Scripting and Data Mining

Version 4.0, Document Number: HERSCHEL-HSC-DOC-0517
25 August 2010

Scripting and Data Mining

Table of Contents

(= = o1 PSPPSR Vii
1. Scripting and JYthOn DESICScvvveiii e 1
1.1. Numbers and basic arithmeticcoouiiiiiiiii e, 1
1.2. Variables and variable tyPeSevvn i 2
1.2.1. Java variabl @ tYPES .. .cve e 2

T T 1 o 3
1.3.1. JAVA SHING TYPES .. vt e 3

O Y] o oY ol 011/ 6 o = 4
1.4.1. Converting between Java and Jython typesccoveviiiiii i, 4

15, ListS and diCtONAITESoeveeeiiiiiiii e 6
1.5.1. Setting up and acCeSSING lISES ...vuvivniiiie i 6
ST oo T = 6
1.5.3. Setting up and uUSING diCtIONANESuevviieiiiee e 7
1.5.4. NeSted diCliONAITESueiieiiieieeii e e 7

1.6. Augmenting Values and liSISeivniiiii e 8
1.7. Lists and JythOn tUPIEScevneii e e e e 8
1.8. BasiC programming StateMENESovuueeiii e ee e e e e e e e 9
L8.L M ElIfIEISE e 9

I 1720 o PRSP 9
L83 WHIlE e e 10
1.8.4. Loop control: break and coNti NUEc.oovivviiiii i 10

1.9. Printing to the screen and fileSoviiiiiii e 11
1.10. Defining and using fUNCLIONSoiviiiiii i e 11
111, ImpOorting MOGUIESuiieeeeii e e e e e e e e e et s e e e e e eaens 13
1.11.1. Importing and reloading your own modulescccovevvieiiieiiineeeieeennn. 14

1.12. Object-oriented Programmingceeueieerueerieeeiireeeee s rerareerneeenreraaereaeene 15
1.12.1. Classes anNd ODJECESuuiiii e e e e e e e e e e e e e e e aens 15
1.12.2. Interface, implementation and encapsulationcccovevvieeviiiiiiiiieninnenns 16
L1.12.3. INNEITANCE ...t 17
1.12.4. Packages and NaMESPACESuuevvuiiii et e e e e e e e e e e e e e e e 17
1.12.5. Advantages Of OOPcciuuiiiiiei e e e e 18
1.12.6. Concluding reMarksSccueiiuiieiii e e e e e e e e eaneees 18

O B = T o o = W =\ 18
0 VAV g 1o TS] o] 19
1.15. Some useful extra items ON SCHPLSvvvuiei e e e e e e 20
1.16. Interactivity in JythON SCrPLS .. .c.uuiiieici e e 21
1.16.1. The SWING lIBraryoceuieiic e e 22

127, USEfUl JAVA DITS v 25
1.18. Jython and DP QUITKS ...cceuiiiicce e e e 26
1.18.1. Two functions for ONE goalcccuiviiiiii i 26
1.18.2. Long Names versus Short NamMEScvvveiiiiiiiieee e e e e 26
1.18.3. NamMiNg CONVENLIONScvvueeiiieiiieeeiee e e e e e e et s e e e e e e e et e e s e e e eaenas 27
1.18.4. MisCEllaneoUS QUITKScieieiiieii e e e 27

1.19. Interoperating with external SOftWareccoovvieiiii i 28
2. Arrays, datasets and ProdUCESuiieiioiii e e e e e e e e 29
2.1. Types of array data ODJECESuiiueeieiee e e e e e e e e e e e e e eaens 29
2.1.1. Numeric array access and SliCingccuvevviiiiiiiiiin e, 29

2.2. Creating aSimple 1D NUMENIC @ITAY ..e.uuvvrnieeiieeeiieeeiieeeeeeen e e e e e e s e esaeeeenas 30
2.3. Creating and handling complex array data objects.........ccoovvviieviiiiiiii e, 30
2.4. Creating and accessing multidimensional array data ObjectS..........c.cceveviveriinennnnn. 31
2.4.1. A NOtE ON ATAY OFAENTNG ..vueeeeeeei e e e e e e e e e e e e e 31

2.5. Adding attributes to create an array dataSelcc.vevvvieiiiieiiii e, 32
2.5.1. Dataset attributes and metadatal...........ooveevviiiiiiiiiei e 33

2.6. Creating and viewing a TableDataSetccuuveiiiieiiiieiiii e e 33
2.6.1. Row-wise appending of TableDatasetSccvvveveeieiiiiieeie e, 34

Scripting and Data Mining

2.6.2. ASSIGNING UNITS ..eiiiiiiiii e 34

2.7. Creating and accessing a COMPOSItE dataSatcoovvuiiiiiiiieeiii e 37
2.8. SPECIIUM TBLASELS ... eeeeti ettt e et e e 38
2.8.1. Spectrumld and SPectralSEgMENtSc.uuiiiiiiiiieiiiie e 38
2.8.2. SPECIIUMZA ..ottt 39
2.8.3. Expanding Spectrumld and Spectrum2d DatasetSccvveevveiinieiiieeeins 40

2.9. Image and CUDE dALASELSuuuiiiiiiii et 42
2.9.1. SPECLIAl CUDES ...ttt 43

2.10. Creating @ SPECLIAl CUDEcovuiiiiii et 44
2102, INPUE DAL .ottt 44
2.10.2. CUDE PrOJECHION ..ccvuueiiiiie ettt e 45
2.00.3. OULPUL ...ttt ettt e 47

2.11. Importing spectral cubes from external applicationscoveveveiiieiiiiineeieninnen. 47
2.12. Assigning a World Coordinate System to images and CUbeS............coeevvveeeeiinnneees 49
213 PrOTUCES ...ttt e 52
2.13.1. Mandatory parameters in ProdUCESuveeeeeiieeeiie e 53
2.13.2. Setting date informMationieiiiuiiiiiiii e 53
2.13.3. Additional MEtadatac.uueeiiiiieeiei e 54
2.13.4. Inserting and getting datasets from a productccevveieiiinieiiiiinneeenns 54
2.13.5. ProduCt NiSEONYccoeveiiiiiiie e 54

3. The NUMENIC [IDFarY ..cooveeeee e 56
3.1. Basic numeric array arithmetiCcooviiiiiiiiiiiii e 56
3.2. Numeric functions and lambda eXPreSSioNSc..uveieiineeieiiie e 56
3.3. Selection, data filtering and masking Methodscociiiiiiiiiniii e, 57
3.4, Array acCeSS AN SlICING ...eeveiiieiiii e 60
3.5. Making sense of 10gical OPEratOrSccvvvuiieiiiii e 60
3.6. Advanced tips for improved performanCec.uoiieiiiinieiiii e 61
3.7, TYPE COMVEISIONS ...ieeitieeeett e ettt e e ettt e ettt e et ee b e e et ea b e e e eabn e e e eata e e eeeatnaeaeees 61
3.7.1. EXPlICIt CONVEISION ...ttt 62
3.7.2. IMPLiCIt CONVEISION ... 62

3.8 FUNCHON TIBFAIY ...veeei e e e 62
3.8.1. BaASIC fUNCLIONSuuiiiiiiieeci e 62
3.8.2. Integral tranSfONMSueiiii e 64
3.8.3. POWES SPECIIUM ..ot 65
3.8.4. CONVOIULION ...ttt ettt e e e e e e 65
3.8.5. Boxcar and gaussian filtersoviiiiiiiiiii e 66
3.8.6. INLENPOIBLION ...ieeieieeeee e 67
3.8.7. DA FITHING ...t 68
388 IMBSKS ..ttt 74
3.8.9. IMIBIITCES ..ttt 75
3.8.10. RANAOM NUMDENS ...t 77
3.8.11. NUMENC INLEGIaLiONcevvvieeiiiti et 78
3.8.12. Interpolating diSCrete datalvveeevneiieii e 79

3.9. Mathematical Operations 0N SPECIIAuuueieiiiieieii e 80
39,1 INEFOUCTION vt e s 80
3.9.2. Toolbox primer: SEECHIONiiiiiiieeii e 80
3.9.3. ToolboxX primer: average SPECIIAuuuiieeei et 82
3.9.4. Toolbox primer: SUDLrACt SPECLIAu i eeeerii et 82
3.9.5. Toolbox primer: divide SPECLIAccuuuniiiiiii i 82
3.9.6. Toolbox primer: add and muliply SPectra...........cooeeveviiiiiiiiiniiecci, 83
3.9.7. Toolbox primer: resample and Smooth SPeCtraovevvvviieiiiinieiiiieees 83
3.9.8. Toolbox primer: StatisticS 0N SPECIIA ... cvevveieieiii e 83
3.9.9. Summary of to0IDOX OPEratioNScccvvunieiiiiii e 84

4. INErOAUCTION 1O TASKS . ..tuetiiti ettt e e e et e e e b e e e e e s 85
4.1. The Task frameWOTKcooeuiiei et 85
A.2. MY FITSE TASK it e e e e 85
4.2.1. BEFOre the Taskieiiiiii e 85
4.2.2. What MaKes 8 TasK?ceeuuiiiiiiiiee et 86

Scripting and Data Mining

4.2.3. An Example of a Task: AVErAJEuiviiiiiiieiiii e 87
4.3. Tasks with graphical INtErfaCeSviiiiiiieiiii e 92
4.3.1. The use of task parameters handled viaa dialogcooevvveiiieiiiiiniiiininnnn. 93
4.3.2. The use of more enhanCed GUISiviiiiiiiiiiiie e 93
4.3.3. Conventions for parameter 1abels ..o, 93
5. Overview of DP PaCKAgEScocuuuiiiiiii et 94
5.1 INEFOAUCTION ..ttt ettt ettt e ettt e e e e ab e eeenbe e eeees 94
5.2. Overview of Javadoc Documentation for DP Packagesccoovvvviiieiiiiinnciiinnnnn. 94
5.3, PaCKAGE VIBW ...ttt 95
B, ClESS VIBW ...ttt ettt e et e 97
5.5, ONEI VIBWS ..ttt e et 99
55,1 TIEE VIBW ittt et 99
5.5.2. DEPrECaIEH VIBWcoovviiiiiiiie ettt e 99
B5.5.3 INOEX VIBW ..t 99
5.6. DP Packages And DOCUMENTELIONuuiieiiieiiiii et 99
5.6.1. herschel.iadataflowWoiiiiiiiiii e 99
5.6.2. herschel.iadataselooovvvniiiiii 99
5.6.3. hersChel.iademooooove i 100
5.6.4. NErSCNEL.TAAOCniiiiiiie e 100
5.6.5. herschel.iadocument ... 100
5.6.6. NEISCNEl.IAGUIoceeeiiieiii e e 100
5.6.7. herschel.iaingpeCtorcoovvuiiii 100
5.6.8. NEISCNEL.TAIO «.ovunciiii e 101
5.6.9. herschel.iajconsoleooiiiiiiiiii 101
5.6.10. hersChel.iaNUMENICuiiiiii e 101
5.6.11. herschel.iaobscovvnii 102
5.6.12. hersCheliapalveeeiiiie i 102
5.6.13. NEISCRELIAPY « .. eeevenieeeeti et 102
5.6.14. NEISCRELIAOCY «vvvneteetii ettt 102
5.6.15. NEISCREIIASDY « . ceeereneeeiii ettt e 103
5.6.16. hersCheliataskveeeeeiiiiiii e 103
5.6.17. herschel.iatoolBoXoovveiiiii 103
5.6.18. NErSCRElIAVO .. ceeiii i 104
6. TIME MEASUIEIMENT ...ttt ettt ettt ettt e et et e et et e et et e e e eba s 105
6.1, Time DEfiNITIONS ... 105
6.1.1. System tiMe iN DPcooiiiiiiiiii e 105
6.1.2. International Atomic Time (TAI) and Fi neTi Me ..., 106
6.1.3. Coordinated Universal Time (UTC)ovviiiiiiiiiiiiiieiien e 106
6.1.4. DecMeC Time [PACS ONIYT ..ovviiiiiiiiieeeee e 106
6.2. Timein Instrument House-Keeping (HK) Data...........ocoevviiiiiiiiiiiiiiiiieceiieeees 107
6.3, TIME CONVEISION ..eevuiiiiiii ettt ettt ettt e et e et e e e e aaa s 107
6.3.1. Time conversion iN HCSS ... 107
6.3.2. CUCCONVEITELietieit ettt ettt eees 108
A. Advanced ProduCt ACCESS LAYESiiiiiiiieiiiii ettt 109
AL PrOOUCE SIOTEOE ... eeeeet ettt e et e et e e e et e e e et e e eeaaaeeees 109
A.1.1. Creating a storage and registering POOISveveeiiiieiiiiiiecee e 109
A.1.2. Saving and restoring ProdUCLSviieiiiiiiiiieeeee e 109
A2, ProdUCE POOIS ...ttt 110
A3 LOCE POOIS ...ttt 110
A.3.1. The default Local Pool directory and how to changeitcccccoeeeennnnee. 111
A.3.2. Registering LOCal POOISoooeeuiiiiiiiiieii e 111
A.3.3. Saving ProductS iN POOISuuiiiiiiiie i 112
A.3.4. Finding out What iSin @ StOrageocveveiiiiiiieeeeei e 113
A.3.5. More on storage queries. Other kinds of query and more examples of com-
MANA [INE QUENTES ... 113
A.3.6. Retrieving products from StOragecooevviiieiiiiiiieii e 115
A.3.7. Deleting products from StOrageveveeveiiiiiiiiieeei e 115
A.3.8. Updating/Repairing SLOrageuueveeriieeiiiiieeeeit e 116

Scripting and Data Mining

AL DDBPOOL ... 116
AL, CaCNEAPOO! ... e 116
A.6. Setting up and Accessing RemMOte POOISccuvuiiiiiiiiieciii e 117
A.B.1. POOID@EMON ...ttt 117
A.6.2. Accessing Remote Pools Using the Serial ClientPoolc.ccooeveieiinnnen. 117

A.7. MO ON QUENYING ...ttt ettt ettt e e et e et e e e et e e era s 118
A.7.1. QUENYING SFELEJY .. eevvneeeittieeeiti e et e et e et e ettt e e e bt eeeeaa e eees 118
A.7.2. Querying for metadata in ProductSooeeevviieeiiiiiieec e 118

A.8. Special IMPOrtS Nt POOISuiiiiiiiieiii e 118
A.8.1. Putting a Directory of FITSFilesInto aPoolcoooevviiiiiiiiiniiiiinnnnn. 119
A.8.2. Placing Image (PNG) Filesin aPool and/or FITSFile.......cccc.occovviiiiennn. 119

AL, CONLEXE PrOTUCTScoeviieeiiii et 119
A.10. Deep Copy or Cloning Of PrOAUCESuiiiiiiiieiiiiie et 120
A.1L. CommON ProBlemScooiuiieii e 120
A.12. Storage ProduCt VErSIONINGccuuueiiiiiieiiiii ettt eeeai e e eees 121
ALL2. 1 VEISIONING .oietiieieitiie et e e et 121
A.12.2. Querying ProduCt VEISIONSuuiiiuiiieiiiiie ettt 122
A.12.3. Tagging ProductS in @ SLOMEcceevviiiiiiiieeeee e 122
A.12.4. Turning Off Product VErsioNingveeeeeuieeieiiieeeeieeeeiie e 123
A.12.5. Using the New Versioning Mechanism Against Existing Pools................. 123
A.13. The ProduCt BrOWSEYccouuiiiiiiiiie et 123
A.13.1. A visual tour of the Browserooooiii i 124
A.L3.2. SIMPIE USE CBSE ...ttt 124
AL3.3. A QUENY BIER ...ieeeiiieiei ettt ettt et 125
A.L13.4. B RESUIT @A ... cieiiiieeeei et 125
A.13.5. C: ReSUIt INSPECLION IRuueieiii ettt 126
A.13.6. D: JIDE DasKel @r€accuuuiiiiiiieiiiii et 127
A.13.7. Advanced: Adding a Table Layoutccceuuiieiiiiiineiiiiineeeciie e 127

B. USING JIDE ... 128
B.1. Scripting With JIDEcooiiiii e 128
B.1. 1. FIl@ MENU .eeti et 130
B.1.2. CONSOIE MENU ..ottt ettt e s 130
B.1.3. EAit MENU ..o 130
B.1.4, RUN MENU ..ooiiiiiieie ettt et e e et e e e 131
B.1.5. HEIP MENU .ot 131

B.2. QUITEING JIDE ...t e et 133
B.3. Standard SettingS for JIDEuiiiiiiiiieiii e 134
B.4. DP working directory and fil@ 8CCESSocovvuiiiiiiii i 134
B.5. Getting command-line helpcooouiiiii 135
B.6. Programming [OOPSuuiiiiiiiiiii e 135
B.6.1. LOOP performance ON @ITAYSoeeevuurieeeitiiee et e e e et e e e 136
B.6.2. Using the Editor view With [00PSoieiiiiiiiiii e 136

B.7. Multiline statements in the CoNSOIE VIEWcoviiiiiiiiiiiiii e 137
B.8. Pausing during script execution and debugging in IDE and HIPE 137
B.9. Background SCript @XECULIONc.uuuiiiiiiieieiei et 138
B.10. Running scripts from a shell command line ..o, 139
B.11. Errors and exceptionS in DPuiiiiiiiiiieii e 139
B.11.1. Overview of the libraries used in aDP SESSIONvevviviiieeiiiiiecciiie, 139
B.11.2. The error traceback mechanismccoooiiiiiiiiin e, 140
B.11.3. The HCSS exception and logging mechanismccoeuivveieiinneeeennnnn. 142

C. JYENON OPEIEIONS ...ttt ettt e et b et e e et e e eba s 144
D. NamMiNg CONVENTIONScevtuiiiitiee et e et e et e et e et e et et e e e et e e e et e e e eaba s 146

Vi

Preface

Thismanual isintended for advanced users interested in devel oping scripts and tools within HIPE. It

complements cookbook approach, based mostly on graphical interfaces, followed by the Data Analysis
Guide.

Note that many graphical tools in HIPE echo all you actions to the command line, so that you can
trandlate any interactive operations to automated scripts.

Vii

Chapter 1. Scripting and Jython
basics

The Herschel DP is a development system based on programs written in Java or Jython. Jython is a
Javaimplementation of the Python language. The syntax is therefore well defined and there is plenty
of documentation freely available.

Remember however that, while the C implementation of Python (what we usually refer to as just
"Python") is already at version 3.0, the version of Jython used for DPis still 2.1. This means that not
all available Python documentation will be applicable to Jython.

Warning

O Standard Jython libraries are not automatically imported into HIPE. If you want to try
Python/Jython examples from external sources such as books and tutorials, you will have
to import them manually.

1.1. Numbers and basic arithmetic

You can use the interpreter as a calculator. The expression syntax is similar to other languages: for
example, the four basic operations are represented by the operators+, - , * and/ , and parentheses can
be used for grouping. For example, you can type the following into the Console window of HIPE at
the Hl PE> prompt. Note the use of the hash mark # for inserting comments:

Hl PE> print 2+2

ﬁIPE> # This is a conment and is ignored by the interpreter
Hl PE> print 2+2

ﬁIPE> print 2+2 # A comment on the sane |line as the code
; PE> print (50-5*6)/4

iIPE> print 7/3 # Integer division returns the floor

aIPE> print 7/-3

-3

A list of Jython operatorsis provided in Appendix C.

Thereisfull support for floating point; operatorswith mixed type operands convert theinteger operand
to floating point:

H PE> print 3 * 3.75 -/ 1.5
7.5

H PE> print 7.0 -/ 2

3.5

Complex numbers are also supported; imaginary numbers are written with aj or J suffix. Complex
numbers with a nonzero real component arewrittenas(real + imag j), or can becreated with

theconpl ex(real, imag) function:
H PE> print 1j * 1J

(-1+0j)

H PE> print 1j * conplex(0,1)
(-1+0j)

H PE> print 3+1j*3

(3+3))

H PE> print (3+1j)*3

(9+3))

H PE> print (1+2j)/(1+1])
(1.5+0.5))

http://www.jython.org/
http://www.python.org/

Scripting and Jython basics

To extract the real and imaginary parts from a complex number z, usez. real andz. i nag:

H PE> z = 1.5+0. 5]
HI PE> print z.real
1.5
HI PE> print z.inmag
0.5

For more information about numeric functions see Chapter 3.

1.2. Variables and variable types

1.2.1.

Variables do not have to be declared like in other languages (that is, statements likei nt x are
not required). Variables appear when you assign to them and disappear when you do not use them
anymore. Assignment is done by the = operator and equality testing is via the == operator. Y ou can
also assign several variables at once:

H PE> X, vy, z 2, 3

=1,
HPE>a=»b 123
If you need to clear some or al of your variables, you can usethecl ear command:

H PE> clear("x,y, z")
To clear all variables, but not the | oaded cl asses and met hods
H PE> clear(all = True)

There are four numeric typesin Jython:

e Integer:a = 3

» Long integer, denoted by thel or L suffix:a = 3L
* Float:a = 3.0

e Complex.a = (3 + 1j)

There is no proper boolean type: instead, zero represents false and any other value represents true.
You can usethe Tr ue and Fal se keywords, which will be converted into numeric values:

H PE> a = True
H PE> print a

1

H PE> a = Fal se
H PE> print a

0

Java variable types

The following Java numeric types are also available in Jython:
» Byte: signed 8-bit integer.

* Short: signed 16-bit integer.

* Integer: signed 32-bit integer.

» Long: signed 64-hit integer.

» Float: single-precision 32-bit floating point.

» Double: double-precision 64-hit floating point.

» Boolean: eithert rue or f al se.

Scripting and Jython basics

These types are used as follows:

H PE> a = Integer(3) # Create an Integer with value 3
H PE> print a
3

H PE> b = Doubl e(3)
H PE> print b

3.0

HI PE> ¢ = Bool ean(0)
HI PE> print c

fal se

Y ou should use Jython primitive typesin your scripting, but you may sometimes run into Java types.
This could result in strange errors when you try to operate on variables of incompatible types. See
Section 1.4 for more information.

1.3. Strings

1.3.1.

Strings in Jython can be within single or double quotes:

HI PE> print -'spam eggs'
spam eggs

H PE> print -"doesn't"
doesn't

String literals can span multiple lines in several ways. A backslash as the last character of aline
indicates that the next lineisalogical continuation of the previous one;

hello = -"This is a rather long string containing\n\
several lines of text just as you would do in C \n\

Not e that whitespace at the beginning of the line is \
significant."

print hello

Note that newlines till need to be embedded in the string using \ n; the newline following the trailing
backslash is discarded. The previous example would print the following:

This is a rather |long string containing
several lines of text just as you would do in C
Not e t hat whitespace at the beginning of the line is significant.

Y ou can access individual characters like this:

H PE> print hellof 2]

i

H PE> print hell o[10: 16]
rat her

Note that numbering of the characters starts at 0.

Thevariable hel | o essentialy contains an array of characters (including blank spaces). We can find
the length of such an array using thel en() function (see Section 1.10 for details on functions).

HI PE> print |en(hello)
157

Java string types

Aswith numeric types, you can use Java strings in addition to Jython native strings:

H PE> s1
H PE> s2

-"Blah blah" # Jython string
String("Wof woof") # Java string

Scripting and Jython basics

Java also has the Char act er type representing a single character. Note that it is not available by
default within HIPE, but it has to be explicitly imported (see Section 1.11 for more information about
importing):

H PE> ¢ = Character("a")

NaneError: Character

H PE> from java.lang i nport Character

H PE> ¢ = Character("a") # No error this tine
H PE> print c

a

Use Jython strings in your scripting, but be aware of the existence of Java string types.

1.4. Type conversions

1.4.1.

There are conversion functions to change numbers into different Jython primitive types: f | oat (),
int(),long() andconpl ex():

HPE> a =1

H PE>print a

1

HI PE> print float(a)

1.0

H PE> print long(a) # No visible change
1

HI PE> print conpl ex(a)

(1+0j)

These conversions do not work with complex numbers, even if they have zero imaginary part:
HPE>a =1+ 0

H PE> print float(a)
TypeError: can't convert conplex to float; use e.g. abs(z)

Converting between Java and Jython types

When an external method returns a Java numeric type, Jython will automatically convert it into one
of its primitive types. Take for example the following code:

H PE> fromjava.util inport Random

H PE> a = Randon() . next Doubl e()

H PE> print a
0. 7865746478405673 # You will get a different number!

The next Doubl e() method returns a random number between 0 and 1 as a Java Doubl e, but if
you inspect the type using the Jython __cl ass___ attribute you will get something different:

H PE> print a.__class__
org. python. core. PyFl oat # PyFloat indicates a Jython fl oat

Javatypes are converted to Jython types according to the following table:

Javato Jython type conversions

Javatype Jython type

Byte Integer

Short Integer

Integer Integer

Long Long

Float Float

Double Float

Boolean Integer (f al se =0,true =1)
Character String (length 1)

String String

Scripting and Jython basics

Theval ue method of the Java numeric types is useful to convert the string representation of a

number to a number:

H PE> s = -"01234. 56"

HI PE> print Doubl e. val ue (s)

1234. 56

H PE> print s + 2.22 # |Inconpatible types

TypeError: __add__ nor _ _radd__ defined for these operands
HI PE> print Doubl e.val ueX (s) + 2.22

1236. 78

Note that with this method when you try to convert astring representation of afloating point to integer
you will get an error:

H PE> s = -"01234. 56"
HI PE> print |nteger.val ued (s)
j ava. | ang. Nunber For mat Excepti on: For input string: -"01234.56"

1.4.1.1. Incompatible types

Java and Jython numeric types do not mix well:

H PE> a = 123.45 # Jython fl oat

H PE> print a

123. 45

H PE> b = Fl oat (123.45) # Java fl oat
H PE> print b

123. 45
H PE> print a + b
TypeError: __add__ nor __radd__ defined for these operands

Although the two variables look the same, inspecting them with the __cl ass___ attribute reveals
their difference:

H PE> print a.__class__
org. pyt hon. cor e. PyFl oat
H PE> print b.__class__
j ava. | ang. Fl oat

To the Jython interpreter, these are just two different things for which no addition has been defined.
For the addition to succeed, you have to convert the Java type to Jython:

H PE> print a + b.fl oatVal ue()
246.9 # You may get a slightly different result because of rounding errors

Converting the Jython type to Javawill not work:

H PE> print Float(a) + b
TypeError: __add__ nor __radd__ defined for these operands

To apply math operatorsto variables of Javanumeric types, you always haveto convert them to Jython
types (avery good reason to use Jython primitive typesin the first place):

H PE> x = Doubl e(3)
H PE> y = Doubl e(4)
H PE> print x * vy

TypeError: __mul __ nor _ rmul __ defined for these operands
HI PE> print x.doubl eVal ue() * y.doubl eVal ue()
12.0

The same problems exist with strings:

H PE> a = -"Blah Blah -"
H PE> b = -"Wof Wof"
H PE> print a + b # Concatenating Jython strings

Scripting and Jython basics

Bl ah Bl ah Woof Wbof
H PE> print a + String(b)
TypeError: __add__ nor _ radd__ defined for these operands

1.5. Lists and dictionaries

1.5.1.

1.5.2.

Lists and dictionaries are important data structures available in Jython.
Listsare simple arrays written in a specific order.

Dictionaries are like lists that can be accessed via a key (or label). To access an element you use a
key or "name". Thisiswhat is used to look up the value of an element.

Setting up and accessing lists

Lists are formulated within sguare brackets, which can be nested. For example:

nane = ["Rolf", -"Harris"] # List of strings
y =z = 5

x =[[1,2,3], [y, 2], [1,[2,[3, 4]]]]

print x

print x[O0]

print x[2]

print x[2][1]
print x[2][1][1]

Inthefirst line we have set both the variablesy and z to the value 5. In the second line, the variable x
is associated with a Jython array which itself contains three arrays, the third of which contains further
nested arrays. The print commands that follow show how the nested arrays can be accessed (counting
of array elements starts from 0). The last line therefore indicates we take the third element of x, take
the second element of that and then the second element of the array we are left with (i.e., [3, 4]).

Y ou can access lists by individual names or groups

print name[0], nane[1l] # prints -"Rolf Harris"

print name[0:2] # gives list in brackets ['Rolf', -'"Harris']
print name[:2] # ditto

In the first instance the parts of the nane list are picked up individualy, in the second part arange of
list componentsis picked out (0 to 2) and in the last case all components up to name[2] are picked
out. Notice how in the last two cases the command is interpreted as going up to but not including the
number range being given. We can try the same with the list 'x".

print x[0] # gives the first elenent in the list -"[1,2,3]"

Try printing the other elements of thelist (x[1] and X[2]) to seeif you get what you expect!
Slicing lists

The last two examples using the list nane (above) are also examples of dlicing. Slicing of this type
can also be performed with numerical and string arrays. For instance,

y = ["The", -"quick", -"brown", -"fox", -"junped", -"over", -“"the", -"lazy", -"dog"]
print y[1:4] # prints the list ['quick', -'"brown', -'fox']

Again - the end integer value given for the slice is not included, so the above example only givesthe
valuesfory[1] ,y[2] andy[3] .

» Choosing y[: 4] means "take every element from the beginning of the list up to element 4, not
including element 4 ."

Scripting and Jython basics

1.5.3.

1.5.4.

* Wecanalsotohavey[4:] which means"take every element from number 4 up to the end" - note
that this will include element number 4.

* Lastly, negative numbers mean count from the end of thelist y[- 3] meanstake the third element
from the end of thelist.

Setting up and using dictionaries

A dictionary has a set of { key: value} pairs. For example:

person = {"Alice": 111, -"Boris": 112, -"Care": 113, -"Doris": 114}
print person.get("Alice")

111

print person["Alice"]
111

We"get" the associated valuefor "Alice" within the dictionary "person”. Alternatively, the key can be
given between square brackets aswith the array notation. To seeall the "keys" and "values' separately
usethekeys() andval ues() methods of the dictionary "person”.

print person. keys()

['Care', -"Alice', -'"Boris', -'Doris']
print person.val ues()

[113, 111, 112, 114]

The use of the empty brackets at the end indicate that we are not passing a parameter on to "keys" or
"values' in order to get a printout of their current settings. In fact, no parameters are allowed for these
commands, but we still need the brackets.

Also note how the commands keys() andval ues() areapplied/work on the dictionary "person”.
We will see this frequently when running DP code in the future.

If we want to change the dictionary then we need to write something like
person[' Alice'] = 222

Here, the value associated with Alice in the dictionary called person has been changed to the number
222,

Nested dictionaries

Dictionaries can hold other dictionaries too. So advanced data structures can be made.
Let us set up adictionary called abc

abc = {"John": 12345, -"Jerry" -: 23456, -"Joe" -: 34567}

We will now put thisinside another dictionary called di ct

dict = {"Alice" -: 111, -"Boris" -: abc, -"Charlie" -: -"angel"}

Note here that we have NOT got inverted commas around the value abc since we want it to point to
our dictionary abc and not be a string.

So now we can look at the value of "Boris"
print dict.get("Boris")
Which should simply give usthe dictionary abc printed on our screen. Wheress,

print dict.get("Charlie")

Scripting and Jython basics

Simply prints the string we gave as the value (we know it is a string since it has inverted commas
around it).

If we now want to get the value of "John" we would need to do
print dict.get("Boris").get("John")

First we get the dictionary abc which is pointed to by the key "Boris', then welook for the key " John"
inside. This returns the value 12345.

1.6. Augmenting values and lists

Jython alowsafull range of augmentation assignment operators (including +=, -+, *=, and /=). These
all behave in asimilar fashion.

Adds 2 to the value of a
Multiplies a by 3

w N

Y ou can add to lists too.

b =1[1]
b +=[2] # Nowb =[1, 2]. Note that the result is NOT b = [3]!

Note that here we have appended an element to the end of the list. This we could aso do with the
append() method.

b. append(3) # Now b = [1, 2, 3]

1.7. Lists and Jython tuples

A possibly confusing aspect of Jython is the use of bracketsin producing what appear to be identical
lists. True Jython listsar emutable - they can be changed/sorted (represented by square brackets, "[]").
Whereastuplesareimmutable and represented by curved brackets, ()" and aretherefore unalterable,
including ordering. So while we can append new elementsto alist, we can not do so to atuple.

[1,2,3,4]
["x", "y, 2]
ppend(c)

int a

a
(o3
a.
pr
#1[1, 2,3, 4 ['x, -'y', -"z']1]

o I | I

Thelist["x","y","z"] hasbeen added as asinglefifth element of thelist a. Wheresas...

a=(123,4)
c = ("x","y","z")
a. append(c)

...gives an error:

AttributeError: -'tuple' object has no attribute -'append'

"Adding" lists or tuples can be done to form aresultant third list or tuple. For example

1,2,3,4)
"y
Cc

—unonon
o + X

(
(
a
nt
2

ST T O QD

i
1, 2, 3, 4, -'x', -'y', -'z")

If we wish to do arithmetic with one or more arrays of numbers, rather than individual list or tuple
elements, then we need to deal with numeric arrays. These are discussed in Chapter 2.

Scripting and Jython basics

1.8. Basic programming statements

1.8.1.

1.8.2.

Thebasic programming statements arethe conditional statement if/elif/el se, theloop statementsfor and
while and the loop control statements break and continue. The conditional and loop statements serve
to execute blocks of commands depending on a given condition. Blocks are indicated by indentations
and only through indentations. No begin/end braces are required.

If/elif/else

Thei f/elif/el se statement executes blocks of commands depending on given conditions. The
syntax is.

if conditionl
bl ockl

elif condition2
bl ock2

el se
bl ock3

A few examplesto illustrate
x = 13

if x <5 o0or (x > 10 and x < 20):
print -"The value is K

if x <5 or 10<x<20
print -"This value is K
if 0<= x <= 10
print -"The value is in the range [0, 10]
elif 10<x<20
print -"The value is in the range [10, 20]"

el se
print -"The value is not in the range [0, 20]"

Thefirst two examples areidentical.

for

The f or loop was briefly discussed in Section B.6, where its use within the JIDE environment was
illustrated. The syntax of thef or loop isthe following:

for variable in list:
bl ock

where list can be an array of values, sequence of dictionary keywords, tuples, strings.
Some examples:

for i in[1,2,6 3]:
....print

The abovef or loop goesthrough valuesin an array indicated in the square brackets. A simpler way
- particularly for large numbers of iterations - isto use the inbuilt r ange function to create an array.

The following example prints the values from 0 to 99 using the range function -- it actually creates a
list of rising integer values that can then be looped through.

for value in range(100)
. print value

Scripting and Jython basics

1.8.3.

1.8.4.

Note how values start from 0 and end one below the value assigned to the range function. Currently,
the print output is going to the Console window of HIPE.

A combined example of using f or loopandi f/elif/el seisgiven below. Note the indentation
of the different blocks.

person = {"Alice" -: 111, -"Boris": 112, -"Care": 113, -"Doris": 114}
first we get the list of people's nanes
list = person. keys()

for each nane in the list we get the associated value --- this
could be a test score, for exanple.
for i in list:

pval =per son. get (i)
we check if the person is on the cutoff, and print the nane
if pval == 112:
print i, -"is at the cutoff"
bel ow t he cutof f
elif pval < 112:

print i, -"is below the cutoff"
or else, above the cutoff
el se:
print i, -"is above the cutoff"
while

Thewhi | e loop executes ablock of commands, while a given condition istrue. The syntax is:

whi | e condition:
bl ock

The condition can be any expression which results to avalue: the numeric zeroisFal se, aswell as
empty string, tuple, list, otherwise the condition is Tr ue.

Some examples:

x =0

while x <= Math. Pl:
..y = SIN(x)

....X += 0.1

Loop control: br eak and cont i nue

The command br eak can be used to immediately exit from aloop and cont i nue isused to jump
to the next iteration of the loop without executing the rest of the block.

An example for their usage is given below.

x =0
while 1:

y = TAN(X)
ify<o:
br eak
print X,y
x += 0.1

The above example shows an infinite while loop (the condition is always true) and inside the loop
block we check for a given condition and jump out of the loop once it is true, so at the first negative
tangent we exit the loop.

for i in range(100):
if i %2: continue
print i

The above example shows how we can skip the printing of the odd numbers (i % 2 isi modulus 2
and it is zero for all even numbers).

10

Scripting and Jython basics

1.9. Printing to the screen and files

1.10

We have aready seen how a print command can produce a result

print 1, 2, 1+2
#1233
print a
(1, 2, 3, 4)

(... following on from the above augmentation example).
The printout can be formatted in the same way aswiththe C spri nf format codes. Some examples:

print -"Wien % is % years old then Pl will be %8.10f" 9% "John", 23, Math. Pl)

When John is 23 years old then PI will be 3.1415926536

print -"Wien %8s is %4i years old then Pl will be 9916.12f" 9% "John", 23, Math. Pl)
When John is 0023 years old then PI will be 003.141592653590

To print lists or arraysit is necessary to make aloop:

a=1[11,2,3,5,8,13,21, 34]
for i in range(len(a)):
print -"Line: 98i" %al[i])

Another useful usage of formatted printout is with dictionaries as shown in the following example:

record = {"nane": -"John", -"Rooni: 112, -"class": -"nanager", -"age": 27}
print -"Extracted record\n Nane: % nane)10s Room % Room4i" %record

Extracted record

Nane: John Room 112

We can also print to afile.

file = open("output.txt", -'w) # -'wW allows wite access overwiting

previous contents.

-'a would append at the end of the file.
print >> file, 2 # Puts the nunber 2 into output.txt

Or

print >> file, a # Puts the array -"a" into output.txt

For printing an array/list to afile.

Note that it is not necessary to close access to afile within your DP session. To overwrite the original
text file, reopen the file. Reopening the file will remove the contents.

Defining and using functions

Here we name a piece of code, cal it with some parameters and have it return aresult. Functions are
set up with the keyword def. e.g.,

def square (x):
-... return x*x

print square(2)
4

The arguments of the functions are passed by value, i.e. the input argument is not changed outside
the function:

def nyfunc(a):
a=a+1
return a

11

Scripting and Jython basics

#

x = 4.0

print myfunc(x)
#5.0

print x

4.0

Note that variables from the main HIPE session have global scope, i.e. they are accessible inside
functions but cannot be changed. The example below will produce an error:

def nyfunc(a)
a=a+1

4.0
t nyfunc(x)
boundLocal Error: local: -'Xx'

#
X
pr
#

Ss

However, the following example shows a dangerous effect:

def nyfunc(a)
b=a*z +1
return b

#
X = 4.0
z = 10.0
print myfunc(x) # this one works as z is global and accessible inside the function
41.0

This may have side effects especially when one has plenty of variablesin the HIPE session and seem-
ingly the defined user functions work. There is no guarantee though that next time the same global
variables will be available or they may have different values, in which cause the functions will throw
errors or worse give wrong results. That is why our advice iswhen it is necessary to use global vari-
ablesinside user functions to pass them as arguments.

Somearguments of thefunctionsmay havedefault values. Thisisillustrated by the following example:

def nyfunc(x, y=1.0, ver bose=Tr ue)
Z = X*X +y
if (verbose)
print -"The input is % % and the output is %" %X,VY,z)
return z
#
myfunc(5.0) # using default values for y and verbose
The input is 5.000000 1.000000 and the output is 26.000000
print nyfunc(5.0, y=5.0, ver bose=Fal se)
30.0
print myfunc(5.0,5.0, Fal se) # the sane as the previous
30. 0.
print myfunc(5.0,5.0)
The input is 5.000000 5.000000 and the output is 30.000000
30.0

The arguments of a function can be functions themselves, like in the following example:

def funcl(x)
return x*x
def func2(x)
return x/2.0
def myfunc(f1l,f2,x)
return f1(x) + f2(x)
#
x =3.0
print nyfunc(funcl, func2, x)
10.5
Even the user can input any avail abl e function of one argunent
print nyfunc(SIN, funcl, x)
1.6411200080598671

12

Scripting and Jython basics

1.11

In actual fact, DP has a sophisticated numeric functions package that can allow squaring of values and
numeric arrays of varioustypes (double, integer etc.). Numeric functions availablein DP are discussed

in Chapter 3.

If you want to call afunction without arguments then the () brackets are required.

A useful thing to know is that functions are values in Jython. So taking an example from the previous
section

print person.val ues()

Could be changed to

pval ue = person. val ues

print pval ue

which indicates -"pvalue" is a Jython val ues type
print pval ue()

which actually prints out the val ues

Importing modules

Most useful classes and functions are put into Jython modules or Java packages. These are then im-
ported into a given environment or program with thei npor t statement.

Try issuing the following command from within HIPE:

print localtinme()

You will get an error:

NanmeError: |ocaltine

Thisisbecause, althoughthel ocal t i ne functionispart of the software distribution, it has not been
imported into your session. Thel ocal ti me functionispart of thet i ne Jython module, which you
can import by issuing this command:

import tinme

This imports the entire module, but forces you to use the qualified name of the function (that is,
including the module name):

print time.localtinme()
(2009, 5, 17, 10, 41, 18, 6, 137, 1)

The following syntax allows you to usethel ocal t i me function without the qualified name:

fromtine inport |localtine
print time.asctine(localtinme())
Sun May 17 10:44: 35 2009

Note that asct i nme, which converts the time into a human-friendly format, still needs the qualified
name. To import all the names from a module, use the following syntax:

fromtine inport *
print asctinme(localtinme())
Sun May 17 10:44: 35 2009

Use this option with caution, because some of the names imported from the module could overwrite
names you defined locally. To see al the names contained in a module, use the following command
(herefor thet i me module):

print dir(tinme)

13

Scripting and Jython basics

To avoid name clashes, you can define a different name from what you import:

fromtine inport localtime as Itine
print Itime()
(2009, 5, 17, 10, 41, 18, 6, 137, 1)

Importing Java packages works in exactly the same way as importing Jython modules. For more in-
formation about Java packages, see Section 1.12.4.

A basic set of packages most relevant to usersis loaded when HIPE is started.

1.11.1. Importing and reloading your own modules

Suppose you have written the module myModul e. py and placed it into / home/ user / sone/
f ol der . The module file contains the following:

"""This nodul e contai ns one sinple function"""

def sinpl eFunc():
print -"Sinple nessage."

To have your module imported automatically when HIPE starts, you can define the property
hcss.interpreter.inportsinyouruser. props file. You can list several files, separated
by commas, like the following (but all on the sameline):

hcss.interpreter.inports =
{ -/hone/user/sone/fol der/ nyMdul e. py,
-/ home/ user/ anot her/f ol der/ anot her Modul e. py -}

With this property you can also execute alist of custom i nport statements when HIPE starts. Just
add them to afile, for instancei nport s. py:

from sone. nodul e i nport *
from anot her. nodul e i nport Foo
from yet. anot her. nodul e i nport Bar

Then add thei nport s. py fileto thelist:

hcss.interpreter.inports =
{ -/hone/user/sone/fol der/ nyMdul e. py,
-/ home/ user/ anot her/ f ol der/ anot her Mbdul e. py,
-/ home/ user/yet/anot her/fol der/inmports. py -}

If your moduleis not imported automatically, you can import it on the fly within HIPE. First you have
to add the directory containing the module to the list of paths searched by Jython:

HI PE> i nport sys

HI PE> sys. pat h. append(' / hone/ user/ somne/ f ol der')
HI PE> i nport nyModul e

HI PE> nyModul e. si npl eFunc()

Si mpl e nmessage

Note that a failed moduleimport will cause subsequent importsto fail unless you undo the import
first, as shown by the following example:

H PE> inport nyModule # Failed inport

ImportError: no nodul e naned nmyModul e

HI PE> i nport sys

HI PE> sys. pat h. append(' / hone/ user/ somne/ f ol der")

HI PE> i nport nyModule # This should work now. ..
InmportError: no nodule naned nyModule # -...but it doesn't.
HI PE> del (sys. nodul es[' myMbdul e']) # Undoing the inport

HI PE> inport nyModule # Now it works

HI PE> nyModul e. si npl eFunc()

Si npl e message

14

Scripting and Jython basics

If you modify your module and want to apply the changesto your current HI PE session, usether eload
command:

HI PE> r el oad(nyMbdul e)

Alternatively, you can use the del as shown above and then import the module again:

HI PE> del (sys. nodul es[' myMbdul e'])
H PE> i nport nyModul e

1.12. Object-oriented programming

HIPE is based on Jython and Java. Javais an object oriented language, and Jython can be used as an
object oriented language, although it is mostly used in its procedural form. Object-oriented program-
ming, or OOP for short, has been (and till is) the subject of much hype, several misconceptions and
afew urban legends. It is not the remedy to al evils, but in many cases it can help to write cleaner,
more reusable and more maintainable code. Although you will not have to write a single line of ob-
ject-oriented code to use HIPE, being familiar with some of its concepts may help to gain a better
understanding of the DP system. Wewill now briefly explain the basic words of the trade and describe
the advantages of the OOP approach.

1.12.1. Classes and objects

The traditional, or procedural, way of programming is relatively straightforward. We take program
inputs and store them in variables, which can be of many types (integer, string, float etc.). We process
this input using the set of commands provided by the language we are using. Other variables are
employed to store the outputs and any intermediate values we might need. Finaly, the outputs are
given back to the user in some way and the program terminates.

Totidy up our code, we might want to group sets of commandsthat perform particular tasksinto blocks
called functions or subroutines. Such blocks can be called multiple times using loops, thus avoiding
the need to duplicate code. At any point our program can decide to execute one function instead of
another, based on whatever criteria we set: this would be achieved via a control flow statement such
asani f...then block. By organising code into functions/subroutines we just made the leap from
unstructured to proper procedural programming.

Object oriented programming takes it one step further. The old ingredients are till there: variables,
functions (here called methods) and a set of commands such as control flow statements. So, where
isthe big difference?

The difference liesin the way all these tools are organised. An object is a bundle of related variables
and methods (functions) acting on these variables. A class, on the other hand, is like a mould from
which objects are created.

The best way to grasp these conceptsisto think of a concrete example. Imagine that, for some reason,
we have to code amodel of an aeroplane. We all have a general idea of what an aeroplaneis (it hasa
fuselage, wings, one or more engines, landing gears...) and of what it does (it can take off, land, climb
and descend...). Also, we are probably not thinking of a particular aircraft, but of our idea of aplane.
Thisideaiswhat in OOPtermsiscalled aclass. A classisagenera description of an object, of what
itisand what it does. What our Aer opl ane object is, or its status, is described by instance variables
(just so you know, there is a distinction between instance and class or static variables;, more on this
later). Aninstance or class variable could be of a primitive type (e.g. afloat called wi ngspan) or a
full-fledged object (we could think of creating an Engi ne object). What an object does is described
by functions called methods.

Aswe said, aclassis not the real thing, it is just a mould. When we create an object from a class it
is said that we instantiate, or create an instance of the class. In other words, besidesthe Aer opl ane
class, which represents no specific plane, we now have the my Aer opl ane object, which is areal
plane we can climb on and fly.

15

Scripting and Jython basics

Finally, there can be propertiesthat are specific of each instance of aclass, i.e. of each particular object;
these are aptly called instance variables, as we aready know. But there could be variables having the
samevaluefor all the objects of agiven class, which would then be better defined inside the classitsel f
and then shared by al itsinstances. These are called class or static variables. The samedistinction also
applies to methods, but let us stop here for now. What we say below referring to instance variables
can also be applied to static ones, unless stated otherwise.

1.12.1.1. A note about terminology

Y ou might be confused about the exact meaning of the words method, function and subroutine. All the
three words denote a subprogram, i.e. a separate block of code that may be invoked from elsewhere
in the program. This block of code may take input values and return an output. The term method is
typically used in OOP to indicate a subprogram inside a class (or an object, which is an instance of
aclass), while function or (less frequently) subroutine denote a subprogram in procedural code. Thus
we will usually speak of amethod in a Java class, but afunction in a Jython script.

Just when you think you got it, you may encounter the notion of function object. Why would afunction
be mentioned in connection with an object? According to what wejust said, we should call it amethod,
right?

Not realy. Function objects, also known as functors or functionoids, are objects that
can be invoked or caled as if they were functions. For example, if you write y =
SORT(x) in HIPE to sort a vector, you are using an object, namely an instance of the
herschel .ia. numeri c. t ool box. basi c. Sort class. If you do not believe what you are
reading, try issuing this command in HIPE:

print SORT

You will get something like

herschel .i a. nuneri c. t ool box. basi c. Sort @65e0

The hex number after the '@ will likely be different. What you got is the output of thet oSt ri ng
method, whose aim isto give astring representation of an object. The default output containsthe class
name of the object.

1.12.2. Interface, implementation and encapsulation

You already know that actions performed by objects are coded in functions called methods. Our
Aer opl ane classwill have methodsliket akeOf f , | and and so on. Some or all of these methods
will be public, i.e. visible (and callable) from other pieces of code. Thisiswhat is called theinterface
of aclass: aset of methodsto operate on the object, makeit do stuff and enquire about itsinternal state.

Going on with our aeroplane example, the interface is made of all the dials, displays, buttons and
leversin the cockpit. We can operate the plane and read the value of all the relevant variables (speed,
fud, altitude...). The nice thing is that we do not have to know in detail how the controls work in
order to use them. It may be the latest fly-by-wire technology, or the old mechanical one, but in both
cases we know that pulling on the yoke the plane will climb. In OOP terms, the user just needs to
know the interface of an object, not its implementation, i.e. the gears and cogwheels behind its shiny
surface. The implementation is said to be hidden, with the advantage that it can be modified, tweaked
and patched as much as the devel oper wishes. Aslong as the interface remains the same, the user will
not notice anything.

It is good practice to prevent users from directly accessing instance variables. These are part of the
implementation, and could have to be changed (e.g. fromi nt tof | oat) possibly breaking external
code accessing our object. A much better way is to provide methods to get and set the value of a
variable (these methods are usually know as getters and setters). It may seem overkill, but it helps
keeping the code moremaintainable. It issaid that our instance variables are neatly encapsulated inside
our class. To say it with a metaphor, we want the pilot of our plane to read the fuel level from a dial

16

Scripting and Jython basics

(theget Fuel Level method) rather than tampering with the fuel tank to get alook inside (trying to
directly accessthef uel Level instance variable).

1.12.2.1. Interfaces in Java

Interfaceis ageneric programming concept, but it is also a specific Java construct. A Javainterfaceis
acollection of methods and constants. If a classimplementsan interface, all the methods and constants
listed by the interface are available in the class and in all of itsinstances.

1.12.3. Inheritance

Thisisasdlightly more advanced concept, which can be safely skipped without trouble. However it is
not very complicated. When you think of all the different kind of aeroplanes existing today, from tiny
ultralights to huge jets, you may wonder how a single Aer opl ane class could represent them all.
Actually, it cannot: that is why we can define subclasses of Aer opl ane. These subclasses receive,
or inherit, the variables and methods of their parent class, and we can override them, or add new ones,
to suit our needs. We can create the Boei ng787 and Ai r bus 380 subclasses of Aer opl ane, with
specialised methods and different values of instance variables (like nunber Of Engi nes). Note that
there are waysto prevent subclasses from inheriting certain variables or methods, but this goes beyond
the scope of this manual.

One more example: suppose we have a class Seat to describe aeroplane seats. We can subclass
it into Fi r st O assSeat and EcononySeat . Each of them will have (very) different values
of the seat Pi t ch instance variable. Also, we could add at ur nl nt oBed method to Fi r st -
Cl assSeat , which will definitely be absent from Econony Seat .

By creating such hierarchy of classeswe can reuse general pieces of code many times, to tackle several
specialised tasks.

1.12.4. Packages and namespaces

Common problems in programming are name clashes and, as a consequence, running out of meaning-
ful (or suitably short) names for variables, methods and the like. This is even more serious when we
use several different pieces of code, each developed by several people. Think about the DP system,
for instance: we are putting together Java, Jython and a lot of Herschel-specific code. How can be
sure that nobody thought of the same name for completely unrelated entities? How can we avoid such
confusion?

To answer this question, take alook at the HCSS Javadoc. Y ou can access it by clicking on HCSS
devel oper's Reference Manual (API) in thetable of contents of the HIPE Help System. Then click the
FRAMES link near the top of the page. Thiswill open the traditional, three-frame Javadoc display.

Look at the upper left corner of the page. There is a list of names such as herschel.access,
herschel .access.db and so on. Click on any of these item. The box below will change to show a list
of the classes and interfaces contained in that package. Now go back to the list of packages and
scroll it from top to bottom. As you can notice, everything starts with "herschel”. Then there are
subpackages such as herschel.ia and herschel.ccm, and finer subdivisions like herschel .ia.dataset and
herschel.ia.document. Y ou get the picture: packages are used to organise classes, interfaces and other
programming constructsinto ameaningful hierarchical structure. To usethefunctionality of apackage
in aJython script, you can import it with acommand such asi nport herschel . i a. nuneri c.

That makes a lot of sense, but how can it prevent name clashes? In away, it does not: it just makes
them harmless. The point isthat every package is a separate namespace, i.e. a separate domain where
we can choose names as we please (well, almost), without worrying about names in other packages.
And what happens if we import two packages containing a class with the same name? For exam-
ple, herschel.ia.numeric.toolbox.basic and herschel .ia.dataset both have classesnamed Pr oduct (do-
ing completely different things). In that case we can use the fully qualified class name, that is, write
herschel . i a. dat aset. Product instead of just Pr oduct to get rid of any ambiguity.

17

Scripting and Jython basics

1.12.5. Advantages of OOP

The most commonly cited advantages of OOP can be summarised as follows:

1.12.6.

For people with along tradition of writing procedural code, switching to the object oriented paradigm
can be painful at first, leading to decreased productivity and astrong desireto give up and keep writing
code the old way. A little perseverance will pay in the end, keeping in mind that the time lost at first
will be more than regained at the end.

1.13.

Modularity. Organising code into a hierarchy of classes is a natura invitation to build modular
programs. Natural, but not automatic: nobody prevents you from designing few enormous classes
doing severa unrelated tasks at once. To reap the most benefits from modularity, classes should
have one well-defined purpose (in object oriented jargon they are said to have high cohesion) and
interact with other classes only through their interfaces, without having to know about their internal
state (low, or loose, coupling). To get a picture of the concept, think of a plumber working with
several specialised tools rather than fumbling with a Swiss Army knife.

Reuse of previous work. Thisis probably the most cited benefit. A set of modular classes, following
the guidelines mentioned above, arerelatively easy to plug into one another, which allows creation
of new programs. As before, benefits are the result of good planning and design.

Increased quality. We do not mean here that programmers devel oping object oriented code are in-
trinsically better than their procedural colleagues. Increased quality islargely aresult of the previous
point, code reuse. The more existing, tested code can be employed to develop a new application,
the less will have to be built and debugged from scratch.

Faster development. Again, thisis not because of some mysterious power of OOP that leads devel-
opers to type much faster. Like the previous point, it is mainly an advantage of code reuse: if a
large part of anew application consists of existing code, thiswill automatically trandate into faster
development.

Better mapping to the problem domain. What we mean by this statement is that with OOP it is
easier to model the software on the real-world problem that hasto be solved, rather than bending the
problem to the constraints of the programming language. New objects can be created representing
all sorts of things, like customers, machinery, banks or, well, aeroplanes. When dealing with the
Task framework in Chapter 4 we will discover that OOP works well even for representing more
abstract concepts, like the different stages of a data reduction pipeline.

Concluding remarks

Aswe said at the beginning, it is aso important to remember that OOP, despite its advantages, is not
the solution to al problems. It isindeed possible to write excellent and easily maintainable procedural
code and absolutely messy object-oriented code. No coding approach, however ingenious, will avoid
ill-designed algorithms, cryptic variable names and inextricable spaghetti-like loops. Most important
of al, no piece of code, whether object-oriented or not, will spontaneously document itself at night.

Now it is time to put theory into practice. The following section deals with the Basket class, an
exampl e class written in Jython.

Defining a class

The following code creates a class called Basket :

cl ass Basket:

al ways remenber the self argument
def __init__(self, contents=None):

self.contents = contents or [] # @
def add(self, elenent):

18

Scripting and Jython basics

1.14

sel f.contents. append(el enent) # O
def print_me(self):

result = -'
for elenent in self.contents:

result = result + -" -" + “elenent” # ©
print -"Basket contains: -"+result

© thishit doesalogical or - if aparameter is passed to it, it becomes the contents, otherwise we
get an empty basket!

0 thisaddsthe element to the contents (sel f . cont ent s)

® thisprintsthe contents of the Basket. Note the use of upper |eft keyboard singleinverted commas
around el enment .

The class has two associated methods add() and pri nt _ne() (following def in the above ex-
ample).

Try placing the above within the Editor pane of HIPE. Here we create an object to work on, called
sel f - whichiscustomary. Thisisinitiated by thedef __init__ command (by the way, that is
two underscores on either sideof i ni t).

Leave a blank line at the end of the script when placing it within the Editor pane of HIPE. Now hit
the double arrow icon to load this into your DP session.

Once created, we can run the class by typing Basket () in HIPE viathe Console window.
Now try the following in the command line window.

a = Basket() # @
a.add("saw') # @
a.add("hanmer") # ©
a.print_me() # O

this line sets up an empty basket which we have called a

thisline adds the item sawto the basket. It runsthe add() method on the object a.

thisline adds the item hammer to the basket.

thisline prints the contents of the basket we called a, which should be 'saw' and 'hammer’. This
runsthepri nt _ne() method on the object a.

o000

We could equally have started our basket with one item

a = Basket (["saw'])

Note
@ If we had written a = Basket ("saw') (without the square brackets) the
print_ne() method would have returned this: Basket contains: 's' 'a'

Basically we have obj ect . met hod(argl, arg2)
In the above case a is the object and we have the methodsadd() and pri nt _me().

__init__ isaspecia method that is said to be a constructor setting things up in the first place. The
constructor (initial call to the routine) creates an instance of the object (in the above case it creates
a basket we can put thingsin).

Writing scripts

Scripts take individual statements and combine them to make more complex routines. Y ou can edit
ascript directly in the Editor view of HIPE.

19

Scripting and Jython basics

Following on from our Basket example. If the class Basket has already been created you can create a
script that uses it. For example, you can place the following in the HIPE Editor window.

= Basket ()
.add("saw")
.add(" hanmer ")
.add("chisel ")
= Basket ()
.add(" bread")
.add("cheese")
.add("m | k")
.print_ne()
.print_ne()

TQ CTCTUTOH OO D

Now if we hit the "Run all" button then we create two baskets the contents of which will be printed
to the command window (bottom left).

This script can be saved using the "File" pulldown menu or save icon (default is".py" extension).

1.15. Some useful extra items on scripts

» Some arguments can be optional and can be given adefault value. E.g.,
def spanm(age=32):
tamy_age = age -- 5

print -"Tamy is -",tamy_age
print -"Tammy's brother is -", age

Here, spam can be called with zero or one parameter. |f no parametersare given it will be called with
the default parameter of age=32. If a parameter is given with the call then that will be assigned
toage instead.

Our little script can now be run using, for example,

span()
span(age=34)

» Backquotes (*) convert an object to its string representation (so the number 1 can be converted to
string "1").

age = 32
message = -"Tammy is -"+ age’
print message

Here we add (viathe plus sign) the string value of age to our message.
» The + sign can be used to append string lists.

» One change to make printing easier. We can change to the special method __str___ so that our
last function starts with the line

def __str_ (self)

Instead of

def print_nme(self)

We should also change
print -"Basket contains: -" + result
to

20

Scripting and Jython basics

result = -"Basket contains: -" + result
return result

Now we can use
print a

to show our basket contents rather than

a.print_ne()

1.16. Interactivity in Jython scripts

This section explains how you can make your scripts more interactive, having them asking the user
for input and reacting accordingly.

The simplest way to ask the user to input avalueisto usether aw_i nput function, asthe following
example demonstrates.

myAnswer = -
myAnswer = raw_i nput ("Pl ease wite sonething, anything\n")
print -"You wote -" + nyAnswer + -"\nWell done."

Hereisan interesting fact. When we run this script in HIPE, asmall window pops up (see Figure 1.1)
with the text we passed to r aw_i nput , a box where we can input text and two buttons, OK and
Cancel. Savethisscriptand call itt i nyScri pt . py, then executeit from the command line, outside
HIPE, issuing python tinyScript.py or jython tinyScript.py, or try double-clicking on the file icon.
Y ou will see no fancy windowsthistime, everything will happen inside atext console. In other words,
the window we got is a feature courtesy of HIPE, not a Jython feature.

- Please write something, anything

| Ok || Canceli

Figure1.1. Thewindow that appearscalling ther aw_i nput function from within HIPE.

Warning

O Remember that r aw_i nput takes everything the user inputs and turns it into a string,
including numbers. So be careful when comparing thisinput to other numbers: you might
need to cast your variable to anumerical type.

A fundamental flaw of our little example is that it does not check the input in any way. We could
even get away with writing absolutely nothing in the text box, and HIPE would give the seemingly
sarcastic reply

You wote
Wel | done.

Of course if we had initialised my Answer to anything else than an empty string, we would get that
value in the output. Worse still, if we press the Cancel button, regardless of whether we wrote some-
thing or not, the my Answer variable will be set to None and the following line will give an error.

One way to have the user input something sensible isto embed the request into awhi | e loop, asthe
following example demonstrates.

21

Scripting and Jython basics

nyAnswer = -""
whi l e nyAnswer == -"":
myAnswer = raw_i nput ("Wite sonething, anything\n")
if myAnswer == None:
nyAnswer = -""
print -"You wote -" + nyAnswer + -"\nWell done."

Thisway the window will not go away until we write something and press OK, and if wetry to bypass
the check by pressing Cancel the following i f clause will at least prevent an error on the last line.

More complicated checks can be put in place, for example to make sure that a numerical value stays
within the allowed range, and more sophisticated loops may be needed, but the principle is the same.

The above example can aso be useful when we want to stop the execution of a script, for whatever
reason, and wait before resuming it until the user lets us know that he is in front of the computer
and is paying attention. In this case the input does not matter at all, since we just want the user to
acknowledge a request by pressing a button.

WEell, it works but it is far from optimal. Why having a box for entering text if the text itself does not
matter? Wouldn't it be much better to have awindow with Press OK to continue written on it, the OK
button, and nothing else? This is the subject of the next section.

1.16.1. The Swing library

Swing isthe name givento that part of Javathat deal swith creating graphical user interfaces (or GUIS).
Yes, you read correctly: Java, not Jython. Please do not let this scare you. We have used Java bits
before, amost without realising it (after all, it is what makes Jython so powerful) and this case will
not be different. As amatter of fact, using Swing within Jython is easier than doing so within Java.

This section will teach you enough about Swing to get you started, but if you want to become a GUI
guru you may want to look elsewhere. The first chapter of the Jython Essentials book has something
more to say about Swing. Y ou can find it here:

http://www.oreilly.com/catal og/jythoness/chapter/ch01.html

1.16.1.1. showvessageDi al og

The first thing we will do is to invoke a Swing method to display a message in a window, together
with an OK button:

fromjavax.swi ng inport *

print -"Let's stop for a while"

JOpt i onPane. showiessageDi al og(None, -"Press OK to continue")
print -"Well done."

Thefirst line imports the swing package (note that it isj avax rather thanj ava). Then we have the
line creating the window, embedded between two lines printing text messages to demonstrate that the
script will not advance until we press the OK button.

OK

Figure 1.2. Thewindow that appears calling the Swing showMessageDi al og method.

22

http://www.oreilly.com/catalog/jythoness/chapter/ch01.html

Scripting and Jython basics

Y ou have probably noticed that the showMessageDi al og method takes two parameters, and we
have set the first oneto None. It is used to indicate the "parent” element of the dialogue box we are
creating. In this case (and in everything that follows) we arejust creating a single window and nothing
else, so we will not worry about this parameter anymore.

Actualy the showMessageDi al og can take more than two parameters. Notice that the text in the
title bar of our window wasjust "Message". In order to customiseit we have to add another parameter,
likethis:

JOpt i onPane. showessageDi al og(None, -"Press OK to continue", -"Title bar text")

Try this and you will get... an error. This is because this third argument must go with a fourth one,
telling what kind of window we are creating. Let ustry again:

JOpt i onPane. showiessageDi al og(None, -"Press OK to continue", -"Title bar text", \
JOpt i onPane. ERROR_MESSAGE)

B Title bar text -

® Press OK to continue

Figure 1.3. Customising theicon and the window title.

Now it works, and it even alows us to change the icon to a nice "error" one. There
are a number of possibilities for this fourth parameter, all of which are self-explanatory:
ERROR_MESSAGE, | NFORVATI ON_MESSAGE, WARNI NG_MESSAGE, QUESTI ON_MESSAGE
and PLAI N_MESSACE. Fed freeto try them at your leisure.

If you are sharp-eyed you might have noticed that the previous error message said "expected 2 or
4-5 args; got 3". This mysterious fifth argument is used to add a custom icon to the window, in case
you are not satisfied with the predefined ones. Since this is pure eye candy and adds nothing to the
functionality of the window, we will not cover it here.

1.16.1.2. showl nput Di al og

Now wewould liketo takeit astep further and create awindow for entering text, just like we did with
ther aw_i nput function. We just have to use a different method, like this:

nyAnswer = JOpti onPane. show nput Di al og(None, -"Please wite sonething, anything")

B input ©

2 Please write something, anything

l Ok || Cancel|

Figure 1.4. Thewindow that appears calling the Swing\show nput Di al og method.

You can put thisline in the scripts we used to describe the r aw_i nput function and you will obtain
the same behaviour, quirksincluded (even the two windows|ook exactly the same). The big difference
is that, even if you are launching the script from a command line interface outside HIPE, a window
will still pop up.

23

Scripting and Jython basics

Granted, awealth of additional options is available for this method as well. The ones we saw before
are still valid:

myAnswer = JOpti onPane. show nput Di al og(None, -"Pl ease wite sonething, anything", \
"Bi g question", JOptionPane. QUESTI ON_MESSAGE)

But there is more. We can put a default string of text in the box like this:

myAnswer = JOpti onPane. show nput Di al og(None, -"Please wite sonething, anything", \
"Default text")

If we want the user to choose from a predefined set of options, we can use the showl nput Di al og
with awhopping seven parameters, as the following script demonstrates:

fromjavax.swi ng inport *
myAnswer = -""
possi bl eAnswers = ["H FI", -"PACS", -"SPIRE', -"No clue", -"All three"]
whi l e nyAnswer == -"":
myAnswer = JOpti onPane. show nput Di al og(None, -"Favourite Herschel instrument?", \
-"Test", JOptionPane. QUESTI ON_MESSAGE, None, possi bl eAnswers, possi bl eAnswers[4])
if myAnswer == None:
myAnswer = -""
print -"Your answer is: -" + myAnswer

] Favourite Herschel instrument?
L]

|5PIRE =

Ok Cancel |

Figure 1.5. A more complex window with a combo box.

L et us go through the parameters one by one:

1. None: the "parent”" element.

2. "Favourite Herschel instrunment?":thewindow text.

3. "Test " : thewindow title text.

4. JOpt i onPane. QUESTI ON_MESSACE: the type of window.

5. None: the custom icon. We choose to provide no one and stick with the default one.
6. possi bl eAnswer s: the array of possible answers.

7. possi bl eAnswer s[4] : the default answer.

1.16.1.3. showConfi rnDi al og

Next we take alook at the showConf i r nDi al og method, which can be used to display a window
asking the user to confirm or block a certain action. One example will clarify what we mean:

fromjavax.swi ng inport *

myAnswer = JOpti onPane. showConfirnDi al og(None, -"Yes or no?")

if myAnswer == 0: # Now nyAnswer is an integer variable
print -"You agree"

elif myAnswer == 1:
print -"You disagree"

24

Scripting and Jython basics

1.17

el se:
print -"You have no opinion on this"

B Select an Option -

? Yes or no?

| Yes || Mo ||Cance|

Figure 1.6. Using the Swing showConf i r nDi al og method.

Note that we can use predefined constants to make the code easier to understand, if a little more
verbose, as the following, slightly expanded example shows:

fromjavax.swing inport *
nmyAnswer = JOpti onPane. showConfirnDi al og(None, -"Yes or no?")
if myAnswer == JOptionPane. YES OPTI ON:
print -"You agree"
elif myAnswer == JOpti onPane. NO_OPTI ON:
print -"You disagree"
elif myAnswer == JOpti onPane. CANCEL_OPTI ON:
print -"You have no opinion on this"
elif myAnswer == JOpti onPane. CLOSED_OPTI ON:
print -"You closed the w ndow. How rude!"

Asawayswe arefree to make things more complicated than that. We can add another two parameters
to provide atitle for the window and the type of buttons we want:

nyAnswer = JOpti onPane. showConfirnDi al og(None, -"Yes or no?", -"Question", \
JOpt i onPane. YES_NO_OPTI ON)

Here we decided to drop the Cancel button. Other possible optionsare YES_NO_CANCEL_ OPTI ON,
OK_CANCEL_ OPTI ON, both self-explanatory, and DEFAULT_OPTI ON, which will just display an
OK button.

Useful Java hits

The Jython language is an implementation of Python written in Java, which means that it is as good-
natured yet powerful as Python, but with the added benefit of thousands of packages and classes
developed for Java. We will be using some of these classes in the next chapters, and here is a brief
description of what they do.

e Thej ava. awt package. Asyou already know apackage is a collection of related classes, like a
binder on your desk keeping related documents together. Thej ava. awmt package contains all of
the classes for painting graphics and images. It is particularly useful for scripts involving plotting
and viewing images.

e Thejava. awt . Col or class. With this class you can specify a colour for an object. There
are thirteen predefined colours available: BLACK, BLUE, CYAN, DARK GRAY, GRAY, GREEN,
LI GHT_GRAY, MAGENTA, ORANGE, PI NK, RED, WHI TE and YELLOW If you feel you need a
fancier shade you can provide the red, green and blue valuesindividualy, asthreei nt sbetween
Oand255o0r f | oat sbetween 0.0 and 1.0, likethis: j ava. awt . Col or (0.3, 0.2, 0.5).
You can aso add the alpha (transparency) value as a fourth parameter: 0.0 means completely
transparent and 1.0 completely opague.

e Thej ava. awt . Font class. Thisclassallowsyou to select fontsfor annotations on your graph-
ical objects, together with their style and size. The syntax of the constructor (i.e. the specia
method called to instantiate an object from a class) is like this: Font (" SansSerif", 0,

25

Scripting and Jython basics

64) , where we have the font name, its style code (O for plain, 1 for bold, 2 for italic) and its
sizein points.

e Thej ava. awt . W ndow class. This class deals with the drawable area of a window on your
desktop (not with borders or menu bars). One useful method, especially for plotting, isset Lo-
cat i on, inherited from j ava. awt . Conponent . It acceptstwo i nt parameters, the x and
y position of the top left corner of the object you want to move.

For more information on these and other classes of the standard Java APl you should browse the
official Javadoc. If you are looking for a less traumatic introduction to the Java language, the Java
Tutorial isan excellent resource.

1.18. Jython and DP quirks

Every programming language or software system hasiits quirks. Jython and DP are no exception, and
this section deals with some of the features you might find confusing.

1.18.1. Two functions for one goal

There are some mathematical function in DP existing in two forms, one in the usual FirstLetter Cap-
italised form (the so-called Camel Case convention), the other in UPPERCASE. The first form is the
recommended way to go, sinceit is consistent with the rest of the system; the aternative syntax (tech-
nically known as Jython wrapper) is being kept for backward compatibility, but is not recommend-
ed for use in new code and is no longer described in this manual. Examples of Jython wrappers are
MATMUL and SOLVE instead of the classesMat ri xMul ti ply and Mat ri xSol ve, or RESHAPE
instead of Reshape to change the shape of arrays. You might still bump into them when browsing
legacy code.

Unfortunately Jython wrappers are not the only names in uppercase letters, so thisis not a good way
to identify them, since also e.g. static instances (see Section 1.18.3) such as SI N and COS use the
same convention.

1.18.2. Long Names versus Short Names

The general rule used in developing the classes used in the DP system isto use long descriptive names,
e.g., TableDataset rather than TDset. An exception to the rule is, e.g., |OException rather than In-
putOutputException

The general rule is that a class name must be self descriptive (easier to remember) which sometimes
conflicts with the requirement "I should do every thing by typing three-six letters'. The latter was
arestriction in F77, and language devel opers fortunately diverted from that (as it introduced names
like CCDF12, CCEFLT, EMPXFF), which are indeed less typing but make the code less (if not com-
pletely un-) readable. Exceptions are usually dealing with "well-known" abbreviations. Acronyms
such as"IBM Type Writer" istaken to become "IlbmTypeWriter" rather than "IndustrialBusinessMa-
chinesTypeWriter."

Any Jython user can create aliases by do things like:

TDS=Tabl eDat aset

t 1=TDS(description="Hello world, this is still a tabledataset!")

print TDS

herschel . i a. dat aset . Tabl eDat aset

print t1

{description="Hello world, this is still a tabledataset!", meta=[], colums=[]}

print t1.__class__
herschel . i a. dat aset. Tabl eDat aset

Here, in effect, we have created a shortened version of the command we can use to set up a Table-
Dataset called "TDS'. We then create a TableDataset, called "t1", which initially contains only a de-
scription in the second line. Thisis equivalent to writing

26

http://java.sun.com/javase/6/docs/api/
http://java.sun.com/docs/books/tutorial/index.html
http://java.sun.com/docs/books/tutorial/index.html

Scripting and Jython basics

t 1=Tabl eDat aset (descri ption="Hello world, this is still a tabledataset!")

The last two lines indicate the contents of "t1" and the class that created it.

1.18.3.

Naming conventions

A potentially confusing aspect to the naming of DP classesisthe mix of upper- and lower-case |etters.
A comprehensive description of the naming conventions used in the HCSS is given in Appendix D
and here we just shortly describe the most important aspects. The upper-case/l ower-case scheme used
in predefined DP classes has the following conventions.

1.18.4.

Classes
Class definitions have names that consist of words of which each first letter is capitalised:

MyOwndCl ass
Tabl eDat aset
Hi fi Product

Class instances -- objects

Objects (variables) of a particular class have names that should start with the first letter in lower
case. In general, thistranslates to

myownd ass=MyOmndC ass(....)
t abl e=Tabl eDat aset
a=2

Class instances as constants

Certain class instances (or simple variables) are used as constants. The convention isto use names
with all their letters capitalised and words separated by an underscore '_'. These are sometimes
referred to as static instances. An example is SIN: it is the only (allowed) instance of class Sin, as
it does not make sense to have multiple instances of these. Examples are:

VARI ANCE
'S FINITE
ALL_PRESENT

Miscellaneous quirks

Working directories. Restrictions are placed on dealing with working directories due to the use of
Java. Thisisdiscussed in Section B.4.

L oops, indentation and blank line usage. Indentation in loops is very strict within HIPE. Blank
lines can have particular significance, particul arly with respect to setting up loops. These quirks are
described in Section B.6.

Logical operators. The presence of Jython origina features together with DP specific ones can
result in counter-intuitive behaviour and unexpected results Section 3.5 in Chapter 3 deals with
these quirks.

Incompatible numeric types. Jython hasits own primitive numeric types, but Java numeric types
can be used as well. Mixing Java and Jython types (and even using Java types on their own) can
lead to strange errors that are explained in Section 1.4.1.1.

Script length. Each Jython script is compiled by the Java virtual machine into a single non-native,
non-abstract method and such Java methods cannot exceed certain limit, usually 65536 bytes. If
your Jython script is very long (more than a few thousands lines) then it is advisable to split it into
separate scripts.

27

Scripting and Jython basics

1.19. Interoperating with external software

HIPE offers a complete solution for reducing, visualising and analysing your data. However, for a
variety of reasons you may want to do some processing with other astronomical or data analysis soft-
ware, such as IDL or IRAF. This section explains how to do that.

Any data processing, whether done through an official pipeline or a custom script, is a series of tasks
applied on products, like in the code fragment below. For more information on tasks, see Chapter 4;
for more information on products, see Section 2.13.

product _2
product _3

TaskA() (product _1)
TaskB() (product _2)

Any task can output a product representing the state of processing up to that point. For example,
product _2 istheresult of processing by TaskA, before TaskB is applied.

To continue processing outside HIPE, you only haveto export aproduct to FITSformat, asexplainedin
the Data Analysis Guide. Seeasothesi npl eFi t SWi t er entry inthe User's Reference Manual:
Section 2.365.

Y ou can start processing outside HIPE with the sy st eminstruction. For example, to launch the my-
Command command insert the following in your script:

os. syst en(' nyCommand')
For thisto work you need to import the os module first:

i mport os

ThemyCommand executable could be, for instance, ashell script with further processing instructions.
Whatever your external processing, it must accept as input the FITS file produced by HIPE, and must
output another FITSfilethat can then beloaded into HIPE again. For more information on how to load
aFITSfileinto HIPE, seethef i t sReader entry in the User's Reference Manual: Section 2.131.

A script with part of the processing carried out outside HIPE would look something like this:

i nport os
aProduct = aTask() (i nput Product)
sinpl eFi tsWiter(product = aProduct, file = -"aProduct.fits")
os. systen(' myConmand') # Reads aProduct.fits, produces output.fits
out put Product = fitsReader(file = -"output.fits")
Warning
o The HCSS system is specifically written and optimised for Herschel data and should be

your first choice for data analysis. If you have to resort to externa software because of a
shortcoming in the HCSS, please raise a Hel pdesk ticket so this can be corrected.

28

Chapter 2. Arrays, datasets and
products

This chapter describes DP array data objects, datasets and products. Thisis not an exhaustive refer-
ence to all the functionality provided, the full set of available array object and dataset capabilities are
discussed in the herschel.ia.numeric and herschel.ia.dataset packages Javadoc.

There are three types of basic datasets:

 array datasets (datasets containing single Ar r ayDat a objects, holding numbers, strings, etc. in
1D, 2D, 3D, 4D or 5D)

* tabledatasets (x rowsby y columns of numeric or string arrays). Table datasets can have columns of
various data types mixed in the same dataset and can also contain unit and descriptive information
for individual columns.

» composite datasets (combines multiple connected arrays/tables in a single dataset).

One of the major advantages of DP numeric array objects (as opposed to Jython lists) is the ability to
do array arithmetic in single line commands rather than having to loop through arrays.

All classes and methods associated with handling datasets and numeric functions are automatically
loaded when HIPE starts.

TheNumericlibrary isdiscussed in moredetail in Chapter 3. Hereweinclude portionsof it toillustrate
how datasets may be handled.

2.1. Types of array data objects

DP numeric array data objects can have up to five dimensions and have the types shown in the fol-
lowing table.

Table 2.1. Numeric typesavailablein DP (N = 1...5)

Name Type Dimensions
1 2 3+
BoolNd boolean yes yes yes
ByteNd byte yes yes yes
ShortNd short yes yes yes
IntNd integer yes yes yes
LongNd long yes yes yes
FloatNd float yes yes yes
DoubleNd double yes yes yes
ComplexNd complex yes yes yes
Stringld @ string yes NO NO

©® TheStringld array typeis not strictly numeric.

2.1.1. Numeric array access and slicing

The numeric package introduces the following square brackets notation:

29

Arrays, datasets and products

where each element is separated by a comma, and the number of elements must be equal to the rank
of the array. Arrays are zero-based which means the first element of an array has index 0 (zero) and
theindex of the last element of an array isarray. | engt h() - 1.

In addition the package supportsthe colon (:) notation to designate aslice. A sliceisarange of indices
defined asi : j , wherei isthe starting index and inclusive, and it is zero if not specified. The ending
index j isexclusiveanditisequal toarray. | engt h() if not specifiedandarray. | engt h() -
j if negative.

The following example illustrates the access to elements in a multi-dimensional array and the use of
dlices. More examples can be found in the section on Multi-Dimensional Arrays.

define something that is |ike a rectangular 2x3 array:

123

456

x=Int2d([[1,2,3],[4,5,6]])# Intld can swallow the jython sequence.

print x #[[1,2,3],[4,5,6]]

print x[1] # 2 (second el ement of the first row)
print x[1,:] # access arowi.e. [4,5,6]

print x[1,1] # access an individual elenent i.e. 5
print x[:,:] #[[1,2,3],[4,5,6]]

print x[:,1] # access a colum i.e. [2,5]

2.2. Creating a simple 1D numeric array

In order to create an array data object we only need to do something like the following:

a = Intld()

This provides us with an empty integer array. We can now add elements to this by
a. append(2)

Or

a. append(Int1d([1,2,3,4,5]))

to append awhole 1D integer array.

Alternately, we could have created the array in one go, like this:

a = Int1d([1,2,3,4,5])

The following show various ways in which numeric 1D arrays can be created in the DP environment.

Doubl e1d([1.0,2.0,3.0,4.0]) # Create froma Jython array
Doubl eld(4) # [0.0,0.0,0.0,0.0]

Doubl eld(4, 42.0) # [42.0,42.0,42.0,42.0]

Doubl eld. range(4) # [0.0,1.0,2.0,3.0]

<K<K <
L | I I A |

2.3. Creating and handling complex array da-
ta objects

The numeric library hasaConpl ex classand aConpl exNd classfor N-dimensional arrays of com-
plex numbers (N =1, 2,3, 4 or 5).

z = Conplex1d([1,2,3,4],[4,3,2,1]) # Set up conplex array

print z # [(1.0+4.0j),(2.0+3.0j),(3.0+2.0j),(4.0+1.0j)]

print z.getReal () # Print real part

print z.getlmag() # Print imaginary part

print z.conjugate() # [(1.0-4.0j),(2.0-3.0j),(3.0-2.0j),(4.0-1.0j)]

30

Arrays, datasets and products

Complex numbers in the numeric package are constructed using the Conpl ex constructor (with an
upper-case 'C'):

z1
z2

2 + 3j # Jython conplex (2+3j)
Conpl ex(2,3) # Nuneric Conplex (2.0+3.0j)

In other respects, Conpl ex arrays are used in much the same way as Doubl e arrays. Their main
use, at present, is for discrete Fourier transforms.

2.4. Creating and accessing multidimensional
array data objects

2.4.1.

Creating and manipulating multi-dimensional arrays occursin asimilar way to the 1D case. The DP
numeric library supports arrays of up to 5 dimensions. For example, to create aDoubl e2d array:

x = Doubl e2d([[2,4,6],[1,3,5]])

Multi-dimensional arrays are conceptually arrays of lower-dimensional arrays. For atwo-dimensional
array, the first subscript selects arow and the second subscript selects an element within that row (the
column).

Note
@ Thisisthe opposite order to some other computer languages, but it is the same behaviour
asin the Java programming language.

For example:

print x[1,:] # Get row1l i.e. [1.0,3.0,5.0]
print x[1,2] # 5.0, the elenent in row 1, colum 2

Note: indexing multi-dimensional arrays is done differently in DP numeric arrays as compared to
Jython arrays. The following code examples show the syntax for Jython and DP numeric arrays. The
reason for thisisto alow slicing on multi-dimensional arraysin DP which istechnically not possible
using the Jython syntax.

Jython array:

x =1[[1,2,3,4],[5,6,7,8]]
print x[1][2] # 7
print x[1][1:3] # 6, 7

DP nuneric array:

y = Int2d([[1,2,3,4],[5,6,7,8]])
print y[1,2] # 7

print y[1,1:3] # 6, 7

Individual elements or slices can be set as follows:

x[1,2] = 22 # Set an elenment in place
x[0,1:3] = 42

print x # [
#[2.0,42.0,42.0],
#[1.0,3.0,22.0]
-]

Itispossible to set arow to a copy of a 1d array of the same length:

x[0, :]
yl1,]

[5,6,7,8] # Set a rowto (a copy of) a Jython array
Int1d([9,7,6,5]) # Set a row to a Doubl eld array

A note on array ordering

Look again at the first example of Section 2.4:

31

Arrays, datasets and products

x = Doubl e2d([[2,4,6],[1,3,5]])

This line of code creates an array of two rows and three columns. The element corresponding to the
i-th row and j-th column can be accessed like this:

x[i, j]
The values are stored sequentially in memory as follows:
[246135]

Thismeansthat, if we go through the array elements asthey are stored in memory, their indiceswould
vary asfollows:

x[0,0] x[0,1] x[0,2] x[1,0] x[1,1] x[1,2]

That is, index j varies more rapidly than index i. We can generalise to more than two dimensions
by saying that the rightmost index varies most rapidly. Thisis called row-major ordering, and is the
convention followed by languages such as Javaand C, but not Fortran.

This has an implication on performance. When looping through a multidimensional array, it is more
efficient to read its elementsin the order they are stored in memory.

Confusion may also arise when dealing with images, which are stored astwo-dimensional arrays. If we
visualize the array with horizontal rows and vertical columns, then the number of rows and columns
representsthe size of thevertical (y) and horizontal (x) side of theimage, respectively. When accessing
aparticular pixel (array element), you have to specify the y coordinate before the x coordinate;

nyl mage(y, x)

2.5. Adding attributes to create an array
dataset

Let's start by creating a simple dataset. Let's assume that we want to create a dataset containing one
component: a 1D array of double precision numbers (doublesin an array we will call 'x").

Type in the following steps (without the comments preceded by '#):

Doubl eld. range(10) # @
ArrayDat aset (dat a=x, descri pti on="range of double values") # ©

X
S

© Therange() function creates a 1D array of integers with the values 0, 1, 2...9. Putting
Doubl eld inthefront converts the array values to doubles.

® Thisactually createsthe array dataset with databeing the array x of values 0.0, 1.0, 2.0...9.0 and
some associated information, a description.

This creates an object x, corresponding to a 1D array of 10 doubles from 0 to 9, and writes that to a
dataset object, s, which also contains a description of the dataset. Ther ange command produces ten
integer numbersfrom 0to 9. Thisisplaced in a1D array of doubles by thefirst line.

Now let'slook at the contents of the dataset s:

print s

If you want to be specific and print individual components of the dataset, you may do so using the
special description and data attributes:

print s.description # Just print the description that is attached to the dataset
print s.data # Print only the data contained in the dataset

32

Arrays, datasets and products

2.5.1.

And even individual elements of the data component:

print s.data[2] # View the value of the third el ement of the array
contained in the dataset

Dataset attributes and metadata

In the previous section, we have seen that the ArrayDataset s possesses at least 2 attributes. de-
scri ptionanddat a. They havein addition athird attribute not so far illustrated, et a. Thede-
scri ption andnet a attributes are common across all dataset types.

Thedescri pti on attributeisused to store ahuman-readabl e text that hel psthe user to understand
therole of the dataset.

The net a attribute stores a map of keyword-value pairs of data that can be used to identify that
data in a database (for example) - the so-called meta-data. Examples of metadata for an observation
include the date of the current observation; the name of the source; the coordinates of the source, etc.
These arebasically the DP equivalent of FITSkeywords. The allowed data types for meta-data el-
ements are String, Double, Boolean, Long, and Date (e.g., St r i ngPar anet er , Doubl ePar am
et er etc.). Seethe JavaDoc for the Met aDat a class for more information on the allowed types.

Thefollowing code snippet shows how to add parameter information (in theform of stringsor doubles)
to the et a attribute:

.nmet a["observation"] = StringParaneter("NG 4151")

.meta["principal investigator"] = StringParanmeter("WIIiam Herschel")
.nmeta["ra"] = Doubl eParanet er (182. 836)

.nmeta["dec"] = Doubl ePar anet er (39. 405)

nw n non

These are actually shortcuts to Java usage. For example, the first line could also have been written as

s.get Meta().set("observation", StringParaneter("NGC4151"))

2.6. Creating and viewing a TableDataset

What is often required is to store data in a tabular format with N columns. The Tabl eDat aset
providessuchameans. A Tabl eDat aset ismade up of anumber of columns. Each column contains
an Arr ayDat aset (data), a description and a quantity (unit -- require the Unit package import,
see below) value associated with the Arr ayDat aset . Each ArrayDat aset can have up to 5
dimensions and can be of varying types. Inthefollowing example, aTabl eDat aset iscreated with
3 columns each containing a 1D dataset, one being a sequence of numbers from 1 to 100, the second
being the sine value of each of the numbers in the first column, and the final column containing the
valuesin the first column multiplied by 100. The column namesare x, si n andy respectively.

Note
S For reasons of flexibility, memory consumption and performance, this classis not check-
ing whether all columns are of the same length: thisis the responsibility of the user.

from herschel . share.unit inport * # to allow the use of the Unit package

x = Doubl eld. range(100)

t = Tabl eDat aset (description="This is a table") # @
t["x"] = Colum(data=x, unit=Duration. SECONDS) # ©
t["sin"] = Colum(data=SI N(x),description="sin(x)") # ©
t["y"] = Col um(dat a=x*100, descri pti on="x*100")

© Thissets up the table dataset with an associated description
® This creates our first column which has the data, x and its associated units, which in this case
is atime duration of SECONDS.

33

Arrays, datasets and products

2.6.1.

2.6.2.

©® Here we have applied the SI N function from the numeric package, and we have also added a
description for the second column.

Tabledatasets can be viewed using the DatasetI nspector GUI button. Values can also be obtained using
the following steps which show how the data can be listed:

print t # Print a Tabl eDataset called t (see above)

print t.meta # Print the netadata (enpty in this case)

print t["x"] # Print a colum by nane

print t[2] # Print a colum by index

print t[2].data # Print the data inside the colum

a =t[2].data # Assign data in colum to a list variable, -"a".

print t[2].data[4] # Print element with index=4 in the last (third!) colum

b = t[2].datal4] # Assign the data value to variable -"b".
print t[2].description # Prints columm description only
print t["x"].unit # print the associated unit values for the colum

Alternately, we can access columns via the getColumn method

print t.getColum("y") # Print a colum by nane

print t.getColum(2) # Print a colum by index

print t.getColum(2).data # Print the data inside the colum

print t.getColum(2).data[4] # Print elenment with index=4 in the third colum
print t.getColum(2).description # Prints colum description only

We can also get row values

print t.getRowm(1l) # CGets a list of the values in the second row.

And hereis how data can be modified:

print t["y"].data[O0]
t["y"].data[0] =999.
print t["y"].data[O0]

We may also get and set values at a position in a TableDataset.

t.getValueAt (0,1) # gets the value contained in row=0, colum=1
t.setValueAt(30.5, 0, 1) # sets the value 30.5 at row=0, col um=1

Row-wise appending of TableDatasets

It is possible to append the data from one table dataset to data in another, provided that they have
the same number of columns and each column in either dataset is of the same type. The following
example addst 2 asarow totablet 1.

t1l = Tabl eDat aset ()

t1["x"] = Col um(data=I nt1d.range(5))
t1["y"] = Col umm(dat a=Doubl eld. range(5))
t2 = Tabl eDat aset ()

t2["a"] Col um(dat a=I nt 1d. r ange(10))
t2["b"] Col um(dat a=Doubl eld. r ange(10))

The following will append the data in t2 to the data in t1l
tl.rowCount will then report 15 rows:
t1. addRow(t 2)

If we now use print t1["x"].data we can see that the "x" column has the values
[0,1,2,3,4,0,1,2,3,4,5,6,7,8,9].

Assigning Units
This section exaplins what units can be assigned and how they may be manipul ated. Aswe have noted

above, we can assign units to the columns in our dataset. in order to use the Unit package we have
to import it:

Arrays, datasets and products

from herschel . share.unit inport *

Note that the Unit package are used in the whole HCSS and not only in the interactive analysis, that
iswhy it is part of the herschel.share library.

The units fall into several category types, as they are shown in alphabetical order in Table 2.2. To
assign a unit the type and value s required to be given. For example -- the variable "a" can be assigned
to be aunit of angle in degrees with

a = Angl e. DEGREES # Type. VALUE

This can be associated with a column's unit in atable using

t["x"].unit = Angl e. DEGREES

Table 2.2. All available basic unitstypes

Type VALUES
Acceleration METERS_PER_SECOND_SQUARED
Angle RADIANS, DEGREES, MINUTES_ARC, SECONDS_ARC

AngularMomentum

JOULE_SECOND

AngularSpeed RADIANS PER_SECOND, DEGREES PER_SECOND

Area SQUARE_METERS, SQUARE_KILOMETERS

Constant H_PLANCK, K_BOLTZMANN, ELECTRON_CHARGE,
SPEED OF LIGHT

Duration SECONDS, MINUTES, HOURS, DAYS

ElectricCapacitance

FARADS, MILLIFARADS, MICROFARADS, NANOFARADS, PICO-
FARADS

ElectricCharge COULOMBS
ElectricConductance |SIEMENS

ElectricCurrent AMPERES, MILLIAMPERES
Electriclnductance HENRIES

ElectricPotential VOLTS, MILLIVOLTS
ElectricResistance OHMS

Energy JOULES, ERGS, ELECTRON_VOLTS

Entropy JOULES PER_KELVIN

Flux density JOULES PER_SQUARE_METER, JANSKYS, MILLIJANSKYS, MI-
CROJANSKYS

Force NEWTONS, DYNES

Frequency HERTZ, KILOHERTZ, MEGAHERTZ, GIGAHERTZ, TERAHERTZ

Length METERS, ANGSTROMS, KILOMETERS, CENTIMETERS, MIL-
LIMETERS, MICROMETERS

Mass GRAMS, KILOGRAMS

NEP (Noise Equivalent |WATTS PER_SQRT_HERTZ

Power)

Power WATTS, KILOWATTS, MEGAWATTS

Pressure PASCALS, BARS, MILLIBARS

Scalar This class represents scalar units and provides some constants:ONE,

PERCENT,DECIBELS

35

Arrays, datasets and products

Type VALUES

SolidAngle STERADIANS, SQUARE_MINUTES _ARC,
SQUARE_SECONDS ARC

Speed KILOMETERS_PER_SECOND, METERS PER_SECOND

Temperature CELSIUS, KELVIN

Thermal Conductivity |WATTS PER METER_KELVIN

Timelnstant TAI,UTC

WaveNumber RECIPROCAL_METERS, RECIPROCAL_CENTIMETERS

2.6.2.1. Manipulating Units

We may manipulate units to obtain derived units. Examples are the following

N = Force. NEWTONS

m = Length. METERS

m = nf*2 # Square neters
Pa = N-/ n2 # Pascal s

J =N*m # Joul es

2.6.2.2. Converting Units to Strings and Back Again

We can convert a unit variable to astring in several ways:

A = Lengt h. ANGSTROVS

print A # angstrom [1. 0OE-10 ni, no conversion

print A nane # angstrom This is a string quantity.

print A di al ogNane # Angstrom synbol. This is a string quantity.
um = Lengt h. M CROVETERS

print um # mcroneter [1.0E-6 n], no conversion, includes factor
with respect to Sl unit
print um nane # mcroneter, only ASCI| characters. This is a string.

print umdialogNane # pum This is a string quantity.

We can also convert astring to a unit

print Unit.parse("kms-1")

or print (Unit.parse("km') -/ Unit.parse("s"))

print Unit.parse("kms-1") # Speed. KILOVETERS_PER_SECOND
print Unit.parse("arcsec") # Angl e. SECONDS_ARC)

print Unit.parse("eV') # Energy. ELECTRON _VOLTS)

print Unit.parse("cn') # Length. CENTI METERS)

print Unit.parse("nmi') # Length.M LLI METERS)

print Unit.parse("mcron') # Length. M CROVETERS)

2.6.2.3. Derived Units

We can also provide derived units by application of .milli, .micro and .nano methods.

S
us
ns

Dur at i on. SECONDS
s.mcro # mcro seconds
S. nano # nano seconds

2.6.2.4. Conversion to Sl and Other Units

If the SI unit is needed rather than the unit used then Sl unit and the factor between the two can be

provided.

print Angl e. DEGREES. asSl # gives unit as Angl e. RADI ANS

print Energy. ERGS. asSl # gives unit as Energy.JOULES

print Speed. KI LOVETERS_PER HOUR asS| # gives unit as Speed. METERS _PER SECOND
print Unit.parse("g cms-2").asSl # gives unit as Unit.parse("kg ms-2")

36

Arrays, datasets and products

#

print Length. ANGSTROVS. t oSl # 1. 0E-10
print Duration. HOURS. t oSl # 3600.0
print FluxDensity.M LLI JANSKYS.toSl # 1.0E-29
print Unit.parse("g cms-2").toSl # 1.0E-5

or factor conpared to other units

m n = Duration. M NUTES

ms = Duration. M LLI SECONDS

print mn.to(ns) # 60000.0

nV = Unit.parse("nV') # mllivolts

print nV.to(nV.asSl) # 0.001; sane as nV.toSl

2.6.2.5. Physical Constants

Physical constants can also be provided to the system with their correct units, e.g.

h = Const ant. H PLANCK

print h.value # 6.62606896E-34
print h.unit #J s

print h # 6.62606896E-34 J s
k = Const ant. K_BOLTZMANN

print k.value # 1.3806505E-23

print k.unit #J K-1

print k # 1. 3806505E-23 J K-1

2.6.2.6. Unit Compatibility

We can compare units to see if they are of compatible types.

kg Mass. KI LOGRAMS
g Mass. GRAMS
m = Lengt h. METERS

print kg.isConpati bl e(qg) # true
print kg.isConpatible(m # fal se
print kg.isConpati bl e(Mass) # true
print kg.isConpatibl e(Area) # fal se
print Unit.parse("g cms-2").isConpatible(Force) # true
print Unit.parse("g cms-2").isConpatibl e(Power) # false

2.6.2.7. Unit Equivalence

Wecan usethe. i sEqui val ent method to determine if two unit types are the same.

kg = Mass. KI LOGRAMS

S = Durati on. SECONDS
m = Length. METERS

N = Force. NEWTONS
dyn = Force. DYNES

print N.isEquival ent(dyn) # fal se
print N isEquivalent(kg * m-/ s**2) # true

2.7. Creating and accessing a composite
dataset

The ArrayDat aset and Tabl eDat aset types enable the user to encapsulate arrays and tables
of primitive data types easily. However, they do not allow arbitrary structures of data, or data within
data, to be constructed. Examples of complex datasets are grouped observations (making a map with
an offset reference position, for instance), which could have 1D and 2D array data together with a
table which might contain (for example) calibration data. Such complex structures can be built us-
ing the Conposi t eDat aset . Example 2.1 createsa Conposi t eDat aset containing in turn an
ArrayDat aset ,aTabl eDat aset ,afew St ri ngPar anet er s, and another nested Conpos-

i t eDat aset . It alsoillustrates how we can access the components of the composite dataset.

37

Arrays, datasets and products

2.8.1.

HH T HOH X H

t

#
#
#
t

#
C

HFHOHFOHOH

®
#
®

First we set up a one-dinensional array of doubles (0.0, 1.0 -... 9.0)
= Doubl eld. range(10)

Then we create an array dataset with an added description
= ArrayDat aset (dat a=x, descri pti on="Range of doubl es")
This sets up an enpty table with a description

= Tabl eDat aset (description="This is a table")

The array -'x' is then added to the table and given a

col um headi ng -"x"

["x"]=Col um(x)

Each of the array elements of -'x'" is nultiplied by 4
and becones the data in the table colum | abeled -"y".
The tabl e colum al so has a description added to it.
["y"]=Col um(dat a=x*4, descri ption="x*4")

c is an enpty conposite dataset.

=Conposi t eDat aset ()

We add a description to c

.description="This is a conposite dataset. It contains three datasets!"
We add the author's name as a string paraneter

.meta["author"] =StringParaneter("WII|iam Herschel ")

We input a version nunber as a string paraneter

.meta["version"]=StringParaneter("2.0")

We put the array dataset s into the conposite dataset c
and give it the name nySinple so that we can refer to it
["mySinple"] =s

W do the sane for the table

["myTable"] =t

This just shows you can add a conposite dataset into another

conposite dataset (nesting)

c["nyNest"] = ConpositeDataset("Enpty nested conposite dataset")

print c # View contents of the conplex dataset.

tab = c["nyTabl e"] # Gets our Tabl eDataset back. Now called -"tab".
print tab # We see that it has two colums called -"x" and -"y"
print tab["x"] # Prints out what is in the -"x" col um.

print tab["x"].data # To just print out the data val ues.

Example 2.1. Example of how to create a composite dataset

2.8. Spectrum datasets

Spectra are contained within datasets that also contain raw data counts together with metadata that
allows for the correct handling of combinations of spectra (e.g., spectra arithmetic) and display of
spectra. Basic spectral typesare Spect r al Segnent , Spect r umld and Spect r und.

Spectrumld and SpectralSegments

A one-dimensional representation of a spectrum. Container has a TableDataset() that has columns for

fl

ux, flag, weights and numbered segments (components of the 1d spectrum). It contains

A flux column (Doubleld). This can be obtained from a Spectral Segment using the getFlux()
method. For example; a = %spectrumld_name%.getFlux().

A wavelength/frequency column (Doubleld). The wavelength column can be obtained using the
getWave() method.

A weight column (Doubleld). The weight column can be obtained using the getWeight() method.

A segments column (Doubleld). The segments column can be obtained using the getSegment()
method.

A flag column (Int1d). The flags can be obtained using the getFlag() method.

A Spectrumld can aso have metadata (header information) added. The following illustrates how a
Spectrumld dataset can be built from scratch.

38

Arrays, datasets and products

2.8.2.

flux = Doubl eld([12.2,12.5,13.0,11.8,11.9,12.6,14.2,15.8,12.2,15.2])
segs = Int1d([0,0,0,0,0,1,1,1,1,1]) # segnent id for each point
wave = Doubl eld([1000. 0, 1000. 2, 1000. 4, 1000. 6, 1000. 78

\ 1100. 0, 1100. 2, 1100. 4, 1100. 6, 1100. 78])
flag = Int1d(10) + 1
wei ght = Int1d(10) + 1.0
a = Spectrumld(fl ux, wei ght, fl ag, segs) #indicate the fluxes and segnents
a.set ("wave", wave) # add the wavel engths col um
a.set Meta("nanme", "Arp220") # sets keyword nanme in netadata of Spectrum
other netadata can be added, as needed
print a.getWave() # shows the -"wave" colum
Using the Dataset viewer, the full infornation can be viewed

The spectrum can be made of several segments. A Spect r al Segnent is the smallest spectrum
component dealt with by the DP system. This can be a piece of a spectrum extracted from a larger
one-dimensional spectrum to be used for fitting purposes (for example). It can be extracted from a
Spectrum1d using the following.

b=a. get Spectral Segnent (1) # get second spectral segnent (nunbering starts at 0)
print b.getWave() # provides the wavel engths associated with this segnent

Many of the spectral tools (arithmetic, fitters) work with the basic unit of a spectral segment.

Spectrum2d

For multiple spectra taken in an observation, a 2D structure is required. The components of a
Spectrum?2d dataset is similar to that of a Spectrumld dataset, except for having a second dimension.
An additional component is the ability to contain subbands. A clear example of the usefulness of this
comes in the output from the HIFI spectrometers where several CCD or autocorrelator readouts lead
to severa "chunks' (subbands) of spectra in one data frame. Having subbands is an option for the
Specrum2d. It contains

* A flux column (Double2d). This can be obtained from a SpectralSegment using the getFlux()
method. For example; a= %spectrumld_name%.getFlux().

» A wavelength/frequency column (Double2d). The wavelength column can be obtained using the
getWave() method.

« A weight column (Double2d). The weight column can be obtained using the getWeight() method.
» A flag column (Int2d). The flags can be obtained using the getFlag() method.
* (optional) a subbandstart column (Int1d). Indicates where in the arrays that a subband starts.

* (optional) asubbandlength column (Int1d). Indicatesthelength of array section that a subband takes
up.

The number of channelsisautomatically generated in the metadata when setting up a Spectrum2d. An
example of setting up a Spectrum2d from scratch is given below.

flux2 = Doubl e2d([[12.2,12.5,13.6,12.8],[12.8,12.2,13.3,12.9],

\ [10.2,14.5,12.5,11.4],[12.2,12.5,13.6,12.8]])

flag2 = Int2d([[1,1,1,1],[1,1,1,1],[1,4,1,1],[1,1,1,1]])

wei ght2 = Doubl e2d([[1,1,1,1],[1,1,1,1],[1,1,12,1],[1,1,1,1]])

a2 = Spectrund(flux2, wei ght2,flag2) # sets up 4 channels each with 4 pixels

wave2 = Doubl e2d([[1000. 0, 1000. 2, 1000. 4, 1000. 6], [1000. 0, 1000. 2, 1000. 4, 1000. 6],
\ [1000. 0, 1000. 2, 1000. 4, 1000. 6], [1000. 0, 1000. 2, 1000. 4, 1000. 6]])

a2.set ("wave", wave2) # add the wavel engt hs

print a2.getWave() # to print out the wavel engths

print a2.getFlux() # to print out the fluxes

We can also set up a Spectrum2d with associated subbands. This basically allows usto set up, in one
dataset, a container which holds many individual spectra which as many subbands each covering a

39

Arrays, datasets and products

different wavelength range, if necessary (e.g., with the individual subbands of the HRS spectrometer
of HIFI). This forms the basis of how spectral observations, which typically are made up of many
frames, are stored in the Herschel DP environment.

Now deal with subbands.

Create the container for the spectra

a3 = Spectrun®d()

indicate the nunber of subbands it will have

a3. set Subbands(2)

a3. set SubbandStart (1 nt 1d([0, 2]))

a3. set SubbandLengt h(Int1d([2,2]))

flux3 = Doubl e2d([[12.2,12.5,13.6,12.8],[12.8,12.2,13.3,12.9]])
flux4 = Doubl e2d([[10.2,14.5,12.5,11.4],[12.2,12.5,13.6,12.8]])
a3d.set ("flux_1", flux3)

a3.set ("flux_2", flux4)

print a3.getFl ux(1)

wave3 = Doubl e2d([[1000. 0, 1000. 2, 1000. 4, 1000. 6], [1000. 0, 1000. 2, 1000. 4, 1000. 6]])
a3. set ("wave_1", wave3)

a3. set ("wave_2", wave3)

#get wavel engths for second subband

note that there are two sets of neasurenents

print a3.getWave(2)

#get fluxes for first set of measurenents

of subband nunber 1.

print a3.getFlux(1l).get(0)

or second set

print a3.getFlux(1l).get(1)

this way you can go through multiple

measurenments using the sane subband that are

stored in the sane dataset.

We can do the same for wavel engths, e.g.,

print a3.getWave(1l).get(0)

i nstrument pipelines producing spectra store the data in Spectrunid
or a variant (see next section).

2.8.3. Expanding Spectruml1d and Spectrum2d
Datasets

Extensions to the basic Spectrum1d and Spectrum2d datasets have been created that allow for more
convenient access to specific instrument datatypes. Typically, the full spectral information, including
metadata, is created from the original instrument dataframes and housekeeping information coming
from the spacecraft. However, it can be instructive to formulate things from their basic components.

2.8.3.1. HIFI Extensions

Examples of HIFI extensions to the Spectrumld and Spectrum2d datasets are the Wbs Spect r um
Dat aset andHr sSpect r unDat aset availablefor the two types of spectrometer datafrom HIFI.
These can be created by obtaining HIFI dataframes and housekeeping tel emetry source packets (these
are not generally available to most users).

creating a WBS spectrum dat aset
from herschel . hifi.pipeline.product inport *
w = WosSpectrunDat aset (array of WBS dataframes, array of HK tel enetry)

Such a spectrum dataset automatically includes more metadata such as observation identification and
data creation date. It can also contain the information for the wavelength as amodel -- typically poly-
nomial fit information.

Displaying the table of dataset, for each spectrum not only is flux and wavelength listed but other,
HIFI-specific, information such as chopper position and on-board buffer storing thedata (see Fig.***).

Typical observations actually contain groupings of such datasets. For example, internal flux calibrator
dataframes, science dataframes and frequency calibrator data frames. These are typically grouped

40

Arrays, datasets and products

together in a HIFI timeline product. So a typical HIFI observation with all four spectrometers used
would have four HIFI timeline products.

Creating a H FI tineline product
from herschel . hifi.pipeline.product inport *
htp = Hifi Ti nelineProduct (array of WBS datafranmes, array of HK tel emetry)

For the most part users will not need to create the datasets/products but will need to access the data
in them. We can use the get FI ux() and get Wave() methods as before. For HIFI spectra, the
get Wave() method providesthe IF frequency values. The lower or upper sideband frequencies can
also be obtained using theget LsbFr equency() or get UsbFr equency() methods. So we can
crudely plot -- with labels to be attached later -- the spectrum (upper or lower sideband) using the
following.

Continui ng from above.

Get the first dataset in the product

wbs = htp.get(1)

Pl ot of flux against |IF frequency

= Pl ot XY(wbs. get Wave().get (1), wbs. get Fl ux().get(1))

This provides a plot of the second franme, called frame nunmber 1.
Simlar but noww Il plot the LSB frequency which takes

the |l ocal oscillator frequency information into account

= Pl ot XY(wbs. get LsbFrequency().get (1), wbs. get Fl ux().get(1))

HH

T #* # # T

2.8.3.2. SPIRE extensions to Spectruml1d

The SPIRE instrument also uses an extension of Spect rumnild. The basic component dataset
for the spectrum obtained by a single SPIRE pixel is the Spi r eSpect r uniid. As opposed to
Spect r unild, complex dataare possible (stores Numericld inputs as Complex1d). The datais com-
posed of complex values of flux and flux error with associated units. A mask can also be added (type
I nt 1d).

Individual spectra from separate pixels can be grouped together to formulate a single SPIRE scan
dataset. Thisin turn can be grouped into a set of scans that would be more typical of asingle SPIRE
observation.

from herschel . share.unit inport *

from herschel . spire.ia.dataset inport *

¢ = Conpl ex1d([2+3j, 3+2.1j,3.6 +2.4j,0.9+2.1j])

err = Conpl ex1d([0. 2+0. 2j, 0.8+0. 3j, 0. 4+0. 3j, 0. 15+0. 1j])
flu = FluxDensity. JANSKYS

wu = WaveNunber . RECI PROCAL_METER

wn = Doubl eld([0. 3,0.4,0.5,0.6])

mask = Int1d([1,1,1,1])

sps = SpireSpectrumld("Pi xel name")

sps. set Conpl exFl ux(c, fl u)

sps. set Conpl exFl uxError (err, flu)

sps. set Wavenunber (wn, wu)

sps. set Mask(mask)

Now we can get the data by replacing set by get,

and renoving the argunents, e.g.,

sps. get Conpl exFl ux() # returns the flux data

and we can get the units separately, e.g.,

sps. get Conpl exFl uxUni t s()

Now we can place a nunber of pixels in a single unit
a SpireSpect rumConposi t eDat aset .

Create sps, spsl, sps2, sps3 etc.

spire_cds = SpireSpectrunConpositeDataset("Scan nunber")
Scan nunber can be a string nane (as above) or a |ong nuneric val ue.
add pixels of data.....

spire_cds. set Pi xel (sps)

spire_cds. set Pi xel (spsl)

spire_cds. set Pi xel (sps2)

spire_cds. set Pi xel (sps3)

41

Arrays, datasets and products

pi xel names are as set up in the original SpireSpectrumld

we can get a pixel using

want ed_sps = spi re_cds. get Pi xel ("Pi xel nanme")

Most SPlI RE spectroneter observations are conposed of many scans

which we can then place several conposite datasets in a single dataset.
spire_sds =SpectroneterDetectorSpectrum() # create enpty dataset
spire_sds. set Scan(spire_cds) # add in scan, given next scan nunber available =0
spire_sds. set Scan(spire_cdsl) # add in scan, given next scan nunber available =1
Now access a scan

want ed_cds = spire_sds. getScan(0) # for the first scan

2.8.3.3. PACS Spectruml1d and Spectrum2d extensions

PACS spectral is based on handling the Frames and Ramps based on the readout of the PACS spec-
trometer. The handling of these data is currently discussed in the PCSS User's Manual .

2.9. Image and cube datasets

Image and cube datasets are made of Doubl e2d and Doubl e3d components representing intensity,
masks and errors, in addition to metadata providing coordinate information.

A Si mpl el mage is a standard two-dimensional image represented by a Nurrer i c2d (such as
Doubl e2d or | nt 2d). The following components can be added:

e TheError,asaNuneric2d.

» TheExposure,asaNuneri c2d.

A set of flagsasaFl ag object.
» Measurement unitsasalUni t object.
* WCSinformation asaWs object.

An example of creating a Si npl el nage from an imported JPG file is given below. You can find
thengc6992. j pg fileinthe/ dat a/ i a/ deno/ dat a folder of your HIPE installation.

from herschel . share. unit inport *

Choose units

nyQuant = Fl uxDensity. M LLI JANSKYS

Create WCS

nyWs = Wes(crpix1l = 29, crpix2 =29, crvall = 30.0, crval2 = --22.5)
Create the sinple inage with an assigned WCS and a descri ption
nyl mage = Si npl el mage(descri ption="Veil nebula", unit = nyQuant, wcs = nyWs)
I nport an inage

Note: we assune that the current directory is -"bin"

in your H PE installation

i mport | mage(nyl mage, -"../datal/ialdenp/data/ ngc6992.jpg")

Assign a reference wavel ength to the inage

nyl mage. set Wavel engt h(12. 0, Lengt h. M CROVETERS)

Print the reference wavel ength in millinetres

print nyl mage. get Wavel engt h(Lengt h. M LLI METERS)

Print the units being used

print nyl mage. get Unit ()

Print the intensity at pixel position 30, 35

print nyl mage. getl ntensity(30, 35)

Display the inage

Di spl ay(nyl nage)

To add exposure and error maps, use the set Exposur e and set Noi se methods, each taking a
Nuner i c2d map asinput. Use get Exposur e and get Noi se to retrieve these maps.

In a similar vein to the above, you can create a Si npl eCube to store three-dimensional images
(or multiple stacked 2D images). The Si npl eCube can aso include error, flag and exposure maps,
which must also be 3D arrays. Only asingle WCS can be applied to the Si npl eCube: for example,
it isnot possible to provide different WCS's for each image in an image stack.

42

Arrays, datasets and products

2.9.1.

To create a Si npl eCube you need to import aDoubl e/ | nt 3d object. Thisis shown by the fol-
lowing example, which reusesthe ny| mage, myQuant and nmy\Ws variables from the previous ex-
ample. Thed3 "cube" isjust a stack of three copies of the same image.

11
12

nyl mage. get | mage()
nyl mage. get | mage()
13 nyl mage. get | mage()
d3 Doubl e3d()
d3. append(l 1,0) # Append the image along the 0 axis (stacking)
d3. append(l 2,0) # Append the sane inage
d3. append(l 3,0) # Append the sane inage
Create the SinpleCube
myCube = Si npl eCube(description="Veil nebula in 3D', \
unit = myQuant, inage = d3, wcs = nmyWs)
Print the units
print myCube. getUnit()
Print intensity at pixel position 30, 35 in layer (depth) 0, the first |ayer
print myCube.getlntensity(0, 30, 35)

A Si npl eCube accepts the following components:

 Image: thisisthe most important field. It containsthe flux of the cube, and its dimensions define the
dimensionsof the other fields. Wheninitialised, thisfield automatically initialisessaWCS containing
the needed information.
The type of thisfield is a subtype of Abst r act Or der ed3dDat a, usualy Doubl e3d.

* Error: containsthe error values for the corresponding spaxels. Thisis an optional field. The unit of
the error is the same as the one of the image.

» Exposure: contains a 3d array of the same dimension as the image. It gives the exposure of each
pixel: one exposure time per sky position and spectral value.

» Flag: containsthe Flag array for al the pixels of the cube.

« Unit: givesthe unit of the image itself, i.e. the unit of the flux per pixel.

Spectral cubes

A spectral cubeis aset of three-dimensional data, with two spatial and one spectral dimensions.
Conceptually, a spectral cube can be seen in three ways:

» Asastack of monochromatic images, like the Si npl eCube created in the previous example.
» Asacloud of points, when at least one of the axesis not regularly sampled.

» Asaset of spatially related spectra.

In the HCSS, as we have just seen, a spectral cube can be represented by a Si npl eCube. However,
thisclassis generally aimed at three-dimensional data, not necessarily with a spectral dimension.

A morespecialized classisSpect r al Si npl eCube. Thisproduct isan evolution of Si npl eCube,
and as such it includes all its features, such as the error and exposure maps seen before. The main
differenceisthat readingan (x, y) positioninaSpect r al Si npl eCube will returnaSpect r umlLd,
while doing the samewithaSi npl eCube will return ageneric one-dimensional array of flux values.

It is possible to convert aSi npl eCube toaSpectral Si npl eCube:

mySpecSi npl eCube = Spectral Si npl eCube(nySi npl eCube)

Asfor all Herschel products, both can be exported to FITS format.

43

Arrays, datasets and products

Note

@ The Cube Spectrum Analysis Toolbox (CSAT) isahandy graphical utility available within
HIPE to display and manipulate in detail spectral cubes. It is described in detail in the
Data Analysis Guide.

Note that spectral cubes must have a valid WCS to be accepted by the CSAT. For more
information about adding WCS see Section 2.12.

2.10. Creating a spectral cube

A spectral cube is a three-dimensional data structure in which two dimensions represent spatial di-
mensions (e.g. right ascension and declination) and the third dimension represents a spectral axis (see
Section 2.9.1). Spect r al Si npl eCube data products can contain spectral cubesfrom all three sci-
ence instruments on-board Herschel. They can be inspected with the Spectrum Toolbox and the Spec-

trum Explorer.

Severa projectiontasksare capableof creating Spect r al Si nmpl eCube objects, but they al provide
acommon subset of methods. The following subsections explain the input data, the common methods
to create cubes, and the output data.

2.10.1. Input Data
2.10.1.1. Unprojected Cubes

Spectral projection tasks require three-dimensional arrays of double precision floating point valuesfor
flux, right ascension, and declination, and a one-dimensional array of wave data. Conceptually, these
three-dimensional arrays (of type Doubl e3d) are unprojected spectral cubes, i.e. the sky positions
for each flux element in the three dimensional cube are independent of all other sky positions.

The wave scale must be provided as a one-dimensional array of double precision floating point val-
ues (of type Doubl eld). It is assumed that the wave scale applies to each sky position. The three-
dimensional cubes must have identical dimensions, and their spectral axis must have the same length
asthe wave scale.

Data from all three instruments can be stored in a Spect r al Si npl eCube; the cube projection
tasks are generic and applicable to any data in the correct format. There may be preprocessing tasks,
such as Spi r ePr epr ocessCubeTask, capable of transforming the data of other instruments into
the required format.

Organising SPIRE Data as Unprojected Cubes

Any datain the correct format can be used as input for a Spect r al Si npl eCube projection task,
but, for an example, we will show how to transform data from the SPIRE instrument into the required
format. The Spi r ePr epr ocessCubeTask can transform SPIRE Spect r onet er Det ect or -

Spect r umobjects into the three-dimensional arrays needed to create a Spect r al Si npl eCube.
Shown below is an example use of the task:

spc = SpirePreprocessCubeTask([sdsl, sds2])

This produces an object called a Spi r ePr epr ocessedCube (SPC), which is simply a container
for the unprojected data. SPC objectswill also contain unit information and metadata, if availablefrom
theinput Spect r onet er Det ect or Spect r um The contents of the SPC can be used to create a
spectral cube. Shown below are some examples of how to retrieve the contents of an SPC.

CGet data for the SPIRE Spectroneter Long WavelLength array.
flux = spc. get Fl ux("SLW)

fluxUnit = spc. getFl uxUnit()

ra = spc.getRa("SLW)

ralnit = ra.getUnit()

etc.

Arrays, datasets and products

Spi r ePr epr ocessCubeTask has some preconditions that must be met. For all channels of all
scansof al input Spect r onet er Det ect or Spect r umobjects, the following must be consistent:

» wave scale length and values.
* units.

The PACS pipeline employsasimilar processing step when it calls SpecWAaveRebi nTask to create
aPacsRebi nnedCube.

2.10.1.2. Target Grids

In addition to three-dimensional arrays of floating-point values, projection tasksrequire a Tar get -
G'i d object. A target grid specifies the dimensions of the spectral cube to be created, in particular
the two-dimensional spatial grid onto which the data are to be projected.

Y ou can define your own target grid or use a method to create a default target grid. Every projection
task includes several methods capable of creating default target grids from three-dimensional arrays
of right ascension and declination data.

Create the task.

pt = Near est Nei ghbour Proj ecti onTask() # It could be a different projection task.
Create a default target grid.

grid = pt.targetGid(ra, dec, wave)

Alternatively, specify the pixel size.

grid = pt.targetGid(ra, dec, dra, ddec, wave)

2.10.1.3. Metadata and Units

Although not always required, metadata and units can be provided to projection tasks using the appro-
priate setter methods. Some tasks may assume default unitsif none are provided, but that behaviour is
task-specific. Some preprocessing tasks, such as Spi r ePr epr ocessCubeTask, will conveniently
extract units and metadata from the input data.

2.10.2. Cube Projection

By this point, the necessary arrays and a target grid should be available, and the projection task can
be executed. All projection tasks provide a set of methods for creating spectral cubes. To create a
cube, some interpolation scheme is used, but the kind of interpolation is task-dependent. All cube
projection tasks support only spatial interpolation, not spectral resampling. For information about
spectral resampling see Section 3.9.7.

QOperates on unprojected data.

project(flux, error, flag, ra, dec, targetGid, detectorNanes, allowExtrapolation)
Operates on a single cube.

proj ect (ssc, targetGid, allowExtrapolation)

QOperates on a list of cubes.

proj ect ([sscl, ssc2], targetGid, allowExtrapolation)

(Note: the "detectorNames" parameter is a St ri ngld object used to distinguish between HIFI,
PACS, and SPIRE detectors. It can be set to None if unused by the task.)

2.10.2.1. Unprojected Cubes

A Spect ral Si mpl eCube can be created using atarget grid and the unprojected three-dimensional
arrays of flux, right ascension, and declination.

Create the projection task.

pt = Near est Nei ghbour Proj ecti onTask() # It could be a different projection task.
Project a cube.

ssc = pt.project(flux, error, flag, ra, dec, grid, detectorNanes, Bool ean. TRUE)

45

Arrays, datasets and products

2.10.2.2. Cube Regridding

After a cube has been created, it can be regridded. In order to regrid a cube, specify a new target grid
with a different spatial grid. Cube projection tasks provide, at minimum, two methods for regridding
cubes: (1) amethod that takes asingle cube asinput, and (2) amethod that takes alist of cubes (making
it possible to regrid severa cubesinto one).

Create the projection task.

pt = Near est Nei ghbour Proj ecti onTask() # It could be a different projection task.
Regrid a cube.

ssc = pt.project(ssc2, grid, Bool ean. TRUE)

2.10.2.3. Extrapolation

A Spectral Si npl eCube projection task provides three projection methods. Each of these meth-
ods haveaboolean parameter, "allowExtrapolation”, which specifieswhether extrapolationisallowed.
Extrapolation is task-specific as it depends on the interpolation method used by the task.

2.10.2.4. NearestNeighbourProjectionTask

Near est Nei ghbour Pr oj ecti onTask isavery basic but robust projection task. The methods
described in this example are common to all projection tasks.

Algorithm

The Near est Nei ghbour Pr oj ect i onTask employs the following algorithm for each sky po-
sition in the target grid:

1. Convert the sky position in the target grid (row, column) to world coordinates (RA/DEC).

2. Determine which spectrum from the three-dimensional cubes is closest to the world coordinates

of the pixel.
3. Copy theflux, error, and flag data from the input spectrum to row and column of the Spect r al -
Si npl eCube.
o

O

L @

(]

[}
RA

Figure 2.1. Spectra at initial sky positions (coloured dots) to be projected onto the green target grid. The
colour of thetarget grid pixel indicates which spectrathe algorithm determinesis closest.

Extrapolation

If the target grid specifies a pixel on the sky which is not within the rectangle defined by the extreme
right ascension and declination values of the input data, then the Near est Nei ghbour Pr oj ec-

46

Arrays, datasets and products

t i onTask will thrown an exception unlessthe "allowExtrapolation” boolean parameter istrue. This
istrue of both projecting a cube from arrays of data or regridding one or several cubes. In the case of
regridding alist of cubesinto asingle cube, extrapolation is necessary only if the target grid specifies
apixel that is not within the boundaries of any of the input cubes.

DEC

O

RA

Figure 2.2. Spectra at initial sky positions (coloured dots) to be projected onto the green target grid. The
black rectangle shows the extreme right ascension and declination values of the input data. Because the
input data rectangle doesn't cover the grey pixels of thetarget grid, extrapolation is necessary to project
acube.

2.10.3. Output

Projection tasksreturnaSpect r al Si npl eCube product for which HIPE provides dedicated visu-
alisation and analysistools.

2.11. Importing spectral cubes from external
applications

The following two scripts show how to create spectral cubes from data produced with other applica-
tions.

Thefirst script opens a FITSfile originally created with NOAO-IRAF from IRAS.

horef ol der ="/ hone/ agueguen/ _Wor kHi pe/ "

nyfitsfilenane ="katrina_N1569.fits"

fromherschel .ia.io.fits inport FitsArchive

force the hipe fits reader to read a non-H PE FITS file
fits = FitsArchive(reader = FitsArchi ve. STANDARD READER)
fits_N1569 =fits.|oad(honefol der+nyfitsfilenane) # Read the file
print fits_N1569.cl ass ## this is a Product which contain -:
print -" -------- -

print fits_N1569

print -" -------- -

Primmage = fits_N1569["Pri maryl nage"]

print -"Prim mage. class=", Prim mage. cl ass # arrayDat aset
print -"Prim mage. data. cl ass=", Prinml nmage.data.class # Float3d array

dd= Doubl e3d(Pri ml mage. dat a) # creation of a Double3d fromthe original Float3d
Si ncube=Si npl eCube() # creation of the SinpleCube
Si ncube. set | mage(dd) # Setting up the inmage

mywcs=Si ncube. get Ws()

47

Arrays, datasets and products

to read the header of the fits file,

access it via <Product >. neta[i].get Val ue()
#or i in katrina_N1569. neta. keySet ():

print -"meta = -"+i

print -"Value ="

print katrina_N1569. nmeta[i]. getVal ue()

initialisation of the ws

for i in fits_N1569. neta. keySet():

print -"meta = -",i, -" value -",fits_N1569.neta[i].get Val ue()

mywcs. set Parameter (i, fits _N1569.neta[i].getValue() -,"automatically copied")

#usual val ues for various keywords, can be updated afterwards w th commands |ike:
java style

#nywcs. set Cunit 1("arcsec")

#nywcs. set Cuni t 2(" Arcsec")

#nywes. set Gt ypel(" RA-- TAN')

#nywes. set Ct ype2(" DEC- TAN')

- ...

jython style

#nmywecscuni t 1="ar csec"

#nmywescuni t 2=" Ar csec"

#mywcsct ypel="RA- - TAN'

#mywcsct ype2="DEC- TAN'

Both ways are working in the H PE editor

|f sone paraneters are missing they shoul d be added nmanual | y:
#in this file cunit3 is mssing we add it.
mywcs. cuni t3 ="angstront

To check for mssing keywords a nmethod exi sts:
mywcs. i sConpl et eWs()

Finally we update the wcs of the sinplecube
Si nrcube. wes = nmywes
Sintube can now be opened with the CubeSpectrumAnal ysi s tool box.

The second script imports a cube from Sinfoni.

| ocal fol der = -"/hone/ agueguen/ _Wor kHi pe/fitsfiles/"
sinfoni efil enane = -"cube_si nfoni e_UDF3538_bour neau. fits"
Manual inport of FITS files

fits = FitsArchive()

Sinfoni data converted in a SinpleCube

fits = FitsArchive(reader = FitsArchi ve. STANDARD READER)

si nfoni product = fits.load(l ocalfol der+sinfoniefil enane)

print sinfoniproduct.class ## This is a Product which contains:
print -" -------- -

print sinfoniproduct

print -" -------- -

Pri m mage = sinfoniproduct["Prinmaryl mage"]

print -"Prim mage. cl ass=", Prim mage. cl ass # arrayDat aset
print -"Prim mage. data. class=", Prim mage.data.class # Float3d array

dd= Doubl e3d(Pri m nage.data) # Creation of a Double3d fromthe original Float3d
si nfoni Cube=Si npl eCube() # Creation of the SinpleCube

si nfoni Cube. set | nage(dd) # Setting up the inmage

mywcs=si nf oni Cube. get Ws()

initialisation of the ws

for i in sinfoniproduct.neta.keySet():
if (sinfoniproduct.netali].getType() == java.lang.Long):
mywcs. set Paranmet er (i, si nfoni product.neta[i].getValue()*1. -,"automatically
copi ed but corrected")
el se:
mywcs. set Paramet er (i, si nfoni product.neta[i].getValue() -,"autonatically copied")

In the previous for |Ioop we convert |ong values to double
to conply with HCSS requirenents.

48

Arrays, datasets and products

When you have probl ens inporting data you should have a | ook at
the type of data coming fromthe FITS file and convert it

it needed.

To do this you can use

si nfoni product.netali].getType()

si nfoni product.neta[i].getd ass()

O HHHH

Usual values for various keywords,

can be updated after if needed with commands Ii ke:
java style

#nywcs. set Cunit 1("arcsec")

#nywcs. set Cuni t 2(" Arcsec")

#nywes. set Gt ypel(" RA-- TAN')

#nywes. set Ct ype2(" DEC- TAN')

- ...

jython style

#nmywecscuni t 1="ar csec"

#nmywescuni t 2=" Ar csec"

#mywcsct ypel="RA- - TAN'

#mywcsct ype2="DEC- TAN'

To check for mssing keywords a nethod exist:
print nmywcs. i sConpl et eWs()

Another way is to print the WCS or open it in the spectrum explorer.
print mywcs.isValid()

Finally we update the WCS of the Sinple Cube

si nfoni Cube. wecs=nywcs
Si ncube can now be opened with the Cube Spectrum Anal ysis Tool box.

2.12. Assigning a World Coordinate System
to images and cubes

Y ou can assign WCS information to images and cubes. The World Coordinates System (WCS) de-
scribes the coordinates of aSi npl el mage or Si npl eCube. It makesit possible to convert image
coordinates to world coordinates and the other way around. The WCS can have alot of parameters,
as defined in the FITS standard:

* naxis: the number of axes

 crval: First coordinate of the centre

+ crval2: Second coordinate of the centre
 crpix1: Reference pixel X coordinate

» crpix2: Reference pixel Y coordinate

 cdeltl: Pixel scale of axis 1. Step per pixel or number of degrees per pixel along x-axis when con-
verting to Sky Coordinates. These parameters are no longer used in modern Wcs definition, but are
included in the CDi_j matrix.

» cdelt2: Pixel scaleaxis2. Step per pixel or number of degrees per pixel along y-axiswhen converting
to Sky Coordinates. These parametersare no longer used in modern Wcs definition, but areincluded
inthe CDi_j matrix.

* ctypel, ctype2: Projection type name. This can be "LINEAR", "PIXEL" or the FITS convention.
The default value for ctypel and ctype? is "LINEAR". When using the FITS convention, the first
four characters are:

¢ RA-- and DEC- for equatorial coordinates
e GLON and GLAT for galactic coordinates

* ELON and ELAT for ecliptic coordinates

49

Arrays, datasets and products

The next four characters describe the projection. Possibilities are:
e -AZP: Zenithal (Azimuthal) Perspective

e -SZP: Slant Zenithal Perspective

e -TAN: Gnomonic = Tangent Plane

¢ -SIN: Orthographic/synthesis

e -STG: Stereographic

¢ -ARC: Zenithal/azimuthal equidistant

e -ZPN: Zenithal/azimuthal PolyNomial

e -ZEA: Zenithal/azimuthal Equal Area

e -AlIR: Airy

e -CYP: CYlindrical Perspective

e -CAR: Cartesian

¢ -MER: Mercator

* -CEA: Cylindrical Equal Area

¢ -COP: COnic Perspective

» -COD: COnic equiDistant

e -COE: COnic Equal area

* -COO: COnic Orthomorphic

* -BON: Bonne

¢ -PCO: Polyconic

e -SFL: Sanson-Flamsteed

e -PAR: Parabolic

e -AlIT: Hammer-Aitoff equal areaall-sky

e -MOL: Mollweide

« -CSC: COBE quadrilateralized Spherical Cube
e -QSC: Quadrilateralized Spherical Cube

e -TSC: Tangential Spherical Cube

* -NCP: North celestial pole (specia case of SIN)
e -GLS: GLobal Sinusoidal (Similar to SFL)

Other types are also possible (for example TEMP for temperature.)

* cunitl: The Unit of Axis 1. 50

Arrays, datasets and products

* cunit2: The Unit of Axis2.

 epoch: Epoch of coordinates.

« Radesys: The reference frame, default valueis"ICRS'.

e pcl 1: Element (1,1) of the linear transformation matrix. The pcl and pc2 parameters are no
longer used in modern Wcs definition, but are together with CDELT1 and CDEL T2 included in
the CDi_j matrix.

e pcl 2: Element (1,2) of the linear transformation matrix.

e pc2_1: Element (2,1) of the linear transformation matrix.

e pc2_2: Element (2,2) of the linear transformation matrix.

e cdl 1: Element (1,1) of the corrected linear transformation matrix.

e cdl 2: Element (1,2) of the corrected linear transformation matrix.

e cd2 1. Element (2,1) of the corrected linear transformation matrix.

e cd2 2: Element (2,2) of the corrected linear transformation matrix.

With athird dimension the following also applies:

* ctype3: Description of what the 3rd axis represents, for instance Wavelength, Time, M1 Tempera-
ture, and so on.

» cunit3: The Unit of Axis 3.

 crva3: [Optiona - in case of equidistant 3rd dimension]. Wavelength, time, ... of reference layer;
unit ; length, time, ...

 crpix3: [Optional - in case of equidistant 3rd dimension] Reference layer index

 cdelt3: [Optiona - in case of equidistant 3rd dimension] Scale in 3rd dimension - unit: length,
time, ...

» PC elements:
¢ pcl_3: Element (1,3) of the linear transformation matrix.

e pc2_3: Element (2,3) of the linear transformation matrix.

L]

pc3_1: Element (3,1) of the linear transformation matrix.

pc3_2: Element (3,2) of the linear transformation matrix.

pc3_3: Element (3,3) of the linear transformation matrix.
To create aWCS object that can be assigned to an image you can use something like the following.

Create the WCS object, units in degrees by default

myWs = Wes(crpixl = 29, crpix2 = 29, crvall = 30.0, crval2 = --22.5, \
cdeltl = 0.0004, cdelt2 = 0.0004, cunitl = -"DEGREES", \
cunit2 = -"DECGREES", ctypel = -"RA---TAN', ctype2 = -"DEC-- TAN')

Check whether the WCS is valid

print myWs.valid

Assign the world coordinates to our inage

nmyl mage = Sinpl el mage(description = -"Veil nebula", ws = nmyWs)
You can then obtain the world coordi nates at any pi xel

print nyl mage. get Ws() . get Wor| dCoor di nat es(31, 31)

51

Arrays, datasets and products

2.13

This provides an array of sky coordi nates in degrees.

We can get the intensity at a given WS position

First put an inmge in...

i mport | mage(nyl mage, -"../datal/ia/deno/datal/ngc6992.jpg")

Cet the intensity at a given WCS position.

print nyl mage. getl nt ensityWr | dCoor di nat es(30. 0012, --22.498)

For the Si npl eCube and Spect r al Si npl eCube objects you can do thisamost identically. Us-
ing the d3 cube defined in a previous example:

Create WCS object, units in degrees by defaul t

nyWs = Wes(crpixl = 29, crpix2 =29, crvall = 30.0, crval2 = --22.5, \
cdeltl = 0.0004, cdelt2 = 0.0004, cunitl = -"DEGREES", \
cunit2 = -"DEGREES', ctypel = -"RA---TAN', ctype2 = -"DEC - TAN')

Create the cube

nmyCube = Si npl eCube(description="Veil nebula", imge = d3, wes = nyWs)
Add third axis (WS is created with two axes by defaul t)

nyWs. NAxi s = 3

Add quantities related to the third axis

nyWs. crval 3 = 300.0

nyWs. crpi x3 = 0

nyWs. cdel t3 = 0. 001

nyWs. ctype3 = -"Wavel engt h"
nyWs. cunit3 = -"M CROVETERS"

You can obtain the world coordinates at any pixel on the inage.

print nyCube. get Ws(). get Wor | dCoor di nat es(31, 31)

CGet the intensity at a given WCS position. W need three

argunents now, with the first argunent being the |ayer nunber (depth)
fromwhich we want the intensity neasure. Count starts fromO.

print nyCube. get | ntensityWrl dCoordi nat es(0, 30. 0012, --22.498)

If the third axis of the cube is irregularly sampled, you can define an i nagel ndex array with the
sampling values of each layer along the axis. Such array would replace the values of the cr val 3,
cr pi x3 and cdel t 3 parameters:

Create WCS object, units in degrees by default

myWs = Wes(crpixl = 29, crpix2 = 29, crvall = 30.0, crval2 = --22.5, \
cdeltl = 0.0004, cdelt2 = 0.0004, cunitl = -"DEGREES", \
cunit2 = -"DECREES", ctypel = -"RA---TAN', ctype2 = -"DEC - TAN')

Create the cube

myCube = Si npl eCube(description="Veil nebula", imge = d3, wes = nmyWs)
Add third axis (WCS is created with two axes by default)
myWs. NAXis = 3

Add quantities related to the third axis

myWs. ctype3 = -"Wavel engt h"

nyWs. cunit3 = -"M CROMVETERS"

Add the imagel ndex array

from herschel . share. unit.Length inport M CROVETERS

wavel engt hs = Doubl eld([20.0, 45.0, 100.0])

myWs. set | nagel ndex(wavel engt hs, M CROVETERS)

To check whether the third axisis regularly sampled, the following will return 1 if true, O if false:

print nmyWs. equi di stantlnZ

Products

Let us briefly run through what we have covered so far. We started with ssmple arraysin Section 2.1,
went on with multidimensiona arrays in Section 2.4 and introduced array datasets in Section 2.5.
Then it was time for table datasets in Section 2.6 and composite datasets in Section 2.7. As you can
see, every object we have examined acted as a container for the previous ones. Now we complete the
journey by introducing the highest level of them all, the Product.

A Product is an object containing a set of metadata entries (some of which are mandatory) and one
or more datasets. The mandatory metadatavaluesaredescri pti on,cr eat or,creati onDat e,

52

Arrays, datasets and products

i nstrument,start Dat e,endDat e, nodel Narne andt ype. They will be automatically added
whenever you create a new product:

myProduct = Product () # Creating a new, enpty Product
print myProduct. neta # Printing its netadata
print nyProduct.getMeta() # Sane thing, -"Java style"

2.13.1. Mandatory parameters in products

Asyou can see some entries are already set to meaningful values, othersare set to Unknown. Y ou can
now modify the mandatory metadata and add as many new entries as you wish. There are so-called
"setter" methods for setting values of the mandatory metadata, which currently includes a description,
the creator, an instrument, model name of the instrument in use and type, as shown below:

nmyProduct . set Descri ption("M/ SPI RE product")
nmyProduct . set Creat or ("Msel f")

nmyProduct . set | nstrunent (" SPI RE")

nmyProduct . set Model Name(" PFM")

myPr oduct . set Type(" UM')

Alternately, these can be set using

nyProduct . creator = -"Msel f"
nyProduct . i nstrunent = -"SPl RE"
etc. ..

Finally, we can include many of these settings on asingle line

myPr oduct =Pr oduct (creator="Mysel f", instrunent="SPIRE", \
description="My SPIRE product", nodel Name="PFM', type="UM")

2.13.2. Setting date information

The creation, start and end dates for a Product need to be expressed in terms of a FineTime. If all of
these are the current date then we can convert a Java date to a FineTime and include it as metadata
in our product. For example:

from herschel .share.util.fltdyn.time inport FineTine

myProduct . set Creati onDat e(Fi neTi me(j ava. util.Date()))
myProduct . set St art Dat e(Fi neTi me(j ava. util.Date()))
nmyProduct . set EndDat e(Fi neTi me(j ava. util.Date()))

Because the st ar t Dat e, theendDat e and thecr eat i onDat e are mandatory metadata param-
eters, they are set to the current date and time at the moment when the product is created. If those dates
are not the current date then it is possible to set it up using UTC or TAI representation of a calendar
day (see e.g. Section 6.1), like it is shown in the following example:

from herschel . share.fltdyn.time inport *

formatter = SinpleTineFornat (Ti meScal e. UTC)

timeUtc = formatter. parse(”2008-01-31T12: 35: 00. 0Z") # Z at the end is mandatory
for UTC

formatter = SinpleTineFornat (Ti meScal e. TAl) # or just SinpleTi meFormat ()
timeTai = formatter. parse(”2008-01-31T12: 35: 00. 0TAI") # TAl at the end is

mandat ory for TAI

myProduct . set Creati onDate(timeUtc) # or
myProduct . set Creati onDate(ti meTai)

Note that the two previous dates, represented as FineTime, are different:

print tinmeUc # 2008-01-31T12: 35: 33. 000000 TAlI (1580474133000000)

53

Arrays, datasets and products

print tineTai # 2008-01-31T12: 35: 00. 000000 TAl (1580474100000000)

2.13.3. Additional metadata

Now, to add, modify and read additional metadata:

myProduct . get Met a() . set ("Here goes a nane", StringParaneter("Here goes a value"))
print myProduct. neta["Here goes a nane"]
{description="", string="Here goes a val ue"}

In the example above we set a name and a value for the metadata. In this case the value was repre-
sented by a St ri ng object, but as you aready now you can also assign other types of values with
LongPar anet er , Doubl ePar amet er , Bool eanPar anet er and Dat ePar anet er .

2.13.4. Inserting and getting datasets from a product

But how do you insert and get the contents of the datasets in a product? Y ou can use the get De-
faul t () methodto get thefirst dataset stored in the product, or theget () method to get any stored
dataset, whose name you have to provide as argument. The nameis a string assigned when the dataset
isfirst inserted into the product. Here is an example:

nyTabl e = Tabl eDat aset ()
nyTabl e. set Description("This is a Table Dataset")
myConposi te = Conposit eDat aset ()
myConposi te. set Description("This is a Conposite Dataset")
nmyProduct . set ("oneDat aset", nmyTable) # We have to give a nane to every
dataset we insert

myProduct ["anot her Dat aset"] = nyConposite # Jython style to add a dataset
nmyProduct . set ("anot her Dat aset”, nyConposite) # Java style
print nyProduct.getDefault() # As you will see fromthe description,

this is the Tabl e Dataset

print nmyProduct["anot her Dat aset "] # Cetting the Conposite Dataset,
Jython style...
print nyProduct. get ("anotherDataset") # -...and Java style

Instead of just printing out the datasets you get, you can assign them to variables and execute other
operations on them. To see how to expl ore the contents of datasets please refer to the previous sections
of this chapter.

If you are not a fan of the command line you can use the handy Dataset Inspector tool to view and
mani pulate datasets and products. Thistool is described in the Data Analysis Guide.

2.13.5. Product history

The Product history is generated or updated whenever atask isrun on a product. It contains the tasks
which have been run to generate the product (including used parameters), aswell astheused calibration
files and the track and build number of the used build.

Y ou can retrieve the history of a product in Jython as follows:

hi story = product. history

A simplepr i nt showswhich tasks, build numbers and calibration files have been used:

H PE> print history

Further interesting function of the history are the following:

* Get the history as a Jython script:

script = product.history. script

Arrays, datasets and products

product . hi story. saveScri pt ("script. py")

» Find out if acertain task has been run (useful in atask which depends on another task):

if not product. history.isTaskPerfornmed("someTask"):
print -"You have to run someTask first!"
exit

Cadlibration file appear in the history with identifiers constructed from meta keywords. How this is
done depends on the instrument:

» For PACS the identifier is constructed from the meta keywords cal Fi | el d, nodel Nane and
cal Fi | eVer si on asfollows:

Common| Phot onet er | Spect ronet er _cal Fi | el d_nodel Nane_cal Fi | eVer si on

Also, if you want to introduce your own handcrafted PACS calibration file you should change
especialy thecal Fi | el d keyword to make sure that thisis visible in the history.

e For SPIRE thef i | eNane metakeyword is used to identify calibration files.

 For HIFI no standard has been implemented yet.

55

Chapter 3. The Numeric library

This chapter describes how to use the Numeric library in your Jython scripts. For further details of the
functions provided, or use of the library from Java programs, please see the APl documentation for
herschel.ia.numeric in the Devel oper's Reference Manual .

The purpose of the numeric library is to provide an easy-to-use set of numerical array classes (pro-
grams) and common numerical functions. The library also supports arrays of booleans and strings.

The numeric library is available to you on starting a HI PE session. Basic setup and arithmetic manip-
ulation of array datasets of various types are discussed in Chapter 2.

Y ou can find some example Jython scriptsin the doc/ i a/ deno/ scri pt s directory within your
HIPE installation. Be aware that some scripts may be out of date.

3.1. Basic numeric array arithmetic

DP numeric arrays support arithmetic operations that are applied element-by-element. For example:

y = Doubl eld. range(5)
print y*y*2+1

Thisis much simpler (and runs much faster) than writing an explicit loop in Jython. It isimportant
to appreciate that the '+' operator does not concatenate arrays, as it does with Jython arrays.
For example:

Addi ng Jython arrays
print [0,1,2,3] + [4,5,6,7] #[0, 1, 2, 3, 4, 5 6, 7]

Addi ng DP nuneric arrays
print Doubl eld([O, 1, 2,3]) + Doubl eld([4,5,86,7]) # [4.0,6.0,8.0,10.0]

Concatenate two DP nuneric arrays

print Doubl eld([O, 1, 2, 3]). append(Doubl e1d([4,5,6,7]))
#[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0]

Addi ng Jython arrays to DP nuneric arrays

print [0,1,2,3] + Doubleld([4,5,6,7]) #[4
print Doubleld([0,1,2,3]) + [4,5,6,7] # [4.0,6.0,8.0,10.0]

All arrays currently support the following arithmetic operators:
+, --, *’ _/’ % * %

Note that the 'modulo’ operator ‘%' provides the normal Jython semantics for this operation, which
is not the same as that of the Java '%' operator. The Jython definition is more consistent with the
mathematical notion of congruence for negative values.

The following relational operators are also provided, which return a Bool1d array:

<, >, <=, >=, ==, -Il=

For example:

y = Doubl e1d([0, 1, 2, 3, 4])
print y > 2 # [fal se, fal se, fal se, true, true]

3.2. Numeric functions and lambda expres-
sions

In DP, functions can be applied very smply as follows:

56

The Numeric library

print SQRT(16) # 4.0 (applied to a scal ar)
y = Doubl eld([1, 4, 9, 16])
print SQRT(y) # [1.0,2.0,3.0,4.0] (applied to a DP nuneric array)

As shown by this example, functions on scalars (such as SQRT) are implicitly mapped over each el-
ement of an array. Functions may be combined with arithmetic operators to perform complex opera-
tions on each element of an array:

t = Doubl eld([1,2, 3,4])

print SIN(1000 * t * (1 + -.0003 * COS(3 * t)))

[0.6260976237441638, 0. 5797470124743422, 0. 8629107307631398,
#- 0. 9811675382238753]

The names of functionsin the numericlibrary have ALL LETTERS capitalised. Thisisto avoid
ambiguity, as Jython already defines certain functions, such as'abs', which are not applicable to our
DP numeric arrays.

There are various types of functionsin the numeric library:

y = Doubl eld([1, 2, 3,4])
print SQRT(4) # doubl e->doubl e
print SQRT(y) # doubl e->doubl e (nmapped)

print REVERSE(y) # Doubl eld- >Doubl eld
print MEAN(y) # Doubl eld->doubl e

It is possible to define new functions as lambda expressionsin Jython and apply them to DP humeric
arrays. For example:

y = Doubl eld([1,2, 3, 4])

f = lanbda x: x*x + 1 #take the given array, call it -'x' and
#return the value x*2 +1 to an array called f.

print f(y) #[2.0,5.0,10.0,17.0]. Each elenment of y was

#t aken --> x then each el enent was squared
#plus 1 added.

However, in this case, it's much easier and faster to do thiswith array operations.
print y *y +1

Lambda expressions are not as fast as the standard Java functions provided by the numeric library, but
thisis often not a problem. Where performance is an issue, new functions can be defined in Java (see
the JavaDoc of the herschel.ia.numeric library).

More complex functions (equivalent to subroutines) can be created using the def command, which
isdiscussed in Section 1.10.

3.3. Selection, data filtering and masking
methods

The numeric library provides operations, such as'fi | t er ', which alows the selection of array ele-
ments based on a given criterion (e.g., element with values between 3 and 6). Thereisno 'map’ oper-
ation because mapping isimplicit with the array style of processing.

The'fi | t er ' method returnsaDoubl eld array. The selection criterion for the filter method MUST
be declared using alambda function:

u = Doubl eld. range(10)
print u.filter(lanbda x: x>3 and x<6)

57

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

The Numeric library

Note: The Jythonf i | t er operation can be used but returns a Jython array:

print filter(lanbda x: x>3 and x<6, u)
__class__ returns org. python. core. PyLi st
print filter(lanbda x: x%==1, u)

Jython list comprehensions can be used but also return Jython arrays:

print [x for x inu if x>3]

print [x*x for x in u if x>3 and x<6]

print Doubleld([x*x for x in u if x>3 and x<6])

#this last now provides us with a nunerical array as we have al so
#transl ated into a Doubl eld array.

The SQUARE function could equally have been applied:

print u.filter(lanbda x: x>3)
print SQUARE(u.filter(lanbda x: x>3 and x<6))

Warning

o If alambda expression is applied to an array, remember that it is applied to the entire
array and not mapped over the elements. This can lead to unexpected behaviour asin the
following example:

u = Doubl eld. range(10)
print (lanbda x: x>2 and x<4) (u)
[true,true, true, true, fal se, fal se, fal se, fal se, fal se, fal se]

Thisis equivalent to the following:

u>2anduc<i4

The expression 'u>2' resultsin aBool 1d array. The Jython ‘and' treatsthis as'tru€, asit isanon-empty
list, and returns the result of the second expression 'u<4', which is not the intended result.

One way of overcoming this problem is to use the '&' operator instead of ‘and' to give the intended
result:

print (lanmbda x: (x>2) & (x<4))(u)
[fal se,fal se,fal se,true, fal se, fal se, fal se, fal se, fal se, fal se]

Warning
O This shows how the '&" operator and the ‘and' operator are not identical operators.

If you wish to select elements of an array based on a given criterion then we can find out ‘wher e'ina
seguence of data a certain type resides (e.g., at what position the maximum value of an array occurs)
and how to get the data that fits your selection.

For example, the wher e method returns the array indices of elements that satisfy a predicate often
given as alambda function. The input to thewher e method isa Boolean array. This differs from the
filter wherethe actua elementsthemselves are obtained. Using the modulo function (%9 we can
find where within an array odd values occur.

y = Doubl e1d([2, 6, 3,8,1,9])
print y.where(y%®==1) # [2,4,5] indices of odd el enents

Now return the actual elements, which can be done in three ways

print y[y.where(y%®==1)] # [3.0,1.0,9.0]
print y.filter(lanbda y: y%®==1) # [3.0,1.0,9.0]

58

The Numeric library

print y.get(y%®==1) # [3.0,1.0,9.0]

Predicates support standard jython operators such asnot , and and or :

y = Doubl eld([1, 2, 3,4])
print y.where(lanbda x: x<3 and x>1) # [1]

Java/C-style logical operators'!','& &', and '||' are not allowed.

It can be useful to have the indices, rather than the values, when there are two or more arrays with a
predicate applied to one of them. For example:

x = Doubl e1d([5, 6, 7, 8])
S = y.where(y%®==1)
print x[s] + y[s] # [6.0,10.0]

The'wher e' function can also be used to set values:

s = y.where(y%®==1)

y[s] =0 # Set all natching elenents to O

print y # [0.0,2.0,0.0, 4.0]

y[s] =[9,8] # Set nmatching el enents using an array of val ues
print y # [9.0,2.0,8.0,4.0]

Note
@ Y ou can't use the wher e function like this:

a=Doubl eld. r ange(10)
b=a. where(a < 3)
print b[O]

print b[O0:2]

print a[b[0]]

The last three lines will give an error. Technically, thisis because b isa Sel ecti on
object rather than a Jython or Numeric array. For the above to work you need to convert
ittol nt 1d:

¢ = b.tolnt1d()

print c[0] # Now these three lines will work
print c[O0:2]

print a[c[0]]

The 'get ' method enables you to grab individual elements or a subset of element values from an
array. It requires the input of a Boolean array (e.g., amask). Along with getting individual elements,
there are three other forms. One enables you to select element values based on aBool 1d mask:

y = Doubl eld([5, 7,8, 9])

mask = Bool 1d([0,0, 1, 0])
X = y.get(mask) # x == [8.0]

The second form enables you to select on a set of indices, contained inaSel ect i on object:

indices = Selection(Intld([2,3]))
X = vy.get(indices) # x == [8.0,9.0]

The third form enables you to select elements from arange, specified by a Range object:

range = Range(2, 4)
X = y.get(range) # x == [8.0,9.0]

It is possible to combine 'get' callsto perform the same operation as a compound I1DL WHERE execu-
tion. Let's set up afew arraysfirst:

a = Doubleld([1, 2, 3, 4, 5, 6])

59

The Numeric library

b
c

Doubl eld([2, 3, 4, 5 6, 7])
Doubl eld([3, 4, 5, 6, 7, 8])

Thefollowing operationson thethree arraysarethe equivalent of the DL WHERE statement 'wher e(a
ge 2 and b It 6 and c gt 5)"

(a>=2) & (b <6) & (c > 5)
a.get(q),b.get(q),c.get(q) # x == ([4.0], [5.0], [6.0])

q
X

3.4. Array access and slicing

The numeric package introduces the following square brackets notation:

where each element is separated by a comma, and the number of elements must be equal to the rank
of the array. Arrays are zero-based which means the first element of an array has index 0 (zero) and
the index of thelast element of anarray isarray. | engt h() - 1.

In addition the package supportsthe colon (:) notation to designate aslice. A sliceisarange of indices

defined asi : j , wherei isthe starting index and inclusive, and it is zero if not specified. The ending
index j isexclusiveanditisequal toarray. | engt h() if not specifiedandarray. | engt h() -
j if negative.

The following example illustrates the access to elements in a multi-dimensional array and the use of
dices. More examples can be found in the section on Multi-Dimensional Arrays.

define sonething that is like a rectangular 2x3 array:

123

456

x=Int2d([[1,2,3],[4,5 6]])# Intld can swall ow the jython sequence.
print x #[[1,2,3],[4,5,6]]

print x[1] # 2 (second el enent of the first row)
print x[1,:] # access arowi.e. [4,5, 6]

print x[1,1] # access an individual elenent i.e. 5
print x[:,:] #[[1,2,3],[4,5,6]]

print x[:,1] # access a colum i.e. [2,5]

3.5. Making sense of logical operators

Here we try to guide you through the jungle of logical operators you are likely to encounter when
using DP.

First of al, since Jython isembedded in DP, it won't surprise anyonethat the Jython logical operators
and, or andnot areavailable. These work like normal Boolean operators (see Appendix C for more
details), but using them with arrays (both the native Jython ones and those from the DP Numeric
package) can give unexpected and seemingly inexplicable results. See below for an example. The
important thing to keep in mind is that these operators do not work on an element-by-element basis
when applied to arrays, but they evaluate the entire array at once.

Another tool coming straight from the Jython language are the bitwise oper ator s, represented by the
symbols &, | and *. See again Appendix C for more details. The possible source of confusion here
isthat these symbols can be used with Numeric arrays (e.g. | nt 1d, Bool 3d etc.), but what you get
is not a bitwise comparison. Instead, these operators perform the usual boolean comparisons, but this
time working element by element. Precisely what and, or and not do not do.

Finally, Numeric array classes have the and, or and xor methods acting like boolean operators
working element by element. An examplewill hopefully clarify the differencesamong all the operators
described here:

60

The Numeric library

j yt honOne [1, O, O, 1]

j yt honTwo [0, O, 1, 1]

numer i cOne = Bool 1d(j yt honOne)

numeri cTwo = Bool 1d(j yt honTwo)

print jythonOne and jythonTwo

[0, 0, 1, 1] # jythonOne is not enpty so it is treated as true, which nmeans that
jythonTwo is eval uated and returned

print numericOne and nuneri cTwo

[fal se,fal se,true,true] # Same thing as with the Jython native arrays

print jythonOne & jythonTwo

Here an error is returned

print numericOne & numnericTwo

[fal se,fal se,fal se,true] # Here the operator works el ement by el ement

print numericOne. and(nuneri cTwo)

[fal se,fal se,fal se,true] # Sane thing as the & operator

3.6. Advanced tips for improved performance

The underlying array operations and functions are very fast, as they are implemented in Java. The
overhead of invoking them from Jython is relatively small for large arrays. However, the advanced
user may find the following tips useful to improve performancein cases where it becomes a problem.

The arithmetic operations, such as'+', have versionsthat allow in-place modification of an array with-
out copying. For example:

y Doubl eld. range(10000)
y =y + 1 # The array is copied
y += 1 # The array is nodified in place

Copying an array is slow as it involves allocating memory (and subseguently garbage collecting it).
For simple operations, such as addition, the copying can take longer than the actual addition.

Function application also involves copying the array. This can be avoided by using the Java API
instead of the simple prefix function notation. For example:

X
X
X

Doubl eld. range(10000)
SIN(x) * COS(x) # This operation involves three copies
x.apply(SIN). mul tiply(x.apply(COS)) # Only one copy

When writing array expressions, it is better to group scalar operations together to avoid unnecessary
array operations. For example:

y = Doubl eld([1, 2, 3,4])

print y * 2 * 3 # 2 array nmultiplications
print y * (2 * 3) # 1 array multiplication
print 2 * 3 * vy # 1 array multiplication

It isbetter to avoid explicit loopsin the HCSS DP system over the elements of an array. It is often
possible to achieve the same effect using existing array operations and functions. For example:

sum = 0.0
for i iny:
sum=sum+ i * i # Explicit iteration

sum = SUMy * y) # Array operations

3.7. Type conversions

Since the numeric library supports different types it would be very convenient to be able to convert
an array from one type to another. The numeric library supports both implicit conversion from within
jython for all supported dimensions and explicit conversion from one data type to another.

61

The Numeric library

3.7.1.

3.7.2.

Explicit conversion

Explicit conversion is supported for al data types by constructing a numeric array from another DP
numeric array of the same or adifferent type. Note however that some explicit conversions may result
in rounding and/or truncation of the values e.g. an explicit conversion from Longld to Doubleld will
reduce the number of significant digits.

i = Intld([1,2,3]) # 11,2 3]

r = Doubl eld(i) #[1.0,2.0,3.0]

¢ = Conpl ex1d(r) # [(1.0+0.0j),(2.0+0.0j),(3.0+0.0j)]
b = Byteld(r) #[1,2, 3]

Implicit conversion

Implicit conversions are conversions that can be done by the DP package automatically, provided that
such aconversionisawidening operation e.g. from Intld to Doubleld. Implicit narrowing conversions
are not allowed and result in an error message as shown below:

TypeError: Conversion of class org.python.core.PyFloat to class java.lang.Long implies narrowing.
The library supportsimplicit conversionsin the following cases:

» access. [...]

e operators: +, -, *,/, and %

* in-line operators: +, -, *, /, ~ and %

The few examples below show allowed implicit conversions.

d = Doubl eld(5) #[0.0,0.0,0.0,0.0,0.0]
di1] = 3 #[0.0,3.0,0.0,0.0,0.0]
d[1:4] =[-5, 0, 5] #[0.0,-5.0,0.0,5.0,0.0]

Please note that the DP package considers the conversion from int to float and from long to float/
double as an automatic widening operation, but some of the least significant digits of the value may
be lost during the conversion. Y ou will not be notified of thisloss of significant digits.

Another thing to notice is that floating point operations will never throw an exception or error. As
shown in the following example, adivision by zero resultsin NaN or Infinity.

d Doubl eld. range(5)

| Longld. r ange(5)

print d/l # [NaN, 1.0,1.0,1.0,1.0]

print d/SH FT(I, 1) # [0.0,Infinity,2.0,1.5,1.3333333333333333]

3.8. Function library

3.8.1.

The numeric package includes a library of basic numeric processing functions, which will continue
to grow as devel opment of the library progresses.

Some of the functions that are currently available are outlined below. For further details, reference
should be madeto the list of functionsin the User Reference manual: Chapter 2.

Basic functions

Basic functions applicable to scalars or arrays, and returning scalars or arrays of the same size:

* ABS: Section 2.2

62

The Numeric library

* ARCCOS: Section 2.21

* ARCSIN: Section 2.22

* ARCTAN: Section 2.23

» CEIL: Section 2.51

» COS: Section 2.80

o EXP: Section 2.116

» FIX (not applicable to scalars): Section 2.140
* FLOOR: Section 2.150

* LOG: Section 2.245

* LOGI10: Section 2.244

* ROUND: Section 2.345

* SIGNUM: Section 2.361

* SIN: Section 2.374

e SQRT: Section 2.402

* SQUARE: Section 2.403

* TAN: Section 2.411

These are applied in the form

b = SIN(a)

b will be an array of the same dimension asaor asingle value if ais single valued.
Array functions on Doubl e<n>d returning adoubl e:
* MIN: Section 2.267

* MAX: Section 2.260

* SUM: Section 2.409

* PRODUCT: Section 2.308

* MEAN: Section 2.261

+ MEDIAN: Section 2.264

* RMS: 777?

» STDDEV: Section 2.405
b =MNa) # -'b" is the mininumvalue of the array -'a'.

These functions can also be used to reduce the dimensionality of an array (for instance, three- to two-
dimensional). For more information please see the User Reference Manual: Section 1.5.6.4

Functions applicable to one-dimensional arrays and returning an array of the same size:

63

The Numeric library

» REVERSE: Section 2.340

Functions applicable to arrays and returning an array of increased rank (number of dimensions):

 REPEAT: Section 2.334

X

Warning

Many of these functions have lower case equivalents built-inin Jython. Be aware of which
one you are using, because their behaviour could differ in some cases, as shown by the
example below which creates a table with Not-a-Number (NAN) valuesin it.

t t =Doubl eld. r ange(10)

tt[0] =Doubl e. NaN

print max(tt)

NaN

print mn(tt)

NaN

tt[1] =Doubl e. NaN

tt[0]=1.0

print max(tt) # By using the built-in Jython functions
9.0

print mn(tt)

1.0

print MAX(tt) # By using the DP Nunmeric functions
NaN

print MN(tt)

NaN

3.8.2. Integral transforms

A Discrete Fourier Transform is provided for Conpl ex1d arrays. Thisusesaradix-2 FFT agorithm
for array lengths that are powers of 2 and a Chirp-Z transform for other lengths. Future releases might
support multi-dimensiona arrays, if required, and optimised transforms of real data.

Window functionsare provided for reducing 'leakage’ effectsusing the Hamming or Hanning window.

Example 3.1 shows the generation of afrequency modulated signal, followed by a FFT both with and

without windowing:

ts = 1E-6 # Sanpling period (sec)

fc = 200000 # Carrier frequency (Hz)
fm= 2000 # Modul ation frequency (Hz)
beta = 0.0003 # Modul ati on index (Hz)

n = 5000 # Nunber of sanples

pi = java.lang. Math. PI # define pi

t = Doubl eld.range(n) * ts
#t is a 5000 el enent array holding tine val ues

signal = SIN(2 * pi * fc *t * (1 + beta * COS(2 * pi * fm* t)))
#create the nodul ated signal with nodul ation frequency fmand carrier

#frequency fc,

is the array we created above for the tinme el enents.

spectrum = ABS(FFT(Conpl ex1d(signal)))
#spectrum hol ds the absol ute value (ABS) of the FFT of the signal.
#We need to handl e these arrays as Conpl exld rather than Doubl eld.

freq = Doubl eld.range(n) -/ (n * ts)
#The frequency val ues for the spectrum

Repeat with apodizing
spectrun? = ABS(FFT(Conpl ex1d(HAMM NG(signal))))

Example 3.1. FFT of a modulated signal, with and without HAMMING smoothing

64

The Numeric library

3.8.3.

3.8.4.

The Inverse Fourier Transform of a Complex1d array (only) "x" can be obtained using, e.g., inver se
= FFT(x).

Power spectrum

With the Power Spect r umclass you can create the power spectrum of each column of a Table
Dataset. Table dataset that are suitable for power spectrum conversion typically contain a column
bearing units of time, plusother columns of quantitiesfrom whichto compute power spectra. Sincereal
signals sometimes contain unwanted strong excursions, called glitches or spikes, that will dominate
the power spectrum, the Task includes asimple de-glitcher, that detects and removes such eventsfrom
the data stream, replacing them with an average of the surrounding data.

The Power Spectrum Viewer, agraphical interface wrapping the functionality of thisclass, isdescribed
in the Data Analysis Guide.

Y ou can obtain your power spectra by invoking the get Power Spect r ummethod on the Power -
Spect r umclass. The method takes the following arguments:

* tabl e: theinput Table Dataset.

e flimt:theinverse cut-off frequency (default 0.1).

* si gma: the deglitcher threshold (default 4).

» degl i t ch: boolean, activates the deglitcher if t r ue (default).
* ti meCol um: aCol unm containing time information.

The inverse cut-off frequency determines the length of the intervals into which the data timeline is
subdivided before performing the FFT. Each of these datasetsis Fourier transformed individually, and
the resulting power spectra are quadratically co-added to yield a power spectrum with a better SIN
ratio, that is, ahigher cut-off frequency will yield a better S/N for the resulting power spectrum.

The sigmavalue controls asimple sigmakappa deglitcher, that eliminates al datapointsthat are more
than sigma (default = 4) times the standard deviation away from the mean. After eliminating these
data points the procedure is repeated iteratively until no more data can be discarded.

The get Power Spect r ummethod has the following variants:

» get Power Spectrunq(t abl e)

e get Power Spectrun{tabl e, tineColum)

» get Power Spectrun(flimt, table)

e get Power Spectrun(flimt, table, tineColumm)

» get Power Spectrun(flimt, sigma, table)

e get Power Spectrun(flimt, sigma, table, tinmeColum)
» get Power Spectrum(flimt, sigm, deglitch, table)

e get Power Spectrun{flimt, sigm, deglitch, table, tinmeColum)

Convolution

Convolution is currently supported for Doubl eld arrays. A direct convolution algorithm is used,
although a future release might implement Fourier convolution to improve the speed for large arrays
and large kernels. An example of itsuseis given in Example 3.2.

65

The Numeric library

3.8.5.

x = Doubl eld. range(100)

Create array [0.0, 1.0, 2.0 -... 99.0]
kernel = Doubl eld([1,1,1])

#provi de kernel for the convol ution

f = Convol uti on(kernel)

#create the convol ution

y = f(x)
#apply it to the array x. The result is in array y

Example 3.2. Example of the use of the convolution algorithm

This illustrates a general approach with the numeric library i.e. general function objects may be
instantiated using parametersto create a customi sed function which can then be applied to one or more
sets of data.

The constructor of the Convol ut i on class allows optiona keyword arguments to be specified, to
further customise the function:

» The'cent er ' parameter allow selection of a causal asymmetric filter for time domain filtering or
asymmetric filter for spatial domain filtering.

e The'edge' parameter controls the handling of edge effects, as well as allowing a choice between
periodic (circular) and aperiodic convolution.

The following examples show construction of filters using these options:

Note
@ Make sure you have input the following import line before trying these out.

from herschel .ia. nuneric.tool box.filter.Convol ution inport *
Use zeroes for data beyond edges, causal

f = Convol uti on(kernel, center=0, edge=ZERCES)
Circular convolution, causal

f = Convol uti on(kernel, center=0, edge=Cl RCULAR)
Repeat edge values, causal

f = Convol ution(kernel, center=0, edge=REPEAT)
Use zeroes for data beyond edges with centred kernel

f = Convol ution(kernel, center=1, edge=ZERCES)
Circular convolution with centred kernel

f = Convol ution(kernel, center=1, edge=Cl RCULAR)

Repeat edge values with centred kernel

f = Convol uti on(kernel, center=1, edge=REPEAT)

Boxcar and gaussian filters

Finite Impulse Response (FIR) filters and symmetric spatial domain filters can be defined by instan-

tiating the Convol ut i on classwith appropriate parameters. In addition, special filter functions are
provided for Gaussian filters and box-car filters:

66

The Numeric library

from herschel .ia. nuneric.tool box.filter.Convol ution inport *

f
f

Gaussi anFilter (5, center=1, edge=ZERCES)
BoxCarFil ter(5, center=0, edge=ZEROCES)

These filters are subclasses of Convol uti on and hence inherit the use of similar keyword argu-
ments.

3.8.6. Interpolation

Interpolation functions are provided for a variety of common interpolation agorithms.
Example 3.3 illustrates the use of the currently available interpolation functions.

Create the array x [0.0, 1.0, 2.0, -..., 9.0]

x = Doubl eld. range(10)

print x #[0.0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0]

Create an array y which contains the sine of each elenent in x

y = SIN(x)

u contains the values at which to interpol ate

u = Doubl eld.range(80) -/ 10 + 1

print u #1.0,1.1,1.2,1.3....8.6,8.7,8.8,8.9]

Linear interpolation

This sets up the interpolation, linear x-y fit

Interpol ate at specified val ues

interp = Linearlnterpolator(x,y)

Prints out the values interpolated at each position noted in array u
print interp(u) #[0.8414709848, 0. 848253629....0.5275664375, 0. 4698424613]

Near est Nei ghbour and Cubi cSpline interpol ation nay be perforned
in the sane way:

Cubi c-spline interpol ation
interp = CubicSplinelnterpol ator(x,y)

Near est - nei ghbour i nterpol ation
interp = Nearest Nei ghbor| nt erpol ator(x,Y)

Example 3.3. Interpolation functionsin DP

The result of the interpolations used in the above exampleisillustrated in Figure 3.1.

e R R R AR R LR R RN RRRRN LAREN RARE=
Lof .-_5\ = E
08 //\ 3
06F \ -
0.43— \ / n —f
0 02F =
= 00 m =
= 02 F -
_04F / 3
“06F \. 3
_08F @ =
S1of =
IR S ETH NEETN RENTE NETEE FRNS FUNS FUNTY NUTEN ST N e
-1 0 1 2 3 4 5 6 7 8 9 10
X axis
W Original values —— Linear — Cubic spline

MNearest neighbour

Figure 3.1. lllustration of variousforms of interpolation functions.

67

The Numeric library

3.8.7. Data fitting

Here we provide information on the basic linear and non-linear fitting routines available within DP.

3.8.7.1. General approach

Input Data: The fitter package expects your data to be in two datasets that are related to each other.
Typically, these are Doubleld arrays, e.g.,

Doubl eld. range(12) # Make x vector (the data positions/channels)
Doubl eld([1.0,1.2,0.9,2.2,3.3,\
4.5,3.6,2.7,1.8,1.2,1.0,1.1]) # Mike y vector (the data val ues)

Data points: each elenent in x and y define a data point

Model Selection: Fitting means adjusting the parameters of a known function, called model, so that
it best matches the input data. This toolbox provides some pre-defined linear models as well as non-
linear models. Viewing your datawill hopefully give you some hints about what function model would
reflect your input data. For example, if it seemsto be polynomial of acertain degree, you would choose
a PolynomialModel.

Note

@ For the case of non-linear fitters (e.g., used with Gaussians) it is also necessary to provide
initial guesses in the form of a parameter set to the model before invoking a fitter. The
closer the initial guess for the parameter set to the true values the higher the likelihood
that the minimisation will not find a local minimum with wrong/unrealistic parameter
estimation.

An example of the use of alinear fitter:

Choose a nodel: 4th degree pol ynoni al

nmyModel = Pol ynoni al Model (4)

Create a fitter and feed it your positions/channels along the array
(x, a Doubl eld array) and your nodel

nyFitter = Fitter(x, myMdel)

Or for anon-linear fitter applied to our array 'x":

myModel = GaussMbdel ()

peak = 4.5

channel = 5.5

wi dt h=1. 0

initialvalues = Doubl eld([peak, channel, w dth])

Apply the initial estinates: peak height, channel position and

width of gaussian

nmyModel . set Paranet ers(initial val ues)

Choose non-linear fitter to use

nyFitter = AnpebaFitter(x, nmyMddel) # see |later section on available fitters

Fit Execution (with and without weights)

Now actually fit the data values at each x position (the y array) to the nodel
fitresults = nyFitter.fit(y)

O with associated weights array

fitresults = nyFitter.fit(y, yWeights)

Results Now thefitter hasdoneitsjob. We can print theresults (f i t r esul t s) to seethe parameters
fitted.

print fitresults # fromusing the polynom al fitter

[1.0993589743591299, - 1. 1096331908843398, 0. 8923489704745665,
--0.14688390313399513, 0. 006825466200470528]

provides coefficients of the polynomal fit

68

The Numeric library

print fitresults # fromusing the Gaussian fitter
[3.751009700481534, 5. 353351564022887, 2. 5098951536394383]
#peak of fit, channel of Gaussian peak, width of Gaussian

Thefit parameters model are computed and we can start using that model to e.g. re-sample your model

fit data

Re-sanple with equally spaced x data points and a finer grid:
xs = Doubl eld. range(1200) -/ 100 # Re-sanpl ed x positions
ys = nmyMdel (xs) # Conputed y data points

#a plot of xs versus ys plots out 1200 points with the fit.

Satistical Information The above procedure demonstrates how to use the fit package to fit your data
against a certain model. However, it does not tell you how good the fit actualy is. Thefitters provide
ways to extract such information from the fit.

After fitting

print nyFitter.getChi Squared() # CGoodness of the fit
e.g., 2.5765684980727577 for Gaussian fit
print nyFitter.autoScal e() # How wel | does the data fit the nodel.

e.g., 0.5350564350372312 for CGaussian fit

print nyFitter.getStandardDeviation() # Standard deviations for the paraneters.
e.g., [0.30907540430060004, 0. 24531121048289006, 0. 2525757390634412]

for Gaussian fit paraneters

print nyFitter.get Hessian() # Retrieve the Hessian matrix
es = nyFitter.nonteCarl oError (xs) # Errors on the resanpl ed datapoints
es is now an error array with a length the sane as -"xs" --- 1200 sanpl es

3.8.7.2. Available linear models
There are several models that can be used for linear fitting.
In the descriptions below, the models provide parameter fit values po, p1 ... Pk

Note

@ In the following examples the parameter subscripts match the position of the parameter in
the output array (fi t sresul t in the previous section). So pp will be the first element
of thefitsresult aray, p; the second one, and so on.

BinomialM odel, which allows for the fitting of a binomial model with two variables: f(x,y:p) = Z px
Xy where d is the degree. Usage: BinomialModel(4) — provides a binomial model of degree 4.

PolynomialM odel, which allows for the least squares fitting of a polynomial to the data: f(x:p) = X
pi X. Usage: PolynomialModel(3) — provides a third order polynomial fitting of the data.

SineAmpM odel, which allows for the fitting of cosine and sine waves of a given frequency to get

amplitudes — f(x:p) = pp cos(2 Tt f X) + p1 Sin(2 Tt f x), where x is the data. Usage: SneAmpModel (f)
—which provides cosine/sine fits with a frequency, f.

Power M odel, which allows for the fitting of a power law of order k: f(x:p) = po X. Usage: Power-
Model (3) — provides a third-order power-law fit

CubicSplinesM odel, which alows for the fitting of a cubic splines with arbitrary knots settings. Us-
age: CubicSplinesModel (Doubleld([12.5, 15.8, 17.7])) — provides a cubic splinesfit with three knots.

3.8.7.3. Available non-linear models

Thereareanumber of model sthat can be used for non-linear fitting. For fitting of these modelswe need
initial values (guesses) for parameters labelled pg, p1 and p, (see example given in Section 3.8.7.1).

69

The Numeric library

ArctanModel, which alows for the fitting of a general arctan function — f(x:p) = po arctan(py (X -
p2)). Usage: ArctanModel()

ExpModel, which alows for the fitting of a general exponential function — f(x:p) = po exp(p1 X).
Usage: ExpModel()

L orentzM odel, which allows for the fitting of a Lorentz function — f(x:p) = po (P27((X - p1)? + p29).
Usage: LorentzModel ()

Power L awM odel, which allows for thefitting of ageneral power-law function —f(x:p) = po (X - p1)™.
Usage: Power LawModel ()

SincM odel, which alows for the fitting of a sinc function — f(x:p) = pg sin (X - p)/p2)/(X - p1)/p2.
Usage: SncModel()

SineM odel, which allows for the fitting of a general cosine/sine wave — f(x:p) = p1 cos(2 Tt pg X) +
p2 Sin(2 Tt pg X). Usage: SneModel ()

GaussM odel, which alows for the fitting of a 1-D gaussian — f(x:p) = po exp(-0.5 ((X - p1) / p2)?),
where pgistheamplitude, p; the x-shift (from zero) and p, the sigmaof thefit, withinitial valuesof 1.0,
0.0 and 1.0 respectively. Note that Gauss2DModel produces afit to 2D data. Usage: GaussModel ()

User supplied non-linear function, which allows for fitting a function (linear or non-linear) con-
structed by the user. This function must be put in ajython class and optionally the user could provide
an analytical calculation of the partial derivatives with respect to the parameters (otherwise they are
calculated numerically). This is shown in the following example for the following function of four
parameters: f(x:p) = p0/(1+ (x/p1)?)™ + p3 (the so called beta-profile):

from herschel .ia. nuneric.tool box.fit inport NonLinear PyModel

cl ass Bet aMbdel (NonLi near PyModel) :
the full 4-paraneter beta-nodel with partial derivatives
f(x:p) = pO/(1+(x/pl)**2)**p2 + p3
#
npar = 4
def __init__ (self):
Constructor
NonLi near PyModel . __init__(self, self.npar)
sel f. set Par anet er s(Doubl e1d([1, 1,-1,1]))
#
def pyResult(self,x,p):
model = p[0]/ (1.0 + (x/p[1])**2)**p[2] + p[3]
return nodel
#
def pyPartial (self,x,p):
the partial derivatives
argl = 1.0 + (x/p[1])**2
dp = Doubl eld(sel f. npar)
#

dp[0] = 1.0/argl**p[2] # df/dp0

dp[1] = 2.0*p[0] *p[2] *x*x/ ((p[1]**3)*argl**(p[2] +1.0)) # df/dpl
dp[2] = --p[0]*Math.|og(argl)/argl**p[2] # df/dp2

dp[3] = 1.0 # df/dp3

return dp

def nyNanme(self -):
Return an explicatory nane (String). Optional.
return -"beta-profile: f(x:p) = p[0]*{1 + (x/p[1])2}7p[2] + p[3]"

Once we define the function as shown in the example then we can proceed as before and create a
model and then perform the fitting using either the Lavenberg-Marquardt or Amoeba fitters:

bm = Bet aMbdel ()
bm set Par anet er s(Doubl eld([10.0,1.0,-2.0,5.0]))
nyfit = LevenbergMarquardtFitter(x, bn) # see section on available fitters bel ow

70

The Numeric library

or nyfit = AnpebaFitter(x, bm
result = nyfit.fit(y)
print result

3.8.7.4. Compound and mixed models

It is possible to add two models, e.g. if one wantsto fit a spectral line (a Gaussian) on a background
(aPolynomial). The resulting model is non-linear.

nmyModel = GaussMbdel () # Define a Gaussi an
nmyModel += Pol ynom al Model (1) # Add a Polynomial to it of order 1. Only with +=
print nmyModel .toString() # I nformati on about the nodel

More models can be added if wished.

3.8.7.5. Available fitters

All the following fitters are used as follows (the example usesFi t t er):

nyFitter = Fitter(xDataPoints, nodel)

Fitter. Fitter for linear models. Y ou create afitter by providing the model assumption and the x points
of the data. With that information you compute the parameters within the model by fitting the y data
points. Once the computation of those parametersis done, you can extract statistical information from
the fitter.

L evenbergM arquar dtFitter. Fitter for non-linear models. The LMFitter is a gradient fitter, which
means that it goes downhill from the starting location until it cannot go down anymore. There is
no guarantee that the minimum found is an absolute or global minimum. If the chisg-landscape is
multimodal it ends in the first minimum it finds. See also Numerical Recipes, Ch 15.5.

AmoebaFitter. Fitter for non-linear models. The AmoebaFitter implements the Nelder-Mead simplex
method. It comesin 2 varieties, one wherethe simplex simply goesdownhill (temperature = 0) and one
which implements an annealing scheme. Depending on the temperature, the simplex sometimes takes
an uphill step, while a downhill steps alwaysistaken. Thisway it isableto escape from local minima
and it has a better chance of finding the global minimum. No guarantee, however. AmoebaFitter is
also able to handle limits on the parameter range. Parameters stay within the limits when they are set.
See also Numerical Recipes, Ch. 10.4 and 10.9.

Singular ValueDecompositionFitter. Linear fitter based on Singular Vaue Decomposition (de-
scribed in Section 3.8.9. Much morerobust in case of (nearly) degenerated models, at the cost of more
CPU use. See Numerical Recipes for moreinformation.

3.8.7.6. Obtaining a model fit to 1D and 2D data

1D fit example

Example 3.4 shows how apolynomial can befitted to a set of 1D data.

71

The Numeric library

Doubl eld([3, 4, 6, 7, 8, 10, 11, 13]) # These are the positions of the 1D data
Doubl eld([2, 4,5,6,5,6,7,9]) # These are the data val ues at each position
The created arrays are:
print x # [3.0,4.0,6.0,7.0,
print y #1[2.0,4.0,5.0,6.0

Create sone data
X =
y =

8.0,10.0,11.0, 13.0]
,5.0,6.0,7.0,9.0]

Decide that we will fit it with a pol ynom al

nmodel = Pol ynom al Mbdel (3)

The Fitter class expects the -'x' data point positions and the nodel.
In the binom al case, a Double2d array of x,y values is required.

The Fitter class deals with non-iterative nodels only.

[Note: For non-linear nodels the fitter tool box provides

the AnpebaFitter and the LevenbergMarquardtFitter]

fitter = Fitter(x, nodel)

Now we fit the data values(y); the returned array contains the paraneters
that nake up a 3rd degree pol ynom al .

Note: the nodel that we fed into the fitter is nodified along the

way, such that it contains the conputed paraneters of the polynom al.
poly = fitter.fit(y)

Printing the fit results (truncate to 3 decinal places to fit in line)

print poly # [-6.921, 4. 463, - 0. 543, 0. 022]

-..and also getting the Chi-squared. The fitter has already been applied
and we can use the get Chi Squared() method to determine the fit

print -"Chi-Squared = -", fitter.getChi Squared()
Chi-Squared = 0.9933079890409999

The fitted pol ynom al can then be applied as a function to interpolate
between fitted points. Interpolate at -'n' uniformy spaced x val ues

100
M N(x) + Doubl eld.range(n + 1) * ((MAX(X) -- MN(x)) -/ n)

n
u

Apply the nodel
unodel = nodel (u)

Now we can plot the data (x vs y) and the polynom al fit (u vs unodel)
Set up the plot space

pl ot = Pl ot XY()

Plot x against y in blue.

plot[0] = LayerXY(x, y, name = -"Data")
Overlay a second plot showi ng the polynomal fit in green.
plot[1] = Layer XY(u, unodel, nane = -"Fit", color = java.awt.Col or.green)

Example 3.4. A 1D polynomial fit.

The final plotted display should look like Figure 3.2

72

The Numeric library

Ir]II

9

|

I

y axis

e
e
/

3 4 3 G 7 8 9 10 11 12 13
X axis

P T
_

4

Figure 3.2. lllustration of polynomial fit.
2D fit example

For 2D data we express the positions at which we have data by a Double2d array -- thisis basically
alist of x, y positions at which we have known data values that we will fit a 2D Gaussian to. So the
X array in our previous example is now replaced by a 2D array of data positions. They array has the
data values at those positions.

In Example 3.5, an array with values that provide a Gaussian with random noise added is fitted by
the Gauss2D model.

73

The Numeric library

3.8.8.

We start by making a little routine that creates the data for us.

The out put contains the -'xy' positions as a Doubl e2d array and the data
values are held in in the Doubl eld array -'y2'.

def makeData():

Define sone constants

N=29 # W will create an array that is NxN
a0 = 10.0 # Anplitude of gaussian

x0 = 0.7 # x position of gaussian

y0 = --0.3 # y position of gaussian

s0O = 0.4 # Wdth

Make data with an underlying gaussi an nodel .
x = Doubl eld.range(N) -/ 2.0 -- 2 # create x val ues
NN = N* N # the nunber of x and y positions (NxN)

xy = Doubl e2d(NN, 2) # Create enpty array of xy positions
ym = Doubl eld(NN) # Create enpty array for anplitude of pure Gaussian
y2 = Doubl eld(NN) # Create enpty array for Gaussian with noise (our

dat a) .
These have anplitude val ues only.
rng = java.util.Random(12345 -) #provide a random anplitude (noise)
To add to our nodel Gaussian with a seed val ue.
si = 1.0 -/ sO #just inverse of Gaussian width to be used
for i in Intld.range(NN):
xy[i,0] =x[i -/ N] # Fills x positions for our data array
xy[i,1] = x[i %N # Fills y positions for our data array
xx = (xy[i,0] -- x0 -) * si
yy = (xy[i,1] -- y0 -) * si
ynfi] = a0 * EXP(-0.5 * xx * xx) * EXP(-0.5 * yy * yy)
Fills 1d array with anplitude val ues...
y2[i] = ynii] + 0.2 * rng.nextCGaussian() # -...and adds noise to it
return xy,y2

Create the array with a 2D gaussian in it using the above routine.
a = makeDat a()

The first itemin -"a" has the xy positions in it

xy=a[0]

The second item has the data val ues

y2=a[1]

Define the nodel to be used in the fit
gaus2d = Gauss2DMbdel ()

Define the fitter: LevenbergMarquardt, a non-linear fitter is needed for
a gaussian fit. W could use an AnpebaFitter here also --- user preference.
fitter = LevenbergMarquardtFitter(xy, gaus2d)

A useful way to make data formats prettier for the printout of our results
F = DataFormatter()

Find the paraneters

param = fitter.fit(y2)

print -"Paranmeters %" % F. p(param

Paraneters [9.645 0.694 --0.300 0.413]

print -"Paraneters are: gaussian height, x position, y position, w dth"
#Parameters are: gaussian height, x position, y position, wdth

Find the standard deviations of the all four paraneters...

stdev = fitter.get StandardDevi ation();

print -"Stand Devs %" % F. p(stdev)

#St and Devs [0.218 0. 009 0. 009 0. 007]

-...and the chi-squared for the fit
print -"Chi Sq %" % F.p(fitter.getChi Squared())
#Chi Sq 3. 552

Example 3.5. A 2D Gaussian fit

Masks

The Numeric library offers two classes for handling data masks:

* Fi xedMask represents a traditional mask definition, with different masks (up to 64) defined at
different bit offset positions. Note that this class only stores mask definitions, with mask data stored

74

The Numeric library

3.8.9.

in different arrays. For moreinformation and several examples, seethe entry inthe User's Reference
Manual: Section 2.135.

» PackedMask instead stores the mask data itself. There is in principle no limit on the number
of masks that can be stored in a single PackedMask object. For more information and several
examples, see the entry in the User's Reference Manual: Section 2.283.

Matrices

Most of the utilities for dealing with matrices are provided by the numeric.toolbox.matrix package.
However, we must not forget that simple vectors are just matrices with just one row (or one column),
so even vector classes like Doubl eld providestoolslike adot Pr oduct method for scalar multi-
plication of vectors:

X Doubl eld([1, 2, 3, 4])
y Doubl eld([1, 3,5, 7])
print x.dotProduct(y) # 50.0

We now take a closer look at the numeric.toolbox.matrix package and its classes and function objects
for matrix manipulation.

Transpose

To transpose a matrix do the following:

A=1Int2d([[1,2],[3,4],[5,6]])
print TRANSPOSE(A) # [[1,3,5],[2,4,6]]

Determinant

Use this function to find the determinant of a square matrix given by aDoubl e2d array.

A = Doubl e2d([[1,2],[3,4]])
print DETERM NANT(A) # --2.0

Note: This currently does not work for complex matrices.

Inverse

Y ou can find the inverse of a square matrix as follows:

A = Float2d([[1,2],[3,4]])
print | NVERSE(A) # [[-2.0,1.0],[1.5,-0.5]]

Note: This currently does not work for complex matrices.

Matrix multiplication

Use Mat ri xMul ti pl y for matrix multiplication:

X Doubl e2d([[2,4,6],[1,3,5]])

y = TRANSPOSE(x)
z = MatrixMiltiply(y)(x)
print z

It is important not to use the Jython * operator for matrix multiplication. However, the + operator
performs element-wise addition as expected.

It isalso possibleto multiply amatrix by avector asfollows (since, aswe already pointed out, avector
is nothing more than a matrix with just one row or column):

75

The Numeric library

a = Double2d([[1,2,3],[7.5,4],[7,4,9]1])
b Doubl eld([4, 1,7])
print MatrixMiltiply(b)(a) # [27.0,61.0, 95.0]

Warning
O The correct syntax to multiply matrix a by matrix b isMat ri xMul ti pl y(b) (a).

LU decomposition
For an mx n matrix A, LU decomposition returns matrices P, L and U so that PA= LU:

* Pisapermutation matrix, so that the product PA results in a permutation of A's rows. In the class
described below, P isreplaced by an equivalent permutation vector p.

» Lisaunit lower triangular matrix.
* U isan upper triangular matrix.

The LUDeconposi ti on class provides this functionality. The following example shows how it is
used:

A = Double2d([[1,1,1],[1,2,3],[1,3,6] -] -)
print A

=

HO HHHFHHFT HFEHHHFDT O HHFHIE

2,1]

LU gives A with the row order changed as described by the permutation vector: row 0, then row 2,
then row 1.

Eigenvalue decomposition

The Ei genval ueDeconposi ti on class provides eigenvalues and eigenvectors of areal matrix.
The following examples shows how it can be used:

A = Double2d([[1,1,1],[2,2,3],[1,3,6]] -) # Creating matrix
evd = A appl y(Ei genval ueDeconposi tion()) # Perform ng deconposition
D = evd.d # Obtaining the bl ock di agonal eigenvalue matrix

76

The Numeric library

V = evd.v # Obtaining the eigenvector natrix

print evd.imagEi genvalues # Printing the imaginary parts of the eigenval ues

print evd.real Eigenvalues # Printing the real parts of the eigenval ues

print evd.vcond # Printing the condition (2-norn) of the matrix, defined as
the ratio of the highest and small est singular val ue

If Aissymmetric, then A=V D VT, where the eigenvalue matrix D is diagona and the eigenvector
matrix V is orthogonal.

If Aisnot symmetric, then the eigenvalue matrix D is block diagonal with the real eigenvaluesin 1-

by-1 blocks and any complex eigenvalues, A + i |, in 2-by-2 blocks, [A, Y; -u, A]. The columns of V
represent the eigenvectors in the sense that AV = V D. The matrix V may be badly conditioned, or
even singular, so the validity of the equation A=V D V " depends upon vcond.

Singular value decomposition

For an mx n matrix A with m >= n, the singular value decomposition is an m x n orthogonal matrix
U, annx ndiagona matrix S and an n x n orthogonal matrix V sothat A= U SV..

The singular values, oy = S, are ordered so that g >= 01 >= ... >= Op.1.

The singular value decomposition always exists, so the constructor will never fail. The matrix condi-
tion number and the effective numerical rank can be computed from this decomposition.

The Si ngul ar Val ueDeconposi ti on class provides this functionality. For more information
see the User Reference Manual: Section 2.373.

Matrix equations

Use Mat ri xSol ve to solve matrix equations. For example, if you wanted to solve the matrix equa-
tion: A. X = B:

x = MatrixSol ve(b) (a)
print x # [-0.9838709677419352, 0. 5322580645161287, 1. 3064516129032258]

A note on naming conventions

Y ou might find abit confusing that some names, likedot Pr oduct , start with alowercase letter and
have al the other initials capitalised, while other names, like Mat ri xMul ti pl y, have all initials
capitalised, and there is a fair share of names like TRANSPOSE with all uppercase letters. You can
find more about these quirksin the appropriately named Section 1.18.

3.8.10. Random numbers

Note

@ For simplicity wewill speak of random numbers throughout this section, even if we know
very well that a computer can only create pseudorandom numbers. Discussing the sub-
tleties of generating (pseudo-)random numbers on a computer is beyond the scope of this
section.

To create random numbers with DP wefirst have to instantiate agenerator. There are three generators
currently available;

* Randonlni f or m generates random numbersin the range 0 <= x < 1 if invoked without param-
eters, likethis:

myGener at or = Randonni f or m()

It is also possible to give a maximum value different from 1 to have random numbers created in
the range 0 <= X < max:

7

The Numeric library

myGener at or = Randonni f or m(max)

* RandonfGauss: generates random numbers following a Gaussian distribution.

* RandonPoi sson: generates random numbers following a Poisson distribution of specified mean
value greater than zero. It isinstantiated like this:

nyGener at or = RandonPoi sson(mean)

It can only produce integer-type random numbers (i nt , short and| ong).

Inall caseswhat isbeing used under the hood isthe Donald Knuth generator (see The Art of Computer
Programming, Volume 2, Section 3.2.1) asimplemented in thej ava. ut i | . Randomclass.

Once we have a generator in place, how do we create random numbers? The handy feature is that we
can create a single scalar random number or an array of any size and dimension we like (aslong as it
fitsin memory). Just put the type of numeric value you want as input, and the output will be the same
thing, but populated with random numbers. A few examples:

myCener at or = Randonlni f or m()
print myGenerator (0.0)
0.8754230073094597

Generating random nunbers between 0 and 1

We want a floating point random nunber. ..

-...and there it is (don't expect to get the

sane nunber)

Now for an array of ten doubles...

We leave it to you to see the result

O course you can create the input on the fly
What's the result of this one? Does it nake sense?

x = Doubl eld(10)
print myGener at or (x)
print myGener at or (Doubl e1d(10))

#
#
#
#
#
#
#
print nmyGenerator(Ilntld(100)) #

Y ou might have been puzzled to see a hundred zeroes scroll on your screen after executing the last
command of the example. It's not so surprising if we think that we asked the computer to produce
integer random numbers between zero and one, excluding one. The choice of possible values was
pretty limited.

If wewant to change the seed of the random number generator we can do so by theset Seed method,
which takes along parameter as an input:

myCGener at or . set Seed(54653856L)

3.8.11. Numeric integration

Numeric integration in DP is implemented via an Integrator interface. The function to be integrated
has to be declared as a class of a RealFunction containing a method called calc which takes one
argument, the independent variable.

The following Integrators for a standard integration interval [a,b] are available:
 RectangularIntegrator

* Romberglntegrator

» Simpsonlntegrator

 Trapezoida I ntegrator

» GaussianQuad4l ntegrator

» GaussianQuad5I ntegrator

» GausslL egendrel ntegrator

All these integrators have two arguments for initialisation: the lower limit of integration (a) and the
upper limit (b). Once the integrator isinitialised and the user function is defined then to perform the

78

The Numeric library

integration amethod called integrate() is executed with an argument the user function. Thisis shown
in the following example:

from herschel .ia. nuneric.tool box inport Real Functi on

cl ass MyFuncti on(Real Functi on):
def cal c(self, x):
return x*x

MyFuncti on()

--3.0

3.0

i = Romberglntegrator(a, b)

print i.integrate(f) # 18.0

print -"Analytical answer: -",(b**3 -- a**3)/3.0

oo
(TR T

The following special cases of numeric integration are also implemented:

» GaussHermitelntegrator: for integration with limits (-Inf,+Inf) of aspecial class of functions

j‘”x e fx)dx

o0

» GaussLaguerrelntegrator: for integration with limits [0,+Inf) of aspecial class of functions
J" T =X p
X e X)dx
) f(x)

Theinput for the integrator initialisationis a.

» GaussJacobilntegrator: for integration with limits[-1,1] for aspecia class of functions
L Ol f B P
f (L=) (I+x)" flx)dx

The input for the integrator initialisation are o and f3.

If atabular data of x,y is to be integrated then it is necessary to interpolate first and then apply a
suitable integrator. Thisis shown in the following example:

from herschel .ia. nuneric.tool box inport Real Function

x = 0.1 + 1.9*Doubl eld. range(11)/10.0 # 11 points between 0.1 and 2.0
y = 1.0/x

f = CubicSplinelnterpolator(x,y) # interpolate first.

a=20.1

b =20

integrator = Sinpsonlntegrator(a, b) # use Sinpson's rule

res = integrator.integrate(f) #

print -"Result: -",res

print -"Analytical result: -",LOGb) -- LOZ a)

3.8.12. Interpolating discrete data

If the objectiveisto integrate discrete data, thiscan be done by meansof aFi t t er Funct i on, which
isafunction that interpolates the given data, with a specific model. For example:

from herschel .ia.toolbox.fit inmport FitterFunction

79

The Numeric library

y are Doubl eld that represent the absci ssas and val ues of our data
FitterFunction(x, y, Polynon al Model (3)) # Uses a Fitter
FitterFunction(x, y, Polynon al Mbdel (2), FitterFunction. AMOEBA)

Uses an AnpebaFitter

nonox

*Q ™ H#

If more precise fitting is needed, you can do it by yourself, and then pass the already built fitter (or
the model) to the FitterFunction:

x, y are Doubl eld that represent the abscissas and val ues of the data
nmodel = Cubi cSpl i nesModel (x)

fitter = AnpebaFitter(x, nodel)

fitter.setSinplex(parans, range) # custom ze the fitter as you want
fitter.fit(y)

f = FitterFunction(fitter) # or f = FitterFunction(nodel)

If one of the defined interpolators suites your needs, it can be used directly, instead of aFi tt er -
Funct i on. For example:

are Doubl eld that represent the absci ssas and val ues of the data

X,y
f = CubicSplinelnterpolator(x, y)

3.9. Mathematical operations on spectra

3.9.1.

3.9.2.

Introduction

The spectrum arithmetic toolbox allowsto combine Herschel spectrum data. Operations are performed
either on subclasses of spectrum datasets (Spect r unild, Spectr un®d), on cubes (Si npl e-
Cube, SlicedCube), or on products containing such data structures (e.g., HifiTimelineProduct).

Operations on Spectrainclude Selection and Arithmetic Operations.

» Selection: Provide means of selecting those spectra that can be combined. For instance HIFI cold-
load spectra, ON spectra, etc. Selection can be applied to datasets, such asrowsof aSpect r und,
or to tables within a product, such as datasets included in a Hifi TimelineProduct.

« Arithmetic Operations: Provide means of combining the selected spectra. Thisincludes:

» Basic arithmetic operations such as addition, subtraction, multiplication, or applications of scalar
functions.

o Statistical operations such as mean, median, variance, standard deviation or percentiles for sam-
ples/ selections of spectra.

« Datatransformations such as smoothing or frequency re-sampling.

Toolbox primer: selection

We present the power of the toolbox with afew code examples. Assume we have started ajide session
and loaded a Spect r und dataset with name 'datal from alocal pool or a database.

We might want to work only with a sub-set of the spectraincluded in our data. For a Spect r und
this means we have to (1) select specific rows from the data and (2) combine them into a new dataset
by applying some arithmetic operations on the selection. Task (1) is performed with the Sel ect -
Spect r umtask,

from herschel . i a.tool box. spectrum i nport Sel ect Spectrum

The SelectSpectrum-task can be configured and used in many different ways. A frequent usage is to
identify all the rows of the dataset that have a specific valuein a particular column:

80

The Numeric library

dsl = Sel ect Spectrum() (ds=data, selection_|l ookup={"bbtype":[3260]})

The example above selects all the rows with a value=3260 in the column named 'bbtype’. Hence, the
selection is performed by using the keyword selection_lookup in the call of the task, using what is
called a python dictionary. This py-dictionary contains the name of the attribute to look up as key
(column name) and the attribute value as value. All the rows in the resulting dataset ds1 have values
3514 in the bbtype column.

Using py-dictionaries suggests that we may combine several selections by adding further lookup prop-
ertiesto the dictionary. Indeed, all the rowsin the dataset resulting from

dsl sel ect (ds=data, sel ection_| ookup={"bbtype":[3260],"buffer":[1]})

ds2 = sel ect(ds=data, selection_| ookup={"bbtype":[3260], "buffer":[2]})

have values 3260 in the bbtype column and values 1 in the buffer column (hence ds2 is a subset of
dsl). Note that the lookup values are specified as py-lists. By specifying a list of admissible values
those spectra are selected that match one of valuesfound in the list. Aswill be explained below, there
are other selection models better suited for floating point values.

3.9.2.1. More on selection methods

 Lookup specific attribute value(s):
For one (or severa) discrete criteria use the keyword selection_|ookup:
dsl = sel ect (ds=data, selection_| ookup={"bbtype":[3413]})
Spectra with bbtype=3413 are selected and included in the result container.
ds2 = sel ect (ds=data, selection_| ookup={"bbtype":[3412, 3413]})
Spectrawith bbtype=3412 or bbtype=3413 are selected and included in the result container.
ds3 = sel ect (ds=data, sel ection_| ookup={"bbtype":[3413],"buffer":[1]})
Spectra with bbtype=3413 and buffer=1 are selected and included in the result container.

¢ Index selection:

If you want to select specific spectra included in the container by its index, use the keyword
selection_index:

dsl = sel ect(ds=data, selection_index=[1,5,12])
The spectrawith indices 1, 5, 12 are selected and included in the result container.
* Moregenera selection model:
Use the keyword selection and use one of the selection models found in the package

her schel . i a.tool box. spectrum sel ecti ons. nodel s
chopper Sel ecti on = RangesSel ecti onMbdel (" Chopper", [-4.4, 5.9], 0.1)

Thefirst parameter specifiesthe name of the attribute, the second parameter givesan array of centers
of the ranges and with the third parameter you specify the radius of the rangesto be considered. In
summary, this ranges selection model will identify all spectrafor which the attribute " Chopper" has
values located within adistance r = 0.1 around one of the centers [z1=-4.4,z2=5.9].

ds4 = sel ect (ds=data, sel ection=chopper Sel ecti on)

81

The Numeric library

3.9.3.

3.9.4.

3.9.5.

For further selection models see further down in the documentation.

Toolbox primer: average spectra

After selecting the data, we can move to task (2), the application of some arithmetic operations to
the selected spectra. For example, if we now want to average the selection, we can invoke the Aver -
ageSpect r umtask:

from herschel . i a. tool box. spectrum i nport AverageSpectrum
avg2l = AverageSpectrun() (ds=ds2)

The selection explained in task (1) can also be included in the average spectrum task, thus allowing
to perform selection and averaging in one step:

avg22 = AverageSpectrun() (ds=data, selection_| ookup={"bbtype":[3260],"buffer":[2]})

This result isidentical to the separate operations. It includes a single row with the average flux. The
resulting dataset contains exactly the same columns as the input dataset. Thus, what values should we
fill in the columns not affected by the operation? This is determined by a default action that depends
ontheinput datatype (sub-classof Spect r und in our example). For the Spect r unfd, the default
action consists of copying the values found in the input spectrum.

This way of processing the data is general: we always try to keep as much information as possible.
All columns and also the meta data are set in atype specific, instrument specific, or user specific way.
The output data type is the same as the input data type.

Thetoolbox operations are not restricted to operations on Spectrum2d as our example may suggest. In
all the operationsin the herschel .ia.toolbox.spectrum no reference is made to Spectrum2d. The opera-
tionsonly refer to aspecific contract (ajavarinterface), the SpectrumContainer-interface. Spectrum2d
also fulfills this contract. All the datastructures that obey this contract can be processed by the arith-
metic tools. The efforts to have this contract implemented for other datatypesisrelatively small.

Toolbox primer: subtract spectra

Other arithmetic operations are available such as pair operations (subtract, divide, pair-wise add/mul-
tiply) and scalar operations (add/subtract or multiply/divide by a scalar quantity). Here is an example
that shows how to use the subtraction:

from herschel . i a. t ool box. spectrum i nmport Subtract Spectrum

di ff12 = Subtract Spectrum() (dsl=dsl, ds2=ds2)

Here, the datasets dsl and ds2 either must have the same number of rows, or one of them must have
only asinglerow. If they have the same number of rows, the subtraction is carried through for the flux
data on a row-by-row basis. If the second contains only one row, this row is subtracted from all the
rows in the first dataset (or the other way around).

The same task can aso be used for subtracting a scalar:

ds_nR= Subtract Spectrun() (ds=data, paranm=2.0)

Here the number two is subtracted from all the flux columnsin our data.

Toolbox primer: divide spectra

The use of the Di vi deSpect r um-task isidentical:

82

The Numeric library

3.9.6.

3.9.7.

3.9.8.

from herschel . i a. tool box. spectrum i nport DivideSpectrum

rati ol2 = Divi deSpectrun() (dsl=dsl, ds2=ds2)
ds_d2 = Divi deSpect run() (ds=dat a, par am=2)

Toolbox primer: add and muliply spectra

Similarly, for multiplication and addition we can import tasks that can be used in asimilar fashion.

from herschel . i a. tool box. spectrum i nport MiltiplySpectrum
from herschel . i a.tool box. spectrum i nport AddSpectrum

These tasks work in exactly the same way.

Toolbox primer: resample and smooth spectra

Additional tasks included in the toolbox include smoothing, frequency resampling or extracting/cut-
ting the spectra. The system again provides the instance

from herschel . i a. t ool box. spectrum i nport Reanpl i ngFrequency

resanpl e = Reanpl i ngFrequency()

which allows for resampling non-equidistant grids to linear grids and the other way around. Resam-
pling to alinear grid with given resolution (width) would look like

dat a_resanpl ed = resanpl e(ds=data, density=true, resolution=1.0)

where the resolution is given in the same units as the frequencies in the data. The density parameter
indicates whether theflux is specified asaper channel (true) or asaper frequency unit quantity (false).

For the smoothing, the instance

from herschel . i a. tool box. spectrum i nport Snpot hSpectrum
snmoot h = Snoot hSpect rumn()

isagain loaded automatically by the system and it can be used by

dat a_snoot hed = snmoot h(ds=data, filter="box", w dth=10)

Toolbox primer: statistics on spectra

Finally, the toolbox also allows to compute the statistics for the spectra included in a spectrum con-
tainer.

from herschel . i a. tool box. spectrum i nmport SpectrunStatistics

statistics = Spectrunfttatistics()

There are two aternative ways to compute the statistics for the spectra included in a spectrum con-
tainer, the statistics computed on a per channel basis over all the spectra included in the container,

or the statistics computed for each spectrum included in the container across the channels, possibly
restricted to arange.

stats = statistics(ds=data)

The result of this operation stats is a product which contains the per channel statistics in Spectrumld
and the across channel statistics in a suitable TableDataset.

83

The Numeric library

3.9.9. Summary of toolbox operations

Operations are available both at the task level and at the java level. The tasks are most suited for
being used from the command line. The java classes which are wrapped by the tasks might be more
helpful when devel opers want to integrate the functionality into other modules. The java classes will
be discussed in the devel oper's sections.

SelectSpectrum (use select): Select spectra from a container and create a new spectrum container
of the same runtime type.

AverageSpectrum (use avg): Average the spectraincluded in the container on a channel by channel
basis. Restrict the average to specific selections or define groups and apply the average on a per
group basis.

AddSpectrum (use add): Pairwise or scalar add.
SubtractSpectrum (use subtract): Pairwise or scalar subtract.
DivideSpectrum (use divide). Pairwise or scalar divide.
MultiplySpectrum (use multiply): Pairwise or scalar multiply.

ResampleFrequency (use resample): Resample each spectrum included in the container to a new,
not necessarily linear grid.

SmoothSpectrum (use smooth): Smooth each spectrum included in the container.

ExtractFreqRanges (use extract): Cut the spectraincluded in the container to given frequency in-
tervals.

ReplaceFregRanges (use replace): Replace spectrum information in one container by information
from another.

SoectrumSatistics (use statistics): Compute statistics of the spectra in the container - either on a
per channel basis or across the channels.

3.9.9.1. Remarks

1. Fitting: There is a separate documentation on fitting: see the module ...

2. Datastructures: Asindicate in the primer, all the data structures that fulfill the contract a spectrum

container must have can be processed by the toolbox modules. Currently:
 Spectrumld: implements contract.

 Spectrum2d: implements contract.

 Cubes: under consideration.

 Other instrument-specific data structures (such as HifiTimelineProduct or SpectrometerDetec-
torSpectrum): under consideration.

Chapter 4. Introduction to Tasks

This chapter aims to be an introduction for users to the Task framework. Writing Tasks allows us to
create modular and reusable code for data reduction and analysis, easier to distribute and to be used
by people other than the author.

4.1. The Task framework

When we weretalking about OOPin Chapter 1, we used as example avery real and tangible object like
an airplane. However, we mentioned that objects can also represent more abstract concepts. Dealing
with astronomical data presents us with such asituation. When reducing or otherwise treating our data
we go through a succession of self-contained operations. Data enter each of these "boxes" in acertain
state and exit in amodified state. We might want to have a general template to represent such boxes,
with a way to specify input and output parameters and check for their consistency. It would aso be
great to have some form of history to track what we have been doing to a given set of data, without
the need to write it in a separate place or try and sgueeze the information in the file name. Another
handy tool would be a command to get help on that particular "box", to know at a glance what it does
and what kind of parameter it expects.

The Task framework providesit all. Here we can see many concepts of OOP in action: reusable code

(that of the Task class) to create modular pieces of software (our tasks) easy to plug together into
more complex structures. In the following sections we will learn how to write a Task in Jython.

4.2. My first Task
4.2.1. Before the Task

Before writing a Task we should have something to turn into a Task. Paste the following code into
your HIPE Editor view and then execute it with the double arrow button in the HIPE toolbar.

85

Introduction to Tasks

4.2.2.

Average function
Takes a Tabl eDat aset as i nput
Returns a Doubl eld (1D array of real nunbers)
in which each row is the average of the val ues
in the input table colums
Routine for cal cul ating the average
def average(table):
colums = tabl e. col umCount
divider = 1.0 -/ colums
result = Doubl eld(tabl e.rowCount)
for colum in Intld.range(col ums):
resul t. add(tabl e. get Col um(col umm) . dat a)
return result. multiply(divider)

Routine for creating the initial table
def createTabl e():
Create array x (0.0, 1.0, 2.0, 3.0, 4.0)
x = Doubl eld. range(5)
colums =5
Create an enpty table with a nane
tabl e = Tabl eDat aset (description = -"A test table")
lterate for the the number of colums to fill up the table
Using -" -"%" %colum -" creates a string nanme for the
tabl e-col um which contains the integer value contained in
the variable name that appears after -"%. In this case
colum | abels are just 0 1 2 3 4.
for colum in Intld.range(col ums):
table["%" % col um] = Col um(x)
X =x+1
Return the result, a table called -'table’
return table

Routine for checking it out!!
def testAverage():
Create the table
tabl e = createTabl e()
Get the average and put it into an array called -'result’
result = average(table)
Print the result (a 1D array)
print -'"Result:', result

Example 4.1. Beforethe Task

The above code has three functionsin it. Theimportant oneisaver age, which does the "useful” bit
of computation, giving the average of each column of a TableDataset. The cr eat eTabl e function
simply creates the input TableDataset for aver age, whilet est Aver age just calls the two func-
tions above and prints out the result.

Y ou can see how the above works by the following. The bracketsindicate it is afunction.

t est Aver age() # Result: [2.0,3.0,4.0,5.0,6.0]

What makes a Task?

In the current implementation, atask has two components:

» Sgnature. Someone's signature is something by which we can unambiguously identify that person
(leaving forgery aside). In the same way a Task's signature, consisting of its name and the number
and type of input parameters, is away to identify the Task with no ambiguity.

» Execution. This component is made of three methods, i.e. object member functions. First we have
the preamble, which checks the actual input parameter values. The execute method, as its name
suggests, contains the algorithm performing the useful stuff. Finally, the postamble checks the out-
put parameter values. The preambl e, execute and postamble are empty by default (no input or output
parameters) and the devel oper usually writes only the execute method to perform agiven algorithm.

86

Introduction to Tasks

Note

@ Once parameters (input or output) receive a value, they are automatically reset to their
default values after the Task has been executed. Notein particular that also output param-
eters are reset, so to keep a Task output for further inspection it has to be assigned to a
variable upon execution, like this:

result = nyTask()

One more thing to noteis the possibility to define new default values for Task parameters. If we have
anyl nput integer parameter for our ny Task Task, we can set its new default value to 42 like this:

nyTask. set AsDef aul t (" nyl nput", 42)

Now equipped with this knowledge we can turn our average algorithm into a Task.

4.2.3. An Example of a Task: Average

To turn our average algorithm into a Task we need to wrap the algorithm into a suitable piece of code.

We will name the task itself Aver age (aTask isaclass, it is callable from the command line, and
generaly class names are capitalised nouns). In our Aver age class we have no needs other than
setting up asignature and calling the average function as part of its execution.

One change from our function to our classis that we will explicitly have two parametersin the class
definition. One (in a similar way as the function) is our input table, but for the class we declare a
second parameter to hold the result of computing the average. As a requirement, we would like to
change our original average function aslittle as possible.

In the next paragraphs we explain (with code and comments) what packages are necessary to import,

how to define the Task (creation code), the method to perform a function (execute) and how we use
and test the Task (with different parameter access methods).

4.2.3.1. Importing definitions

For our given code we need to import definitions that are used by our task:

Inport task framework cl asses.
from herschel .ia.task.all inmport * # @

Some explanation about the import:

© Hereweimport al the task framework classes we need. Task and TaskParameter classeswill be
automatically imported with theal | import statement.

Note that the preferred way to import the needed classes from the task framework isthe so called 'al’
import statement:

from herschel .ia.task.all inport *

4.2.3.2. Creation
First the code for the creation method called i nit __ in python:

cl ass Average(JTask): # @
Creation nethod

def __init_ (self,nane = -"averageTable"): # ©
p = TaskParaneter("tabl e", val ueType = Tabl eDat aset, mandatory = 1) # ©
sel f. addTaskParaneter(p) # @

87

Introduction to Tasks

p = TaskParameter("result", val ueType = Doubl eld, type = QUT) # ©
sel f. addTaskPar anet er (p)

And some explanations about the code...

O HerewedefineaclassAver age which hasJTask asaparent class. In other words, Aver age
inheritsfrom JTask. Note that Jt ask isapython file and has no JavaDoc therefore.

® Thisline declares the creation method used by any instance of the Aver age class. sel f asthe
first argument represents the instance that we are currently working on. The nane argument is
the default value indicated (which the user can of course overwrite).

The rest of the code is the definition of the signature for the task Aver age and is asfollows:

® Thisline creates a parameter whose name ist abl e, datatype is Tabl eDat aset . Thisisa
mandatory parameter, i.e. an input parameter which must have a value before the algorithm is
performed. The preamble will verify that the user has set a value for this parameter and will
eventually warn the user that the execution of the task cannot take place.

Here we add the parameter to the signature of this task.

We proceed in asimilar way for our second parameter (as mentioned above) which will hold the
result of our computation. The only difference for the second parameter isthet ype = OUT
statement which means that this parameter will hold an output value. As a side note the mode of
parameters can be | N, OUT or | O(both input and output), the default being | N.

4.2.3.3. Execution

® 0

First we examine the code for the execution method called execut e as predefined in the JTask
base class. This simply follows on from the previous set of code that initiated the task and should be
added to the end of it:

Execute nethod itself
def execute(self): # @
self.result = average(self.table) # @

O Thisisadeclaration stating that we definethe method execut e. Actually weredefinethe empty
execut e method of JTask. This method has a parameter sel f which refers to the task we
are currently working with, rather than to any other parts of the current | A session.

® Thisline means 'take this instance table value, perform the average operation on it and deliver
the result to this instance result'. So in one line we perform the whole operation using our own
actual parameters.

Together with the signature defined in the previous section we have set up our Task. The complete
script should look like the Task Average (below). We now load thisinto our session.

File: Average.py

Inmport task framework cl asses.

from herschel .ia.task.all inport *

from herschel .ia.task.JTask i nport JTask

cl ass Average(JTask):

#Creati on net hod

def __init__(self,name = -"averageTabl e"):
#
p = TaskParaneter("tabl e", val ueType = Tabl eDat aset, nmandatory = 1)
sel f. addTaskPar anet er (p)
p = TaskParaneter("result", val ueType = Doubl eld, type = OUT)
sel f. addTaskPar anet er (p)

Execute nethod itself does the running of -'average'

def execute(sel f):
self.result = average(self.table)

Example 4.2. The Average Task

88

Introduction to Tasks

4.2.3.4. Usage

Below is the command line code to input into the HIPE Console view for testing our Aver age task.
First we instantiate the Aver age class creating an object called avg:

avg = Average()

We are using the default name of aver ageTabl e for our Task. To change the name we would have
written for instanceavg = Average("Si npl e average of table data set") oravg
= Average(name = "M ne").

Wecan now formulate atableusingthecr eat eTabl e routinein the set of threefunctionswe created
at the outset.

tabl e = createTabl e()

The interesting part comes when we use the following:

print avg(table)

We have executed the Task and printed its result. To make sure that it indeed executed successfully,
we can look at thest at usMessage:

print avg.statusMessage
A more direct way to execute our Task would be
print avg(createTable())

On the other hand, we could do everything in along-hand fashion, doing one little step at atime:

avg.table = table

avg()
result = avg.result

print result

Here we tell our average task that itsinput is called 'table’. The second line runs the task itself and we
assign the result from this to a variable called 'result’ in the third line. Finaly, thisresult is printed.

4.2.3.5. Getting help on Tasks

If you stumble upon atask you have never used before you will probably want some way of finding
out about is parameters, whether they are mandatory or not, and so on. Taking our Average task as
example, if you type

info('Average') # Note it's -'Average' with single quotes

you will be greeted by the following window:

89

Introduction to Tasks

B avg:refresh rate 5000
Task: null

Mame: null -

Usage:

Keyword style

result = null@able=table, result=result, status=status, statusMessage=statusMessage, progress=progre!
Positional style T
result = null@able, result, status, statusMessage, progress, views)

Inputs :

Mame: table

Type: herscheliadataseLTableDataset 1
Optionak false

Default value: null

Current value: null

Outputs:

Mame: result

Type: herschelianumericDoubleld

Optionak true

Default value: null

Current value: null

] Il LA

Figure 4.1. Getting help on a Task.

It may appear fairly intimidating, but it provides a lot of useful information to users once they get
past the initial shock. In particular, look at the sections called | nput s: and Qut put s: . They list
the input and output parameters, which are most of what is needed in order to use a Task. In particu-
lar, here we see that we have one input parameter called t abl e, that it'sa Tabl eDat aset andis
mandatory (Opt i onal : fal se). Similarly, we see that the Task will output asingle Doubl eld.
Theinformation about st at us, st at usMessage, pr ogr ess andvi ews, found inthelower part
of the help window (not shown in the picture) is of limited interest to users.

What appears in the help window also depends on what developers originally put into the Task. For
example, in our case we have the hardly reassuring Task: nul |l and Nanme: nul | messages at
the very top of the window. But if we give anameto our Task likethis

avg. set Nane("My first Task")

we will see that after a short while the new information will appear in the help window.

4.2.3.6. Adaptations in the Preamble to a Script

The adaptation to the input of our Average script can be made in a preamble to the task, such asin
the following script. Note that here we import the t ask classes one by one, just to show in detail
what is needed.

90

Introduction to Tasks

lmporting JTask cl asses
from herschel .ia.task.all inport *
Other needed inports
from org. python. core i nmport PyLi st
And here is our AdaptAverage cl ass
cl ass Adapt Aver age(JTask) :
Creation nethod
def __init__(self,name = -"Runni ng Average"):
p = TaskParaneter("vector1", val ueType = PyList, mandatory = 1)
sel f. addTaskPar anet er (p)
p = TaskParaneter("vector2", val ueType = PyList, mandatory
sel f. addTaskPar anet er (p)
p = TaskParaneter("result", val ueType = Doubl eld, type \
=] OJT)
sel f. addTaskPar anet er (p)
Create an internal JTask variable -'table' which is our table data set
self.__dict__['table'] = Tabl eDat aset ()
In the preanble we do the adaptation from2 vectors to one table
def preanbl e(sel f):
JTask. preanbl e(sel f)
self.table["0"] = Col um(Doubl eld(sel f.vector1))
self.table["1"] = Col um(Doubl eld(sel f.vector?2))
Execute nethod itself
def execute(self):
self.result = average(self.table)

1)

Example 4.3. The Adapt Average Task

In this example, thef r om or g. pyt hon. core inport PyLi st statement allows us to work
with Python array lists (vectors). The task now takes two Python arrays and produces a table from the
arrays with each array forming a column of the table. We then can run our aver age script on the
table created in the preamble.

An internal instance variable is declared in the creation method with the statement:
self. dict__['table'] = Tabl eDataset().

Rewriting the preamble method. One should note that we first invoke the preamble from our parent
task (JTask) to guarantee that our needed parameters do have a suitable value before putting them
into the table.
The following short script can be used to test this adapted version of our averaging routine.
def test():
sanplel = [1.0, 2.0, 3.0, 4.
sanple2 = [3.0, 4.0, 5.0, 6
avg = Adapt Aver age()

lnvocation using positional paraneter
print -'Result:', avg(sanplel, sanpl e2)

Input of the following command

test()

provides the following printed result

Result: [2.0,3.0,4.0,5.0]

4.2.3.7. Positional and Keyword Arguments in Tasks

Note
@ It should be noted that positional or keyword arguments can be used with tasks but NOT
amix of the two.

For example, the last line of our 'test' script effectively runs the following (try replacing the last line
of the test() routine):

Positional argunents

91

Introduction to Tasks

print -'"Result:', AdaptAverage()(sanplel, sanple2)

Keyword argunents

print -'Result:', AdaptAverage()(vectorl=sanplel, vector2=sanpl e2)
Since -'vectorl' and -'vector2' are the two argunents for the

Adapt Aver age t ask.

Mixing of the two modesisONLY allowed following all positional arguments. For example:

print -'Result:', AdaptAverage()(sanplel, vector2=sanpl e2)

But once keyword arguments start to be used then they must continue to be used. For example the
following code snippet will result in acompiling error when added to the 'test' program and recompiled.

print -'Result:', AdaptAverage()(vectorl = sanplel, sanple2)

If this is added to -'test' and -"test' is then reconpiled we get the
foll owi ng syntax error

SyntaxError: ('non-keyword argunent follow ng keyword'

('<string>, 6, 49, -''))

A similar syntax error occurs if the AdaptAverage() task was run on a single line outside of the 'test'
routine.

4.2.3.8. The Tr ansf or mer example

Yet another JTask example. This one takes an array and transforms it into the first column of a
TableDataset. As before, the code comeswith at est Tr an() function to check what the Task does.

from herschel .ia.task.all inport *
from org. python. core i nport PyList

cl ass Transforner (JTask):
Creation nethod

def __init__(self, nane = -'Vector Transforner')
p = TaskParaneter(name = -"input", valueType = array(lnteger), nmandatory =
1)
sel f. addTaskPar anet er (p)
p = TaskParaneter(name = -"result", valueType = Tabl eDat aset)
p.type = OUT
sel f. addTaskPar anet er (p)
Execute net hod
def execute(self)
sel f.result = Tabl eDat aset (description = -'Integrated vector as col um
zero')

r = Doubl eld(l en(self.input))
index = 0
for data in (self.input)
r[index] = data
index = index + 1
self.result['0"] = Colum(r)

def testTran():
sanpl e = [10, 20, 30, 40]
Turn it into a table data set
transform = Transf orner()
tabl e = transforn(sanpl e)
print -"Printing the table"
print table
print -"Printing the first colum of the table"
print table['0']
print -"Printing just the data in the first colum"
print table['0'].data

Example 4.4. The Transformer Task

4.3. Tasks with graphical interfaces

This section describes how to handle GUI's and/or a dialog related to atask, how to check whether a
certain task supportsthe use of adialog and/or GUI, aswell as describing how to apply them.It should

92

Introduction to Tasks

4.3.1.

4.3.2.

4.3.3.

be emphasised that the devel oper of a task needsto implement adialog or GUI inthetask. Thissection
simply provides guidance to the user for using tasks that have dialog or GUIs included within them.

The use of task parameters handled via a dialog

Inthecasewhereatask includesalong or complex set of parametersadedicated dial og can be provided
by the original developer of the task. Such a component is handled by a boolean parameter called
"dialog" which the user can invoke using

result = Task() (dial og=1)

Such acall resultsin apop-up window which can be completed by selecting for example the "accept”
button, which will close the GUI.

Note that all tasks in the future will include a boolean-parameter called "dialog”. In cases where all
the available input parameters are of the type String or Number (i.e. those the framework can handle
for setting up adialog) a dialog-popup will be provided, otherwise an exception is thrown.

The use of more enhanced GUIs

In case you have a more complex task or you want to re-execute a task several times using different
inputs, aGUI might be introduced. Such acomponent is handled by aboolean parameter called "gui”:

task = MyTask()

task.gui =1 # gui interaction mght include an task.execute()
result = task.result # another gui interaction

result2 = task.result

Such a command sequence is very useful as it increases transparency. For example, the GUI might
show the state of the parametersby including afield for each parameter and apl ot or imagerepresenting
the quality of the resulting output.

To summarise: the user of atask appliesits views by the use of related the bool eans (task parameters).
In case of aone-time user interaction such abooleaniscalled "dialog" and otherwiseitiscalled "gui”.
Note that in case more GUI components are involved additional booleans could be introduced, the
task specific documentation should include thisinfo.

Conventions for parameter labels

The names of task parameters in the task graphical interface are formatted according to these rules:
» The primary input parameter isfirst in the list and in bold.

 All the mandatory parameters, including the primary input, have an asterisk following their name
(for examplewi dt h*). Note that this does not change the actual parameter name.

« All other parameter names are written in plain text.

93

Chapter 5. Overview of DP packages

5.1. Introduction

To accessfunctionality within HCSS packages you haveto import it into your HIPE session. For many
packages this is done automatically by default; if not you can do it manually via commands like the
following:

from herschel .ia.nuneric inport *

There are severa packages available within the HCSS. In this chapter we provide an overview of the
main DP packages only. A full listing of packages and classes available in your HCSS installation
is given in the APl documentation, which you can access by selecting HCSS Developer's Reference
Manual (API) from the HIPE Help System table of contents.

A number of DP packagesare discussed el sewherein some detail. The Numeric package was discussed
in Chapter 3, while the Plot and Display packages are discussed in the Data Analysis Guide. Illustra-
tions of how to use parts of severa other HCSS packages are also shown in other chapters.

5.2. Overview of Javadoc Documentation for
DP Packages

The javadoc is normally started up as three frames in aweb browser asillustrated in Figure 5.1 The
upper left frame contains the packages index which is a clickable list of all packages in the system.
Thetitle in that frame represents the HCSS build number for which this documentation isvalid. The
lower |eft frame contains the classes index which is a clickable list of all classes. The selection of
classes shown in this frame depends on the package that was selected in the packages index frame.
The Main frame contains overview information on the system and packages or shows the javadoc for
aselected class.

Location Edit View Go Bookmarks Tools Setiings Window Help

noa M LI OF CL €L & &
T, l) = ' = FED NS bl L
B Location: \[G Hp-fiasto esa inipub HERS CHE Licsdureleases/idociaplindex. htmi * |
i 5 i1d 273 X
Build 273 :l X Fackage Class Tree Deprecated Index Help Bui -
Al Chases I FREV MEXT FRAMES MO FRAMES
herschel access Packages
herachel access ag _
ber This package contains the user intecface layer of
i herschel access the data mccess package and represents the main
hetache com API
::“E:: Ei: :ﬁ:__u__ herschel . access.db This access sub-package contains all the classes
herschel cem. s it b ° that interact wath the database
Ferschel cem aplmiby [Tis access subpackage contains the netwocking
Ferachel com api param + herschel.access.net layer of the telemetry and data Frame interface
herschel com apiphs * — - .
P9 - herschel .access. util This access subpackage contains components to help
— e build applications using the access package.
* T n >
Al Claases Provides the interface to the persistent Core
ASThrray Covefersrios :| herschel. con Classes that unite the warious HCSS subsystens
ABTArrawIritinlizer |Defines the aPT of the i o 3
ol s o persistent Core Classes
Cl :§UWM ssian herachel. conm.api M . rﬁa- unite the warious HCSS subsystema.
GSSBSA b x herschel. con.api . cus a' n r‘a [e
ASTTupie Dereference |
ASTTuple itiaizer herschel . com.api. ilt Defines the API of the ILT-apecific Core Claszaes.
....... !

Figure5.1. Web browser page of JavaDocstop level frame.

Click in the Packages index frame to select a package and update the Classes index frame to show
those classesfor the selected package. Click the Classesindex frameto show thejavadoc of aparticular
classin the Main frame.

94

Overview of DP packages

The Main frame contains akind of navigation bar at the top where the view in thisframe can be sel ect-
ed. The figure above shows the overview of al the packages. Other views are: Package, Class, Tree,
Deprecated, Index, and Help. These views will be explained in more detail below. In the overview
the Package and Class views are disabled, they become avail able when a package or classis selected.
Figure 5.2 shows the dlightly expanded navigation bar for the Class view.

Overview Package [[JELTg Tree Deprecated Index Help

PREV CLASS MEXT CLASS FRAMES MNO FRAMES
SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAIL: FIELD | CONETR | METHOD

Figure5.2. Navigation bar on the class view of JavaDocs.

Note that the navigation bar provides the possibility to browse through packages and classes with
NEXT and PREVIOUS and provides direct access to the specific parts of the class documentation e.g.
constructors (start class/program) or methods (which can be thought of as sub-routine components of
programsthat can be applied). It isal so possibleto switch between FRAMES and NO FRAMES. With
NO FRAMES only the Main frame of thejavadoc will be shown and index framesbecome unavailable.

5.3. Package view

Each package has a page that contains a list of its classes and interfaces, with a summary for each.
This page can contain four categories. Interfaces summary, Classes summary, Exceptions and Error
summary. Not all categoriesareaways present. At the end thereisthe package description and possible
links to specific and/or related documentation.

Figure 5.3 showsthe her schel . i a. dat aset package which contains a number of interface and
classes e.g. Dataset and TableDataset. You can see that the Classes index frame provides a clear
separation of interfaces and classes and the Main frame shows the interface and class summaries and
provides a brief package description with links to package specific info at the bottom (The image of
the Main frame has been manipulated to shows the categories available without too much cluttering
the picture). Y ou can navigate to theinterface and class detail ed documentation by clicking the names
in the summary tables or in the Classes index frame.

95

Overview of DP packages

- - - -
E* Location: || 8] kip:ilocalhost'-rikhess-curmnt-goesiaplind e him 3 |'»
|) HCSS Javadoo® | @ How io read javados
TTT TR T Can AT Ii *
Feerachel b cal irgd 3 . Pt bd IFF =
Prertel i lassloscer overview [[FIHENCE Class Tree Deprecated Index Help
I'lersr.hulu.dmsluderm PACY FACKAODE RNENT PACKADE FAAMES NSO FAAMES
berschil Bdessoader impl |
berschal b datasat K
Ferachel i dataset demo
brerschel b deme Package herschel.ia.dataset
Ferschel i @fm
Frar s R o This packege provides a uniform spprosch for helding, srnotating, quantifying and
herschel b frameswank attributing data as ia defined in the herschel.ia.nuneric package
Feerschel i framewark api
herschel iy framewark sxampl Ses:
Description -
Pt sl i e il g 5|
* |
- Interface Summary
herscheliadatases Algorathn Intecface for backwards compatibiliby.
Fiterfaces tatable I.'.n annotatable uh]:::t is an object that can give a hunan readable |
Afporithm description of itsslf
Wm Attributabhle An Attributable object is an object that has the notion of neca daca
Afribuabls
Composite Corposite & container of named Datassts
Datasal tahle yid arotatah] i 4t - AT
Dataseflisior s taset B
Dsfallimnper
Iamaric Paramedor ||:1'.'i- Summary
Farameter . Abst tData taVisit Abskrsct implemsntastion of DatasstVistor and DatsWisitor
Farzmelferlisfor Fhran sethndDataVisitor . - oo o
GEranNTae T
e #bhstractiatasetVisitor #bstract implementation of Dataset¥Wistor interface
Absbrac] DalasslArd Dabshfailor Arrayllataset -E.‘Fne-c:i.al dataszet that containz a ::i.m:j'l.e Data n'bj::l:
Abrstract Defaselizitor .
ArrayCotused EonleanParancter # Pacanster with a Eoolean walue
?‘mpm“" Colun & Column iz & the vertical cut of a table For which all
t"" deDataset cella hawe the same signature
DafasetLid An CompositeDabaset is & Datasek that conkains ceco or moce
Diate Farameter Compositelataset nzoed Datasets
Dt Par it
LonipParagmeaber Datasetlitel Tempocary placeholder for some uwbkilities
Metalala o . .
Frockicl Dateiaranstor & Paranster with o Date walue
HrirgFaremeler DoubleParanabar & Paramete it z
TetdeDatassat
LomgParamnete
Package herschel ia.dataset Description
Thia package provides a uniform approach for holding, arnotating. quantifying and
stkcibuting data as is defined in the herschel.ia.nuneric package. Acktual storage 1=
taken care of by the herschel.ia.io package
Introduct ion
For & general discussion of this packsge, plesse resd the top decumsntation.
Hoke that this packege is & library, not an spplication One could argque that any usec of
this library is a code deweloper. This is partially true, as the cods will be vaed by
end-uaers a3z well Moat end-usera however will access the variocus elements in Jythom
=ccipting language. As a result the design of this package 1s geared towassd usage in Jythan
as wall as in Java.
Basic elements
This packege can be split into the following cekegories:
et :
- T Produce Collection of data=sets, meta-data and the h:i._-ltnqr of the P:nd.u.ct i
(-] Datazets & Algorithm r

Figure 5.3. Package description page in JavaDocs.

96

Overview of DP packages

5.4. Class view

Each class and interface has its own separate page in the Main frame. Each of these pages has three
sections consisting of a class/interface description, summary tables for constructors and methods, and
detailed descriptions of constructors, methods and attributes. The information shown in the classview
isrestricted to the public API (Application Programming Interface).

Each summary entry contains the first sentence from the detailed description for that item. The sum-
mary entries are alphabetical, while the detail ed descriptions are in the order they appear in the source
code. This preserves the logical groupings established by the programmer.

Figure 5.4 is taken from the Main frame of the TableDataset class and shows the class description
together with its hierarchy. You can see that the TableDataset implements a number of interfaces
and also has one known sub-class i.e. SpectrumDataset. The second part of the figure shows a more
detailed description of the class usage. This description is provided by the programmer in the source
code.

herschel . 1a.dataset
Class TableDataset

java.lang.chject
L herschel.ia.dataset.abstractAnnotatable
thrnchul.in.dntasut."[‘ﬂhluﬂatnﬂut

All Implemented Interfaces:

arnotatable, Attributable, Dataset
Direct Enown Subclasses:

SpectrumDataset

public class TableDataset
extends herschel ia dataset AbhstractAvnotatable
implements Dataset

A TableDataset 13 a tabaular collection of Columns. It 1z optimized to work on array Data
as specified in the herschel. ia numeric package,

This spprosch is convenisnt in many cases. For example, one has sn event list, and each
algorithm is adding a new field to the svents (i.e. a nev column.

The orthogonal approach (adding rows) is therefore expensive and therfore currently no
mechanizm is implemented to add rows to the table

Jython usage:
creation:

eALC10N:
¥ x=TableDataset (description="This i= my tables")

F x[rTime"] =columnidata=t ime muant ity=SRECONDS
§ x["Bnergy"]=column{data=energy, gquanticty=ELECTRONM

Figure5.4. The class view of TableDataset showing a brief description and a short example of its usage.

Scrolling down in the Main frame brings you to the summary section which is shown in Figure 5.5.
The constructor summary shows all public constructors for this class with their specific argument
list. To see detailed information on the constructor click the name of the constructor that you need.
Constructors are methods that create objects of a particular type. The code example in the description
section above shows you how to create a TableDataset on the jython command line.

97

Overview of DP packages

Constructor Summary

TableDataset ()

Constructs an empty table.

TableDataset (java.lang.Scring description)
GConstructs a TebleDataset with a description.

TableDataset (TableDataset copy)
Constructs a TableDataset that is a deep copy of specified arqument.

Method Summary

Column

__gatitem (int index)
Jython only(!) wrapper for abbreviated access to a column by
Lndesx.

Column

__getitem (java.lang.Ztring key)
Jython only(!) weapper for abbreviated access to & column by
TLENE .

vold

_ =metitem (inrt index, Column valus)

Jython only({!) wrapper for abbreviated replacement of a
column by indes.

vold

__metitem__ {java.lang.String key, Colunn valus)
Jython only{!) wrapper for abbreviated addition/replacement
of a column by name

void

accept (DatasetVisitor visitor)
Boccepts a wisitor of this Dataset,

void

add (Column column)
Deprecated. and replaced by
addcolumn(herschel .ia.dataset. column) .

vold

void

add(java.lang.string name, Column column)
Deprecated. znd replaced by

addcolumn{herschel .ia.datagst. Column) .

addColumn (Column column)
Adds the specified column to this table, and creates a dummy
name for this column, such that it can be accessed by get (int).

vold

addColumn (java.lang.sString name, cColumn column)

&dds the specified column to this table, and attaches a name
to it

vold

addRow (java.lang.object[] array)
Bdds the specified array as 2 nev row to this table.

Dataset

apply (Algorithm algorithm)
Bpplies the specified algorithm on a dataset.

protected
java. lang.String

contentsTofString ()

Figure5.5. Page showing the constructor mechanism (how to create a TableDataset) and the associated set
of methods (what you can do with the TableDataset you created).

The method summary shows al public methods for this class in alphabetical order. For detailed in-
formation on a specific method, click its name. In this method summary there are a number of things
to note. The return values of the methods are in the left column while the method signature and a
summary line is in the right column. The summary line can be preceded with a deprecation note.
Deprecation means that this method should not be used anymore because it is marked to be removed
from future releases. The deprecation comment normally provides the alternate or new method to be
used instead. An overview of all deprecated methods in the whole system is available from the navi-
gation bar at the top of the Main frame.

98

Overview of DP packages

Sometimes method names can start and end with two underscore characterslikein __getitem _
above. These methods are special constructs which alow you to use the specific jython syntax to
access and manipulate objects from this class.

5.5. Other views

5.5.1.

5.5.2.

5.5.3.

Tree view

There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each hierarchy
page containsalist of classesand alist of interfaces. The classes are organised by inheritance structure
starting with java.lang.Object. Theinterfaces do not inherit from java.lang.Object. When viewing the
Overview page, clicking on "Tree" displaysthe hierarchy for al packages. When viewing a particular
package, class or interface page, clicking "Tree" displays the hierarchy for only that package.

Deprecated view

The Deprecated APl page lists everything that has been deprecated. A deprecated API is not recom-
mended for use, and a replacement API is usually suggested.

Warning
O Deprecated APIs may be removed in future versions.

Index view

The Index contains an alphabetic list of al classes, interfaces, constructors, methods, and fields.

5.6. DP Packages And Documentation

5.6.1.

5.6.2.

The following short paragraphs outline the packages currently available within the Herschel DP sys-
tem. For full details please see the Javadoc.

herschel.ia.dataflow

Handles processing threads. Particularly useful for Quick Look Analysis (QLA) and Standard Product
Generation (SPG). It can be used in interactive sessions too. Allows the user to connect scripts from
process modules asistypically required for aset of datareduction steps. Dataflow al so supports event-
based processing as well as threads.

Main subpackages:
 herschel.ia.dataflow.data.process. Classes for handling the processes used in a dataflow session.

 herschel.ia.dataflow.example.indicator_control.monothread: Classes used to illustrate the con-
trol of adataflow.

 herschel.ia.dataflow.example.indicator_control.multithread: Same as above, but for multiple
threads.

 herschel.ia.dataflow.template: Classto allow template dataflow to be created.

* herschel.ia.dataflow.util: Classfor identifying dataflows.

herschel.ia.dataset

Contains Table Datasets, Array Datasets, Composite Datasets, Products and all auxiliary components
such as columns, parameters and metadata. Datasets and products are described in Chapter 2.

99

Overview of DP packages

5.6.3.

5.6.4.

5.6.5.

5.6.6.

5.6.7.

Main subpackages:
* herschel.ia.dataset.demo: Contains classes that demonstrate the use of datasets.
* herschel.ia.dataset.gui: Contains the Dataset Inspectro graphical interface.

» herschel.ia.dataset.image: Provides aframework for defining images, cubes of images and stacks
of images. Includes tools for adding World Coordinate System information.

» herschel.ia.dataset.history: Defines the History Dataset, which records the complete history of
the tasks which were executed to produce a Product.

* herschel.ia.dataset.spectrum: Contains tools for defining one- and two-dimensional spectra, and
spectral cubes.

herschel.ia.demo

Contains demonstration scripts.

X

herschel.ia.doc

Warning

Many of these scripts may be out of date and not work with recent versions of HIPE.

Contains devel oper-oriented documentation in HTML format. Contents of this package are also avail-
able from within the HIPE Help System.

Warning

O The Javadoc available in this package is incomplete. Please access the Javadoc from the
HIPE Help System

herschel.ia.document

Providestoolsto generate documentation of dynamic aswell as static DocBook documentsin different
formats.

herschel.ia.gui

Contains several subpackages related to graphical applications.

Main subpackages.

 herschel.ia.gui.apps: Contains the classes used to build graphical applications such as HIPE.
» herschel.ia.gui.cube: Graphical interfaces to analyse data cubes.

 herschel.ia.gui.explorer: Graphical interfaces to analyse datasets, such as TablePlotter and Over-
Plotter.

 herschel.ia.gui.image: Classesfor handling images. The display capabilities from this package are
discussed in the Data Analysis Guide.

» herschel.ia.gui.plot: Plotting utilities. For more details see the Data Analysis Guide.

herschel.ia.inspector

Contains the classes and utilities for providing the dataset and session inspectors available in HIPE
(see Section B.1.5).

100

Overview of DP packages

5.6.8.

5.6.9.

herschel.ia.io

Provides a means of accessing local archives where Products can be saved or loaded from. Products
are combinations of data and information and can be likened to the contents of asingle FITSfile.

Main subpackages:
» herschel.ia.io.ascii: Allowsinput and output of datato and from ASCII files.

* herschel.ia.iofits: A FITS implementation that can write Products to a FITS file and read such
FITSfiles back into the system. Allows the production of aFITS archive.

* herschel.ia.io.dbase: Allows data/products to be put into objects that can be stored in databases
(Versant databases are currently available for use with the HCSS).

herschel.ia.jconsole

Contains the classes used in running JIDE, a legacy application for running and editing of Jython
scripts, devel oped before HIPE. Allows control of the JIDE setup and access to classes that setup the
components of the GUI interface (in herschel.ia.jconsole.gui).

5.6.10. herschel.ia.numeric

Contains numeric and mathematical tools described in Chapter 2 and Chapter 3

Main subpackages:

* herschel.ia.numeric.toolbox: Providesalarge set of numeric classes. These include mathematical
functions (trigonometric functions, polynomials), Fourier transforms, fitter functions, interpolation
and matrix functions. Note that these classes are automatically loaded when starting HIPE.

This package contains the following subpackages:

 herschel.ia.numeric.toolbox.basic: Provides classes that allow basic mathematical manipula-
tion of numeric arrays: trigonometric functions, mathematical product, variance and so on.

¢ herschel.ia.numeric.toolbox.filter: Provides the classes BoxCar Fi | t er, Convol uti on
and Gaussi anFi l ter.

 herschel.ia.numeric.toolbox.fit: Provides classes that alow the fitting of data with numerous
models (iterative fitters, sine model fitters, polynomia model fitters and so on).

 herschel.ia.numeric.toolbox.integr: Provides integrator functions for several integral models
(Gauss-Jacobi, Gauss-L aguerre and so on).

* herschel.ia.numeric.toolbox.interp: Provides classes that alow the interpolation of data
These include | nt er pol at or (ageneral interpolator), Li near | nt er pol at or, Cubi c-
Spl i nel nt er pol at or and Near est Nei ghbor I nt er pol at or.

 herschel.ia.numeric.toolbox.mask: Provides tools for creating and managing masks, in partic-
ular thetwo classes Fi xedMask and PackedMask.

« herschel.ia.numeric.toolbox.matrix: Provides classes that alow the manipulation of
Doubl e2d arraysholding matrices. ItincludestheclassesMat r i xDet er mi nant ,Matri x-
I nverse and Mat ri xSol ve.

 herschel.ia.numeric.toolbox.random: Provides tools for generating pseudo-random numbers
with uniform (Randonini f or m), Gaussian (RandonGauss) and Poisson (RandonPoi s-
son) distributions.

101

Overview of DP packages

 herschel.ia.numeric.toolbox.util: Provides the classes Mor eMat h, which has methods for
mathematical manipulation of single numerical elements (integers, doubles, bytesand so on), and
Uti |, which hasutilities for converting arrays.

* herschel.ia.numeric.toolbox.xform: Provides the classes FFT, Hanm ng and Hanni ng for
Fourier transforms and Hanning/Hamming smoothing of data.

5.6.11. herschel.ia.obs

Defines the Observation Context, a container for Products applicable to a specific obervation, and
related classes.

Main subpackages:

» herschel.ia.obs.auxiliary: Defines the auxiliary Products related to an observation, and their con-
tainer, the Auxiliary Context.

» herschel.ia.obs.cal: Calibration-related classes.

» herschel.ia.obs.quality: Definesthe Quality Context and the flags used for quality control.

5.6.12. herschel.ia.pal

Defines the Product Access Layer, which allows storage and retrieval of Products both locally and
remotely. The Product Access Layer istreated in detail in Appendix A.

Main subpackages:

 herschel.ia.pal.browser: Defines the Product Browser graphical application.

» herschel.ia.pal.io: Defines classes for importing and exporting Products to FITS format.

» herschel.ia.pal.pool: Defines, in various subpackages, the available types of Product Pools.

» herschel.ia.pal.query: Defines the types of query that can be applied to a Product Storage.

5.6.13. herschel.ia.pg

Describes the Product Generation Framework, on which running of instrument pipelinesis based.
Main subpackages:

 herschel.ia.pg.od: Defines the Operational Day Plugin, used to process an entire OD before pro-
cessing its observations.

» herschel.ia.pg.plugins. Defines basic versions of other plugins that are applied during pipeline
processing, such asBasi cLevel OPl ugi n andBasi cQual i t yPl ugi n.

5.6.14. herschel.ia.qcp

Defines components and utilities to handle Quality Control messages.

Main subpackages:

» herschel.ia.qcp.example: Provides an example Task for using the facilities of this package.
» herschel.ia.qcp.flags. Provides a hierarchical structure of Quality Control flags.

 herschel.ia.qcp.gui: Provides graphical components for displaying Quality Control messages.

102

Overview of DP packages

* herschel.ia.qcp.plugin: Provides pluginsfor logging Quality Control messages during Operational
Day and pipeline processing.

» herschel.ia.qcp.tools: Provides a standalone application for displaying Quality Control informa-
tion.

5.6.15. herschel.ia.spg

Manages the execution of the data reduction process for all the instrument in the Herschel satellite. It
is built upon the framework defined in the herschel.ia.pg package (see Section 5.6.13).

Main subpackages:

* herschel.ia.spg.gui: Contains the Pipeline Manager graphical interface.

» herschel.ia.gpg.kayako: Contains a helper class for creating aticket in the kayako system.
» herschel.ia.spg.od: Tools for scheduling and executing Operational Day processing.
 herschel.ia.spg.ops. Miscellaneoustools for configuring pipeline processing.

* herschel.ia.spg.tools: Classes for memory monitoring and the remote management of processing
queues.

5.6.16. herschel.ia.task

herschel.ia.task Provides the tools needed to create a data processing Task which you can then incor-
porate into your scripts. Tasks have an associated signature (parameter setup); in setting up a Task,
parameter checks can be performed and a history of the processing can be kept.

This package is discussed in Chapter 4.

Main subpackages:

 herschel.ia.task.example: Provides example Tasksthat demonstrate some features of the package.
» herschel.ia.task.gui: Provides components used to build graphical interfaces for Tasks.

» herschel.iatask.history: Provides a class for managing the history of a Task.

» herschel.ia.task.mode: Provides different execution modes for a Task (interactive, on demand,
systematic and test).

 herschel.ia.task.util: Miscellaneous utility functions for Task devel opment.

5.6.17. herschel.ia.toolbox

Providestools for awide range of data analysis needs. Tools are organized in thematic subpackages.
Main subpackages:

» herschel.iatoolbox.astro: Astronomical utilities.

» herschel.ia.toolbox.cube: Tasks for importing and analysing data cubes.

» herschel.ia.toolbox.fit: Tasksfor function fitting.

 herschel.ia.toolbox.hsa: Provides an interface for accessing the Herschel Science Archive.

» herschel.ia.toolbox.image: Tasks for image processing (cropping, smoothing and so on).

103

Overview of DP packages

* herschel.ia.toolbox.mapper: Tasks for mapmaking.
» herschel.ia.toolbox.pointing: Provides atask for plotting pointing information.

 herschel.ia.toolbox.spectrum: Tasksfor analysing spectra. Thispackage contains several subpack-
ages, among which are the following:

 herschel.ia.toolbox.spectrum.fit: Tools for fitting spectra.
 herschel.ia.toolbox.spectrum.gui: Tools for visualising spectra.

« herschel.ia.toolbox.spectrum.operations. Tools for performing mathematical operations on
spectra (divide, average, resample and so on).

 herschel.ia.toolbox.spectrum.projection: Tools for projecting spectral data on the sky.

 herschel.ia.toolbox.spectrum.selections: Toolsfor selecting and managing ranges and discrete
values within spectra.

« herschel.ia.toolbox.spectrum.standingwaves. Tools for fitting and removing fringes.

« herschel.ia.toolbox.spectrum.utils: Other utilities, for example to integrate and interpolate
spectra.

* herschel.ia.toolbox.srcext: Toolsfor point source extraction.

 herschel.ia.toolbox.trend: Tools to support trend analysis processing. See this TWiki page for
more details.

» herschel.ia.toolbox.util: Miscellaneous tools, among which are tasks for importing from and ex-
porting to ASCII tablesand FITSfiles.

5.6.18. herschel.ia.vo

Contains tools that implement the interface to the Virtual Observatory.

104

http://www.herschel.be/twiki/bin/view/Hcss/TrendAnalysis
http://www.euro-vo.org/pub/index.html

Chapter 6. Time measurement

This chapter describes which and how time is defined within HCSS and how to deal with it. Unfor-
tunately, there are several ways in which time can be represented. The standard for the HCSS/DP is
aFi neTi ne - which is the number of microseconds since the beginning of 1 January 1958. This
provides the kind of accuracy needed to represent time on a space mission.

However, there are several other time representations and it is often the case that conversions between
times/dates is necessary. In particular, it is noted that the standard Java commands lead to date mea-
surements with respect to 1 January 1970. This chapter indicates how to deal with times within DP
and converting between the various times, particularly between datesand Fi neTi ne's.

6.1. Time Definitions
6.1.1. System time in DP

There are many ways to access the system time within DP. See a so the description of the Java class
"Date" for adiscussion of dight discrepanciesthat may arise between " computer time" and coordinated
universal time (UTC).

The Java Dat e classis deprecated and is being replaced by a more flexible Si npl eDat eFor nat
capability within Javathat allows the user to express dates more conveniently. A Dat e object is still
obtained and can beturned into aFi neTi e (see below) once created.

Two possibilities for creating a"Date" object are:

To get the current time in mlliseconds:

The difference, nmeasured in nilliseconds, between the current

time and mdni ght, January 1, 1970 UTC

print java.lang.SystemcurrentTimeM I i s()

To get the nunber of mlliseconds since

January 1, 1970, 00:00: 00 GMI represented by a Date object.

d = java.util.Date()

#printing this gives the current time and date at the | ocation of the
#system on which the java is being run.

print d

#We can al so get the nunber of milliseconds since Jan 1, 1970 using
#t his Java Date

print d.getTime()

Example 6.1. Current Time

Notethat whilethe unit of time of the return valueisamillisecond, the granularity of the value depends
on the underlying operating system and may be larger.

If we want to get the number of milliseconds since 1 January 1970 for any other date then we can use
a non-default form of the Java Date capability where the year, month, day, hour, minute and second
are provided.

* Year format -- year (A.D.) - 1900. So the year 2006 = 2006 - 1900 = 106

Month format -- number of the month, beginning from January = 0. E.g. March = 2.
» Day -- just day number in the month.

* Hours, minutes, seconds -- on the 24-hour clock.

NOTE: Thisisthetime on our computer system.

#Format of date is year (in units of true year -- 1900), nonth (nunber 0...11),

105

Time measurement

6.1.2.

6.1.3.

6.1.4.

#day, hour, mnute, second. So the follow ng gives us the nunber of mlliseconds
#bet ween the begi nning of 1 January 1970 and 3:15: 00 pm on 23 COctober 2004.

d = java.util.Date(104, 9, 23, 15, 15, 0)

print d # should i ndeed show we have 3:15pm on 23 Cct ober 2004

print d.getTinme() # provides the nunber of milliseconds between this

#date and 1 Jan 1970.

The following sample code shows how to use Si mpl eDat eFor mat to create a"Date" object.

sinpl eDate = java.text.Sinpl eDat eFormat ("yyyy. M dd HH nmm ss z")

#set up how you want to set up your input Date fornmat. In this

#case we could input -"2006.01.14 01:00:00 CST* for la.m on 14

#January 2006. z --- indicates the tine zone (default is the zone for the
#conput er system bei ng used).

si npl eDat e. appl yPattern("dd/ MMyy HH mi')
#change the pattern to a different format

start Time = sinpl eDate. parse("13/01/06 14:06")
#create the data object -"startTine"

print startTime
#...and see what this |ooks |ike

Allowed choices for the dataformat are available from Java documentation of the SimpleDateFormat
capability.

International Atomic Time (TAI) and Fi neTi ne

TAI isaninternational standard measurement of time based on the comparison of many atomic clocks.
TAI isthe basis for Coordinated Universal Time (UTC). Fi net i me is based on TAI as measured
from 00:00:00 1 January 1958.

Coordinated Universal Time (UTC)

UTC , World Time, is the standard time common to every place in the world. UTC is derived from
International Atomic Time (TAI) by the addition of awhole number of "leap seconds’ to synchronise
it with Universal Time 1 (UT1), thusallowing for the eccentricity of the Earth's orbit and the rotational
axistilt (23.5 degrees), but still showing the Earth'sirregular rotation, on which UT1 is based.

DecMec Time [PACS only]

The commands DPUSelectTime and DPUW riteTime are selecting and setting a start time which is
written to the TMP1 and TMP2 fields of the Dec/Mec headers. Thisis used in coordinating the activ-
ities of the mechanical devices on board PACS. It is possible to construct an absolute time by adding
counters (CRDC) to the start time considering an offset between setting and writing the start time.

This offset is expected to be a number with an uncertainty depending on the system load. It might
require acalibration file. Currently this offset is not considered.

In case the commands and are not given the TMP1 and TMP2 fields are zero. To avoid software
confusions the time will be related to afixed date (1.Jan 1970, 0:00).

During construction of the SpuBuffer the timeis computed from the TMP1, TMP2 entriesin the Dec/
Mec header and the CRDC counter. Thistime is used during construction of the DataFrameSequence
and the associated Tables holding the SPU science data.

Between the Dec/Mec time and the packet time (see the PusTnBi nStruct class in the
herschel .binstruct package) we have an offset. Therefore the association between HK and science data
will be within an accuracy of 2 seconds.

106

Time measurement

6.2. Time in Instrument House-Keeping (HK)

Data

The most convenient method of obtaining time stamped HK information is the use of the
herschel .binstruct package.

When dealing with HK timeinformation directly, it isimportant to know that telemetry packets contain
the time as defined within the "PUS Data Field Header". The field represents the on-board reference
time of the packet, referenced to TAI, expressed in spacecraft time units- CCSDS Unsegmented Time
Code (CUC) units. CUC units are multiples of 1/65536 sec from 1 January 1958 in TAI time. CUC
units cannot be expressed in whole microseconds but can be converted to the FineTime standard (see
below).

CUC time iswritten for HK by the data processing unit (DPU).
Current PusTnBi nSt r uct methods related to time:

long getTime()

Returns the packet time of the Pus telemetry packet.

boolean isTimeSynchronized()

Returnstrue if the telemetry packet is synchronized, false otherwise.
java.util.Date getTimeAsDate()

Returns the packet time as a Date object.

FineTime getTimeAsFineTime()

Returns the packet time of the Pus telemetry packet as FineTime.

6.3. Time conversion

6.3.1.

Time conversion in HCSS

It can often be the case that we need to convert between FineTime (TAI) and Date (UTC). Coordinated
Universal Timeis expressed using a 24-hour clock and uses the Gregorian calendar. FineTime repre-
sents a TAI time (epoch 1958), whereas the Java Date class is used to represent UTC, by resetting
the system clock whenever a leap second occurs and don't need to handle leap seconds. Converting
between Java dates and the FineTime standard requires the use of the DateConverter() class. Long
integers can also be directly converted to FineTimes and are interpreted as representing the number of
microseconds since 00:00:00 1 January 1958. In Example 6.2 we illustrate how to create a FineTime
from along integer and convert back and forth between FineTime and Java Dates.

from herschel .ccmutil inmport *
from herschel . share.fltdyn.time inport *

FineTine to Date

Enter a tinme in seconds (a long integer -- put letter -"I"
at the end of the nunber)

¢ = FineTinme(14360944497154001) # convert to a FineTinme

Prints corresponding date and tine

print DateConverter.fineTi mneToDate(c)

Date to a FineTine

d = java.util.Date() # gets today's date and tine

Prints corresponding Fi neTi nme

print DateConverter.dateToFi neTi ne(d)

Example 6.2. Time conversion between Dat e and Fi neTi me

107

Time measurement

6.3.2. CucConverter

Converts between Spacecraft Elapsed Time, in CCSDS Unsegmented Time Code (CUC) format and
FineTime (TAI). This implementation is for the Herschel CUC format, which is corrected on-board
the spacecraft to TAI (epoch 1 Jan 1958). This representation uses 32-bits for seconds and 16 bits
for fractional seconds. CUC times are multiples of 1/65536 sec and cannot be expressed as an exact
multiple of 1 microsecond (the resolution of FineTime). However, the following relations hold for
‘coarse’ and 'fine' valuesin the allowed range:

long coar se(FineTimet)

Return the number of whole seconds since the epoch 1 Jan 1958.

long cucValue(FineTimet)

Return the number of 1/65536 fractional seconds since the epoch 1 Jan 1958.

int fing(FineTimet)

Return the fractional part of the number of 1/65536 seconds since the epoch 1 Jan 1958.
FineTime toFineTime(long cuc)

Return a new FineTime constructed from a48-bit CUC time.

FineTime toFineTime(long coar se, int fine)

Return anew FineTime constructed from CUC coarse & finefields.

from herschel . share.fltdyn.time inport *

d=CucConverter.toFi neTi me(50000000000000L)

#Converts the long integer -- representative of a CUC tinme --
#into a FineTine. The FineTinme is stored in d.

e = CucConverter.coarse(d)

#provi des the nunber of whole seconds since 1 Jan 1958

#and stores it in e.

print e

108

Appendix A. Advanced Product
Access Layer

A.l.

A.1.1.

A.1.2.

Warning

O Theinternal format of local store indexes has changed from HIPE 3.0. If you are updating
from a HIPE version older than 3.0, please read the instructions in the Data Analysis
Guide: Section 1.2.2.1. Failure to do so may result in permanent corruption of your
data.

The Product Access Layer (PAL) allows you to create and access Product Pools. Product Pools are
data storage areas that could be on your laptop (alocal store) or on a remote system. Examples of a
remote pool are:

» TheHerschel Archive

* Products accessed from a Versant database

* A pool which you can share with others on a remote computer

A useful component of the PAL isthe Product Browser. Thisisagraphical visualisation tool covered
in Section A.13. We will show an example of how to launch it from a HIPE session.

Product Storage

A Product Storage is the front-end interface that allows you to communicate with Products stored
in pools.

Simply by registering a pool to your storage, you can access the Productsin that pool.

A Product Storage provides mechanisms to load, save and query Products in the registered pools.
When doing so you receive a reference to a Product (returned by the load() and save() commands)
or a set of Product references (when querying). This functionality of a Product reference is provided
by the Pr oduct Ref class; it allows to fetch information of the Product, such as metadata, without
loading the Product in question in your memory completely.

Creating a storage and registering pools

You can create a storage as follows:

st or age=Pr oduct St or age()

Then you have to assign the Product pools that you want to access. Y ou have to register at least one
pool:

storage. regi ster(Serial Pool Cient("abc.xyz.org", 123, "dumy"))

st orage. regi ster(pool N)

Saving and restoring Products

Saving a Product:

Create a dummy product
pr oduct =Pr oduct (cr eat or =" Me")
product ["array"] =Arr ayDat aset (dat a=I nt 1d. r ange(5))

109

Advanced Product Access Layer

Saving the product returns a reference

ref erence=st or age. save(product)

print reference.urn

urn:sinple.defaul t: herschel .ia.dataset.Product:0

Loading a Product:

ref erence=st orage. | oad("urn: si npl e. defaul t: herschel . i a. dat aset. Product: 0")

A reference provides access to parts of the product as well as access to the product itself:

print reference.urn
urn:sinple.defaul t:herschel .ia.dataset.Product:0

print reference.type
herschel . i a. dat aset. Product

met a=r ef erence. net a
print nmeta["creator"]
Me

pr oduct =r ef er ence. pr oduct

print product. creator
Me

A.2. Product Pools

Before you can do something useful with a Product Storage, you have to register one or more pools
to that store.

Product pools can load, save and query simple Products. All pools share the same features (the so-
called Pr oduct Pool interface) such that they can be registered to a Product Storage.

Typically you set up one Product Storage and register one or more Product pools to it. However the
design permits to create multiple Product Storages with a different registry of Product pools. Product
pools can also be shared between two Product Storages.

Two main pools are available (Local St or e and DbPool), plus some mechanisms for setting up
and accessing remote poals:

» A LocalSorefor storing and accessing Products in your local system (default is FITS format).

A DbPool for accessing Products from a remote object database, such as a Versant database.

A SerialClientPool to read/write or accessaremote pool. When used in conjunction with aPool Dae-
mon (which runs on the machine of the remote pool) this can make the remote pool immediately
available to your session.

A CachedPool is away to cache everything retreived from a pool. It is useful if the pool you are
working with is aremote on-line pool, and you want to work offline.

» A HttpClientPool, a networked pool similar to Seri al C i ent Pool .

In the next few sections we will discuss and provide examples of pools mainly in the context of Local
pooals, but most of these examples can be generalized to any kind of poal. In later sections we will
describe these other kinds of pools and some other useful concepts that refer to them.

A.3. Local pools

We will in this subsection discuss local pools. However much of this information presented here is
applicable generally to any kind of pool.

110

Advanced Product Access Layer

A.3.1. The default Local Pool directory and how to
change it

By default, datais stored in a directory with the user-supplied store name in the following directory

hore/ . hcss/ | store/

Thiscan be changed by changing the property hcss. i a. pal . pool . | st ore. di r.Therearetwo
waysto do this:

1. Issue the following statement in the Console view of HIPE:

HI PE>
Configuration. set Property("hcss.ia.pal.pool.lstore.dir", -"${user.hone}/. hcss/
alternate_store/")

2. Addthislinetothehi pe. pr ops file, locatedinthe. hcss directory within your homedirectory:

hcss.ia. pal . pool .| store. di r=${user. hone}/. hcss/ al ternate_store/

If the hi pe. pr ops file does not exist, just createit.

If you use the first method, the property value will be reset to its original value the next time you
start HIPE. If you use the second method, the property will be set permanently and will be available
since HIPE start up.

Note
@ Thelocal store directory can also be alink to another directory. Thisis useful if you want
to store your productsin a different hard disk with more space.

A.3.2. Registering Local Pools

The storagelocation pointedto by hcss. i a. pal . pool . | st ore. di r cancontain severa pools,
which in the specific implementation of local store are subdirectories in that location. After import-
ing the PAL classes with from her schel . i a. pal inport *,we create astorage object with
st or age=Pr oduct St or age() . We obtain a reference (pool1) to a pool from the pool manag-
er using the statement pool reference = Pool Manager. get Pool (pool nane) , where
poolnameis a string. Then the pool reference isregistered by st or age. r egi st er (pool ref-
er ence) . With the command pri nt Pool Manager . get Pool Map() we can see which pools
are currently registered.

A practical example where we open two pools would look like this:

from herschel .ia.pal inport *

storage = Product St orage()

pool 1 = Pool Manager . get Pool (' defaul t')
pool 2 = Pool Manager . get Pool ('test')

st orage. regi st er(pool 1)

st or age. regi st er (pool 2)

print Pool Manager . get Pool Map()

In case there is aready a pool with that name in the default directory, it is registered and becomes
accessible. If it does not exist, the pool is created as soon as you save aproduct into it. Y ou can verify
it by inspecting the respective directory before and after.

Tip
@ Y ou can rename alocal pool by renaming the corresponding directory, but only if the pool
was created with HCSS 4.0 or newer.

At this point you have created a storage and opened two pools. Note that when writing to the storage,
the dataiswritten to the first pool that was registered. If you want to write to a different pool you can

111

Advanced Product Access Layer

A.3.3.

create and use another storage for writing, where you register the desired pool. The same pool can
be registered with more than one storage at the same time. Here is example where the t est pool is
made accessible for saving products.

ot her St orage = Product St or age()
ot her St or age. r egi st er (Pool Manager . get Pool ('test'))

Y ou should also note that pools (more precisely, local stores) can aso be obtained with the Local -
St or eFact or y class. However, this is discouraged: you should instead use the Pool Manager
class.

The following example shows the behaviour difference between these two classes. Suppose that two
local stores, pool 1 and pool 2, aready exist. The following linesregister these poolsinto a storage,
then change the default directory for local stores and register the pools again into another storage:

storage = Product St orage()

st or age. r egi st er (Pool Manager . get Pool (" pool 1"))

st orage. regi ster(Local StoreFactory. get Store("pool 2"))

Printing |ocal store |ocations

for i in [0,1]: print storage.getPools()[i].getContext().getStoreDir()

-/ hone/ user/ . hcss/ | store/pool 1

-/ hone/ user/ . hcss/ | st ore/ pool 2

Changi ng default |ocation of |ocal stores

Conf i guration. setProperty("hcss.ia.pal.pool.lstore.dir", \
-"/home/user/.hcss/al ternative")

anot her St orage = Product St or age()

anot her St or age. r egi st er (Pool Manager . get Pool (" pool 1"))

anot her St or age. regi st er (Local St or eFact ory. get St ore(" pool 2"))

Printing |ocal store |ocations

for i in [0,1]: print anotherStorage. getPool s()[i].getContext().getStoreDir()

-/ hone/ user/ . hcss/| store/pool 1

-/hone/ user/.hcss/al ternative/ pool 2

The pool 1 loca store is handled by Pool Manager, while pool 2 is handled by Local -
St or eFact ory. For each storage, the example prints the directory of the registered local stores.
For anot her St or age, theregistered pool 1 isthe same as the one registered in storage, because
Pool Manager cached the pool name and remembered it when invoked again. Instead, Local -
St or eFact or y created anew local store, which ended up in the new default directory.

Pool Manager creates local stores by default. The default is set by the property
hcss. i a. pal . def aul ttype (see Section A.3.1 for how to change a property). Possible values
arel st or e for local stores, cache for cached pools, dbase for database pools, ht t p for HTTP
poolsand seri al for seria pools.

Saving products in pools

Let usfirst create some products to play with. In this case we will create two products containing one
table dataset each. First the table datasets are created from random numbers.

r = RandonfGauss()
n = 1000

tbl 1 = Tabl eDat aset (descri pti on=' Test Dataset 1')

tbl1['tinme'] = Col um(Doubl eld. range(n))

tbl 1[' signal '] = Col um(Doubl eld(n). appl y(r))

tbl1[*error'] = Col um(Doubl eld(n).apply(r) * 0.3)

prodl = Product (creator="ThatsMe', description='"Test Product 1')
prodl[' Tablel'] = thbl1l

WEell do the same for a second product:

tbl 2 = Tabl eDat aset (descri pti on=' Test Dataset 2')

tbl2['tinme'] = Col um(Doubl eld. range(n))

tbl 2[*'signal'] = Col um(Doubl eld(n).apply(r))

tbl2[*error'] = Col um(Doubl eld(n).apply(r) * 0.5)

prod2 = Product (creator="ThatsMe', description='Test Product 2')
prod2[' Tablel'] = thl2

112

Advanced Product Access Layer

A.3.4.

A.3.5.

Now we have two products, pr od1 and pr od2, at our disposal. Their contents can be verified by
launching the dataset inspector. Any product can be saved in our storage using thefollowing statement:
urn = Storage. save(product), where product is the product to be saved and urn is the
resulting Uniform Resource Name that is a unique identifier of the product within the storage. This
URN can be used directly to retrieve the product from the storage, however typically the URN is not
remembered, but rather re-obtained by a query to the storage. Thiswill be shown later.

Let us save our two products using:

urnl
urn2

st or age. save(prodl)
st or age. save(prod2)

To see how the URN looks just use:

print urnl, urn2

Asthey arewritten by default to thefirst registered pool of storage, they will end up in the pool named
def aul t . Let us store one of the products also in the pool namedt est using:

ot her St or age. save(prodl)

Aswe will recover the URN of this product later by a query, we do not bother to store the URN right
now.

Finding out what is in a storage

If you have followed all previous examples, there should be now three new products in your storage
that have listed as creator ThatsMe. Two of the products should be in the first pool named default,
while the third product should be found in test.

To find out the contents of a storage, you execute a query on it. The following example looks for
products with ThatsMe as creator:

queryl=Query("creator == -'ThatsMe'")
res = storage. sel ect (queryl)
print res

Now r es contains alist of references to the products that satisfy the query. Printing r es will give
alist of URN values:

H PE> print res
[urn:defaul t:herschel.ia.dataset.Product:0
urn: defaul t: herschel .ia.dataset.Product:1, urn:test:herschel.ia.dataset.Product: 0]

If you want to execute an unconditional query to find all products in our storage, you can use the
following:

query2=Query(" True")

res2 = storage. sel ect (query?2)
print res2

In case you have used the default storage before, there may be other products here that would now
show up inthelist.

For information on how to inspect a storage via the PAL Browser Perspective in HIPE, see the Data
Analysis Guide: 7772.

More on storage queries: Other kinds of query

and more examples of command line queries

The Product storage can handle three types of queries:

113

Advanced Product Access Layer

« Attribute query isa(fast) query on metadatathat all Products contain: creator, creationDate, start-
Date, endDate, instrument, modelName. This is akin to querying a standard set of FITS header
keywords.

» Metadata query isa(semi fast) query on meta data that can be different from Product to Product,
depending on what was placed in the product by the person creating it in the first place. Thisisakin
to doing aquery on any FITS keywords (if present).

 Full query is adata mining query that allows querying on all data elements in Products, using the
general methods provided for Products and datasets as well as the additional methods provided in
specialisations of those datasets and Products.

All query types have the same syntax, but a different purpose as described above. Setting up a query
isasfollows:

#Si npl e query

query = Query(expression)

#More advanced queries

query = AttribQuery(product-class, variable, expression)
query = MetaQuery(product-class, variable, expression)
query = Ful | Query(product-class, variable, expression)

where the parameters to the query are:

e product-class: redriccs a family of products. AIll Product classes have
her schel . i a. dat aset . Product asthebase class. You can restrict the query to a sub-fam-
ily of Product. For example, if all HIFI Calibration Product classesstem fromHi f i Cal Pr oduct
you can limit your search by specifying that class.

e vari abl e:isastring denoting the variable name of the product that will be used in the expression.
» expressi on:isastring holding the query expression, which islimited to the query type.

It is worthwhile mentioning that the syntax of the expression above uses the same syntax as you
would usually use when inspecting the contents of numerical datain aHIPE session, (see for instance
Chapter 2) so there is no additional syntax to learn.

* Query Example

query = Query("instrunment ==H FI and band == 1a")
a sinple query should be the default formused by npbst users.

» AttribQuery Example

query = AttribQuery(Product, -'product', \
-' product . creator=="M" and product.instrunent="H Fl"")

* MetaQuery Example

This type of query allows to inspect any part of the meta data of the product specified in the first
argument.

query = MetaQuery(HifiCal Product, -'h', -'h.meta["keyl"].value < 123 and \
h. met a["key2"].value == -"Hello world"")
Note
@ In order to obtain anumerical value (rather than, e.g., the string equivalent) it is neces-

sary to stipulate that the metakey "value" isrequired, hence the need for the stipulation
of query on 'h.meta["key1"].value' rather than 'h.meta]"key1"]'

* FullQuery Example

114

Advanced Product Access Layer

A.3.6.

A.3.7.

A datamining query exploitsthefull interface of the product in question. Numeric functionsdefined
in the basic toolbox are allowed:

query = Full Query(Product, -'p', -'p.creator=="M" and (ANY(p.spectrumdata <
2) \
or ALL(p["nyTable"]["myColum"].data > 5)"')

Note

@ Note that the ANY function used above is one of the standard numerical function pro-
vided for DP, and simply checks whether the expression provided in its argument is
true for any of the elementsin that argument. See the DP User's Reference Manual for
more information.

Retrieving products from storage

The list of references obtained by our query with either the Product Browser or the com-
mand line allows to load the product back from the storage using pr oduct =
storage. | oad(res[index].urn). product,whereindexistheindex of thelist entry to be
retrieved. Following our example and assuming we still have the result resfrom our queryl, wewould
retrieve and plot the first product in our list by:

pl = storage.load(res[0].urn).product

The Table Dataset would be extracted and plotted with:

tl pl. get (' Tablel')

pl = PlotXY(t1['time'].data, t1['signal'].data,\
style=Styl e(line=Styl e. MARKED, synbol =Styl e. TRI ANGLE) -)
pl.setErrorY(tl['error'].data,t1l[' error']. data)

In order to help know which index in thereferencelist isthe one we areintere sted in without opening
every product and inspecting it, we could sort the refer ence list by metadata entries. For example, to
make the reference to the latest product appear last:

Met aConpar at or . sort(res, ["creationDate"])

This sorts the reference list by "creationDate", with oldest first. Other metada ta items, or multiple
metadata items are also possible). However, beware: it cha nges the contents of the original variable,
"res", rather than making anew list.

The Java "Collections' package (this must be imported into our session) can also be used for smple
reference list manipulation. For example to reverse the order:

fromjava.util inport Collections
Col | ecti ons. reverse(res)

Deleting products from storage

Now we want to clean up our storage again, as this was just an exercise. In theory we could go into
the relevant directory, identify the products by their filename and delete the respective FITS files.
After that we would need to re-build the index. This would work for the Local Store, we used in our
example, but in other implementations like the DbPool that would not be an option.

To remove our test products within the PAL context, we first need to identify them again by obtaining
their URNs and use the method . r enove() on the storage. In our example we can remove the first
two itemsin our list asfollows:

queryl = Query(creator == ThatsM)

res = storage. sel ect (queryl) storage.renove(res[0].urn)

115

Advanced Product Access Layer

A.3.8.

storage. renove(res[1].urn)

We can verify now with:

print storage. sel ect (queryl)

Trying to remove the third product in the previous list will result in an error, as we have no write
permission to the pool test through this storage. We will need to access this pool through the other
storage which was created by registering test as the first pool.

resl = otherStorage. sel ect(queryl)
ot her St or age. renove(res1[0] . urn)
print storage. sel ect (queryl)

print other Storage. sel ect (queryl)

The last two statements verify that the operation was successful and affected both storages because
the pool test isregistered in both. Both queries result in an empty list.

Updating/Repairing Storage
If the storage index becomesinconsistent, for examplein the case of filesbeing deleted or added in the

directory, the index can be re-built using pool . r ebui | dl ndex() , where pool isapool reference
obtained from the pool manager as shown above. For example the index of Pool1 can be rebuilt with:

pool 1. rebui | dl ndex()

There should be no attempt to access this pool during the operation, which can take awhile depending
on pool size.

A.4. DbPool

Used to access Products stored in aremote object (Versant) database. Here's an example:

Access to Products fromthe default

obj ect database of |ogical nane

-'hcss. test. dat abase' .

pool = DbPool . getlnstance()

Access to Products from an

obj ect database of | ogical

name -'hifi.test.database'.

pool = DbPool . getlnstance("hifi.test.database")

Note that thisis an early implementation that needs to be tested thoroughly, so it is recommended to
use DbPools only around test databases, or databases that are used for casual development purposes
such that if dataislost, it isnot abig problem.

It isrecommended for performance purposesto cache productslocally. To do this, wrap a CachedPool
around a DbPool asfollows:

pool = CachedPool (DbPool . get | nst ance())

A.5. CachedPool

The cached pool isan implementation that allowsyou to cache everything (including queries and their
results!) retrieved from any remote pool. Any remote pool can therefore be cached asfollows:

pool = CachedPool (renot ePool)

For example:

116

Advanced Product Access Layer

hsa = CachedPool (HsaReadPool () -)
| ocal Local St oreFactory. get Store("l ocal ")
store Product St orage([| ocal , hsa])

Registering a cached remote pool allows you to work offline.

The cached pool set-up consists of aremote pool (HsaReadPool in the example above), a pool to
storethelocally cached products (which we call the del egated pool) and adirectory with administrative
data. This collective is accessed by instantiating a CachedPool , so we refer to the whole as "the
cached pool".

The delegated pool, being astandard PAL pool, can be accessed independently aswell. It isimportant
to realise that the cached pool views this as a private storage area, and that it explicitly assumes that
nothing will be added or removed, unlessitisthroughitsowninterface (by acall tocl ear Cache(),
for example). Do not modify the delegated pool by accessing it directly if you don't want to risk that
the cached pool becomes corrupted and must be cleaned and restarted.

A cacheis kept between HIPE sessions, and the cached pool identifies pools by their ID. If you create
anew pool in the next HIPE session with the same ID, then it is assumed that thisis the same pool as
before and the cache will be reused. It is up to you to explicitly clear the cache if thisis required (if
it isadifferent pool than the one that the cached data corresponds to). Also, you should be aware of
potential name conflicts between poals: if two serial client pools are created, connecting to different
hosts, but with the same ID, then if they are both cached in the same HIPE session (or in different
HIPE sessions but simultaneously), then a name conflict will arise.

For more information please see the documentation of the CachedPool class in the Developer's
Reference Manual (Javadoc).

A.6. Setting up and Accessing Remote Pools

A.6.1.

A.6.2.
Pool

PoolDaemon

If you have apool that you wish to share with someone then you can start a Pool Daemon that allows
a person access and indicates whether they have read/write/query access. The PoolDaemon can be
started from a command line in your system.

java herschel .ia. pal . pool . serial . Pool Daenon [<host Port >(=4444)
[<pool name>(=%${ hcss. i a. pal . def aul t pool } =st dpr od)
[<l oadAccess>(=true) [<saveAccess>(=true)]]]]
Exanpl es
java herschel .ia. pal . pool . serial . Pool Daenon
java herschel .ia. pal . pool . serial . Pool Daenon 4567
java herschel .ia. pal . pool . serial . Pool Daenon 4567 st dprod
java herschel .ia. pal . pool.serial.Pool Daenon 4567 stdprod true true

This makes the pool available on port number 4567.

Accessing Remote Pools Using the SerialClient-

SerialClientPool (prototype) and PoolDaemon can be used to access remote pools.
Serial ClientPool can be used for accessing a remote product pool. Usage:

A Pool Daenon is runni ng at

host =t he. host . domai n

port =4567

pool . i d=f oo
create a store and register the pool
st or e=Pr oduct St or age()

#
#
#
#

117

Advanced Product Access Layer

store.register(Serial dientPool ("the. host.domain", 4567, "f00"))

A simple mechanism to allow read/write/query access to remote pools. This remote pool can be a
Versant one (making happy all those who cannot run a Versant client such as the MacOS X fellows,
or those who do not have a Versant licence), or alocal store of a colleague.

Note that wrapping it up in a CachedPool ensures that you do not have to download a product twice.

A.7. More on querying

A.7.1.

A.7.2.

Querying strategy

Typicallyan At t ri bQuery isfaster thanaMet aQuer y whichisinturnfaster thanaFul | Query.
Depending on the product pools that are registered, a query can take some time; to avoid unnecessary
waiting time one can adopt a strategy of staged queries.

For example, a query on attributes is executed first. If too many hits are found, you can refine your
guery by executing another query using the hits returned from the previous query. This process can
be repeated until the number of hits have been reduced to a reasonable amount:

resul ts=storage. sel ect (AttribQuery(...)) # 1000 hits
resul t s=storage. sel ect (MetaQuery(...),results) # 100 hits
resul t s=storage. sel ect (MetaQuery(...),results) # 50 hits
resul ts=storage. sel ect (Ful |l Query(...),results) # 3 hits

Querying for metadata in products

One thing you need to watch out when performing a meta or full query, is when you try to query for
ametadata that does not exist in one or more products that you are applying the query to.

For example, consider the following Met aQuer y:

query = MetaQuery(Product, -'p', -'p.nmeta["tenperature”].val ue==10)
resul tset = storage. sel ect (query)

The query first starts creating a shortlist of all products in the storage matching type Pr oduct . It
then runs the query string on each product in that shortlist. If any of those products don't contain the
information referenced in the query string, an error is raised.

There are two waysto avoid this:

» Beas specific as you can when it comes to specifying the product type in aquery. If you know the
product type you want to query is of type Cal Hr sQDCFul | , then specify that. Running queries
using the most general product type of Pr oduct is not recommended, unless the products you
have saved are of thistype only.

* Runatwo-stage query, usingthecont ai nsKey() operator to check whether acomponent exists
first. For example, first get a sub-set of products that contain the metadata ‘temperature’;

queryOne = MetaQuery(Product, -'p', -'p.nmeta.containsKey("tenperature")')
resul tset One = storage. sel ect (queryOne)

Then run the original query on this subset:

queryTwo = MetaQuery(Product, -'p', -'p.neta["tenperature"].val ue==10)
resul tset Two = storage. sel ect (queryTwo, result SetOne)

A.8. Special Imports into Pools

We can import/store files of various typesin pools. Here, we give some specific examples.

118

Advanced Product Access Layer

A.8.1.

A.8.2.
File

Putting a Directory of FITS Files Into a Pool

It is possible to take any set of FITS files (e.g. from the Herschel Science Archive) and place these
into a pool. We can iteratively place al FITSfilesfrom adirectory into a pool which can be accessed
viaabrowser and queried using the mechanisms described in this chapter.

fromjava.io inport File

| store = Local StoreFactory. getStore("newdir") # or any |ocal store nane
storage = Product St orage()
storage.register(lstore)

Istore.ingest(File("C /testdata/"), 0) # or any directory nane

To | ook at what you have use the Product Browser
a = browseProduct (st orage)

In the above example alocal storeis placed in the default area (.hcss directory under the user's home
directory) of the user's computer. It is directly accessible in the same way as other pools from there.
This method does, however, not reproduce any hierarchy to the pool. It isa"flat" pool.

Placing Image (PNG) Files in a Pool and/or FITS

Image data can be stored in a pool by placement in a Product with a suitable name, and saving this
product in pool or inaFITSfile:

Obtain bytes from PNG i nage
bytes = -...

Create a product with PNG data
p = Product ()
p["png"] = ArrayDataset (bytes)

Save it in a PAL pool

pool = Pool Manager . get Pool (" myPool ")
storage = Product St orage()

st or age. regi st er (pool)

st or age. save(p)

Save it directly in a FITS file
fits = FitsArchive()
fits.save("nyPng.fits", p)

Theimage can be placed in abyte array for storage in a dataset that can be placed in the pool.

(btain bytes from PNG i nage

(it depends on how you generate the PNG i mage of a plot)
fromjava.awt.inmage inport Bufferedl nage

fromjava.io inport ByteArrayQutput Stream
fromjavax.inmage inport |nagelO

i mage = Bufferedl mage(<i mage nane>) # inplenenting java. awt .i mage. Render edl mage
stream = Byt eArrayQut put Strean()

I magel O write(i nage, -"png", stream

bytes = Byteld(streamtoByteArray())

A.9. Context Products

Contexts are special types of products that contain references to other products stored.

This enables a means of building complex data structuresin a storage.

119

Advanced Product Access Layer

There are two standard types of context products provided: Li st Cont ext (for grouping products
into sequences or lists) and MapCont ext (for grouping products into containers with accessto each

by key).

A.10. Deep Copy or Cloning of Products

Say you had a context in one storage that referenced another product, and you wanted to copy that
datatree to a different storage. How would you do that?

It is possible to do this using the usual Pr oduct St or age. save() method. If you pass as an
argument the context pointing to the 'head' of the data tree you want to clone, the whole data tree is
cloned.

So for example, we have create a context with achild and store it in storageA:

| =Li st Cont ext ()
p=Pr oduct ()
| . refs. add(Product Ref (p))

st or ageA. save(l)

then we want to copy the context and child to a new storage, say storageB, al we do is asfollows:

st orageB. save(l)

The above cloning operation has one proviso: if a product within the data tree already exists in the
destination product storage, it is not copied. A product can exist in the destination storage if for ex-
ample, the original and destination storage happen to share a pool, and one of the products in the data
tree being copied isin that common pool.

Note that a context may have older versions of it stored in a storage (a older version of a context
may be saved when a context is saved, modified, then saved again). The older versions of the context
specified in the ProductStorage.save() argument are also cloned (if that context has any decendents
that are contexts, the local versions of those descendent contexts are not cloned, however).

A.11. Common Problems

Why do | keep getting 'IndexError' or 'lllegal ArgumentException: <query> could not be eval-
uated correctly' messageswhen | run my query on my PAL Product Storage?

Y ou could get these message for one of the following reasons:

1. Your query string (the third argument of a query, eg 'p.creator==..") is ssimply not consistent with
the jython syntax and could not be correctly interpreted by the internal jython interpreter the PAL
uses. Check your query string by evaluating it on the jython command line. If your query uses a
'handle' to a product (eg the 'p' in aquery 'p.meta..]"' is a handle), then create adummy product of
the type you want to query on the command line to test the query against.

2. It could be possible that the query references some data that does not exist in *any* of the products
that match the product type you have passed in that query. If you see in the details of the error
message something along the lines of '<something> does not exist', then this may be the case for
you.

For example, consider the following MetaQuery:

query =Met aQuery(Product, -'p', -'p.nmeta["tenperature”].val ue==10)

120

Advanced Product Access Layer

resul t set =st or age. sel ect (query)

The query first starts creating a shortlist of all products in the storage matching type 'Product’. It
then runs the query string on each product in that shortlist. If any of those products don't contain
the information referenced in the query string, an error is raised.

There are two ways to avoid this:

» Beasspecificasyou can when it comesto specifying the product typeinaquery. If you know the
product type you want to query is of type 'CalHrsQDCFull', then specify that. Running queries
using the most general product type of 'Product’ is not recommended.

* Run atwo-stage query, using the containsKey() operator to check whether a component exists
firgt, e.g.

Get a sub-set of products that contain the netadata -'tenperature'
queryOne= Met aQuery(Product, -'p', -'p.nmeta.containsKey("tenperature")"')
resul tset One = storage. sel ect (queryOne)

Run the original query on this subset

queryTwo =MetaQuery(Product, -'p', -'p.nmeta["tenperature"].val ue==10)
resul tset Two = storage. sel ect (queryTwo, resultSetOne)

Accessing the Results of a Query

The results set can be accessed in the following way

a
b

resul tset Two. t oArray()[O] . product
resul tset Two. t oArray()[1] . pr oduct

Why ismy PAL query so slow?

One of the possible reasonsisthat you are executing a FullQuery, and full queries by their very nature
are the most intense of queries and are therefore the slowest.

FullQuery executions should be run as the last stage of a multi-stage query operation. Below is an
example of how to search a storage for products of type 'MyProduct' that are created by a developer
called 'tima', but contain a specific value in the product data itself.

Stage one: Find all products of type MyProduct with creator -'tinp'

attquery = Att Query(M/Product, -'p', p.creator=="tino')

resul tset = storage. sel ect(attquery)

Final stage: Find all products in selection generated from previous queries,
that has a value 10 in the colum -'nycolum' in dataset -'nydataset'

full query = Ful | Query(Product, -'p', -'p["nydataset"]["nmycolum"].data[5]==10")
st orage. sel ect (ful | query, resultset)

There can be as many intermediate queries between the first stage and final stage involving Attrib-
Query or MetaQuery, but FullQuery's should be | eft to last.

A.12. Storage Product Versioning
A.12.1. Versioning

To save a set of versions of aparticular edition of a Product:

edition = Product ()

storage. save(edition) # version 0 of Product saved
Modify edition

storage. save(edition) # version 1 of Product saved

121

Advanced Product Access Layer

To get the latest version of the Product edition, or thelist of versionsfor that edition, you need to have
available at least one, arbitrary, version. With this, you can recover the latest version of that Product,
and thelist of all versions of the Product in the storage. For example:

| at est =st or age. get Head(pr oduct Ref Of AnyVer si onOf Edi ti on)
ver si ons=st or age. get Ver si ons(pr oduct Ref Of AnyVer si onCf Edi ti on)
Y ou can get information on the current version of each product, aswell astag information, asfollows:

print storage. versioninglnfo

A.12.2. Querying Product Versions

The default query isto search for just the latest version of a Product edition:

query=Attri bQuery(Product, -"p", -"1")
storage. sel ect (query) # Just the |atest versions

If you want to get al versions of editions that match a query, use the extended query constructors,
setting the fourth argument to true (or 1):

query=Attri bQuery(Product, -"p", -"1", 1)
storage. sel ect (query) # Al versions of Product editions that match

(Note that with this extended query, the special products containing versioning information, Version-
TrackProduct and TagsProduct, are also returned if they match the query.)

War ning: make sure that you use the meta.containsKey() checks when performing Full or Meta-data
gueries, asthe presence of versioned products may affect those queries, or worse, result in an exception
if the metadata being queried for is not present in any product version.

A.12.3. Tagging Products in a Store

To save aproduct with a given tag:

st or age. saveAs(nyproduct, -"nytag")

saves nyproduct to URN=product: 123, and links tag -'nmytag’ to that URN
st orage. | oad(" nytag")

returns a ProductRef to product at URN=product: 123

To assign atag to an existing product in the storage:

st or age. set Tag("nytag", urn)

Y ou can assign multiple tags to the same product:

st or age. set Tag("nytagl", urn)
st or age. set Tag("nytag2", urn)
st or age. set Tag("nytag3", urn)

Y ou can re-assign tags from one product to another:

st or age. set Tag("nytag", urnl)
st or age. set Tag("nytag", urn2)

Note that the above steps removes the tag mytag from urnl, and re-assigns it to urn2. A given tag
maps to only one URN.

122

Advanced Product Access Layer

Y ou can also remove tags from the system:
st orage. renpveTag(" mytag")
And check if agiven tag exists:

print storage.tagExists("nytag")

A.12.4. Turning Off Product Versioning

If Product versioning is not wanted or required, you can turn off the use of versioning within your
session by using.

hcss. i a. pal . versi on = none

A.12.5. Using the New Versioning Mechanism Against
Existing Pools

Y ou can use the new versioning mechanism against pools with previously existing data. Although it
is highly recommended to use the mechanism against new pools with no data.

If you wish to use the mechanism against pools with existing data be aware that existing products in
your pool do not have versioning information. So if you modify such products, and then save them:

p = ol dstorage. | oad("myurn"). product
/1 nodify p
ol dst or age. save(p)

The PAL does not know what version the modified product belongs to, and therefore saves the mod-
ified version of the product as the first version of awhole new version track.

It is therefore recommended to use the new versioning mechanism against a clean ProductStorage,
devoid of any products, or as the next best thing, migrate your products to a fresh pool as follows:

st or age. regi st er (newpool)

st orage. regi ster (ol dpool)

p = storage.load("urn:123"). product

storage. save(p) # saves the product with versioning information, to newpoo

And then use the newpool for future sessions (archive or remove oldpool).

Note also that atool for copying pools, which reads all products and saves them back again, by pre-
serving their hierarchy, will be placed in the HCSS at alater date. Thiswill allow migration from old
to new pools to be done more easily.

A.13. The Product Browser

The Product Browser was the first graphical application developed to simplify the retrieval and anal-
ysis of Products from storages.

Warning
O If you are working in HIPE, we recommend you use the Product Browser perspective
instead (Window — Show Perspectives — Product Browser).

To start the Product Browser to analyse the contents of alocal store called myLocal , open a HIPE
session and execute the following script:

123

Advanced Product Access Layer

st or age=Pr oduct St or age()

pool = Local StoreFactory. get Store("nmyLocal ")

st orage. regi st er (pool)

result = browseProduct (storage)

Use the popped up QU to explore and sel ect products.

The result variable will not be popul ated until you push
either -'Ok' or -'Apply' in the Product Browser.
print result
Note
@ Alternatively, execute the script herschel /i a/ pal / br ows-

er/ browser Start. py

A.13.1. A visual tour of the browser

The following image shows the product browser user interface. The screen is divided into four areas:
1. The query area, where you enter query parameters.
2. Theresult area, where you view the query result.

3. The result inspection area, where you inspect a selected product.

4. The JIDE basket area (named after JDE, a precursor to HIPE), where you collect the products to
be returned to HIPE.

s Product Browser - D_IA_PAL_BROWSER_1_15
View Help

rFull python query

[Variable = p]: |

D

Wi

rAttribut Meta Dat
Creator: Creation Date: from Key Type Comp Value add
Instrum ent: to ‘ ||Slring - | ‘ = | ‘ x
Model Name: Applicable Date: from
Type: to

Search

Product Class: | class herschel.ia.dataset.Product

'| reload [_] Search versions

@ Search () Refine | submit reset form

~Query result: 37 results listed :—Producl
Description | Instrument | Model Name Type Cre =) n Date herschel.ia.obs.auxiliary.pointina.PointinaProduct [aux-pool:2]
— - M Description e L
_||Herschel Pr... |ALX DRAFT auxOrbitp SPG v T10:11:3|~ 'T‘ Attributes Dataset Inspector
[I|Herschel Po.. ACMS HPP SPGy] 1 nsTUmEnt gy = M Meta Data Remove from JIDE Basket
[I|Herschel Po..[ACMS gy |HPP SPG] ™ Model Mame |T10:04:3 @ D Datasets
[¥l[Herschel Po.. | ACMS HPP SPG v M Type T10:04:4
[vl|Herschel Po.. ACMS ‘—m HPP SPGV(@ Creatar T10:05:.0
[vl[Herschel Po... ACMS N? HPP SPG VI [Creation Date [TL0:23:1
| Herschel Po... ACMS HPP SPC v T10:23:4 Add to JIDE Basket
[|Herschel Pa... ACMS HPP SPGv(1 Start Date TL0:235 -
[[Herschel Po..[ACMS HPP SPG v{ M End Date TLO:2411(C
B e S e
¥ Class
-Download: 4 results listed M id
¥ URN
Description | Instrument | Model Name Type Cre n Date
[v]|Herschel Po.. | ACMS A HFP SPCw0.0 2009-02-20T10:23:40.. ©
[V]|Herschel Po.. | ACMS HFP SPCw0.0 2008-02-20T10:23:15..
[V]|Herschel Po.. | ACMS (—D’ HFP SPCw0.0 2009-02-20T10:05.05..
] S
R D

Figure A.1. The Product Browser

The following sections describe first atypical use case and then each areain more details.

A.13.2. Simple use case

1. Specify attributes of a product in the query area (A).

124

Advanced Product Access Layer

2. Click on the "submit" button to execute the query.
3. Review theresultsin the result area (B).

4. Optional: if there are too many results, refine the query by specifying values in the Attributes and
Meta Data panes, and/or aquery in the Full python query pane. Then select the Refine radio button
and press submit again.

5. Inspect selected resultsin the result inspection area (C).

6. Transfer theresults of interest to the JIDE basket from the area (B), by marking the checkbox at the
beginning of the corresponding row, and (C), by right-clicking and selecting Add to JIDE Basket
from the menu.

7. Click Ok or Apply and process the selected resultsin HIPE. The results are available in the return
variable of the br owsePr oduct method (in the browser start example above it is caled r e-
sul t).

A.13.3. A: Query area

The query areais divided into three input panes: Attributes, Meta Data, and Full python query.
1. Attributes queries search commonly defined attributes only.

2. Metadataqueriessearch on additional metadataspecificto aproduct. Y ou need detailed knowledge
about a product to specify meta data queries. However, the result inspection area (C) may be used
to see available meta data for a product.

3. Full python queries allow to specify free form queries in the Jython query language. Refer to the
documentation of the Pr oduct St or age class for further information on this topic.

Note that all attributes and meta data parameters are joined by the AND operator.

Note for power users. for smple OR-queries you can use the JIDE basket (D). First, do a query for
the first term (for instance, Creator = André) and add the results to the JIDE basket. Then, do aquery
for the second term (for instance, Creator = Marc) and add the results to the J DE basket.

For more complex OR-queries you can use full Python queries, although they might become very
slow. Complex OR-queries on meta data level are currently not supported.

A.13.4. B: Result area

Thistable displays all products that match a specific query.

Check or uncheck a product to move it to or remove it from the JIDE basket.
Y ou have several possibilities to rearrange the products:

* Click on acolumn header to sort rowsin ascending or descending order.

* Right click on a table header to pop up a context menu where you can select which columns to
show (shown in Figure A.1).

 Drag and drop a column header to rearrange the column order.
 Click between two column headersto resize a column.

Settings are stored between sessions. To revert to default settings, choose Reset User Preferencesfrom
the Window menu. Y ou will have to close and restart the browser for the change to take effect.

Y ou can choose the column layout for the Query result pane from the Table Layout entry of the View
menu. Two predefined layouts are available:

125

Advanced Product Access Layer

» The Default Table Layout includes the following columns:

Description (Attribute): self-explanatory.
Instrument (Attribute): self-explainatory.
Model Name (Attribute): self-explanatory.
Type (Attribute): self-explanatory.

Creator (Attribute): self-explanatory.
Creation Date (Attribute): self-explanatory.
Start Date (Attribute): self-explanatory.
End Date (Attribute): self-explanatory.
Site: the data store of the resullt.

Class: the class of the Product as encoded in the URN.
Id: the unique id within the data store.

URN: convenience column for copy & paste. If you triple click into acell of this column you can
select and copy the URN to your operating system clipboard. Thisis one way to use the browser
independently from HIPE.

» The ObservationContext Layout lists data of interest to astronomers from an Observation Context,
that is, a Context containing al the Products related to an observation. The layout contains the
following columns, which should all be self-explanatory:

Observation ID.
Operational day number.
Observation start time.
AQOT ID.

Instrument mode.

Target name.

Proposal ID.

AOR label.

See Section A.13.7 for instructions on how to add a new layout (for advanced users only).

A.13.5. C: Result inspection area

Select any entry in the query result area (B) or in the JIDE basket (D) to inspect its attributes, meta
data and children in the result inspection area C. The selected product or context will be displayed
in ahierarchical tree structure.

There are five types of nodes:

* P: aProduct contains the real data and can be examined with the dataset inspector. To open the
dataset inspector you can either double or right click on the node.

» C: aContext contains other Contexts or Products.

126

Advanced Product Access Layer

* A: apredefined set of Attributes common to all products and contexts.
* M: Metadatathat is specific to each type of products.
» V: old Versions of a product or context.

To add or remove products and contexts to or from the JIDE basket you can right click and select the
appropriate action from the menu (both entries are shown in Figure A.1.

First note for power users. The current implementation of the tree supports only contexts that are
inherited from Li st Cont ext or MapCont ext . This is due to missing generic meta information
about the children of an ordinary context.

A.13.6. D: JIDE basket area

The JIDE basket collects the products and contexts of interest. Clicking on Ok or Apply will make the
content of the basket available within HIPE. Ok will close the browser, Apply will keep it open for
further usage. Note that the results are sorted the same way as in the JIDE basket.

Now you can further analyse the results in HIPE. Note that the ProductBrowser will return a list of
ProductRefs rather than a list of Products. A ProductRef is a small object that stores a pointer to a
Product, without loading the Product into memory.

result = browseProduct (storage)

This will print the list of ProductRefs

print result

This will print the first ProductRef in the list.
print result[0]

This will print the first Product in the list.
print result[0].getProduct()

A.13.7. Advanced: Adding a Table Layout

These instructions show you how to add a new entry to the Table Layout submenu of the View menu.

Y ou can use either Jython or Javato register new Table Layouts. Y ou can even add anew set whilethe
browser is running and you can define your own columns as long as you extend from Abst r act -
Basket Col umm.

The Java code to register a Table Layout is shown below:

Tabl eLayout Regi stry. i nstance(). regi st er Tabl eLayout Bui | der (new Tabl eLayout Bui | der () {

public void configureBasket Tabl eMbdel (Basket Tabl eMbdel nodel) {
nmodel . addCol uim(new Attri but eCol uim(nodel ,
Attribut eCol um. Product Attri bute. DESCRI PTI ON)) ;
nmodel . addCol uim(new Met adat aCol uim(nodel , -"test", -"test |abel",
String.class));

public String getld() {
return -"sinpl etabl el ayout";

-}

public String getLabel () {
return -"Sinple Tabl e Layout";

=}
1)

127

Appendix B. Using JIDE

JIDE was the precursor to HIPE, and is till installed alongside HIPE. If you are new to the Herschel
Software System, we strongly recommend that you use HIPE. See the HIPE Owner's Guide for more
details.

B.1. Scripting with JIDE

You can start JIDE viaitsicon or by issuing thej i de command from aterminal window.

Note
@ » Under Windows, open a command window and type the same command, or execute
j i de. bat fromthebi n directory of your HIPE installation.

* Under Mac, starting from the command line only works if you installed a developer
build via the Continuous Integration System. If you used the Install Anywhere installer
instead, you have to start the application viaitsicon.

Note that some feedback from the JIDE session is provided to the terminal window from which it was
started. This includes information on the settings used on JIDE startup and information on database
access (basically feedback on where interactions occur with systems outside the immediate DP ses-
sion). The JIDE shell performs the following tasks:

* Loads acustomised DP environment (imports a set of libraries and defines a set of variables).

» Keepsahistory of successful DP statements.

» Implements a set of basic editing functions (copy, paste, find and replace).

It is an extension of the standard Jython shell. Here, we provide some basic startup information.

If entering the JIDE command from a termina window, information on preloaded elementsin the DP
session appear in the terminal window. Startup from the "Start" menu goes directly to the following.
After any feedback, a separate three-paned console window should appear (see Figure B.1). The bar

at the bottom of the window displays the amount of memory used by the session: as memory usage
increases the bar will turn from green to yellow and then to red.

128

http://herschel.esac.esa.int/hcss/install.php

Using JIDE

Eilegnnsule Edit Run Help

ole| B &7 [s[pefnfaujsfa] ajr(pin] =8 8@
New-1
4
E;}} __ : ...
4] Il | [»
] 119 of 455 ME

Figure B.1. The JIDE window set-up.

The JDE window has three components. An interactive command line/console window is given to
bottom left of the view with a customisable "I A>>" prompt. Individual DP commands can be run
here. Click in the bottom left window with your mouse, then type in

print 5 + 3

Followed by Enter. The answer should be provided on the next line, prior to receiving the "l A>>"
prompt back again:

IA>> print 5 + 3
8
| A>>

Note

@ In a plain Python or Jython console it would be enough to type "5 + 3" followed by
the Enter key to get the result. In JIDE you have to use the pri nt keyword, otherwise
you would get no output.

The bottom right of the console contains a command history window that lists the commands (in-
cluding those inside algorithms) used in the current session. Any command highlighted by ared cross
next to it caused an error. Someinformation on the error that occurred can be obtained using the mouse
to click on the command highlighted. A response with the error is shown in the command line window
to bottom left. Try the following

sign 5

After pressing Enter the user will see the history window has a command highlighted by a red cross
next to it. Click on this using the left button of the mouse. This then expands the information on the
error incurred.

The top pane of the console is available for the user to develop his’her own algorithm using the avail-
able DP commands. Click in this window, type in a similar print command to the above example.
Pressing return will not run this simple script. To run the one ling, click in the grey margin to the left
of the line you have typed. An arrow should appear beside the line. Now go to the line of icons and

129

Using JIDE

B.1.1.

B.1.2.

B.1.3.

click on the single arrow (). Thiswill run your one line agorithm and the result will appear in
the lower left command line window (again). If you want to "print" a string it needs to be in quotes
(e.g., print "Hello World").

Note

@ The top pane is not meant to be a fully-fledged text editor, nor a sophisticated IDE (Inte-
grated Development Environment). It offers basic editing and debugging capabilities for
developing simple scripts, but larger projects should be developed in externa tools and
then loaded into JIDE for execution.

Now that we have abrief introduction to the three windows of JIDE we will consider each of the menu
and icon itemsin turn.

File menu

Each of the File menu items has an associated icon except for exit. These are the first five icons on
the bar under the menu headings.

New ﬂ creates a new window for algorithm development. New history and/or command line
windows are not created.

=
Open allows a file to be opened in the top window (ASCII - DP files are stored in ASCII

format).

|
Save J and Save As lE for saving the current algorithm shown in the top window.

Close J closes the file in the top window pane. Only closes the window showing the current
algorithm.

Print prints text of JIDE session to printer or postscript file.
Screenshot as JPG creates JPG file of screen view.
Screenshot as PNG creates PNG file of screen view.

Exit exits from the JIDE session.

Console menu

Executein the console requests the input of a DP script file, loads it and runsit inside of JIDE.

Execute does asimilar thing, except it runs the whole script on the system rather than using the JIDE
console

Executein the background does the same as Execute, but runs the script in the background.

Save history and Save history as... saves a history of successful JIDE commands from this session.

Edit menu

Each of the Edit Menu functions (except Goto) has an associated icon at the top of the JIDE panel
(middle section of icons).

130

Using JIDE

B.1.4.

B.1.5.

Import history allows the import of the history of a saved JIDE session.

Undo and redo E
undone or redone.

and allows edits (cut/paste or deletion from the keyboard) to be

o i

Cut and paste and the usual cut and paste using the mouse to sel ect and position text.
Find/replace does the usua find and replace of text within the upper window of the JIDE
console.

Goto alowsthe user to go to a specified line number.

Run menu

The next four icons at the top of the JIDE window relate to the Run menu.

Script mode This only appears in the Run Menu. The default is that the script mode is disabled, the
Run, Run selection and Run all buttons then work as if on the command line for lines of code written
in the debug window and the commands are reiterated to the console. In script mode, only requested
output (e.g., from a"print" command) will have output sent to the console.

Stop - stops a script being executed. Click on this button or choose Stop from the menu to
stop the execution of a script before it reaches the end. Note that thisicon is greyed out when there
iSho script in execution.

Run -runsasinglelineor logical block of ascript. Thelineisiterated to the console window,
unless in script mode (see under "Run Menu") when only explicit outputs from script commands
appear at the console. In script mode the button turns red.

I
Run selection select a set of commands by dragging the mouse over them. Pull down
to Run selection (or click the icon) to run these DP commands only. The lines are iterated to the
consolewindow, unlessin script mode (see under "Run Menu™) when only explicit outputs from script
commands appear at the console. In script mode the button turns red.

e

Run all using pulldown or icon, this allows all DP commands in the top pane of JIDE to be
run in sequence. The lines are iterated to the console window, unless in script mode (see under "Run
Menu") when only explicit outputs from script commands appear at the console. In script mode the
button turns red.

Help menu

Thelast four icons at the top of the JIDE window relate to various forms of help that are also available
under the Help menu.

131

Using JIDE

"

Dataset | nspection J allowsthe user to view datasets (notably tables) currently availablein the
DP session in aseparate Dat aset | nspect or code window (see Figure B.2). For more about the
Dataset I nspector see the Data Analysis Guide.

& DatasetInspector |Z||E|[z|
1 Datasets and Products | MetaData
% 7 Datasets 2

[Meta data (0)

|endDate:
[y Table data (5, 2)

May 23, 2005

% [J a TableDataset null B fype: | D |

D Weta data (0 |creatc|r: | |Me, myself and | |

[Table data (5,2) || |creationDate: | May 23, 2005 |

L ? IF'jmiuPEtrSDduct This is my pro |instrument: |M3-'Fa\fnurite |
0O | ‘modemame: | Fiight |

|

|

|

|
1
§ [Spectrum: TableDatal | |startDate: | |May 23, 2005
" |
|

|Uersi|:|n: |2.1.1 &

FigureB.2. TheDat aset | nspect or window

Session | nspection alows the user to view the classes (programs) and functions available in
the current DP session. Also allows the user to inspect all variables used in a session. See Figure B.3.
Further classes and functions can be made available by importing "packages" (see Chapter 5).

132

Using JIDE

& Session Inspector,
[Session |~ | | Data: java.lang.Double
@ [variahles ;
[y CONVERSION
D False
D True
D _doc__
Y _name__

D _docurment
D _interpreter
RE

D chsuhb

D chsub?

[chwidth

D howverk

D hplanck

[hrs_chwidth
[imp

D itern

Yk

D logger

6.626E-34

il

Figure B.3. The Sessi on | nspect or window

Log Window : provides a listing of the feedback from running commands in the system, in-
cluding error messages. These appear in a separate Log window. The log can be saved when exiting
from JIDE.

Accessto On-lineHelp Documentation opensthe HIPE Help Systemin your default browser.

B.2. Quitting JIDE

We aready know that the Exit entry in the File menu can be used to quit JDE. In this case a new
window appears, prompting the user to save the current work (scripts and command history). Y ou will
get alist of al unsaved files, together with entries like

* [New-1]: -no file associated-. Thisis a script that has not been saved yet (beware that it could be
an empty script).

 [History of Consolel]: -no file associated-. This is the history of the commands you have issued,
listed in the lower right panel. Useful if you want to save to a script what you have typed.

To select an item click on it. You can select multiple items by holding Ctrl while clicking on them;
if they are contiguous you can select them in one go by clicking on the first one and then clicking on
the last one while holding Shift.

Below thelist of unsaved items there are four buttons: Select all to select all the items, Save Selected
to save the selected items, Cancel to go back to JIDE without quitting, and Close to quit JIDE.

After pressing Close, a second confirmation window is displayed. Click Yesto quit or No to go back
to JIDE.

133

Using JIDE

An alternative way to quit isto type Syst em exi t (1) at thel A>> prompt and press the Ent er
key. This command can also be added to a script (for more information about writing scripts, see
Section 1.14).

Warning
o The Syst em exi t (1) command causes the current JIDE session to terminate imme-
diately. All unsaved work will be lost.

B.3. Standard settings for JIDE

JIDE comeswith amemory specification that is dependant on theinstaller information supplied by you
when setting up the systemiinitially. The settings are specified in the startup script for JDE. Thisscript
islocated in the $HCSS_DI R/ bi n directory (namedj i de. | ax. These settings can be modified by
editing this JIDE startup script. Thefollowing two lines adjust theinitial and max memory allocations.

I ax. nl.java. option.java. heap.size.initial=134217728

I ax. nl.java. option.java. heap. si ze. max=536870912

A similar hi pe. | ax file has the same editable lines. Make sure that the environment variable
HCSS_PROPS is properly defined.

Make sure HCSS_PROPS contains the specification of the standard var.hcss.dir property (this
should be the property defined in your $HOVE/ . hcss/ nyconfi g file IF you have set up your
own environment and are not using a local network installation or an installer). And be sure that
var . hcss. di r pointsto the HCSS build directory. Y ou can check any property with a command
such as the following in the Console area.

print Configuration. getProperty("var.hcss.dir")

B.4. DP working directory and file access

The current working directory of DP is the directory from which JIDE was started. Jython has some
limitations, inherited from Java, with regard to navigation of the underlying operational system. How-
ever, changing the default directory can be accomplished in two ways.

By changing the underlying system path using sys.path. This can dynamically change the default
directory.

at the console comand |ine type

import sys # if -"sys" not already inported

sys.path.insert(0, -'/dir/path")

the -'0'" puts it to the front of the directory path of the user.

By setting a standard directory in the path by putting the name of adirectory inthefile".jython" under
the users home directory. Thisthen meansthat, from whatever directory J DE is started, this directory
isawaysin the path.

But you are advised to start JIDE from a directory where you are going to read/write files by default
and to use absolute paths for the file names.

When using "Save" under the File menu of JIDE you can specify any directory.

It is possible to print the file contents of the current working directory using the following in aconsole
window.

134

Using JIDE

i mport os

print the working directory

print os.getcwd()

print the nanes of the files in the working directory
print os.listdir(os.getcwd())

any directory name can be placed in the brackets

This provides an unsorted listing of all files and directoriesin the working directory. If the user wants
tofilter thefilelist, e.g. to select only thefitsfiles, then a glob module can be used with search pattern
following the UNI X shell rules, i.e. "*","?', "[]" etc which are interpreted in the same way asin the
UNIX shell.

import gl ob

ffiles = glob.glob("*.fits")

or even nore el aborate exanple to provide the list of all fits file
in a given directory and perform some action on them

ffiles2 = gl ob. gl ob("/home/user/scratch/fitsfiles/*.fits")

fits = FitsArchive(reader = FitsArchi ve. STANDARD READER)

for fi in ffiles2:
product = fits.load(fi)
do sonething on the products, like print the di mensions
print fi, product.default.data.di nmensions

B.5. Getting command-line help

Further help in JIDE is avail able through command-line interaction. Thehel p() command provides
an overview of the help system via a separate popup window. The window also includes all documen-
tation provided by each of the instruments.

B.6. Programming loops

Earlier inthe chapter we tried some basic commandsto illustrate the components of the JIDE windows.
One particular capability of JIDE is allowing block support for DP coding. Suppose we want to take
abasic print command typed in the command line window.

a=>5 [Enter]
print a [Enter]
5

Now simply input (the[Ent er] meansyou have to press the enter key on your keyboard)
for i in (1,2,3): [Enter]

Thiswill returna. . .. response in the command line. Note that the colon at the end of the lineis
important for starting the block. The command isincomplete. Input apr i nt i command indented by
at least onespace. A further isreturned. Press Enter once more, the command is now complete.

The whole session should look like (again, note the indent prior to the print statement on line 2):

for i in (1,2,3):
print i

#1

#2

#3

We could have added a number of commands to thisf or loop. The block statement continues until
ablank line is produced. The history of the window is now available. The up arrow will provide the
previous command, which can then be edited as desired and re-entered

135

Using JIDE

B.6.1.

B.6.2.

for i in (1,2,3)
print i

Y ou can edit thisblock statement in the bottom | eft panel of JIDE by using the LEFT and RIGHT keys
(not UP and DOWN, these are used to move through the history) and deleting/adding characters.

Blocks within blocks (nested f or loopsori f statements) are also possible. Basic rules about the use
of blocks follow Jython language syntax.

» Each statement in a block must begin in the same column;

» Each of the DP key statements and clauses (class, def, for/else, if/elsif/else, try/except/else, try/
finally and while/else) denotes the beginning of a new block;

» A new block must be indented at least one space from the enclosing block;

» Theend of ablock ismarked by having the next statement begin in the same column asthe enclosing
blocks.

For example

for x in (1,2,3)

print x # outer block
for y in (4,5,6)

if y ==5:# inner block

print y # inner-inner block

print x*y # inner block

insert inner block statenent here
insert outer block statenent here

Asusual, end with ablank line! Notethe end of each f or loop is determined by where the indentation
ends.

Loop performance on arrays

Numeric Arrays are discussed in Chapter 4 of this manual. But we mention here how loops can be
computationally expensive when used with numeric arrays in the system.

In performance checks using the HCSS timing differences for standard operations (e.g., division and
multiplication many times on arrays) are found to be very similar to using similar programming lan-
guages such as Python. However, Jython/HCSS loops can be slow and for large computations this can
become very inefficient for the user.

One means of reducing quite significantly the computation time for simple arithmetic computations
on arraysisto use the ability of the HCSS language to do in-line calculations. For example:

z=Doubl eld(x.size) # create a 1d nuneric array of the sane size as an original
array called -"x"
for i in range(1000)
z.set (x) # assign, not allocate

z-=y # inline subtraction

z/ =c # inline division
instead of the following --- which is nuch sl ower
for i in range(1000)

z = (x-y)lc

For large operations this can reduce computation time by nearly an order of magnitude.

Using the Editor view with loops

The top edit window of JIDE can be used to keep lines of code in your session. To run thingsin this
window we have three "arrows" at the top of the JDE screen. The single arrow on the left of these

136

Using JIDE

will run things as if you were putting them on the command line. So if we have a"for" loop a blank
linewill stop the loop. However the middle arrow (runs a highlighted section of code) and the double
arrow (which runs everything within the currently opened edit window) run commands within the
whole group in the editor window sand ignores blanks. For example, we may consider the following
lines of code.

for i in range(4):
if i >0:
print i

j =i
print j-i
print -"Finished"

If run line-by-line (mouse click to produce arrow next to the "for i in range(4)" line, then click on
single arrow at the top of JDE) then only the first loop is run before a blank line is encountered. If
the double arrow is used then the blank isignored and the whole thing is run.

Warning

O This means that the way blank lines are treated depends on how the DP codeis run. Y our
code will run differently if you run it line-by-line as compared to running it as a complete
script.

B.7. Multiline statements in the console view

Another improvement of JIDE compared to other Jython interpretersisthat it allows multiline state-
ments. The backslash (\) character at the end prevents execution of the line when pressing Enter and
the statement can be continued.

The following example breaks up alonger definition of atuple into three lines:

IA>> a = ("nmeaning", -"of", -"life", \
. -"shrubbery", -"killer rabbit", \
. -"holy hand granade")

IA>> print a

('meaning', -'of', -'life', -'shrubbery', -"killer rabbit', -'holy hand granade')
1 A>>

Note that the backslash initiates a continuation mode. The mode is left upon pressing Enter after the
first line without backslash, and the entire line is executed.

B.8. Pausing during script execution and de-
bugging in JIDE and HIPE

A script may be paused at any point using the pause() command. This allows valuesto be changed
while a script is paused in the Debug window.

See the following example script.

from herschel.ia.jconsole.util inport * # inport pause
def test(arg=1)
a=12
for i in range(arg)
pause() # pause here, change of a within the debugger is all owed!
a=ati
print a
pause() # and here

137

Using JIDE

print a

test(5) # run the exanple

Once you execute the above script, the following window will pop up.

8.0.0 Debug window
Console
= Session ~Data: org.python.core.Pylnteger
= Variables
@
@ arg
@ j
@ Functions
@ Classes
@ Packages
12
s -
DEBUG>> Kl

Figure B.4. The Debug window

Y ou can change the value of the required variable by setting it via the DEBUG command line, and
can be checked by clicking on the variable name in the main window. Once the change has been made
in the Debug window to the required variables, select the "Console" pull-down menu in the Debug
window. To continue to execute the scroll down to "Resume”. Thiswill allow you to exit the Debug
window and to continue to execute your script.

B.9. Background script execution

There are two ways to run time consuming scripts in background. One is from the drop-down menu
under "Console" -> "Execute in background" which executes, in the background, the script which is
loaded in the JIDE editor window.

The other method is by using the execfile capability, eg.,
bg(' execfile("script_nane.py")') from the JDE or HIPE command line. Print state-
ments are redirected to the console and can be used to monitor the state of the execution.

Statements passed as parameters to the function are evaluated in the global namespace therefore the
following exampleislegal:

IA>> a =5

I A>> bg('execfile("print a")")

I A>> bg(' execfile("a = anExtensi veConputation(12)")")
I A>> bg(' execfile("b = aConputation(a)")")

There is no guarantee however that the last statement will be executed after the preceding returns the
value and that uncertainty can easily lead to cases where "aComputation” is run passing the value 5
(thefirst assigned to a) or the value returned by "anExtensiveComputation(12)". Thisis unpredictable
and should be carefully avoided.

138

Using JIDE

B.10. Running scripts from a shell command

line

it is possible to run user-created DP scripts from the command line of a shell window using thej y-
I aunch command.

The following line at the command prompt can be run from a shell.

> jylaunch nyscript. py
where, of course, myscript.py should be replaced with the filename of the script you want to run.

Thej yl aunch command can also be run from the Start menu for the 'hcss' provided by the HCSS
installer script.

With the use of the HCSS installer, the j yl aunch capability is also available under the Program
Files start menu as a stand-alone task.

B.11. Errors and exceptions in DP

Here we explain how errors are generated within DP and how these are reported back to the user.
Following from this the user should be able to:

* understand error messages that might show up (i) while running an application, or (ii) during aDP
session.

* report the error to the custodian of a HCSS module in case a badly described exception occurred,
i.e., one which cannot be handled by the user.

B.11.1. Overview of the libraries used in a DP session

The base routines for DP are written in Java, but DP user development uses the more friendly Jython.
Typical user development is expected to take place in the console panel with plots and images appear-
ing in separate windows. Within a DP session one can run commands from the JIDE tool that enables
the execution of DP/Jython commands, saves and loads scripts, and provides command history sup-
port. Thistool often provides the core of a user's DP session.

139

http://www.jython.org/
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/jconsole/index.html

Using JIDE

Figure B.5. Theoverall library structurefor a DP session

Library usage for aDP session isillustrated in Figure B.5. Errors, as thrown by Jython and/or JAVA
classes, have the same means by which they follow the error back down the program layersto find the
root of the error -- "traceback mechanism" (although they differ in theway they present error messages
to the user, as shown in the next section).

Interpretation of these error messages allows the user to identify the place where the exception/error
originated from.

B.11.2. The error traceback mechanism

In this section we describe the differences in the way Jython and JAVA libraries present error mes-
sages.

B.11.2.1. The way Jython presents error messages

Errorsinthe use of Jython are typically returned directly to the user after their attempted implementa-
tion. An example of how Jython presents error messagesis given in the following short code example:

array = [1,2,3,4,5]
print array[5]
IndexError: index out of range: 5

Another typical Jython error form is a syntax error. Consider the following lines of code

2
3
X + 2y

X
y
a

An error message using this piece of code has the form

Traceback (innernost |ast):
(no code object) at line O

140

Using JIDE

SyntaxError: ('invalid syntax', ('<string>, 1, 10, -'a = x + 2y'))

which indicates the fault happening in line 1 of the block of code (we only have one linein this case)
at the position of character number 10. Note that this information appears in the bottom right panel,
by double clicking on the red line corresponding to the error and selecting the Tr aceback entry.

B.11.2.2. The way Java presents error messages

Most DP packagesuse JAVA classes. If JAVA classesare run within aDP session and an error occurs,
an exception is thrown which is propagated upwards to the DP level. An example:

dbl = Doubl e("wong arg")
java. | ang. Nunber For mat Excepti on: For input string: -"wong arg"

In the history window the command line will be indicated by ared cross, showing that thereisan error
for this command. Information on the command can be obtained by clisking on the indicator to the
left of the red cross. This provides access to the error message and traceback of the error (again, via
amouse click on the indicator).

A Log window can be obtained by using aright-click of the mouse on the history line, in IDE ON-
LY, and using the pull-down menu. This provides a separate window with all the information on the
problem command.

I NFO
<COMVAND>
<STATEMENT>
dbl = Doubl e("wrong arg")
</ STATEMENT>

<EXCEPTI ON>
<MESSAGE>
j ava. | ang. Nunber For mat Excepti on: For input string: -"wong arg"
</ MESSAGE>
<STACK_TRACE>
Traceback (innernost |ast):

File -"<string>", line 1, in -?
j ava. | ang. Nunber For mat Excepti on: For input string: -"wong arg"
j ava. | ang. Nunber For mat Excepti on: For input string: -"wong arg"

at java.l ang. Nunber For mat Excepti on. f or | nput St ri ng\
(Nunmber For mat Excepti on. j ava: 48)
at java.l ang. Fl oati ngDeci mal . readJavaFor mat St ri ng\
(Fl oati ngDeci mal . j ava: 1207)
at java.l ang. Doubl e. val ueX* (Doubl e. j ava: 202)
at java.l ang. Doubl e. <i ni t >(Doubl e. j ava: 277)
at sun.reflect.NativeConstructorAccessor| npl.new nstance0\
(Nati ve Met hod)
at sun.reflect.NativeConstructorAccessor| npl.new nstance\
(Nati veConst ruct or Accessor | npl . j ava: 39)
at sun.refl ect.Del egati ngConstructor Accessor |l npl . new nst ance
(Del egat i ngConst ruct or Accessor | npl . j ava: 27)\
at java.lang.refl ect.Constructor.new nstance
(Constructor.java: 274)\
at org. python. core. PyRefl ectedConstructor.__call__\
(PyRef | ect edConstructor. java)
at org. python. core. PyJaval nstance. __init__(PyJaval nstance. j ava)
at org. python. core. PyJavaC ass. __cal | _ (PyJavaC ass. j ava)
at org.python.core. PyObject.__call__(PyObject.java)
at org. python. pycode. _pyx113. f$0(<string>: 1)
at org. python. pycode. _pyx113. cal | _function(<string>)
at org. python. core. PyTabl eCode. cal | (PyTabl eCode. j ava)
at org. python. core. PyCode. cal | (PyCode. j ava)
at org. python. core. Py. runCode(Py. java: 1136)
at org. python. core. Py. exec(Py.java: 1158)
at org.python.util.Pythonlnterpreter.exec(Pythonlnterpreter.java)
</ STACK_TRACE>
</ EXCEPTI ON>
</ COMMAND>

141

Using JIDE

The placesin JAVA classes where the code breaks down are indicated. Typically, the traceback starts
with the line number of the original program where the problem occurs and follows this with the line
numbers in the classes accessed where the problem propagates from. In the above example we have
simply tried to attach a string, "wrong arg", to a numeric double. So it is of the wrong format -- as
indicated in the first line of the traceback. On other occasions, a more fundamental JAVA error may
be occurring deeper in the system. The traceback allows the user to find where this may be happening.

B.11.3. The HCSS exception and logging mechanism

Next to the standard JAVA exception handling mechanism the HCSS is using, it also has alogging
mechanism which forwards information, error and warning messages to the user.

B.11.3.1. Exceptions thrown from HCSS classes

In case an error occursinside the HCSS, for example due to a missing or incorrectly defined configu-
ration variable, the information as part of the exception thrown should explain to the user the cause of
the exception. In thisway the user should be capable to adjust his/her input arguments and/or property
settings. Property settings can be set using the Property Generation tool ("propgen") -- see Chapter
1. For example:

L et us assume the user has set the configuration variable "var.database.devel" to a database name that
does not exist:

var . dat abase. devel = -"idonotexi st @ccdb. sron.rug.nl"
when trying to access this database in a DP-session by:

from herschel . access inport *
tm = Packet Access(1030)
packets = HcssConnection. get(tm

Here, a query is done on the database as set by the above property and the exception, appearing in
the command line window, reads:

herschel . access. Locati onException: Exception in constructor of
her schel . access. db. Local Connecti on:

herschel . access. Locati onException: Failed to get store

herschel . store. api . St oreException: Failed to create store for
i donot exi st @ ccdb. sron. rug. nl:

herschel . store. api . St oreException: Failed to create
Obj ect Store -"i donot exi st @ ccdb. sron. rug. nl

Cannot open dat abase: idonotexi st @ ccdb. sron.rug. nl

Error while accessing database: idonotexist@ ccdb. sron.rug.nl

{ VException(7001: UT_DB NOT_FOUND: DB directory not found) -}

In cases where the information as passed by the Except i on thrown is not sufficient (for example a
Nul | Poi nt er Except i on without any textual explanation), then there is a problem with the cur-
rent system and the user is encouraged to provide feedback to the HSC regarding the lack of exception
handling information (currently, thisis best achieved through the SPR/SCR system).

In the above example the "access" package might improve its exception notification by adding
information to the Locat i onExcept i on, including a hint for the user that the database is not
existing and that the user should check whether var . dat abase. devel isproperly defined.

B.11.3.2. The HCSS logging mechanism

Thelogging mechanism alows (HCSS) classesto passerrors, warnings and/or info to the end-user. To

view the error logging mechanism, go to the Help menu or click on the icon (see also Section
2.2.5).

142

Using JIDE

For the HCSS end-user this mechanism, rather than the analysis of exception handling, is likely to
be used more often, especially when HCSS software is fully matured. The difference between the
two is that exception handling is more often used by the developer for debugging purposes, whereas
the logging mechanism is intended to be used by the end-user to get insight into the behaviour of an
(HCSS) application or class. The logging mechanism enables the devel oper to include messages when
an exception is thrown on how the class internally handles possibly thrown exceptions.

To give an example why, next to the exception mechanism, the logging mechanism was introduced:
suppose we have a layered HCSS component (i.e. within an instance of a class there are calls to
instances of other classes and these will call others on their turn), deep within this component an
exception occurs and at a higher level this exception is caught again. In such a scenario the end-user
of the component will not be aware of the fact that this exception occurred. However, by use of the
logging mechanism the developer of the component can pass a message (an error, warning or info;
depending on how severe this exception was) next to the exception thrown, as well as being able to
pass relevant information to the user when the exception is caught.

143

Appendix C. Jython operators

Thefollowing tables shows al the various operators you can use in Jython. For compl etenesswe have
also listed one operator introduced in version 2.2 of Jython, but absent from version 2.1, the one used
by the HCSS software.

Thislist and the associated operator descriptions have been largely taken from the Python Reference
Manual, which you can find online at http://docs.python.org/ref/.

Table C.1. Jython unary arithmetic operators

Operator Operator description Example
+ Unary plus. yields its numeric|pri nt +5
argument unchanged. # 5
) Unary minus: yields the nega-|print -5
tion of itsnumeric argument. |# -5
Invert: yields the bitwise invert| .
. : : print ~5
~ of its plain or long integer argu- 4 -6
ment.
Table C.2. Jython binary arithmetic operators
Operator Operator description Example
+ Sum: yieldsthe sum of itsargu-|print 2 + 2
ments. # 4
) Subtraction: yields the differ-|print 2 - 3
ence of its arguments. # -1
. Multiplication: yieldsthe prod-|print 3 * 2
uct of isarguments. # 6
print 5/ 2
/ Division: yields the quotient of |# 2
its arguments. print 5.0/ 2
2.5
Floor division (Jython 2.2 al-|print 5 // 2
/] pha only): yields the result of |# 2
the f | oor () function applied|print 5.0 // 2
to the quotient of itsarguments. |# 2. 0
Modulo: yl_elld.s the rgmander print 5 %2
% from the division of its argu- 41
ments.
Power: yields its left argument rint 5**2
** raised to the power of itsright ar- P
25
gument.
Table C.3. Jython shifting operators
Operator Operator description Example
<< Left shift: a << b shiftsplain|jprint 5 << 1
or long integer a by b bits. # 10
o Right shift: a >> b shiftsplain|print 5 >> 1
or long integer a by b bits. # 2
Table C.4. Jython binary bitwise operators
Operator Operator description Example

144

http://docs.python.org/ref/

Jython operators

Bitwise AND: yields the bitwise
AND of its plain or long integer
arguments.

print

Bitwise XOR: yields the bitwise
exclusive OR of itsplain or long
integer arguments.

print
3

Bitwise OR: yields the bitwise
inclusive OR of its plain or long
integer arguments.

pri nt
7

Table C.5. Jython comparison operators

Operator

Operator description

Example

<

Lessthan:a < b yiddstrueif
aislessthanb.

print
1

5<6

Greater than: a > byieldstrue
if a isgreater than b.

print
#0

Equal to: a == byiedstrueif
aandb areequa.

print
0

Greater or equal to:a >= b
yieldstrueif a is greater than or
equal to b.

pri nt
0

Lessor equal to:a <= byields
trueif a islessthan or equal tob.

print
1

I = (preferred) or <>

Not equal to: a != b yields
trueif a isnot equal to b.

print
1
print
#0

Table C.6. Jython boolean operators

Operator

Operator description

Example

and

Boolean AND: yields Tr ue if
both arguments are true, Fal se
otherwise.

print
0

1 and O

or

Boolean OR: yields True if
at least one argument is true,
Fal se otherwise.

print
1

1or O

not

Boolean NOT: yields Tr ue if
the argument is fase, Fal se
otherwise.

print
0

not 1

145

Appendix D. Naming Conventions

for Java and Jython users and developers. Version 0.3, 6th December 2006

Element

Description

Naming convention

Class

Section 1.12.1

Defines the state and behaviour
of something. Classes are de-
fined as declaring variables
(fields) and functions (methods)
associated with the objects of
that class.

Names should be nouns and
written in mixed case starting
with an upper case letter. Do
not use underscores to separate
words.

Dat aFr aneGener at or,
Fi t sArchi ve

Interface

Section 1.12.2.1

Defines a collection of method
definitions and constant values.
It can later be implemented by
classes that define this interface
with the i npl ements key-
word.

Names have the same conven-
tion as class names but are
preferably adjectives. Try to end
the names with -able or -ible:

Sort abl e,
Savabl e

Accessi bl e,

Variable

An item of data named by an
identifier. Each variable has a
type, suchasi nt or Fr ame, and
ascope.

Names should be mixed case
starting with a lower case letter.
Do not use underscores to sepa-
rate words.

f raneBuf f er Count er,
nSanpl es, |ine, detec-
t or No

Instance Variable

A variable that is part of an ob-
ject.

Names should start with an un-
derscore, otherwise follow the

not be changed during execution.

Section 1.12.1 general conventions for vari-
For the rationale of this naming | ables (see above).
convention see HSCDT/TNO09
on ESA Livelink _packet Type, _isVisi-
bl e
Local Variable A variable that is part of afunc-|Names follow the naming con-
tion or method. vention of normal variables.
counter, length, pix-
el Nare
Constant A variable whose value that can|Names should be all uppercase

using an underscore to separate
words:

MAX_| TERATI ONS

Boolean variable and method

A logical type/function that can
only have or return the values
‘true’ or ‘false. Methods have
parentheses () while variable
haven't.

Names should start withis-, has-,
can-, or should-.

i sVisi bl e,
hasChanged(), canHan-
dl e(), shoul dAbort

Parameter

An argument to a function or a
method.

Names follow the naming con-
vention of normal variables.

146

http://www.rssd.esa.int/llink/livelink/fetch/2000/414493/10737/2557707/14323/Coding_standards_for_the_FCSS_development.pdf?nodeid=28008&vernum=-2

Naming Conventions

tionstake argumentsand provide
one output. They are like meth-
ods, except they are not inside a
class. A function can also be an
instance of the Task class.

Element Description Naming convention
nane, packet
Property A platform independent imple-| Names should be all lower case
mentation of environment vari-|and start with 'hcss. The hierar-
ables and settings. chical parts should be separated
with a dot.
hcss. bi nstruct. service
Method A function definedinaclass. | Names should be verbs and writ-
_ ten in mixed case starting with a
Section 1.12.1 lower case letter. Do not use un-
derscores to separate words.
get Name(), | oad()
Function A jython function is a collection| Names follow the same conven-
_ of code lines to perform a spe- |tion as method names in classes.
Section 1.10 cific task under one name. Func-

resanpl e(), readTm()

Numeric function

Section 3.2

Parameterless Java func-
tions provided by the
herschel.ia.numeric toolboxes.
For these function only one in-
stance is needed. Other numeric
functions follow the same con-
vention as classes.

Names are in al uppercase with
an underscore to separate words.

UNI Q MEDI AN,
IS FINITE

Task

Chapter 4

A Task is a class which can be
called as a function. Tasks do
input and output parameter type
checking and provide history to
Products.

Names follow the same conven-
tions as for classes. Task names
should end with the word 'Task'.

Di spl ayDat aFr aneTask,
Resanpl eTask

Package

Section 1.12.4

Defines a collection of related
classes and interfaces in Java.
Packages provide the namespace
in Javaand Jython.

Names should be in lower-case
letters and digits, don't use un-
derscores.

herschel . i a. nuneric

Package names should be short
so that the fully qualified pack-
age name doesn't become exces-
sively long.

Abbreviations and acronyms should not be all uppercase when used as a name:

GOOD BAD
export AsHt m () export ASHTM.()
saveAsJpeg() saveAsJPEQX)

147

Naming Conventions

ol Packet OOLPacket

Using all uppercase for the abbreviations in base names will give conflicts with the naming conven-
tions given above. A variable of thistype would have to be named hTM_, j PEGetc. which obviously
isnot very readable. Another problemisillustrated in the examples above: when the nameis connected
to another, the readability is seriously reduced, since the word following the acronym does not stand
out as it should.

The term compute can be used in methods where something is computed and might take considerable
time to execute.

conput eAver age(), matrix.conputel nverse()

Give the reader the immediate clue that this is a potential time consuming operation, and if used
repeatedly, he might consider caching the result. Consistent use of the term enhances readability.

The 'n' prefix should be used for variables representing a number of objects, note that the names are
plural.

nPoi nts, nLi nes, nSanpl es

The notation is taken from mathematics whereit is an established convention for indicating a number
of objects. Note that Sun uses the numprefix in the core Java packages for such variables. Thisis
probably meant as an abbreviation of number of, but asit looks more like number it makesthe variable
name strange and misleading. If "number of" is the preferred phrase, nunmber O prefix can be used
instead of just n. The numprefix must not be used.

The 'No' suffix should be used for variables representing an entity number.
t abl eNo, enpl oyeeNo

The notation is taken from mathematics where it is an established convention for indicating an entity
number.

Reserved words: the following words are reserved by Java as |anguage keywords and can not be used
for variables, methods or class namesin Java.

abstract, continue, for, new, synchronized, assert, default, goto,
package, this, bool ean, double, if, private, throws, break, do, inple-
nments, protected, throw, byte, else, inmport, public, transient, case,
enum instanceof, return, try, catch, extends, interface, short,
void, char, finally, int, static, volatile, class, final, |long, su-
per, while, const, float, native, swtch.

Java code example

package herschel .ia.nuneric; -// herschel.ia.nuneric: PACKAGE
public final class Conplexld -// Conpl exld: CLASS
i npl enents Serializable -// Serializable: | NTERFACE

{
private transient double[][] _internal; -// _internal: |NSTANCE VARl ABLE
-/l witeQoject: METHOD
private void witeObject(ObjectQutputStreamos) { -// os = METHOD PARAMETER
os. defaul t WiteQhject();
os.witelnt(length());
if (length()==0) return;
for (int i=0,n=length();i<n;i++) { -// i = LOCAL VARI ABLE
os.witeDouble(_re[i]); os.witeDouble(_infi]);
-}
-}
}

148

Naming Conventions

Jython code example

herschel .ia. dataset.gui = PACKAGE; Dataset!| nspector = CLASS
from herschel .ia. dataset.gui inmport Datasetlnspector

Pl = CONSTANT

fromjava.lang. Math inport PI

test Name = VARI ABLE

testNane = -"chop_freq_test_2909_1832_1902_"

| oad = METHOD

t2 = fits.load(nyDir+test name+" PHOTF. fits"). defaul t

MAX = NUMERI C FUNCTI ON

maxStep = MAX(step[step. where(step < Oxffff)])

start EndTi mes = FUNCTI ON, step, nmaxStep, tinme... = FUNCTI ON PARAMETERS
def start EndTi nes(step, maxStep, tine, startTinme, endTine):
for i in range(0, maxStep): # i = LOCAL VARI ABLE
tenp=(step. where(step == i+1))

endTime[i] = time[MAX(tenp.tolntld())
return endTi me
len = FUNCTI ON
upper = len(startarr)

149

	Scripting and Data Mining
	Table of Contents
	Preface
	Chapter 1. Scripting and Jython basics
	1.1. Numbers and basic arithmetic
	1.2. Variables and variable types
	1.2.1. Java variable types

	1.3. Strings
	1.3.1. Java string types

	1.4. Type conversions
	1.4.1. Converting between Java and Jython types
	1.4.1.1. Incompatible types

	1.5. Lists and dictionaries
	1.5.1. Setting up and accessing lists
	1.5.2. Slicing lists
	1.5.3. Setting up and using dictionaries
	1.5.4. Nested dictionaries

	1.6. Augmenting values and lists
	1.7. Lists and Jython tuples
	1.8. Basic programming statements
	1.8.1. if/elif/else
	1.8.2. for
	1.8.3. while
	1.8.4. Loop control: break and continue

	1.9. Printing to the screen and files
	1.10. Defining and using functions
	1.11. Importing modules
	1.11.1. Importing and reloading your own modules

	1.12. Object-oriented programming
	1.12.1. Classes and objects
	1.12.1.1. A note about terminology

	1.12.2. Interface, implementation and encapsulation
	1.12.2.1. Interfaces in Java

	1.12.3. Inheritance
	1.12.4. Packages and namespaces
	1.12.5. Advantages of OOP
	1.12.6. Concluding remarks

	1.13. Defining a class
	1.14. Writing scripts
	1.15. Some useful extra items on scripts
	1.16. Interactivity in Jython scripts
	1.16.1. The Swing library
	1.16.1.1. showMessageDialog
	1.16.1.2. showInputDialog
	1.16.1.3. showConfirmDialog

	1.17. Useful Java bits
	1.18. Jython and DP quirks
	1.18.1. Two functions for one goal
	1.18.2. Long Names versus Short Names
	1.18.3. Naming conventions
	1.18.4. Miscellaneous quirks

	1.19. Interoperating with external software

	Chapter 2. Arrays, datasets and products
	2.1. Types of array data objects
	2.1.1. Numeric array access and slicing

	2.2. Creating a simple 1D numeric array
	2.3. Creating and handling complex array data objects
	2.4. Creating and accessing multidimensional array data objects
	2.4.1. A note on array ordering

	2.5. Adding attributes to create an array dataset
	2.5.1. Dataset attributes and metadata

	2.6. Creating and viewing a TableDataset
	2.6.1. Row-wise appending of TableDatasets
	2.6.2. Assigning Units
	2.6.2.1. Manipulating Units
	2.6.2.2. Converting Units to Strings and Back Again
	2.6.2.3. Derived Units
	2.6.2.4. Conversion to SI and Other Units
	2.6.2.5. Physical Constants
	2.6.2.6. Unit Compatibility
	2.6.2.7. Unit Equivalence

	2.7. Creating and accessing a composite dataset
	2.8. Spectrum datasets
	2.8.1. Spectrum1d and SpectralSegments
	2.8.2. Spectrum2d
	2.8.3. Expanding Spectrum1d and Spectrum2d Datasets
	2.8.3.1. HIFI Extensions
	2.8.3.2. SPIRE extensions to Spectrum1d
	2.8.3.3. PACS Spectrum1d and Spectrum2d extensions

	2.9. Image and cube datasets
	2.9.1. Spectral cubes

	2.10. Creating a spectral cube
	2.10.1. Input Data
	2.10.1.1. Unprojected Cubes
	Organising SPIRE Data as Unprojected Cubes

	2.10.1.2. Target Grids
	2.10.1.3. Metadata and Units

	2.10.2. Cube Projection
	2.10.2.1. Unprojected Cubes
	2.10.2.2. Cube Regridding
	2.10.2.3. Extrapolation
	2.10.2.4. NearestNeighbourProjectionTask
	Algorithm
	Extrapolation

	2.10.3. Output

	2.11. Importing spectral cubes from external applications
	2.12. Assigning a World Coordinate System to images and cubes
	2.13. Products
	2.13.1. Mandatory parameters in products
	2.13.2. Setting date information
	2.13.3. Additional metadata
	2.13.4. Inserting and getting datasets from a product
	2.13.5. Product history

	Chapter 3. The Numeric library
	3.1. Basic numeric array arithmetic
	3.2. Numeric functions and lambda expressions
	3.3. Selection, data filtering and masking methods
	3.4. Array access and slicing
	3.5. Making sense of logical operators
	3.6. Advanced tips for improved performance
	3.7. Type conversions
	3.7.1. Explicit conversion
	3.7.2. Implicit conversion

	3.8. Function library
	3.8.1. Basic functions
	3.8.2. Integral transforms
	3.8.3. Power spectrum
	3.8.4. Convolution
	3.8.5. Boxcar and gaussian filters
	3.8.6. Interpolation
	3.8.7. Data fitting
	3.8.7.1. General approach
	3.8.7.2. Available linear models
	3.8.7.3. Available non-linear models
	3.8.7.4. Compound and mixed models
	3.8.7.5. Available fitters
	3.8.7.6. Obtaining a model fit to 1D and 2D data
	1D fit example
	2D fit example

	3.8.8. Masks
	3.8.9. Matrices
	3.8.10. Random numbers
	3.8.11. Numeric integration
	3.8.12. Interpolating discrete data

	3.9. Mathematical operations on spectra
	3.9.1. Introduction
	3.9.2. Toolbox primer: selection
	3.9.2.1. More on selection methods

	3.9.3. Toolbox primer: average spectra
	3.9.4. Toolbox primer: subtract spectra
	3.9.5. Toolbox primer: divide spectra
	3.9.6. Toolbox primer: add and muliply spectra
	3.9.7. Toolbox primer: resample and smooth spectra
	3.9.8. Toolbox primer: statistics on spectra
	3.9.9. Summary of toolbox operations
	3.9.9.1. Remarks

	Chapter 4. Introduction to Tasks
	4.1. The Task framework
	4.2. My first Task
	4.2.1. Before the Task
	4.2.2. What makes a Task?
	4.2.3. An Example of a Task: Average
	4.2.3.1. Importing definitions
	4.2.3.2. Creation
	4.2.3.3. Execution
	4.2.3.4. Usage
	4.2.3.5. Getting help on Tasks
	4.2.3.6. Adaptations in the Preamble to a Script
	4.2.3.7. Positional and Keyword Arguments in Tasks
	4.2.3.8. The Transformer example

	4.3. Tasks with graphical interfaces
	4.3.1. The use of task parameters handled via a dialog
	4.3.2. The use of more enhanced GUIs
	4.3.3. Conventions for parameter labels

	Chapter 5. Overview of DP packages
	5.1. Introduction
	5.2. Overview of Javadoc Documentation for DP Packages
	5.3. Package view
	5.4. Class view
	5.5. Other views
	5.5.1. Tree view
	5.5.2. Deprecated view
	5.5.3. Index view

	5.6. DP Packages And Documentation
	5.6.1. herschel.ia.dataflow
	5.6.2. herschel.ia.dataset
	5.6.3. herschel.ia.demo
	5.6.4. herschel.ia.doc
	5.6.5. herschel.ia.document
	5.6.6. herschel.ia.gui
	5.6.7. herschel.ia.inspector
	5.6.8. herschel.ia.io
	5.6.9. herschel.ia.jconsole
	5.6.10. herschel.ia.numeric
	5.6.11. herschel.ia.obs
	5.6.12. herschel.ia.pal
	5.6.13. herschel.ia.pg
	5.6.14. herschel.ia.qcp
	5.6.15. herschel.ia.spg
	5.6.16. herschel.ia.task
	5.6.17. herschel.ia.toolbox
	5.6.18. herschel.ia.vo

	Chapter 6. Time measurement
	6.1. Time Definitions
	6.1.1. System time in DP
	6.1.2. International Atomic Time (TAI) and FineTime
	6.1.3. Coordinated Universal Time (UTC)
	6.1.4. DecMec Time [PACS only]

	6.2. Time in Instrument House-Keeping (HK) Data
	6.3. Time conversion
	6.3.1. Time conversion in HCSS
	6.3.2. CucConverter

	Appendix A. Advanced Product Access Layer
	A.1. Product Storage
	A.1.1. Creating a storage and registering pools
	A.1.2. Saving and restoring Products

	A.2. Product Pools
	A.3. Local pools
	A.3.1. The default Local Pool directory and how to change it
	A.3.2. Registering Local Pools
	A.3.3. Saving products in pools
	A.3.4. Finding out what is in a storage
	A.3.5. More on storage queries: Other kinds of query and more examples of command line queries
	A.3.6. Retrieving products from storage
	A.3.7. Deleting products from storage
	A.3.8. Updating/Repairing Storage

	A.4. DbPool
	A.5. CachedPool
	A.6. Setting up and Accessing Remote Pools
	A.6.1. PoolDaemon
	A.6.2. Accessing Remote Pools Using the SerialClientPool

	A.7. More on querying
	A.7.1. Querying strategy
	A.7.2. Querying for metadata in products

	A.8. Special Imports into Pools
	A.8.1. Putting a Directory of FITS Files Into a Pool
	A.8.2. Placing Image (PNG) Files in a Pool and/or FITS File

	A.9. Context Products
	A.10. Deep Copy or Cloning of Products
	A.11. Common Problems
	A.12. Storage Product Versioning
	A.12.1. Versioning
	A.12.2. Querying Product Versions
	A.12.3. Tagging Products in a Store
	A.12.4. Turning Off Product Versioning
	A.12.5. Using the New Versioning Mechanism Against Existing Pools

	A.13. The Product Browser
	A.13.1. A visual tour of the browser
	A.13.2. Simple use case
	A.13.3. A: Query area
	A.13.4. B: Result area
	A.13.5. C: Result inspection area
	A.13.6. D: JIDE basket area
	A.13.7. Advanced: Adding a Table Layout

	Appendix B. Using JIDE
	B.1. Scripting with JIDE
	B.1.1. File menu
	B.1.2. Console menu
	B.1.3. Edit menu
	B.1.4. Run menu
	B.1.5. Help menu

	B.2. Quitting JIDE
	B.3. Standard settings for JIDE
	B.4. DP working directory and file access
	B.5. Getting command-line help
	B.6. Programming loops
	B.6.1. Loop performance on arrays
	B.6.2. Using the Editor view with loops

	B.7. Multiline statements in the console view
	B.8. Pausing during script execution and debugging in JIDE and HIPE
	B.9. Background script execution
	B.10. Running scripts from a shell command line
	B.11. Errors and exceptions in DP
	B.11.1. Overview of the libraries used in a DP session
	B.11.2. The error traceback mechanism
	B.11.2.1. The way Jython presents error messages
	B.11.2.2. The way Java presents error messages

	B.11.3. The HCSS exception and logging mechanism
	B.11.3.1. Exceptions thrown from HCSS classes
	B.11.3.2. The HCSS logging mechanism

	Appendix C. Jython operators
	Appendix D. Naming Conventions
	Java code example
	Jython code example

