiss/
1

All Mapping AOTs All other AOTs

| | Al other | | Cubes
DoGridding l—mwing _ Dohwerage /" Cubes /
modes

Joaa] Jris] fis]

Possible User IA post pipeline steps:

Possible User IA post pipeline steps: . .

*Remove baselines before regridding -E?:;;CR:_SW i)

[nDuT 5ﬂ pipﬁl{;’lﬂfﬂfgurhhrpjd_ -RemoveFlagge dP}ifng o

* DeStitch before regridding . .
-RemoveFlaggedPixels ﬂ[:r;[;acunmlu‘tmn (Spectral scan

5.1.2. Configuration of the Generic Pipeline

The generic pipeline consists of asequence of tasks (modules) that are configured in aobserving mode
specific way. There are two alternatives to specify the pipeline for specific observing modes:

 Distinguish the different handling of the observing modes in the python script by rather lengthy
if...elseif ...else staements.

50

Generic Pipeline

5.1.3.

* Generate, a Pi pel i neConf i gur at i on-object (see
her schel . hi fi. pi pel i ne. generi c-package) that containsall the observing mode specif-
ic parameters. By passing this object to the tasks, the task-specific parameters can beretrieved from
it and the task is processed accordingly. The Pi pel i neConfi gur at i on-object can be gener-
ated by a statement of the form

config = PipelineConfiguration.getConfig(htp)
where ht p standsfor aninstance of aHi fi Ti nel i nePr oduct .

* A third more user friendly aternative will consist in opening a suitable GUI that allows the user to
view the default configuration for agiven Hi fi Ti mel i nePr oduct (onceadefaultisavailable)
and change the settingsif desired.

In the following, we concentrate on the second alternative.

When caling Pi pel i neConfi gurati on. get Confi g(htp), by default the parameters
specified in the file PipelineConfig.xml in herschel . hifi. pi pel i ne. generi c-pack-
age are loaded. As a user you can inspect what defaults are configured by calling from
the console pri nt config or for a specific task (such as "doRefSubtract") pri nt
confi g. get Par anmet er s("doRef Subtract”). You can even modify the entries by
confi g. set Par anmet er ("doRef Subtract", "i ndi cator", "Chopper") . Note that
changes will be effective only for this specific config object loaded by the get Conf i g-method.
Expert users can load custom configurations with the default task parameters by setting the system
property hi fi . pi pel i ne. generi c. confi g tothe suitable file with the custom configuration.
Warning: The location of the file should be included in the system variable "CLASSPATH".

In the following, atypical section of such an xml fileis shown:

<group nane="DBS" npdes="Hi fi Poi nt ModeDBS, Hi fi Mappi ngMbdeDBSRast er,
Hi fi Mappi ngMbdeDBSCr oss,
Hi f i SScanMbdeDBS" >
<t ask nanme="doRef Subtract" >
<par am nane="i sABBA" type="Bool ean">Tr ue</ par an>
<param nane="start Wt hRef" type="Bool ean">Tr ue</ par an>
<par am nane="of f Start sWt hQpposi te" type="Bool ean">True</ par anr
<par am nanme="i gnore" type="Bool ean">Fal se</ par an>
</task>
<t ask nanme="nkO f Snoot h" >
<par am nane="i gnore" type="Bool ean">Tr ue</ par an>
</task>
<task nanme="doO f Subtract" >
<par am nane="i gnore" type="Bool ean">Fal se</ par an>
<par am nane="node" >addf f </ par an®>
</task>
</ gr oup>

Asyou see, we rather refer to "groups’ of observing modes where in each group the parameters for a
group of observing modes may be configured. A group is defined between thetags <gr oup>. . . </
gr oup> and by giving it aname (name="DBS") and specifying the nodes it should be associated
with.

Within a group, the parameters for a given task can be specified by first opening a <t ask>-tag and
then using the <par an®. . . </ par anp-tags.

Standard Observing Modes

We next give an overview on the observing modes that are configured by the system and hence
can automatically be processed by running the generic pipeline. The (default) configuration pa-

51

Generic Pipeline

rameters for these observing modes are specified in the PipelineConfig.xml file in the package
her schel . hi fi. pi pel i ne. generi c-package.

Observing Mode Label bbtype
-1 Position switch refer-|HifiPointModePosi- 6021 (OFF), 6022(ON)
ence tionSwitch
-2 Slow chop DBS HifiPointModeDBS 6031 (ON), 6032(OFF)
I-2a Fast chop DBS HifiPointM odeFast- 6042 (ON), 6043(OFF)
DBS
-3 Frequency switch (with|HifiPointModeFSwitch |6038 (ON), 6039(OFF)
position switch refer-
ence: OFF)
I-3a Frequency switch no ref | HifiPointM odeF- 6038 (ON)
(without position switch | SwitchNoRef
reference: no OFF)
I-4 Load chop (with po-|HifiPointModelLoad- |6035 (ON), 6036 (OFF)
sition switch reference: | Chop
OFF)
I-4a Load chop no ref (with-|HifiPointModeLoad- | 6035 (ON)
out position switch ref- | ChopNoRef
erence: no OFF)
-1 On the fly map HifiMappingModeOTF {6021 (ON), 6022 (OFF)
-2 Slow chop DBS raster |HifiMappingModeDB- |6031 (ON), 6032 (OFF)
map SRaster
I1-2a Fast-chop DBS raster|HifiMappingModeFast- | 6042 (ON), 6043 (OFF)
map DBSRaster
11-2b Slow chop DBS cross|HifiMappingModeDB- {6031 (ON), 6032 (OFF)
map SCross
I1-2¢c Fast-chop DBS cross|HifiMappingModeFast- | 6042 (ON), 6043 (OFF)
map DBSCross
-3 Frequency switch OTF|HifiMappingModeF- 6038 (ON), 6039 (OFF)
map SwitchOTF
(with position switch
reference: OFF)
I1-3a Frequency switch no ref | HifiMappingModeF- | 6038 (ON)
OTF map SwitchOTFNoRef
(without position switch
reference: no OFF)
-2 Slow chop DBSscan |HifiSScanModeDBS 6031 (ON), 6032 (OFF)
I1-2a Fast chop DBS scan HifiSScanModeFast- |6042 (ON), 6043 (OFF)
DBS
11-3 Frequency switch scan |HifiSScanModeF- 6038 (ON), 6039 (OFF)
Switch
(with position switch
reference: OFF)
I11-3a Frequency switch no ref | Hifi SScanM odeF- 6038 (ON)
scan SwitchNoRef

52

Generic Pipeline

(without position switch
reference: no OFF)

5.1.4. Observing Modes Groups

5.1.5.

From the viewpoint of the generic pipeline, the following groups of AOT's are identical:
* Position Switch: I-1

* DBS: 1-2,11-2, 11-2Db, I11-2

» Fast DBS: I-2a, I1-23, I1-2c, 111-2a

o F-Switch: I-3,1-3a, I1-3, 11-3a, 111-3, 111-3a

* Load Chop: I-4

* Mapping OTF: I1-1

For each of these groups, we introduced a corresponding group in the PipelineConfig.xml file in the
herschel . hifi. pi pel i ne. generi c-package.

Some Details on Spectrum Data

Spectral Segment Data:

The spectral segment datais referred to as the part of the table datasets that contains on a per channel
basis

* flux/intensity information,

+ frequency/wave information (or suitable other equivalent unit),

» flagsindicating possible problems with specific data points

» weightsthat give an indication on the statistical significance of specific data points.

We assume that, before running the generic pipeline, the instrument-specific pipelines (WBS/HRS)
have successfully been processed. This means that the frequency calibration has been carried through
(sothat the columns containing thefrequencies arefilled accordingly) and someflagsmay have aready
been set (see, for instance, the WBS pipeline). The weights will be introduced as part of the generic
pipeline (see the module DoChannelWeights below).

For al the tasks processed in the generic pipeline, we need to describe the rules adopted when pro-
cessing and combining these data elements.

In particular, we need to specify both,

« the rules for how flags and weights are considered when processing the frequency and intensity
information (e.g. useflagsfor filtering the datato be processed by restricting to unflagged channels),
and

» how flags and weights are propagated, i.e. how flags and weights are defined for the output spectra
(e.0. flags may be proagated by referring to a bitwise OR or AND arithmetic).

Known (or proposed but not yet implemented) flag values are summarized in the table below.

Value Meaning
0= 00000 Good

1 =00001 Bad pixel
2=00010 Saturated

53

Generic Pipeline

5.1.6.

5.1.7.

4 =00100 Not observed

8 = 01000 Not calibrated

16 = 10000 Stitched-out (overlap)
32 =100000 Glitched

64 = 1000000 Dark Pixel

128 = 10000000 Spur Candidate

Remark: Flagsare considered in the data processing of the generic pipeline - they arejust propagated.
Weights are considered in the MkOff Smooth-task and the DoAverage-task.

Housekeeping Data important for the Generic Pipeline;
The following housekeeping data are important when processing the generic pipeline:

» LO-frequency ("LoFrequency"): Generaly, for grouping comparable spectra or to check and iden-
tify phases in the FSwitch observations.

» Chopper position ("Chopper"): To check and identify phases.
» Buffer ("buffer"): Alternative to check and identify phases.

» Observation time ("obs time"): For interpolating possibly drifting intensity scales (hot/cold mea-
surements) or "background" obtained by blank sky measurements.

» Hot/Coldload temperature("hot_cold"): Usedintheintensity calibration (determination of the band-
pass and the system temperature).

Initialization of Chopper Positions

The chopper voltages that can be found in the datasets (column "Chopper") included in the Hi -
fi Ti mel i neProduct can be trandated to chopper positions. This trandation is specific for the
different detector bands. Theinformation on what chopper voltage ranges transl ate should be mapped
to what position has been added to the calibration tree. In apreliminary step of the pipeline processing
(level 1 and level 2) these chopper positions should beinitialized by loading the corresponding tables
from the calibration tree. This can be achieved with

from herschel . hifi.pipeline.generic.utils inmport ChopperPosition
Chopper Position.initialize(cal node_generic, startDate)
where cal node_gener i ¢ can beretrieved from the observation context by
cal node_generi c= obs. cal i brati on. get Cal Node("downl i nk") . get Cal Node("generic")
andthe st ar t Dat e isthe start date of the observation under consideration:
startDate= htp.neta["startDate"]. val ue

Note that the start date is needed here since these chopper positions tables may be change over the
life time of the instrument.

In case this step is omitted defaults are loaded. These can be inspected by looking at the table

defaults = herschel . hifi.pipeline.generic.cal.ChopperPositionsTabl e()

Pipeline Modules

The processing in the generic pipelineisindependent of what backend has been used for the measure-
ments (Wbs-H/V or Hrs-H/V). However, the generic pipeline processing depends on the particular
AQT / observing mode that has been selected to do the measurement.

54

Generic Pipeline

Some minor dependencies result due to small differences in the data produced during the instrument
pipelines. As an example, we mention the "integration time" which is a double quantity for WBS and
aseries of double values for HRS. For HRS, different integration times are reported for the different
segments while in the case of WBS, the same integration time results for all the sub-bands. The inte-
gration may be used when computing the weights quantities (see DoChannel Weights bel ow).

For all the processing steps described below we assume that the WBS-/HRS-specific pipelines have
successfully been processed. In particular, this means that the frequency columns are filled and the
needed housekeeping datais available.

5.2. Level 1 Pipeline

5.2.1. CheckDataStructure

* Purpose

This module carries through a number of checks on the input product of type Hi fi Ti mel i ne-
Pr oduct whether some important pre-conditions on the its structure and data items included are
met.

ht p=checkDat aSt r uct ur e(ht p=ht p)
» Description:
e Assumptions:

« Inthe datasets of type "science" (the metadata element "sds_type"), the columnsbbt ype and
bbnunber areavailable.

 For adding thei sLi ne-column to the summary table the bbtype isinspected. Here, only the
bbtypes listed in the observing modes table (see above) give a sound distinction between ON
(i sLi ne=True) and OFF (i sLi ne=Fal se).

* Mathematics:None
« Algorithms:None

« Uniform bbtype: If rows with different bbi d's are found within a dataset, these datasets are
split up in several datasets. Thebbi d iscomputed fromthebbt ype andthebbnunber (see
the corresponding columns) using the formula

bbi d = bbtype * 65536 + bbnunber

For the split, the temporal order of the scans (observation time) is preserved so that only sub-
sequent rows with identical bbi d areincluded in the same dataset.

Therefore, it ensuresthat each dataset correspondsto a particular phase of the observation (ON
or OFF position, fixed L O settings). Note that in later versions of the software (at least 1.0 and
after) this split is already accounted for when the timeline product is generated.

* The "instrument" metadata element is also set at the dataset level to "HIFI". It ensures that
"HIFI"-specific behavior is|oaded when applying spectrum tools to these datasets.

e Summary table: Adjust the summary table in case some datasets have been split
since non-unique bbi d's have been found. The i sLi ne-column entry is obtained
by passing the bbtype to the isLine-method of the Cal Bbi d-class in the package
her schel . hifi . pi peline. product (which refers to the Bbi dTabl e-class. If not
yet available, LoFr equency isadded to the summary table.

55

Generic Pipeline

e Thefrequency model issettonul | .

* The"Band" metadata element that typically isfound at the dataset level is also set at the level
of the timeline product.

» For OBS-versions previousto 6.3 and FastDBS maodes the chopper positions found for buffer
A and buffer B are swapped.

 Calibration Inputs: None
* Reault:

If the the datasets need to be split anew htp is created - otherwise, the same htp (but with suitably
adjusted summary table) is returned.

« HifiTinelineProduct with "science" datasets that have a uniform bbi d. The extended
summary table reflects the change:

Figure5.1. Summary Table before Applying the Module

Figure5.2. Summary Table after Applying the Module
* Metadata element "instrument” set to "HIFI".

» Columns. Unchanged - datasets are split along the 'vertical' direction (along the observation time
axis) so that the resulting datasets contain exactly the same columns.

e Errorsand Warnings.

* Warning if no "obsMode" metadata element is found in the ht p. Furthermore, a warning is
produced if the observing mode is not listed in the xml-configuration file or cannot be iden-
tified by matching a suitable pattern. A suitable quality flag is generated (i sCbser vi ng-
ModeFl agSet).

* Incase an exception occursthe stack trace iswritten to the log - but the exception is caught so
that the attempt can be made to continue the pipeline processing.

 Remarks:

 Further data consistency checks are analyzed in the modules ‘CheckPhases and CheckFreqGrid
(see below).

* Questions, | ssues:
 Should an additional check be included for whether HRS/ WBS pipelines have been processed.

» The splitting of the datasets would be obsol ete when solving the Hifi-spr-1625.

5.2.2. CheckFreqGrid

* Purpose

This module builds groups of datasets - each being characterized with afixed LO tuning. For each
group, information is gathered on potential driftsin the frequency scale. This information is sum-
marized in a suitable 'calibration’ product of type Fr eqRanges. Finaly, it adds the information
on the LO frequency and the LO throw (for FSwitch observations) to the meta data of the datasets
included in the timeline product.

56

Generic Pipeline

freqgRanges = checkFreqG i d(ht p=htp, parans=confi g)

» Description:

e Assumptions:

For the analysis of the frequency drift it is sufficient to consider the "comb"-datasets. Since
HRS data do not have comb data the frequency drift istrivial for HRS data.

All spectrathat belong to the same group (i.e. have comparable LO-frequencies) are sub-se-
guent in time.

Within the group of datasets with comparable LO-frequenciesit is assumed that all the spec-
tra have the same number of bands and the same number of channels per band. The "comb"
datasets, not necessarily need to have the same number of channels as the "hc" and the "sci-
ence" datasets.

For FSwitch observations, two LO frequencies are found in the data. We consider the possi-
bility that for comb data, only one of the two frequencies may be available.

All the spectraincluded in one dataset belong to the same group.

LoFrequency isgivenin GHz, thefrequency / wave scaleisgiven at the IF scale- i.e.in MHz.

¢ Mathematics:

Datasets are defined to belong to the same L O-frequency group if the LO-frequenciesareupto
within a given tolerance the same. This tolerance is specified system-wide and set to 1 MHz.
For each group, aunique integer id is assigned. This group id is stored in the metadata of the
dataset (meta data element "frequencyGroup").

From a calibration point of view each frequency group should needsinformation for the inten-
sity calibration (hot/cold load data) and for the off subtraction (if applicable). However, not
all the observing modes collect these calibration inputs for al the LO tunings. In these cases,
OFF- and hot/cold-data is shared across different LO groups. For the LO tuning groups that
do not contain OFF or hot/cold-data a 'central’ frequency group is associated that contains the
needed information. This central LO group is selected by as the one closest in time.

Inadditiontothef r equency G oup metadataelement two additional fields are added here:
» frequencyG oup_OFF: The associated central frequency for the off calibration.

» frequencyG oup_HC: The associated central frequency group for the intensity calibra-
tion.

The quantity to measure drift between sub-sequent comb-measurementsis defined through the
formula

drift = max_subbands(abs(avg(w t+1 -- wt))) -/
(obstime_t+1 -- obstinme_t)

wherethe frequency vector wisgivenin Sl unitsand theobst i ne in seconds. Once this drift
guantity exceedsagiven tolerance, awarning is produced. Thistolerance can be specified with
the parameter t ol er ance. By default, thistoleranceis set to 5 Hz / sec.

Fr eqRanges-product (see her schel . hi fi . pi pel i ne. generi c): For each LO-fre-
guency group, a dataset isincluded in the product. These datasets can be accessed through the
key given by the group id. The datasets contain

57

Generic Pipeline

* the observation time of the comb spectra
* the per channel frequencies of the comb measurements (per sub-band)
* thedrift measure for subsequent comb measurements (hence zero for the first row!).

« the keys of the datasets in the original timeline product that belong to the given group (as
I nt 1d metadata with key datasets").

* minimum and maximum observation time of the frequency range group (metadata keys
"startObsTime" and "endObsTime").

» The Fr egRanges-product contains utility methods that provide information on the drift be-
tween two observation times:

» get Di stance(Long obsTi mel, Long obsTi nme2): Defined as the integral of
the (piece-wise constant) drifts between the two observation times. Provides the result in
units of Hz.

* i sConpar abl e(Long obsTi nel, Long obsTi me2): Returnstrueif the two ob-
servation times fall into the same L O frequency group. Note that the we generally assume
that datasets bel ongig to the same frequency group are subsequent in time.

» i sConparabl e(int datasetlndexl, int datasetl ndex?2): Returnstrueif
the datasets associated with the indices belong to the same LO frequency group.

Note that the first method can be used to test whether frequency resampling needs to be con-
sidered by comparing the resulting distance with a given tolerance.

e Algorithms:
» Seeabove.
 Calibration Inputs:

» Tolerance: Usethekeywordt ol er ance to set aspecific value (in Sl unitsie Hz/sec). In case
drift values exceeding this tolerance level are observed awarning is created.

e Resault:
¢ Metadata:

* In the datasets of the original htp, a meta data item f r equency G oup is set with the id
(a String representing an integer) of the frequency range group the dataset belongs to. Only

dataset types "science”, "hc", "comb" are considered here.

Similarly, if applicable, the meta data items frequencyG oup_OFF and
frequencyG oup_HCare set.

« Thel oFr equency isadded to the meta data of the datasets. For F-switch observations, it is
the LO frequency of the 'source, i.e. by default the L O frequency the sequence of scanswithin
adataset starts with. In addition, thel oThr owis specified as the difference between the two
LO frequenciesfound inthe data(l oThr ow = | oSour ce- | oRef).

» Flags: A quality flagisraised herein casethe drift observed in the successive comb measurements
exceed thetolerance (i sFr equencyDri ft Fl agSet). Furthermore, aquality flagisraised if
the frequency grouping fails (i sFr equencyChecksFl agSet).

« Cadlibration Outputs: The Fr eqRanges as described above.

58

Generic Pipeline

Figure5.3. A dataset of the Fr eqgRanges-product corresponding to the single group.
 Errorsand Warnings:

« A warning is created if the calculated frequency drift measure exceeds the drift t ol er ance
either specified by the user or the 5 Hz/sec taken as default.

* Remarks:

* Since there are no comb spectra for HRS we will have zero drift here. The tables included per
each group in the Fr eqRanges product is empty.

* Notethat theFr eqRanges isintimately associated with the underlying timeline product. There-
fore, the user should make sure not to use the methods get Di st ance(. ..) andi sConpa-
rabl e(...) fordifferent htp's.

 Caution is needed when using the "datasets’ metadata in the Fr eqRanges-product: These
dataset id's are not updated when the structure of the timeline product is changed such as when
datasets are removed or added. It makes reference to the timeline product obtained after applay-
ing the CheckDataStructure-task.

* Questions/ I'ssues:

« Should al the datain the spectral segments be used when computing the drift measures? Should
effects at the edges be masked out?

5.2.3. CheckPhases

e Purpose

Checks the patterns the chopper position, the buffer, the LO frequency and, for (Fast)DBS modes,
the pointing follow within the hot-cold and the science datasets are followed.

phases = checkPhases(ht p=ht p)
» Description:
e Assumptions:

» The necessary housekeeping dataisincluded in the datasets (chopper, buffer, LO frequency).
The pointing checks are carried through once pointing information is available.

e The evauation of the patterns is done on a per dataset basis. We can expect meaningful re-
sultsonly if the datasets have been split up in accordance with the bbi d (see CheckDat as-
t ruct ur e-module).

« For creating the log statements, the observing mode must be known (see table with the observ-
ing modes above).

* Mathematics:

Thetask is processed in two steps. First, the datasets of type "science" and "hc" are analyzed for
whether the sequence of chopper, buffer and LO frequency values follow the patterns ABBA,
ABAB, CONST. This step does not require any observing mode information. In a second step,
the findings are compared with what would be expected for a given known observing mode and
suitable log messages are generated.

59

Generic Pipeline

» Theresult of thefirst step isaproduct of type Cal Phases which contains an extended sum-
mary table for the underlying timeline product. Asin the htp-summary table, the information
for each dataset is filled in a separate line. For each of the three quantities we have three
columns with

* thepattern ("ABBA","ABAB", "CONST", "NONE") - variationsare"AB" if only two lines
are available so that there is no distinction between ABBA and ABAB;

* thevalues (as acomma-separated list);

« theinitial value.

For the buffer and the L O frequency, the values are tested for obeying the patterns within suit-
able tolerances. For the LO frequency thisis set to 1IMHz, for the chopper position the ranges

are used as specified in the ChopperPosition table (see below). For the pointing information
(in the FasDBS-modes), we allow for atolerance of 2.5 arc secsfor RA and DEC.

Figure5.4. Thesummary tableincluded in the Cal Phases-product.

Y ou can inspect the current (band-specific) values used by the system by calling e.g.

from herschel . hifi.pipeline.generic.utils inport
Chopper Posi ti on

band = 1 # the nunber of the detector band

print Chopper Position. COLD. get Lower Bound(band)

print Chopper Position. COLD. get Posi ti on(band)

print Chopper Posi tion. COLD. get Upper Bound(band)

and similarly for HOT, LEFT, CENTER and RI GHT.

 Checking for consistency with the given observing mode - or, strictly speaking, the observing
mode groups. The actual values are listed in the table but not tested for consistency.

* Position Switch and MappingOTF: Constant patterns for Chopper, buffer and L O frequency
in the "science" datasets, ABBA pattern for "hc" datasetsin the Chopper and the buffer.

» DBS: ABBA patternsfor Chopper and buffer in both, "science" and "hc" datasets. CONST
for LO frequency.

» Fast DBS: ABAB patternsfor Chopper and buffer in "science" datasets, ABBA for Chopper
and buffer in "hc" datasets. CONST for LO frequency.

» FSwitch: ABBA patterns for LO frequency and buffer while CONST for Chopper in "sci-
ence" datasets. ABBA patterns for Chopper and buffer while NONE for LO frequency in
"hc" datasets.

» LoadChop: ABBA patterns for Chopper and buffer while CONST for L O frequency in "sci-
ence"' and "hc" datasets.

« Algorithms: see above.
 Calibration input: None.
* Result:

e Theoriginal product is not changed.

60

Generic Pipeline

« Flags: Are created in case inconsistencies between the expected and the observed patterns for
chopper, buffer and LO frequency are found and in case the number of distinct values .

» Chopper: i sChopper Patt er nFl agSet if an inconsistent chopper pattern is found and
i sChopper Val uesFl agSet if the number of different chopper values (per dataset) is not
as expected.

« Buffer: i sBuf f er Pat t er nFl agSet if an inconsistent buffer pattern is found and i s-
BUf f er Val uesFl agSet if the number of different buffer values (per dataset) is not as ex-
pected.

« LOfrequency:i sLof Pat t er nFl agSet if aninconsistent patternintheL O frequenciesare
found and i sLof Val uesFl agSet if the number of different LO frequencies (per dataset)
is not as expected.

Furthermore, a flag is raised in case the ChcekPhases-task could not be finished (i s-
PhaseChecksFl agSet).

 Cadlibration Outputs: The Cal Phases-product as described above.
e Errors and Warnings:

« Log warnings in case patterns or the number of distinct values are found which are not 'as
expected' (see flags above).

* Remarks, Issues:

5.2.4. MkFluxHotCold

* Purpose:

Hot/Cold load measurements are used to obtain both, the receiver (or system) temperature and the
bandpass. These quantities are computed for each "hc" dataset in the original timeline product and
included in a calibration product (of type Cal Fl uxHot Col d). Bandpassis used for the intensity
calibration and the system temperature, possibly, for the determination of the channel-dependent
weights to be included in the spectra (see the module DoChannel Wi ght s).

cal HC = nkFI uxHot Col d(ht p=ht p, parans=confi g, coupli ng=coupCoeff)

where the CoupCoef f are the coupling coefficients which are typically retrieved from the cali-
bration tree.

In the pipeling, checking for differences in the mixer currents exceeding a given tolerance is done
- if it isexceeded arow flag is set. The tolerances are specified by

cal HC = nkFl uxHot Col d(ht p=ht p, parans=confi g, coupling=coupCoeff,
val i dat or Tol er ance=0. 02)

or

cal HC = nkFI uxHot Col d(ht p=ht p, parans=confi g, coupling=coupCoeff,
val i dat or Tol er ance=cal Tabl e)

where the cal Tableis of type Gener i cPi pel i neCal Product that istypically retrieved from
the calibration tree

cal Tabl e =
obs. cal i brati on. get Cal Node("downl i nk"). get Cal Node("generic").get Product (" m xer Current Tol erances")

61

Generic Pipeline

» Description:
e Assumptions:
« Sufficient hot/cold measurements are available in the observation. To be more specific, this
means: For each LO setting, at least one hot/cold dataset (metadata element 'sds _type' set to
'hc’) isavailable. Within each of those datasets, both, hot and cold measurements can be found.
For FSwitch observations, each 'hc' dataset should contain hot and cold load data at each of
the LO frequencies (separated by the LO throw).

» Thehot and cold scanswithin the'hc' datasets can uniquely beidentified by one of thefollowing
indicators. Chopper position, buffer value or assuming a pattern (ABBA or ABAB).

* Frequency drift of the scanswithin asingle'hc' dataset isnot considered. Asaresult, thehot and
cold spectra found within a single 'hc' dataset can be combined (as described below) without
frequency re-sampling.

* Mathematics:

» Consecutive hot/cold datasets that have consistent L O frequencies are (ie belong to the same
frequency group, seethe CheckFr eqGri d) are merged.

» From the hc dataset obtained in the previous step, the hot and cold load scans are identified.
As mentioned above, three schemes are available to do this. Specify the string-parameter i n-
di cat or to one of the following values:

* 'Chopper": the hot/cold scans are identified from the chopper position - have alook at the
table with the chopper position as described in section CheckPhases! Using the chopper
value asthe indicator is the default.

* 'buffer': The buffer value = 1 is associated with hot, all the other with cold.

« 'pattern’: When choosing this indicator, by default, a'ABBA' pattern is assumed - starting
with hot. An aternative would be a pattern of the form 'ABAB"'. This option can be selected
by setting the parameter i SABBA = Fal se.

asaresult of thisidentification, aBool 1d-column is added to the dataset with namei sHot .

» Within each hot/cold dataset, all the hot (with the same L O frequency) and all the cold with the
same L O frequency are averaged. To be specific, thefollowing operations are carried through:

» Operations on the spectral segment data:
o f I ux: Simple average.
« wei ght : Typicaly, not yet available at this stage.

« fl ag: Flags are considered by ignoring the flagged values or propagated (Bitwise OR)
in case no unflagged values exist (per channel)

« wave/ f requency: Simple average
* Other columns:
e Chopper : Average
e LoFrequency: Average
« hot _col d (temperature of hot /cold load: T_h,T_c): Average

e integration time (WBS: scancount/HRS:): sum

62

Generic Pipeline

e scancount (WBS): sum
e packet time:min
e obsTi ne: Average

* Once these averages are available, the receiver temperature and bandpass can be calculated
using the formulas:

* Receiver temperature:

[(eta_h+Y*eta_c-Y)*j_h -- (eta_h
+Y*eta_c-1)*j_c] -/ [Y-1]

where Y denotes the ratio of the average hot and the average cold flux data (Y=avg_h/
avg_c)andj _handj _c denotethethe thermal radiation fields temperatures at tempera-
tureT_h and T_c. These temperatures are defined as functions of the LO frequency.

» Bandpass:
(avg_h-avg_c)/(eta_h + eta_c -- 1)*(j_h -- j_c)

In the formulas above, the average hot and cold load flux (avg_h and avg_c) are densities
(flux per wave scale unit).

 In general, the coupling coefficients et a_h and et a_c are treated as quantities dependent
on LO frequency and band. These coefficients are looked up from suitable tables passed by
acalibration product to the task (task parameter coupl i ng). In case no band information is
found in the databand "1a" is assumed.

 Algorithms: see above

 Calibration inputs:

e Coupling coefficients eta_h and et a_c provided in form of the product Gener -
i cPi pel i neCal Product ; usethe parameter name coupl i ng.

Running the task from within the pipeline, the coefficients are obtained from the calibration
tree. Within the observation context (obs) you can find these coefficientsfor H-polarization by

coupCoef f =obs. cal i brati on. get Cal Node("downl i nk") . get Cal Node("generic"). get Product ("coupl i ngEf
H")

and similarly for V-polarization.
* Result:
 Input timeline product: only the 'hc' datasets are processed by this module.
* Metadata: -
* Columns: i sHot added
» Flags: Quality flag if not sufficient hot and cold data are found in the hot/cold datasets

(i sHot Col dDat aFl agSet). Theflagi sTSysFl agSet israised if the task could not be
finished (eg because the hot and cold radiation field temperatures are nearly identical).

63

Generic Pipeline

 Cadlibration output: Calibration product of type Cal FI uxHot Col d (subclassof aHi f i Pr od-
uct). It is returned by the module or can be accessed by the key cal . This product contains
bandpass and receiver temperature possibly at different observation times and L O frequencies.
Bandpass and receiver temperature are stored in different datasets and For different LO frequen-
cies different datasets are used. Bandpass datasets have even integer keys, receiver temperatures
odd integer keys. Hence, the system temperature for the LO frequency found in the datais ob-
tained e.g. by

tsysl = cal HC 1]

* Metadata: Most of the metadata of the original timeline product are copied.
e Summary table: Similar to the summary table of the timeline product

» dat aset : Theinteger key used within the product.

* type: 'rectemp' or 'band pass

» LoFr equency: theLO frequency associated with the given rec temperature and bandpass.

Figure5.5. Summary Table after Applying the Module
» Datasets (of type Hi fi Spect r unDat aset):

» Thereceiver temperatures and the bandpass are in different datasets and the results associ-
ated with different LO settings are also included in different datasets. Per 'hc' dataset of the
origina timeline product one bandpass and one receiver temperature spectrum is created
as one row in a bandpass and receiver temperature dataset are created (in case of FSwitch
observing modes such spectra are crated in two different bandpass and receiver tempera-
ture datasets). Each row in given dataset is associated with a specific observation time. The
columns in the original 'hc' datasets are processed following the rules specified for the av-
erage above - except for the flux which is calculated according to the formulas given above.

» The product provides utility methods to access the bandpass and system temperatures that
correspond to given science datasets:

e get RecTenpCal i bration(l oG oup, |oFreq)

e get BandpassCal i bration(l oG oup, |oFreq)

In case the | oG oup (the LO frequency group assigned in the CheckFr eqGr i d-task)
is missing, the receiver temperature or bandpass calibration with the closest LO frequency
isreturned.

e Errorsand Warnings:

« Warning: Available hot/cold data is not sufficient to build a calibration. if not both, hot and
cold measurements are available.

e Warning: If the number of LO frequenciesin a given 'hc' dataset is not consistent with the
observing mode.

 Caught exception: In-distinguishable radiation field temperatures (j_h-j_c < 10"-8K)

* Remarks:

Generic Pipeline

« Note that for WBS data the system temperature (and the bandpass) is computed only for the
restricted subband ranges with the subband edges cut during the WBS pipeline processing.

* Questions, | ssues:

< Add documentation on the validation of the mixer current differences, how the tolerance level
can be specified by either passing a double number or a suitable calibration product of type
Generi cPi pel i neCal Product

5.2.5. DoChannelWeights

* Purpose:

Fill valuesinto the weights column (spectral segment data) by making use of the receiver temper-
ature (from CalFluxHotCold calibration product obtained after processing MkFluxHotCold) and/
or the integration time or using a statistical estimator for the sample variance of the spectrawithin
agiven (moving window). In addition, a smoothing scheme can be selected to smooth the weights
obtained in the first step. Note that these weights are also a measure for the resolution (resolution
isinversely proportional to the square root of the weights). The idea behind the weightsisthat they
can be referred to when combining different scans (e.g. calculating an average).

doChannel Wi ght s(ht p=ht p, cal =hc, paranms=par ans)

» Description:
e Assumptions:

« Different formulas are implemented that are used for the calculation of the weights. It is as-
sumed that depending on the formula selected the required input data is available / provid-
ed as input to the module. As an example, we mention the hot/cold calibration data of type
Cal Fl uxHot Col d which is computed in the MkFl uxHot Col d module. It is used when
the radiometric formulais used for the definition of the weights.

¢ Mathematics:

Different formulas are available that can be selected by setting the parameter with key defi -
nitionto

e definition="integrTi ne':Definetheweightsequal to the integration time (indepen-
dent of the channel).

w = t_integr.

« definition='"variance':Definetheweightsequal totheinverseof the samplevariance
for a moving window within the scan. Here, an additional parameter, the window width, is
needed (wi dt h).

wk =1-/ v_k, vk =sumj=k-r,..., k+r (x_j -- mk)"2 -/ (2r+1).

e definition='"radionmetric': Definetheweights equa to theinverse of the of theres-
olution given by the radiometric formula, i.e.

w=t_integr -/ t_sys”"2.
In addition, the result can be smoothed by a Gaussian or a box car filter over a

width specified by the wi dt h-parameter. Use the keyword snoot hi ng to set a filter
(snoot hi ng=" Gaussi an' , snoot hi ng=' box"). Finally, to obtain the system temper-

65

Generic Pipeline

ature for a given observation time, an interpolation scheme needs to be adopted (set the key-
wordi nt er pol at or to' PREVI QUS' ,' LI NEAR ,' NEAREST' ,' SPLI NE').

 Algorithms: see above.

« Cadlibrationinput: Calibration product of typeCal FI uxHot Col d resulting from Mk FI ux Hot -
Col d (usekey cal).

* Result:
« Datasets: Weights columns are added to the datasets of type 'science’ included in the htp.

« FHags: Quality flag is raised if the task could not successfully be completed (i sChannel -
Wi ght skl agSet).

 Errors, Warnings
» Caught exception in case arequired input is not provided as input to the module.
* Remarks:

« Inoperationswherethe channel width ischanged (such aswhen re-sampling theflux to adifferent
frequency scale) the weights need to be adjusted since the resolution is changed.

« Setting the keyword i gnor e to Tr ue, the calculations configured for this module are skipped.
* Questions, | ssues:

» Radiometric formula: Incoporate suitable coefficients to give the weights a physical meaning.
Include resolution (~channel width).

¢ Sample variance in presence of lines, normalization of the weights...

» Add checksfor the consistent frequency ranges?

5.2.6. DoRefSubtract

e Purpose

Reference measurementstaken from blank sky (in DBS modes), from aninternal 1oad (in LoadChop
modes) or taken at a different LO frequency (in FSwitch modes) are subtracted from the source
measurements in order to eliminate instrumental drifts from the source measurements (drift of the
overall system response). It constitutes one part of the double subtraction scheme typical for HIFI.
Withthei gnor e paraneter set to Tr ue the execution of the task can be skipped.

doRef Subt ract (ht p=ht p, paranms=par ans)

doRef Subtract (ht p=htp, indicator="pattern', isABBA=True, startsWthRef=True,
of f Start sWt hQpposi t e=Tr ue)

» Description:
e Assumptions:
« It is assumed that the frequency scales of the pairs of spectra that are subtracted from each

other are close so that no frequency re-sampling of the reference spectrais necessary.
66

Generic Pipeline

 For position switch reference observing modes, the subtraction of the reference position is
treated as an OFF subtraction.

* Mathematics:

» Take the difference between subsequent source (‘source) and reference measurements (‘ref")
included in datasets of type 'science’.

» Datasets of atype different than 'science’ are not processed.

» Within the science datasets, the source and reference measurements are identified either by
assuming a specific pattern (see CheckPhases above) - or by looking up specific chopper,
buffer or LO frequency values. The method adopted to identify 'source' and 'ref' is specified
by the parameter i ndi cat or:

e indicator="pattern': Assume a pattern (specific to the observing mode). The pat-
tern is selected by specifying the parameter i SABBA to True or Fal se. Using the
parameter st art Wt hRef you can specify whether the sequence starts with a 'ref'-
(st art sW t hRef =Tr ue) or with a'source’-measurement (st ar t sSW t hRef =Fal se).
For (Fast-)DBS modes, the role of 'source' and 'ref' change when going from ON to OFF
measurements. This can be expressed by the parameter of f St art sWt hOpposi t e.

Typically, the following settings hold true for the different observing modes:

¢ Fast Chop DBS: ABAB pattern starting with A=ref in the ON datasets (isLine=true) and
with A=ref in the OFF datasets - hencei sABBA=Fal se, startsWthRef =Tr ue,
of f Start sWt hQpposi t e=Tr ue.

* Slow Chop DBS: ABBA pattern starting with A=ref in the ON datasets (isLine=true)
and with A=source in the OFF datasets (isLine=fase) - hence i SABBA=Tr ue,
startsWthRef=True, offStartsWthQpposite=True.

* Position Switch: Reference subtraction ignored here.

« Frequency Switch: ABBA pattern starting with A=source - hence i SABBA=TTr ue,
startsWthRef =Fal se, offStartsWthGCpposite=Fal se.

e Load Chop: ABBA pattern starting with A=ref - hence i SABBA=Tr ue,
startsWthRef=True, offStartsWthQpposite=Fal se.

» indi cator="buffer':Whenusing 'buffer' asan indicator the values to be associated
with 'source’ and 'ref' should be specified. Here, the parameter phaseVal ues should be set.

phaseVal ues = {'source':2, -'ref':1}

* i ndi cat or ="' Chopper' : When using 'Chopper' as an indicator the values to be associ-
ated with 'source’ and 'ref' should be specified. Here, the parameter phaseVal ues should
be sat.

phaseVal ues = {'source':-4.1, -'ref':-7.0}

Alternatively, you can specify the chopper positions as a string with capital letters such as

phaseVal ues =
{'source':"CENTER , -'ref':'LEFT}

67

Generic Pipeline

* indi cat or =" LoFrequency' : When using 'LoFreguency' as an indicator the valuesto
be associated with 'source’ and 'ref' should be specified. Here, the parameter phaseVal ues
should be set.

phaseVal ues = {'source':600.00, -'ref':600.24}

(in GHz)
» Operations on spectral segment data:

» Flux: Simple Difference

Flag: Bitwise OR
» Weight: Weight of the 'source'.
e Wave: Taken asthe wave-data of 'source’.

» QOperations on other columns. For al the other columns, the values of the 'source’ phase are
copied. An exception will bether owf | ag

« Algorithms:
» see Mathematics above.
* Cadlibration input: None
* Result:
The science datasets are replaced by new datasets that contain the difference spectra. As a result,
the number of scans in the science datasets is reduced by a factor of two. All the other datasets
remain unaffected.
« Metadata i sRef Subt r act Fl agSet added to the meta data.

e Columns: For all columns not included in the 'spectral segment’ part of the datasets, the datais
simply copied from the 'source’ positions of the original datasets.

» Flags. i sRef Subt ract Fl agSet in case something goeswrong with the identification of the
phases.

 Cadlibration Outputs: None
« Errorsand Warnings:
» Warning in case datasets are found with number of rows smaller than 2.
* Remarks:
 For the Frequency Switch modes, the shifted and the un-shifted spectra are overlayed after the
DoRefSubtract (with opposite signs). These spectra need to be 'folded'. See the module DoFold
in the same package.

* Questions/ I'ssues:

« Propagation of the flags not yet implemented? Currently, only the flag of the source is copied
to the result.

68

Generic Pipeline

< Similarly, the weights are defined as the weights of the source. How should the weights be de-
fined?

* Add documentation on the validation of the mixer current differences, how the tolerance level
can be specified by either passing a double number or a suitable calibration product of type
Ceneri cPi pel i neCal Product . Approach isidentical to MkFluxHotCold - see there for
further details.

5.2.7. MkOffSmooth

e Purpose

Average and smooth (on the frequency scale) the flux data from the OFF measurements. The mod-
ule is processed on a per dataset basis. This means that for each OFF dataset (of type 'science) a
baselineis constructed and included in aproduct of type Cal Of f Basel i ne. Thesebaselineswill
be subtracted in the DoCf f Subt r act module. Note that the construction of this OFF baseline
is applicable only for frequency switch, load chop and mapping OTF observing modes. In case no
OFF measurements are found in the data no output is produced. With thei gnor e parameter set
to Tr ue the execution of the task can be skipped.

basel i ne = nkOf f Snoot h(htp = htp, parans = parans)

baseline = nkO f Snmooth(htp = htp, filter="Gaussian', w dt h=20)

» Description:
e Assumptions:

* Themodule DoRef Subt r act should have been processed successfully - otherwise, 'source'
and 'ref' scans would need to be distinguished and treated separately.

« It is assumed that potential drifts on the frequency scale can be neglected when doing the
average. |.e. we assume that frequency re-sampling is not necessary.

* Mathematics:

* ldentify the OFF datasets (with type 'science’) and process them on a per dataset basis. The
filtering or fitting is done on aindividual per segment basis.

* Modes: Different modes are available for configuring the computations. Use the parameter
node:

e node='filter' (default): First takethe average over all the spectraincluded in the OFF
dataset. Second apply a suitable convolution kernel (filter) to do the smoothing. You can
configure the type of smoothing using the parameter filter'. For the time being, a Gaus-
sian and Boxcar filter are possible choices - hence, fi |l t er =" Gaussi an' (default) or
filter="box".The(integer)widthof the smoothing kernel (the number of channels) can
be set viathe parameter wi dt h. In case no width is specified, the width is calculated from

wi dth = Nunber of ON Scans -/ Nunber of OFF
Scans

For the box car filter, it corresponds to the number of channelsto beincluded in the smooth-
ing; for the Gaussian filter, it corresponds to the standard deviation of the Gaussian.

69

Generic Pipeline

nmode="fitter': Firsttakethe average over al the spectraincluded in the OFF dataset.
Second apply asuitablefitter function to the averaged spectrum - at the moment, only poly-
nomial fitting can be configured by specifying the degree of the polynomial to be applied
using the parameter degr ee_pol yomi al .

nmode=" avg' : Just take the average over all the spectraincluded in the OFF dataset.

» Operations when taking the average:

Flux: Weighted average. Use weights asincluded in the spectral segment data. If no weights
are available, do a ssimple arithmetic average. Only consider unflagged channels - in case
only flagged channelsare available cal culate the average for (all) the flagged channels avail -
able and propagate the flag values.

Flag: Bitwise AND if unflagged channels are available - bitwise OR otherwise.

Weight: The sum of the weights of the individual scans. Note that this is consistent with
the sum of the variances once the weights are inversely proportiona to the variances in
accordance with minimum variance optimization.

Wave: Take the wave of thefirst scan found in the dataset.

Operations on other columns:

» Chopper: (Arithmetic) Average

» LoFrequency: (Arithmetic) Average

* integration time: Sum

e obstime: (smple) Average

e packet time: Minimum

* Operations when smoothing:

Flux: Apply the filter / fitter within a moving window of the origina flux values. Select
channels that are non-flagged. In case the selection for a given result channel is empty,
compute aresult including the flagged channels while propagating the flag values.

To summarize, the calculation of the flux is of the form

fl ux_smoot hed(n) = [sumk wei ght (k) fl ux(k)
Phi (n-k)] -/ [sumk weight (k) Phi(n-k)]

where flux and weights are restricted to the unflagged channels and Phi is the kernel of the
filter.
Weight: Some resolution is lost, therefore, the weight should be decreased. This, however,

depends on the particular smoothing / fitting model.

wei ght _snoot hed(n) = [sum k wei ght (k) Phi (n-
k)] -/ width.

Flag: Propagate the flags in accordance with a bitwise AND logic. In case no unflagged
channels are available, propagate according to abitwise OR logic.

70

Generic Pipeline

» Wave: Copy the original values.

e Algorithms;

» Seedescription above.
o Calibration Input:

* None

* Result:

The timeline product is not transformed by this module. Rather, a calibration product of type
Cal O f Basel i neis created that contains possibly several baselines - each covering a certain
period of (observation) time defined by the original OFF dataset. Use the parameter cal toretrieve
this product from the task. The baselines with common LO frequency are packed into the same
dataset (of the same type as the original OFF dataset, i.e. Wbs/ Hr sSpect r unDat aset).
* Metadata: A copy of the meta data of the original timeline product.

» Datasets: The datasets contain the same columns asthe original OFF dataset with the flux/weight/
flag columns processed as described above. The metadataisjust copied from thefirst OFF dataset
(in the timeline).

e Flags. Quality flag raised if no off baseline could be calculated (i sSNoCf f Basel i ne-
Fl agSet).

» Errors and Warnings:

e Warning if no OFF datasets are found in the data (e.g. for all the observing modes ending with
'NoRef") --> TODO.

« Warning if no baseline can be provided by the module.

« Warning if no valid width has been specified or computed as default (see the algorithm above)
and the default 1 is used instead.

* Remarks:
« For position switch and DBS modes, no smoothing nor an averaging is carried through.
 For position switch: The datasets with the OFF measurements contain the same number of
scans as the datasets with the ON measurements. Associated scans of the ON and the OFF

datasets are subtracted from each other on an individual per scan basis.

» For DBS: The difference scans calculated in the DoRefSubtract and included in the OFF
datasets must neither be smoothed nor averaged since these contain signal information.

* Questions/ I'ssues:
 Istheway the weights and flags are included in the processing of average and smoothing ok?

* Add rms of the original scans and of the baselines to the baseline data.

5.2.8. DoOffSubtract

e Purpose

Subtract the calibrated baseling(s) from the ON measurements (as in the load chop or frequency
switch modes) or subtract the OFF from the ON scans on arow-by-row basisfor the position switch

71

Generic Pipeline

or average the ON and the OFF scans on a scan-by-scan basis for (Fast) DBS modes. With the
i gnor e paraneter set to Tr ue the execution of the task can be skipped.

doOr f Subt ract (ht p=ht p, cal =basel i ne, parans=par ans)

» Description:
e Assumptions:

» DoRefSubtract has been processed.

* For thefrequency switch and theload chop modes, the baselinesare obtained fromaCal O f -
Basel i ne-product passed to the module using the signature keyword cal . Typically, the
data is obtained from the MkOff Smooth module. If no baseline is available, no baseline sub-
traction is processed (see e.g. the modes with alabel ending with 'NoRef"). The baselines and
the spectra from which the baseline should to be subtracted from need to match in shape and
frequnecy scale. No consistency check is done for that.

* For the position switch and the DBS modes, no baselines are fed into the component. The in-
formation on the OFF position is directly obtained from the htp to be processed. No smooth-
ing / averaging isinvolved here.

¢ Mathematics:
* A 'mode' parameter is specified which indicates whether the task should

» Combine calibrated baselines with ON spectra by interpolating and subtracting (FSwitch
and Load Chop observing modes): node="i nt er pol "

 Subtract OFF spectrafrom ON spectra on a scan-by scan basis (Position Switch Reference
observing modes): node="r ow wi se- subtract"

» Average On and OFF spectraon ascan-by scan basis (DBS and Fast DBS observing modes):
nmode="r ow w se- avg"

* Thei nt er pol mode can be applied only if baseline information is provided to the module
(parameter cal). For each scan found in a ON dataset, a specific baseline is constructed by
interpolating the baselines found in the HifiBaselineProduct to the observation time of the ON
scan. For the interpolation, several schemes are available that can be configured by the user
(keywordi nt er pol): 'LINEAR', 'NEAREST', 'PREVIOUS, 'NEXT', 'CUBIC SPLINE'

» Operations on spectral segment data:

e Flux: The interpolated flux value of the baseline is subtracted from the flux of the ON
scan.

« Fag: The flags in the baselines are propagated using bitwise OR to the baseline to be
subtracted. The actual subtraction propagates the flags using a bitwise OR.

* Weight: Theweight of the result is defined as the weight of the ON scan.
* Wave: Thewaveis set asthe wave of the ON scan.

» Operations on other columns:
 All the other columns are just copied from the ON datasets.

» The 'row-wise-subtract' mode is applied in combination with the Position Switch Reference

mode: Here, On and OFF datasets need to have exactly the same number of rows. This allows

Generic Pipeline

to subtract OFF scan from associated ON scans (identified by the row index) on a scan-by-scan
basis. Conceptually, this subtraction scheme resembles rather a reference subtraction than an
OFF subtraction. For practical reasons, it is treated here as an OFF subtraction.
» Operations on spectral segment data:

e Fux: Subtract

* Flag: Bitwise OR

* Weight: Weight of the ON scan.

* Wave: Wave of the ON scan.
» Operations on the other columns:

 All the other columns are just copied from the ON datasets.

» For DBSand Fast DBS, the ON and OFF datasets occur in pairs with exactly the same number
of scans per dataset (hMode="r ow wi se- avg"). Basicaly, the information included in the
ON and OFF datasets is the same, except that the optical paths are reversed between ON and
OFF. By taking the average of ON and OFF scans on a per scan basis, part of the standing
wave contribution can be eliminated.

» Operations on spectral segment data:

« Fux: Weighted average. Use weights as included in the spectral segment data. If no
weights are available, do a simple arithmetic average.

* Flag: Bitwise OR
* Weight: Weight of the ON scans.
* Wave: wave of 'source’.
» Operations on other columns:
« Chopper: (Arithmetic) Average
* LoFrequency: (Arithmetic) Average

* Integration time: Sum

obsTime: Average

packetTime: Average
 Algorithm:
» Configuration possibilities as described above.
 Calibration inputs: Product containing the baseline(s).
* Result:
o
* Metadata:

» Datasets: The results are stored in ON datasets (isLine=True). Any datasets labeled as OFF

(isLine=False) are removed from the tiygeline product in the end.

Generic Pipeline

¢ Columns: see the rules described above.
* Hags:

« If the datasets to be subtracted or averaged (FastDBS, DBS) do not have the same size:
i sOnCf f Pai r Si zeFl agSet

« If different numbers of ON and OFF datasets are found (DBS; FastDBS, PositionSwitching):
i sOnOF f Processi ngFl agSet

e | f not for all ON datasets a baseline to subtract is found (load chop, f-switch): i sSub-
tract O f Basel i neFl agSet

« Cadlibration Outputs: None
« Errors and Warnings:

* Remarks:

* Questions, I ssues::
 Istheway weights are treated ok? --> TODO

 Unclear how to deal with drifting frequency scales re-sampling or not? At the moment, driftsare
not checked and no re-sampling is done.

e In particular it is not possible to plug in baselines from other observations and do a suitable
resampling.

< Add documentation on the validation of the mixer current differences, how the tolerance level
can be specified by either passing a double number or a suitable calibration product of type
Ceneri cPi pel i neCal Product . Approach isidentical to MkFluxHotCold - see there for
further details.

5.2.9. DoFluxHotCold

* Purpose:

The calibrated intensity scale obtained in the Mk FlI uxHot Col d task - the bandpass - is applied to
the flux data. Thistransformsthe intensity scaleto Kelvin units. All science data (dataset with type
'science’) found in the given product are adjusted in thisway. The calibration datais passed in form
of Cal FI uxHot Col d product to the module using the signature keyword 'cal’.

doFl uxHot Col d(htp = htp, cal = hc, params = parans)
» Description:
e Assumptions:

» A cdibration product of type Cal FI uxHot Col d is provided to the component which con-
tains the bandpass information. For each L O frequency found in the science data, one or sev-
eral bandpass calibrations (possibly at several observation times) should be available. Two LO
tunings are considered consistent if the match within a tolerance of 1IMHz. Furthermore, the
sub-band structure and the corresponding (IF) frequency scales should be consistent and no
frequency resampling is necessary.

« For F-Switch modes, a bandpass is available at both LO frequencies (separated by the LO
throw). Thismakesit possible to consider calibration schemesin which the division of the flux

74

Generic Pipeline

by the bandpass is carried through for each LO frequency separately, i.e. before the DoRef -
Subt r act . The current calibration scheme appliesthe DoFl uxHot Col d after the DoRef -
Subt r act and the bandpass with the same L O frequency as the source phaseis used.

» The wave scales of the science data and the wave scales of the interpolated bandpass are as-
sumed to be close so that resampling the bandpass to the frequency of the science scans is
not necessary.

« Mathematics: The module iterates through all the scansincluded in the science datasets and pro-
cesses them on an individual basis.

* Interpolation: For each (science) scan, a bandpass with consistent LO frequency is retrieved
from Cal Fl uxHot Col d. A suitable interpolation scheme is used to shift to the observation
time of the science scan. The user can configure the interpolation scheme: Keyword: ‘interp'
with values 'LINEAR', 'NEAREST', 'PREVIOUS, 'NEXT", 'CUBIC SPLINE'

* Division by the bandpass:

» Operations on spectral segment data:
« Fux: Divide, i.e. compute theratio R = S/B ('S" science, 'B": bandpass).
* Flag: Bitwise OR
* Weight: Weight of the science scan (hominator).
* Wave: Wave of the science scan (nominator).
» Operations on datain other columns:
 All values are taken from the nominator (the science data)

» Algorithms: see above.

 Calibration inputs: The input should be provided in form of aCal Fl uxHot Col d product typ-
icaly is obtained by the module MkFI uxHot Col d.

* Result:
* Metadata: Nothing added except for quality flags (see below).

« Datasets: All science datasets found in the product are transformed. The f | ux-columnsin the
datasets now have Kelvin

« Flags: For the scans for which the bandpass calibration fails (because e.g. no suitable bandpass
has been found) a row flag is set (once a row flag column is present). The flag is set to '2'. In
addition a quality flag israised: i sl nt ensi tyCal i brati onFl agSet (which can aso be
seen in the meta data).

 Errorsand Warnings:

» Severewarning if for some scans no suitable bandpassis available.

» Warning if for some scans more than two different LO frequencies are found. This would
indicate that e.g. the CheckDat aSt r uct ur e has not been processed.

* Remarks:

* Questions, | ssues: 75

Generic Pipeline

5.2.10.

 Isthe way the weights for the resulting scans are computed ok?.

* Add documentation on the validation of the mixer current differences, how the tolerance level
can be specified by either passing a double number or a suitable calibration product of type
Ceneri cPi pel i neCal Product . Approach isidentical to MkFluxHotCold - see there for
further details.

DoVelocityCorrection

Purpose:

Correctsthe frequency scale for the vel ocity of the spacecraft and possibly of the source. In contrast
to doRadi al Vel oci ty it uses a relativistic approach when correcting for the motion of the
spacecraft relative to SSB or LSR or, in case of SSO's, relative to the SSO. For non-SSO's, the
motion of the source relative to the LSR or the SSB is treated classically.

Possible target rest frames to transform to (see parameter targetFrame) are "HSO" (short for Her-
schel Space Observatory), "GEOCENTRIC", "SSB" or "BARY CENTRIC", "LSR" or "SOURCE".
By default, the task transforms to the "LSR" frame for non SSO's and "SOURCE" for SSO's.

The velocity of the spacecraft can be provided in different ways. The one used in the pipelineis by
retrieving the velocity information from the auxiliary context from the observation context:

doVel oci t yCorrection(htp=htp, aux=obs.aux)

IncontrasttodoRadi al Vel oci t y, a3-vector velocitiesare needed for therelativistic correction.

The task also allows to transform to the rest frame of the source even for non-SSO's. Here, addi-
tional 'velocity' information is needed which is no longer a 3-vector though but rather just a scalar
parameter:

doVel oci tyCorrection(htp=htp, targetFrame="S0OURCE",
aux=obs. aux, velocity_source=20.0)
Description:
e Assumptions:
» Wave scale of the spectra must not be expressed as velocities.
* Pointing information should be included in datain form of columns"longitude” and "latitude”.
e Mathematics:

« For therelativistic correction for the motion of the spacecraft relative to the earth, the sun (ssh)
or LSR the following factors are applied:

* From spacecraft to earth: f (v_earth, p)/f(v_hso, p) wheref(v,p) =
(1+v*p/c)/sqgrt(1l-v*v/cn2),v_earthandv_hso arethe 3-vectors of the earth
or the spacecraft, respectively, relative to SSB in the SSB frame of reference and p is the
unit vector in direction of the pointing in the SSB frame;

» Similarly, from spacecraft to SSB: 1/ f (v_hso, p);

* Finaly, from spacecrafttoLSR: f (v_I sr/f(v_hso, p) wherev_hso isthe 3-vector
of the LSR relative to SSB in the SSB frame of reference.

76

Generic Pipeline

» The 3d velocity of the spacecraft can be provided in different ways:

 from an object of type herschel.share.fltdyn.ephem.Ephemerides passed as ‘ephem’ param-
eter to the task:

doVel oci tyCorrection(htp=htp, ephemrepheneri des)

 from an auxiliary context passed as ‘aux' parameter to the task:

doVel oci tyCorrection(htp=htp, aux=obs.aux)

 from the datasets to be processed, in a column named 'velocity hso 1', 'velocity hso 2,
'velocity_hso_3": that have previously been entered into the data:

doVel oci t yCorrecti on(ht p=ht p)

« There are different options to parametrize the transformation to the rest frame of the source
(which only apply if t ar get Fr anme=" SOURCE"). Common to al these options is aradial
redshift factor which is paramterized by a single parameter which can be passed as parameter
redshi ft (or, equivalently, asvel oci ty_sour ce) to the task.

» Using a parameter f r ane you can specify the reference frame these redshift factors refer
to when transforming the spectra to the rest frame of the source. Possible values are 'GEO-
CENTRIC', 'SSB' or 'L SR'. When starting with the spectrain the rest frame of the spacecraft
and applying the task in the form

doVel oci tyCorrection(htp=htp, aux=obs.auxiliary, frame="SSB", -)

the spectra are first multiplied by relativistic factors for the transformation from HSO to
SSB and then by non-relativistic redshift factors.

» Using a parameter r edshi f t Type you can specify the redshift formula to express how
the velocity parameter (v)is translated into a redshift factor.

e redshift_type="optical ":f_source(v) = 1l+v/c
e redshift_type="radio":f_source(v) = 1/(1-v/c)
e redshift_type="redshift" (v=2):f _source(v) = 1l+v

e redshift_type="relativistic":f_source(v) = sqrt((1+v/c)/(1-
v/c))

If you specify

doVel oci tyCorrection(htp=htp, aux=obs.auxiliary, frame="SSB",
redshift_type="optical")

the spectra are first multiplied by relativistic factors for the transformation from HSO to
SSB and then by a non-relativistic 'optical’ redshift factor.

Alternatively, the parameters are looked up from the meta data of teh timeline product as
frame,v_source_franeandredshi ft Type.

¢ Algorithms: see Mathematics
 Calibration inputs:
» Thevelocity datain some form (see above).

* Resault:

7

Generic Pipeline

The frequencies are transformed for all the science datasets included in the timeline product.

L]

Meta data: The following items are added to the meta data of both, the timeline product and the
datasets included therein.

 'freqFrame’: Therest frame the frequency scale is expressed in.
« 'redshiftType': the formula used to compute the redshift factorgiven a redshift parameter;
« 'redshift: the redshift parameter;

« 'v_frame': avelocity computed from the redshift factor using the 'optical’ formula expressed
in‘frame'.

 'frame": The frame the frequencies are expressed in after executing the task (by default 'LSR'
for non-SSO's).

Note that except for the first (‘freqFrame’) all the meta data items listed above are added to the
timeline product or the datasets only if the target frame has been set to 'source'.

Datasets: All science datasets found in the timeline product (meta data
'sds_type' =' sci ence') aretransformed.

» The frequency columns with the name(s) wavenamne or wavenamne_i are transformed i.e.
overwritten.

» The'LoFrequency' is also Doppler corrected when applying this task. In order to preserve the
measured L oFreguency, the latter is copied to a new column called 'L oFrequency _measured'.
Note that the comparison of L oFrequency and L oFrequency_measured allowsto alwaysreturn
to the original HSO frame. Transforming back to the HSO frame can be achieved by setting
the parameter r ever se=Tr ue. Here, thei sVel oci t yCor r ect ed-metadataitem is set
toFal se andf r eqFr ane to 'HSO'.

Calibration output: None.

» Errorsand Warnings.

L]

Warning if thet ar get Fr ane specified could not be identified - defaults are used in that case.

No correction is carried through in case thereis already af r eqFr ane metadataitem that how-
ever cannot be identified.

No correction is carried through in case that thet ar get Fr ane has been set to 'source’, but no
redshift parameter has been found (as task parameter or as meta data).

Remark: A redshift parameter set to zero istreated as if no redshift parameter is found.

Warning if no velocity information has been found in the data provided to the task. No velocity
correction carried through in that case. Quality flag is raised.

Warning if not sufficient velocity information has been found in the data provided to the task.
Some datasets may be corrected, some not. In the metadata of the timeline product the meta data
items are not set.

* Remarks:

* Questions, | ssues:

78

Generic Pipeline

5.2.11. DoRadialVelocity

e Purpose
Corrects the frequency scale for the radial velocity of the spacecraft and possibly of the source by
using a non-relativistic approach. Possible target rest frames to transform to (see parameter target-
Frame) are"HSO" (short for Herschel Space Observatory), "L SR" or "SOURCE" (for therest frame
of the source). By default, task transforms to the "L SR" frame for non SSO's and "SOURCE" for
SSO's.

Adopting a non-relativistic approach only the radial velocity is needed, i.e. only the component in
direction of the pointing of the telescopse. This can be obtained from different sources:

« from an object of type herschel.share.fltdyn.ephem.Ephemerides passed as 'ephem' parameter to
the task:

doRadi al Vel oci ty(ht p=ht p, ephemrepheneri des)

« from an auxiliary context passed as 'aux' parameter to the task:

doRadi al Vel oci t y(ht p=ht p, aux=obs. aux)

from the datasets to be processed, in a column named 'velocity';

doRadi al Vel oci t y(ht p=ht p)

from the task parameter velocity source to specify the velocity of the source relative to LSR,
constant in time:

doRadi al Vel oci t y(ht p=ht p, aux=obs. aux, vel ocity_source=10. 0)
Note that here the source velocity should be expressed in km/sec.

By default, a positive value entered as velocity source parameter means that the source and &
C depart from each other (redshift) - note that this has been changed from UR 2.0 to UR 3.0. In
contrast, a positive velocity found in the 'velocity' column (which is the radial velocity of the S/C
w.r.t. LSR) has just the opposite effect.

» Description:
e Assumptions:

* Mathematics:

» Thefrequenciesin the spectraare multiplied by the factors
1--v-/c

where ¢ is the speed of light and v the velocity of the spacecraft w.r.t. to LSR (non-
SS0O) or the source (SSO). As a result, a meta data item is added (to both, the datasets
and the timeline product) that indicates that the velocity transformation has been applied
('isVelocityCorrected'=True). Furthermore, a meta data item f r eqFr anme is set to 'LSR' or
'SOURCE/, respectively.

» The'LoFrequency' is also Doppler corrected when applying this task. In order to preserve the
measured LoFreguency, the latter is copied to a new column called 'LoFrequency measured'.
Note that the comparison of LoFrequency and LoFrequency _measured allowsto alwaysreturn
fo the origind HSO frame. Transforging back to the HSO frame can be achieved by sefting

Generic Pipeline

the parameter r ever se=Tr ue. Here, thei sVel oci t yCor r ect ed-metadataitem is set
toFal se andf r eqFr ane to 'HSO'.

* In order to transform to the SOURCE rest frame for non SSO's you need to specify a source
velocity vel oci ty_sour cecode> and set t ar get Fr ane=" SOURCE' . This source ve-
locity isincluded in the meta dataasv_sour ce_f r ane. For consistency with the doVe-
I oci t yCorr ect i on-task the metadataitem f r arme which isthe frame the source velocity
isexpressed inisset to 'LSR'.

Y ou cannot repeatedly correct for different source velocities (as of UR 3.0). In order to try an-
other source velocity do the reverse correction first and appply the modified correction there-
after. Note that in contrast to earlier versions (before UR 3.0) it is no longer sufficient to just
set the velocity task parameter to have the spectra to the rest frame of the source - you also
need to set the targetFrame parameter.

* Algorithms: see Mathematics

 Calibration inputs:

» Thevelocity datain some form (see above).
* Result:
The frequencies are transformed for all the science datasets included in the timeline product.

* Metadata:

« 'isVelocityCorrected": Indicates that the correction with the velocities found in the 'veloci-
ty'-column has been applied.

 'freqFrame’: Therest frame the frequency scale is expressed in.
* 'v_source_frame': The source velocity used in the velocity correction.
» 'frame": The frame the source velocity is expressed in (always L SR in this task).

e Datasets: All science datasets found in the timeline product (meta data
'sds_type' =' sci ence') aretransformed.

¢ Columns: The frequency columns with the name(s) wavenane or wavenane_i are trans-
formed i.e. overwritten.

 Calibration output: None.
» Errorsand Warnings.
* No velocity information has been found in the data provided to the task.

* Remarks:

* Questions, | ssues:

5.3. Level 2 Pipeline

80

Generic Pipeline

5.3.1. DoCleanUp

e Purpose

Remove the data from the timeline product which is no longer used in the level2 processing or in
the end user analysis. To be specific, al datasets that are of not of type 'science’ (sds_t ype) or
which are not of type 'science’ and correspond to 'ON' measurements are removed. Furthermore,
the science datasets that belong to the same LO tuning group and/or the same raster point and/
or the same scan line number are merged to form new datasets. Datasets are merged only up to a
configurable maximum number of scans.

dod eanUp(ht p

ht p, params = parans)

dod eanUp(htp = htp, retain='science', mergeDatasets=True, datasetSize=50)

» Description:
e Assumptions:
» Thedatasets included in the timeline product have a meta data field 'sds_type'.

e TheCheckFr eqG i d hasbeen processed so that thethe metadataitemf r equency G oup
is availablein the datasets.

» The datasets belonging to the same group have consistent segmnet shapes so that merging is
possible.

¢ Mathematics:

» With the parameter r et ai n you can tell the task what data types you would like to keep.
Possible values are

* 'scienceOn'
* 'science

» Merging of the datasets: The datasets that
* belong to the same LO tuning group,

* correspond to the same raster point in raster maps (the same values in the 'rasterRowNum'-
'rasterColumnNum'-columns), and

* correspond to the same scan line in otf maps (the same value in the 'scanLineNum'’-column)
aremerged (ON and OFF datasets are merged separately). Inthisway, larger datasets and few-

er products are included in the result timeline product. With the parameter mer geDat aset s
you can specify whether to merge at all or not (Tr ue or Fal se). The maximum size of the
resulting datasets can be specified by the parameter dat aset Si ze. In this merging of the
datasets the scans are not split so that the scans of a given origina dataset always end up in
the same result dataset.

» The summary table of the timeline product is updated.
 Setting the parameter i gnor e=Tr ue the execution of the task can be omitted.
» Algorithms: see above.

 Calibration inputs: none.

* Result: 81

Generic Pipeline

* Metadata: Nothing added.
» Datasets: Merged datasets as described above.
* Flags: None.
 Errorsand Warnings:
* None

* Remarks:

* Questions, | ssues:

5.3.2. DoAntennaTemp

e Purpose
Correct for al telescope dependent parameters except the coupling of the antenna to the source

brightnessdistribution, i.e. trandatetoaT"* _A(T_A-star) scalewhere TA* A = T _Aleta_ |
with forward efficiency et a_| .

doAnt ennaTenp(htp = htp, cal = forwardEff Tabl e)

doAnt ennaTemp(htp = htp, forwardEff = 0.68)

For extended sourcestypically rather the DoMai nBeamTenper at ur e is applied.
» Description:
e Assumptions:
 The correction can be applied to all the spectra found in the timeline product. Therefore, the
DoCl eanUp-task should have been processed before so that only 'science’-datasets are in-
cluded in the timeline product.
« Mathematics: All the 'flux' datafound in the spectra (at thistimetypically already intensities) are
multiplied by ascalar factor which is given by the inverse of the forward efficiency. The forward

efficiency is obtained either

« by passing a custom forward efficiency by setting the f or war dEf f -parameter to a suitable
valueor

* by passing the reference to a calibration product of type Gener i cPi pel i neCal Product
that contains tables with the forward efficiencies. Here, the task parameter cal needs to be
set accordingly.

« Algorithms: see above.

« Cadlibration Input: The forward efficiencies obtained from the calibration tree. Note that these
typically can be retrieved from the calibration tree or from within the observation context by

82

Generic Pipeline

forwar dEf f Tabl e =
obs. cal i brati on. get Cal Node("downl i nk") . get Cal Node("generic").get Product ("forwardEfficiency-
H")

for H-polarization and similarly for V-polarization. Note that the tablesincluded in these products

should be of type Gener i cPi pel i neCal Tabl e and should look as shown in the following
Figure.

Figure 5.6. Sample table with forward efficiencies
* Result:

All the flux column entries in the science datasets are re-scaled.

Meta data: None

Datasets: All flux column entries in the science dataset are rescaled. No other other is modified.

Flags. None

Errors and Warnings: None

* Remarks:

* Questionsand Issues;

5.3.3. MkSidebandGain

* Purpose:

Compose a class that provides the sideband gains coefficients dependent on detec-
tor band, sideband, LOF-scae and IF-scale. These coefficients will subsequently be
applied in the DoSi debandGai n-task. Currently, the task returns an instance of
herschel . hi fi. pi peline.generic.cal.Cal Si debandCoef f | npl (which imple-
ments the interface her schel . hi fi. pi peli ne. generi c. Cal Si debandCoef f). This
implementation only allows for ‘orthogona’ dependencies on LOF and IF in the sense that the rel-
ative changes of the coefficients along the IF scale are independent of the LO frequency.

gai ns = nkSi debandGai n(ht p=ht p, shape=si debandGai nl F,
| evel =si debandGai nLO)

where si debandGai nl F and si debandGai nLO are calibration products that contain ta-
bles with the IF- or the LOF- dependency, respectively. These products (of type Gener -
i cPi pel i neCal Product) typicaly are obtained from the calibration tree. In case you want to
work just with default coefficients 0.5 you can skip thistask and call DoSi debandGai n without
passingacal task parameter.

» Description:
e Assumptions:

¢ Mathematics:

83

Generic Pipeline

« A cdlibration productswith tables specifying the L O dependency and another calibration prod-
uct specifying the IF dependency are passed to the task with the parameters | evel and
shape, respectively. Both products should be of type Gener i cPi pel i neCal Pr oduct .
The task does nothing more than extracting from these products suitable tables corresponding
to the detector band and the start date of the observation. Note that for different periods of the
life time of the instruments different tables could be applicable due to instrument drifts.

» After extracting these tables an object of type Cal Si debandCoef f | npl is composed.
This object provides access to the channel-specific sideband gains coefficients by the method
get Si debandGai nCoeffi ci ents(double 1of, Doubleld ifFreqQut,
bool ean usb). The coefficients are composed by

* extracting interpolated values from the table with the IF dependency - using thei f Fr e-
qQut -array. The output is of the same length asi f Fr eqQut .

» Next, from the table with the LO dependency as suitable level is interpolated (passing the
LO frequency of the given scan). This defines a factor the array obtained in the previous
stepsis multiplied with.
For theinterpolation used to retrieve suitable valuesfrom the tables, alinear schemeisapplied.
 Algorithms: see Mathematics.
 Calibration Input:
As mentioned above, two calibration products are passed here - one with the | F- and another one

with LOF-dependency. The tables included in these products should have the columns as shown
in the sample tables below.

Figure5.7. Sample table specifying the LO dependent gain levels.

Figure 5.8. Sample table specifying the | F dependent gain shape.
Note that different grid points are specified in different lines of the table (see the table with

the IF dependency). The calibration products can be retrieved from the calibration tree in the
observation context by

si debandGai nLO =
obs. cal i brati on. get Cal Node("downl i nk") . get Cal Node("generic"). get Product ("si debandGi nLO-
H')

si debandGai nl F =
obs. cal i brati on. get Cal Node("downl i nk") . get Cal Node("generic"). get Product ("si debandGai nl F-
H')

for the H-polarization and similarly, for the V-polarization.
* Result:
No changes on the original timeline product product.
* No changesin the input timeline product.

 Calibration Output: Implementation of theinterface Cal Si debandCoef f . Notethat thisisnot
aproduct hence cannot be persisted.

* Hags: Noflags. 84

Generic Pipeline

 Errors and Warnings: Warning if no IF-shape or LO-level table could be obtained (either from
within the associated calibration products or since no such calibration products have been passed
to the task.

* Remarks:

* Questions, | ssues:

5.3.4. DoSidebandGain

* Purpose

Dividetheflux (at this stage typically an intensity) by the sideband-specific, detector-band specific,
L OF- and and | F-dependent gain coefficients.

ht pUpper = doSi debandGai n(ht p=ht p, cal =gai ns, si deband="upper")

wheregainisan object that providesthe gains coefficientsas composed by the Mk Si debandGai n.
Note that this gains object is required to implement the Cal Si debandCoef f -interface defined
inherschel . hifi. pi peline.generic.

If the task parameter cal isnot set default coefficients equal to 0. 5 are applied.
ht p = doSi debandGai n(ht p=ht p)

Furthermore, if the si deband parameter is not set the default " bot h" is applied. In this case,
result of applying the USB coefficientsis returned when executing the task and the timeline product
with the LSB coefficients is obtained by

ht pLower = doSi debandGai n. i mage
* Description:
¢ Assumptions:

» The spectrum data included in the timeline product should be given at the IF frequency scale,
i.e. not yet transformed to the sky frequency scale.

¢ Mathematics:

» The gain coefficients are provided to the task in form of a Cal Si debandCoef f -object
which ispassed as cal -parameter. The task retrieves the LOF- and | F-dependent coefficients
by using the method get Si debandGai nCoef fi ci ent s(doubl e | of, Doubl eld
i f FreqQut, bool ean usb) . Thearray with thelF frequenciesis passed asinput so that
the cal -object can provide interpolated values. Note that here it isimportant that the spectra
are expressed at the | F frequency scale.

 In generd, the gain coefficients depend on the sideband. The task parameter si deband in-
dicates what sideband the coefficients should refer to:

* si deband=" upper ' : The coefficients for the upper sideband are applied and one time-
line product is returned as result.

» si deband="1 ower ' : The coefficients for the lower sideband are applied and one time-
line product is returned as result.

e si deband=' bot h' : Two timeline products are returned - one with the coefficients for
the upper sideband and the other with the coefficents for the lower sideband. The time-

85

Generic Pipeline

line product with the upper sideband coefficients is returned when calling the task (either
ht pUpper =doSi debandGai n(ht p=ht p, cal =gai ns, si deband="bot h")
or doSi debandGi n(ht p=ht p, cal =gai ns, si deband="bot h") and
ht pUpper =doSi debandGai n. ht p). Thetimeline product with thelower sideband co-
efficientsis obtained asht pLower =doSi debandGai n. i mage.

» The task modifies al the fluxes (or intensities) found in al the science data (see meta data
field sds_t ype) of the timeline product by dividing the 'flux’ arrays by the array with the
coefficients.

« Algorithms: Nothing to add here.
 Calibration inputs:

A calibration object of type Cal Si debandCoef f which isan interface-type. Note that this
allows to pass different implementations of this interface as calibration input - such asimple-
mentations that provide the coefficients with a more general dependency on the LOF and IF.

* Resault:

All the 'science’ datasets are re-scaled (see the meta datafield ' sds_t ype') of the datasets in-
cluded in the timeline product) - al other datasets remain un-touched.

* Metadata: A field with name si deband and values' USB' or ' LSB' , respectively is set for
the timeline product and all science datasets inlcuded therein.

» Datasets: All datasets with ameta datafield sds_t ype setto' sci ence' are modified.
¢ Columns: Columns with name 'flux’ or ‘flux_i' where i indexes the segment number.
 Cadlibration Output: No calibration output.

* Errorsand Warnings:

* Remarks:

 In case no or no valid gains calibration coefficients can be retrieved default coefficients (0.5)
are applied.

* Questions, | ssues:

5.3.5. ConvertFrequencyTask

* Purpose

In this step of the pipeline, the spectra are transformed from the I F frequency scale to the sideband
frequencies. For detector bands 1-5 thisis defined by

f_usb =f_LO+ f_IF and f_Isb =f_LO-- f_IF,
respectively. For the bands 6 and 7,
f_ usbh =f LO+ CF -- f_IF and f_Isb =f_LO-- CF +f_IF ,

wherethe conversion factor CFisgiven by 10.4047 GHz for horizontal and 10.4032 GHz for vertical
polarization. At the same time, the units are changed from MHz to GHz. Thistask, the Convert -

Fr equencyTask-task included in the package her schel . hi fi . pi pel i ne. product, is
not a dedicated pipeline task - rather it is designed to be used in the interactive analyis as well so
that the user can switch forth and back between the different scales. As an example, the task can
also be used to transform to the vel ocity scale.

86

Generic Pipeline

frequencyConvert er =Convert Fr equencyTask()
f requencyConvert er (ht p=ht pUpper, to='usbfrequency')
frequencyConvert er (ht p=ht pUpper, to='lsbfrequency')

The task modifies the timeline product in place - it iterates over all the datasets included in the
timeline product and transforms the frequency scale.

Note that once the sideband gain calibration has been carried through, usb data should not be trans-
formed to alsb frequency scale (and vice versa).

» Description:
e Assumptions:
* None
» Mathematics:

* Inthe standard pipeline processing transform from IF frequencies (given in MHz) to sideband
frequencies (given in GHz) where the sideband frequencies are defined by

f_usb =f_LO+ f_IF and f_Isb =f_LO-- f_IF

» When transforming to the velocity scale, areference frequency corresponding to zero velocity
is specified. To give an example:

frequencyConverter(htp=htp, to="velocity', reference=1902.055688)

For this to work, the reference frequency should be expressed in GHz. Then, the standard
Doppler-shift formulais used to transform to the velocity-scale:

v=-- (f--f_ref) -/ f_ref * c
where ¢ isthe speed of light expressed in units km/sec.

* The result of the transformation is written to new columns, named as wavenane or
wavenane_i wherewavenane isthe name of the new frequency scale (‘usbfrequency’, 'Is-
bfrequency’, 'velocity' or 'frequency') which is also set in the wavenanme metadatafield.

¢ Algorithms: see Mathematics
 Calibration inputs:
* None
* Result:
The frequencies are transformed for all the datasets included in the timeline product.

* Metadata:

» The'wavename' metadatafieldischanged and set to 'usbfrequency’, 'Isbfrequency’, ‘frequency’
or 'velocity'.

* The'sideband' metadatafield in the datasets is set to ‘ush' or 'Ish'.

» When transforming to a velocity scale, a meta data item named 'referenceFrequency’ is set to
the 'reference’ (frequency) specified in the task parameter.

87

Generic Pipeline

« Datasets: All datasets found in he timeline product are transformed.

e Columns: The frequency columns with the name(s) wavenane or wavenane_i are trans-
formed where wavenare isthe name of the frequency scale prior to the transformation (see the
get WAveNane() -method of the datasets). The result of the transformation is written to new
columns (named wavenane or wavenamne_i with the new wavename (‘usbfrequency’, 'l sbfre-
quency', 'frequency’ or 'velocity', respectively).

 Calibration output: None.

» Errorsand Warnings:

* Remarks:

* Questions, | ssues:

5.3.6. MkFreqGrid

e Purpose

Creates alinear frequency grid that can be used DoFr eqGr i d-task to resample the spectrato. By
default, the width between successive gridpointsis set to 0.5 MHz for WBS data - for HRS dataitis
determined by inspecting the input spectra. The algorithm described below is applied on aper LO
tuning group basis. The algorithm is designed such that for WBS data the grids for upper sideband
data and lower sideband data and for the different LO tuning groups have one common underlying
linear grid.

outputGid = nkFreqG i d(htp=htp)

outputGid = nkFreqG i d(ht p=htp, stepsize=0.5, unit="Mz")

» Description:
e Assumptions:
¢ Mathematics:

» The equidistant frequency grid(s) are determined on a per LO tuning group basis. Actually,
within each group, one grid is constructed for each subband / segment. Herefore, the following
procedure is adopted:

» Assume the array with the frequencies vector is called f and the stepsize is denoted by s.
First, the minimum and the maximum frequency is determined for each subband by looping
over al scanswithin aL O tuning group. We denote them by m nF and maxF, respectively.

 These minimum and maximum frequencies are rounded to the nearest integer multiple of the
stepsize. From these rounded minimum and maximum frequencies we compute the number
of grid points (n) in the output grid. Note that this step guaranteesthat all WBS spectrahave
one common underlying linear grid.

88

Generic Pipeline

* For freguenciesin the LSB, the frequencies are first mirrored to the upper sideband so that
the rounding procedure leads to identically sized output grids. For the mirroring, we aso
check whether a velocity correction has been applied in which case the LO frequency is
adjusted accordingly (see the meta data fields 'isVelocityCorrected' or 'velocity _user' and
the DoRadi al Vel oci t y-task).

» The grid of size n is then created starting for the IF or USB (or LSB) with the rounded
minimum (or maximum) frequency increasing (or decreasing) in steps of stepsize.

* Incaseno stepsizeis specified, itisset to 0.5 for WBS and for HRS the 'channel Spacing' meta
data value which can be found in the datasets of the timeline product is used. If no such field
in any of the datasets can be found, a stepsize is computed with the following rule: From the
nm nF and the max F determined for the frequency group and the number of channels (n), the
stepsizeis set to
stepsize = 1/ max(1, round(1/s)) where s =(maxF-m nF)/(n-1)
when al involved quantities are expressed in MHz.

» Algorithms: See Mathematics.
 Calibration input: None

* Result:
The original timeline product is not modified by this task.

* Metadata: No changes.

e Columns: No changes.

 Calibration output:
Theresult of thistask isaproduct of type Cal Fr eqG i d in which the grids per LO tuning can
be found. For each L O tuning, a separate table dataset contains the frequency grids per subband.

Furthermore, these frequency arrays are included in the table under the same name and unit as
in the original timeline product.

Figure5.9. Calibration product containing the frequency grids created by the MkFreqGrid task.

In the figure above you can see a sample output of the MkFr eqG i d-task. For each LO tuning
group with group id 'k’ atable dataset with key 'group_k' isincluded in the product.

* Errorsand Warnings:

» Warning if the wave scale unit could not beidentified from the data. In thiscaseit is assumed that
theunit of the stepsizeisexpressed in the same units asthe wave scalethe spectraare expressed in.

* Remarks:

* Questions, Issues:

A e

5.3.7. DoFreqGrid

+ PUMPOSE: 89

Generic Pipeline

Resamples the spectra to the frequency grid specified as input task parameter. Various options are
available:

 Specify the grid as the output of the Mk Fr eqGr i d-task, i.e. aproduct of type Cal FreqGri d.

doFreqGi d(ht p=htp, grid=grid)

« Specify the grid as a PyDictionary with the dataset key in the timeline product as key and with
an array of grids, one for each subband, as values (Doubl e1d[]).

doFreqGid(htp=htp, grid = {1:gridl, 2:grid2}) where gridl and grid2 are

sui tabl e Doubl eld[].

» Specify the grid by just a resolution parameter:

doFreqGid(ht p=htp, resolution=0.5, unit="Mz")

Here, per LO tuning and subband an output grid is constructed with stepsize given by half the
resolution parameter and by starting with the minimum frequency found per subband and LO
tuning group.

» Description:

e Assumptions:

* Mathematics:

For the actua resampling the functionality available in the spectrum toolbox is used (see
her schel . i a.t ool box. spect rum Resanpl eFr equency). For the documentation
of the resampling scheme we refer to the spectrum toolbox documentation.

Currently, the resampling schemeis not configurable. The resampling scheme set as default in
the resampling task of the spectrum toolbox is applied. Thisis set as atrapezoidal integration
scheme in combination with alinear interpolation scheme. The integration scheme is needed
to assure that the resampling scheme preserves the integrated intensity (up to within the order
of the scheme).

In addition to the flux and the wave data, the flags and the weights are also modified by this
operation. Theflags of all the channelsinvolved in the computation of an output grid point are
propagated using abit-wise OR. Theweights are processed using the same resampling scheme
asfor the flux.

The grids the spectra should be resampled not necessarily need to be linear (equidistant). This
could be used to do the co-add: Select the frequency arrays from one scan for each dataset e.g.
of WBS-H. Put that all in a PyDictionary. Pass this to dictionary together with the WBS-V
data to this task. Thereafter, you can loop over the datasets included in the timeline product
and do a pairwise average which isidentical with the add (+).

e Algorithms:;

The input spectrum provides an array of frequencies whose values are interpreted as the mid-
points of flux-channels. Theflux array isassumed to give either the flux density for each of these
channels (densi t y=Tr ue, i.e. the flux per frequency unit) or the integrated flux seen in the
channel (densi t y=Fal se). The channel boundaries are constructed by the mid-points of the
frequency values - so, strictly spesking, if you have an irregular grid, the frequency values are
not mid points within the channels. Similarly, from the new frequency grid - the user wants to
resample to - suitable frequency channels are defined.

90

Generic Pipeline

Now, there are different schemes available for how the flux values in the output grid are de-
fined. The scheme toe be used in the pipeline task can be configured by using the task parameter
schenme. By default (or without setting the schene parameter, the '‘euler’ schemeisused in the
pipeline. The following scheme are available:

* ‘euler: All the flux contributions defined for the origina grid are summed up - for not com-
pletely overlapping channels, the fractional contribution are taken where the fraction is deter-
mined just by comparing the width of the overlapping part of the new with the channel width
of the orginal spectrum.

« 'trapezoidal’: Here, the flux density function defined by the input grid is integrated by using a
trapezoidal integration scheme. At the boundaries of the new channels, the flux density values
are computed from the original grid by using alinear interpolation scheme.

* 'norma’: not yet available - planned for UR 5.0.

 Cadlibration input: Calibration product with the grids the spectra should be resampled to.
* Result:
* Metadata
* Resampling width usein the resampling algorithm (f r equencyW dt h).

* New resolution of the spectrais added to the meta data, calledr esol uti on_r esanpl ed.
It is defined approximately assqrt (r0*r0 + w*w) wherer O isthe original resolution
and w the resampling width.

 Spectral segment data changed - as described in the Mathematics. All the other columns remain
unchanged.

e Errorsand Warnings:

* Remarks:
* Questions, | ssues:

« Task should alow to configure the resample scheme - though the Gaussian resampling scheme
isnot yet available.

5.3.8. DoAverage

* Purpose:

Compute the average over different scans that belong to the same LO tuning group (frequency
surveys), the same raster columna and row (in raster maps) or the same line number in OTF
maps. Furthermore, science data from ON or OFF are not mixed. Various different options for
how to do the average and for pre-selecting the scans to be averaged are available. With the
ret urn_si ngl e_ds you can specify whether you would like to have the result as a dataset or
included in the original timeline product. The standard pipeline mode, you see the following form:

ht p = doAvg(ht p=htp, return_single_ds=Fal se)

or

91

Generic Pipeline

ht p = doAvg(ht p=ht p, paranms=par ans)

where parans is a Pi pelineConfiguration-object eg. with the information that
the return_singl e_ds-parameter set to False should be used. With the parameter
sel ecti on_met a you can specify alist of types, specified in the the meta data item 'sds_type’,
the averaging should be restricted on:

ds = doAvg(ht p=htp, selection_neta=["science", -"hc"], return_singl e_ds=True)

The values "scienceOn" and "scienceOff" are also possible values that can be entered in this list
(although these are not values that are found in the 'sds_type' meta datafield:

ds = doAvg(htp=htp, selection_neta=["scienceOf"], return_single_ds=True)

More generally, you can formulate restrictions on other string-valued meta data items by using py
dictionaries:

ds = doAvg(htp=htp, selection_neta={"frequencyGoup":["1","2"]},
return_singl e_ds=True)

Even more generally, you can restrict the selection to be averaged on scans for which some other
columns match given values:

ds = doAvg(ht p=htp, selection={"bbtype":[6005, 6031]}, return_single_ds=True)

Here, only the scans that have a value 6005 or 6031 in the column 'bbtype’ of any of the datasets
included in the timeline product.

Description:
¢ Assumptions:
* Input datais atimeline product.

 All datasets that bel ong to the same group to be averaged (see below) are assumed to have the
same subband shapes.

 The spectrathat belong to the same group to be averaged are assumed to have frequency scales
close enough so that frequency resampling can beignored. If not, apply doFr eqGri d first.

¢ Mathematics:
The average task delegates most of the actual averaging to the average task in the spectrum
toolbox avg (her schel . i a. t ool box. spect rum Aver ageSpect r un.

« In afirst step the timline product is analyzed for what scans should be considered for the
average. Dedicated task parameters are available to specify this selection:

» sel ecti on_net a: Here you can formulate conditions on the meta data fields for the
datasets to be selected. Possible values are

« Python-List: With a python list with string values you can specify the types of datasets
the average(s) should be restricted on. This type information is found in the meta data
field 'sds_type' of the datasets. Typical vauesaresci ence, hc, conb. Further possible
values that are not values of the 'sds type-field are sci enceOn and sci enceCf f .
These can be used to restrict to science data from the On or the Off position, respectively.

e Pyt hon- Di cti onary: With apython dictionary with meta data keys as keys and the
Python lists as values. With the Python list you specify the admissible values for the meta
datafield(s) so that agiven dataset isincluded in the average. In case more than one meta
data key is specified, the different conditions are combined with alogical AND. Exam-
ple: sel ection_neta={"frequencyGoup":["1","2"], "sds_type":

92

Generic Pipeline

["science","hc"]} - here only datasets with the meta data field ‘frequencyGroup'
setto"1" OR"2" AND the'sds type' set to "science” OR "hc" are selected.

» sel ecti on: Hereyou can specify conditions on the table data of the datasets so that spe-
cific scans ("rows") are selected. Possible values are

* Python List: Specify the row numbers to be selected from each dataset, possibly pre-
selected with the meta data filter. This option may seem not very useful but is inherited
from the toolbox task.

« Python Dictionary: Specify lookup criteria with keys specifying the name of the col-
umn to formulate the condition with and values specifying a list of admissible values
that should be matched so that a given row is selected. In case more than one key-value
pair is specified, the different conditions are combined with a logical AND. Example:
sel ecti on={"bbtype":[6031, 6032], "buffer":[1]} - here, only scans
with the bbtype equal to 6031 OR 6032 AND the buffer equal to 1 are selected.

* General selection model (interface of type Sel ect i onMbdel : See the documentation
of the spectrum toolbox or in the user reference manua (e.g. Aver ageSpect r unjfor
further details.

In case this selection functionality should not yet be sufficient, make a pre-selection by run-
ning the task her schel . hi fi . pipeline.util.tools. Sel ect Spectrumbefore
applying the doAvg. Seethe HIFI user reference manual for further details on that task.

In a next step, suitable groups are formed with the spectra that have been selected for the
average. This step can be skipped by setting the pr eser veGr oups task parameter set to
Fal se. Scansbelonging to different groups are not combined in the average. This means that
for each group one average is computed. The following criteria are used to form the groups:

» Type: Datasetswith different types specified inthesds_t ype metadatafield are not com-
bined in the average.

* ON / OFF: Spectrafrom the ON and the OFF position are not mixed.

» LO Tuning Group: Scanswith different freugnecy groups specified withthef r equency-
G oup metadatafield are not combined (see CheckFreqG i d).

 Raster Point: Scans associated with different raster positions in raster maps are not mixed.
Here, the meta data fieldsr ast er Col utmNumand r ast er Li neNumare used. These
fields are added in the DoPoi nt i ng-task to the timeline product.

» "Line scans': Scans associated with different lines in OTF maps are not combined in the
average. Here, the meta data field scanLi neNumis used which is also added in the Do-
Poi nt i ng-task to the timeline product.

Note that the creation of the timeline product and the pipeline pipeline processing assure that

scans within the same dataset cannot belong to different groups. In particular, thisis checked

and assured by running the task checkDat aSt r uct ur e in which datasets with different
bbnunber are split.

Once the groups are built, the averages can be computed on a per group level. Here, the func-
tionality of the spectrum toolbox is used. Accordingly, with the parameter var i ant you can
specify whether weights and flags should be included in the computation of the average:

e variant ="f| ux": arithmetic average of the flux, frequency scale set to frequency scale
of the first scan found for the group, weights are added, flags are propagated with bitwise
OR.

e variant ="f| ux-wei ght " : weighted average of the flux, frequency scale set to fre-
quency scale of the first scan found for the group, weights are added, flags are propagated
with bitwise OR.

93

Generic Pipeline

o variant="fl ux-flag": arithmetic average of the flux where for a given channel on-
ly unflagged values are included in the average - unless for a given channel only flagged
channels are available, the frequency scale is set to the frequency scale of the first scan
found for the group, weights are added, flags are set to zero or propagated with bitwise OR,
respectively.

e variant ="f | ux-wei ght - f 1 ag" : The combination of the previous two alternatives.
In addition to this configuration for the actual spectrum data, the average operation is also
configured for the other 'attributes’ (columns) of the datasets.

» Average: obs tinme, Chopper, cnd_chopper, LoFr equency,
frequency_nonitor, hot_cold, MIC Ver, MIC Hor, |ongitude, |at-
itude, velocity, posAngle, |longitudeError, |latitudeError, ve-
| ocityError, posAngleError, tsys_nedian.

* Add: scancount, integrations, integration tine.

* Unique (include the unique value found in case all scans have the same unique value): bb-
type.

* Max: packet tinme.
» (Bitwise) OR: row fl ag.
e AND:frron_vali d.

e Finally, the result is either returned as a Hi fi SpectrunDat aset if the parameter
return_singl e_ds hasbeen setto Tr ue (default) or theindividual averages are included
in the original timeline product while all the original datasets are removed. In the first case,
each lineintheresult will correspond to one of the group averages. Y ou can identify the groups
from the bbtype, LO Freguency, rasterLineNum/rasterColumnNum, or scanLineNum. Note
that, typically, comb datsets cannot be included in the average since these have different seg-
ment shapes.

» Algorithms: See Mathematics.

 Calibration input: None.

Result:

* Metadata: For each group, the meta data of the first dataset assigned to the group is copied.

« Spectral segment data: Depending on the task parameter var i ant the flux, weight, flag and
wave data are processed differently (see Mathematics for further details).

e Columns: see Mathematics for further details on how the data found in other columns are pro-
cessed.

Errorsand Warnings:

 |In case asingle dataset belongs to different groups at the same time no averageing is done and a
warning is given that thecheckDat aSt r uct ur e-task should be run first.

 |n case one of the group averages could not be completed (e.g. not al scans could be considered
for the average so that the average isincomplete) awarning is created.

Remarks:

Questions, I ssues:

94

Generic Pipeline

 For cross maps, data belonging to different points are mixed in the current settings.

5.3.9. DoFold

e Purpose
Perform the folding for frequency switched spectra.

doFol d(ht p=ht p)
doFol d(ht p=htp, throw = --60, unit="Mz")

The folded spectra are constructed by averaging the original spectra with a shifted and inverted
copy - shifted by the LO throw. This algorithm corresponds to the most simple scheme described in
the article "Recovering line profiles from frequency-switched spectra”, H.Liszt, Astron. Astrophys.
Suppl. Ser. 124, 183-188 (1997). For the input spectra included in the input timeline product a
linear frequency scale is assumed. The size of the spectra is reduced by the number of channels
corresponding to the LO throw.

» Description:
e Assumptions:
» Thefrequency grid of the input spectra should be linear (equidistant).
» Mathematics:

» The original spectra are averaged with a copy which is shifted by the LO frequnecy throw
and inverted.

Note that the folding is not perfect in the sense that typically, ghost lines appear to the left and
the right or the actual lines as asorption lines. This can be annotated with the sequence -,-'-,-.

Some care is needed when interpreting e.g. USB data containing both USB and L SB spectra:
USB emission lines appear as emission lines and L SB lines appear as "absorption lines'. This
is explained in some more detail in the following:

e An emmission USB line will show up in the USB as -,-'- if the LO throw is positive (i.e.
the reference phase with the line pointing downwards is shifted by the L O throw to thelft).
Applying the fold to this timeline product (corresponding to the USB) leads to a picture of
the form -,-'-,- where a duplicated reference phase occurs phase to the right of the emission
line. In case the LO throw is negative the reference in the input spectra will appear on the
right and the duplicated ghost in the folded spectra appears on the left.

* AnLSB emission linewill show up inthe USB as-'-,- if the LO throw is positive (here the
reference phase with the line pointing downwards is shifted by the LO throw to the right).
Applying the fold to this (USB) timeline product leads to a picture of the form -'-,-'- where
aduplicated 'emission’ line appears to the right.

Below, an example is shown for an emission line in the LSB before (blue) and after (red) the

fold-operation. Note that the line appears as emission line on the LSB frequency scale, but as

asorption line on the USB frequency scale.

Figure5.10. An L SB emission line plotted on the L SB frequency scale.

95

Generic Pipeline

Figure5.11. An L SB emission line plotted on the USB frequency scale.

e The LO throw parameter can either be passed as parameter t hr ow or it is retrieved from the
meta data of the timeline product using the key | oThr ow. Note that thisinformation is added
to the timeline product in the checkFr eqGr i d-task. You can specify the unit of the throw
specified in the task using the parameter uni t with typical values' MHz' and' GHz' . If no
unit is specified the throw specified in the task signature is assumed to have the same unit as
the freuency of the spectrain the timeline product.

e Settingtheshi ft to Tr ue shiftsthefolded spectraby half thethrow in direction of thethrow.

¢ Algorithms: See Mathematics.
« Cadlibration input: None.
* Result:
¢ Metadata: None
 Spectral segment data: Changes just the frequency scale. No other changes.

e Errorsand Warnings:

* Warning is given and no data processed when no t hr ow has been specified and no | oThr ow
isfound in the meta data of the timeline product.

* Remarks:

* Questions, | ssues:

5.3.10. DoSpurs

 Purpose: Detect and remove spurious signalsin the scans.
 Description:

* Result:

* Remarks:

* Questions, Issues:

5.3.11. DoStitch

* Purpose:

Task for stitching the subbands of the scans included in a HifiTimelineProduct. The stitching is
performed on a per point spectrum (scan) basis. The result is again a point spectrum that still
may consist of several segments - in case gaps are found between consecutive segments. The
way how the stitching is done is defined by the parameter 'variant' (see below). The task replaces
the datasets in the timeline product by new datasets with the stitched spectra. The actual stitch-
ing is performed per dataset by calling the St i t chSpect r umtask in the spectrum toolbox (see
her schel . i a. t ool box. spect r um Since the shape of these spectra may be different after

96

Generic Pipeline

stitching the spectraneed to be resampled in the general case. Here, the sampling width can be spec-
ified using the stepsize parameter. In case no or a zero stepsize is specified, resampling is avoided
if all the stitched point spectra have the same shape. With the sel ecti on_net a-parameter a
restriction can beformulated on which spectra should be stitched. Note that the spectra no stitched
remain unchanged in the output timeline product.

ht p

doSti t ch(ht p=ht p)

htp = doStitch(htp=htp, variant="crossoverPoints", edgeTol erance=0.1,
stepsi ze=1.0, unit="Mz")

ht p doStitch(ht p=htp, variant="m dPoi nts", stepsize=1.0, unit="Mz")

htp = doStitch(htp=htp, variant="splitPoints", splitPoints = [5000.0, 6000.0,
7000. 0], stepsize=1.0, unit="Mz")

htp = doStitch(htp=htp, variant="average", stepsize=1.0, unit="Mz",
avg_variant ="f| ux")

htp = doStitch(htp=htp, selection_nmeta = ["science", -"hc"])
» Description:
e Assumptions:

e Input aHi fi Ti nel i neProduct with calibrated frequency scales (i.e. processed through
the instrument pipelines up to level 0.5).

* Mathematics:

» Theactual stitching isprocessed on aper point spectrum (scan) basis (the rowsin the datasets).
The stitched spectrathat originate from the same dataset are resampl ed to acommon frequency
grid so that they can beincluded in anew dataset. These datasets replacethe original datasetsin
the timeline product. Hence, the task modifies the input timeline product but not the datasets.

* For each scan, the overlapping ranges are determined. For WBS spectra, typically exactly two
segments participate in a given overlap range. For HRS spectra, in principle, more than two
'subbands’ can contributeto aoverlap range. There are different options of how the overlapping
rangesaretreated - the optionscan be called by settingthevar i ant -parameter. Generally, we
distinguish the algorithms capable of handling only two subbands per overlap range, the "cut
and concatenate" algorithms, and the algorithms capable many subbands per overlap range.
We first list the "cut and concatenate” options:

» Cut and stitch at crossover points(var i ant =" cr ossover Poi nt s"): Here, cross-over
points are taken to cut the spectra. These are determined by looking for the minimum dis-
tance of the flux values. In case more than one minimal point is found the point closest to
the center of the overlap rangeistaken. In order to avoid selecting points close to the border
of the overlap point the parameter edgeTol er ance can be set e.g. to 0.1 that will restrict
the range to search the cross-over pointsto 80% of the original overlap range.

» Cut and stitch at mid points: The points to cut the spectra are specified as the mid points
of the overlap ranges.

» Cut and stitch at predefined points: Using the parameter st i t chPoi nt s you can specify
the values at the the spectra should be cut (stit chPoi nts = [5000.0, 6000.0,
7000. 0]). The length of the list should be equal to the number of overlap rangesin the
spectra.

Once the points to cut the spectrain the overlap ranges are specified, the segments are glued

by simply concatenating them. For the second category, we only have asingle option available

at the moment:

97

Generic Pipeline

» Resampleand average overlapping parts: Herethe spectraare resampled inthe overlap range
to acommon grid. Thisgrid is specified as alinear grid with stepsize given by the task pa-
rameter st epsi ze. Incaseast epsi ze=0 isspecified, resampling is omitted if possible
(i.e. if the number of grid points found in the overlap range is the same for all the subbands
contributing to the overlap range. With the parameter avg_var i ant you can specify the
kind of average to be applied - typically:

L]

avg_vari ant ="f | ux" : straight average of the flux values
avg_vari ant ="f | ux- wei ght " : weighted average of the flux values

avg_vari ant ="f | ux-f | ag": straight average of theflux values, ignoreflagged val-
ues

avg_vari ant ="f | ux- wei ght - f | ag" : weighted average of theflux values, ignore
flagged values

 The stitched spectra originating from the same dataset are resampled to alinear frequency grid
with stepsize given by the task parameter st epsi ze. In case ast epsi ze=0 is specified,
resampling is omitted if possible.

 Calibration input: None.

Result:

* Metadata: None

« Spectral segment data: Stotched segments as described in the section 'Mathematics above.

Other columns: Copied from the input spectra.

Errorsand Warnings:

* Anexceptionisthrown in case an option is specified which is suited for two subbands per overlap

range -

in the spectra, however, an overlap range with more than two contributing subbands have

been found.

* Warning if no cross-over point could be identified. In this case the mid points are used instead.

Remarks:

Questions, I ssues:

98

	HIFI Pipeline Specification
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Level 0 Pipeline
	2.1. DoHkCheck
	2.2. DoPointingTask

	Chapter 3. HRS Pipeline
	3.1. Introduction to HRS pipeline
	3.2. doHrsSubbands
	3.3. doHrsOffsetPow
	3.4. doHrsNorm
	3.5. doHrsQDCFull
	3.6. doHrsPowCorr
	3.7. doHrsWindow
	3.8. doHrsSymm
	3.9. doHrsFFT
	3.10. doHrsSmooth
	3.11. doHrsFreq
	3.12. doHrsCorrSP
	3.13. doHrsCutBandEdges

	Chapter 4. WBS Pipeline
	4.1. Introduction to the WBS pipeline
	4.2. DoWbsScanCount
	4.3. MkWbsBadPixels
	4.4. DoWbsBadPixels
	4.5. DoWbsDark
	4.6. DoWbsNonLin
	4.7. MkWbsZero
	4.8. DoWbsZero
	4.9. MkWbsFreq
	4.10. DoWbsFreq
	4.11. MkWbsFluxAtten
	4.12. DoWbsSubbands
	4.13. MkSpur

	Chapter 5. Generic Pipeline
	5.1. Preliminaries
	5.1.1. Introduction to the Generic Pipeline
	5.1.2. Configuration of the Generic Pipeline
	5.1.3. Standard Observing Modes
	5.1.4. Observing Modes Groups
	5.1.5. Some Details on Spectrum Data
	5.1.6. Initialization of Chopper Positions
	5.1.7. Pipeline Modules

	5.2. Level 1 Pipeline
	5.2.1. CheckDataStructure
	5.2.2. CheckFreqGrid
	5.2.3. CheckPhases
	5.2.4. MkFluxHotCold
	5.2.5. DoChannelWeights
	5.2.6. DoRefSubtract
	5.2.7. MkOffSmooth
	5.2.8. DoOffSubtract
	5.2.9. DoFluxHotCold
	5.2.10. DoVelocityCorrection
	5.2.11. DoRadialVelocity

	5.3. Level 2 Pipeline
	5.3.1. DoCleanUp
	5.3.2. DoAntennaTemp
	5.3.3. MkSidebandGain
	5.3.4. DoSidebandGain
	5.3.5. ConvertFrequencyTask
	5.3.6. MkFreqGrid
	5.3.7. DoFreqGrid
	5.3.8. DoAverage
	5.3.9. DoFold
	5.3.10. DoSpurs
	5.3.11. DoStitch

