
SPIRE Data Users Manual

version 1.0.<undefined> , Document Number: SPIRE-RAL-DOC 003248
30 July 2010

SPIRE Data Users Manual

iii

Table of Contents
Preface .. v

1. Versioning ... v
1.1. Changelog ... v

1. Introduction .. 1
1.1. Scope of this Data User's Manual .. 1
1.2. SPIRE observing Modes .. 1
1.3. Structure of this document .. 1

2. Looking at your data ... 3
2.1. SPIRE Observation Context Data Structure .. 3

2.1.1. Anatomy of a SPIRE Observation: Products, Pools, Storage, and Building
Blocks ... 3
2.1.2. Linking it altogether: Introducing the Context .. 4
2.1.3. Looking at your Observation Context in HIPE ... 6

2.2. SPIRE Large Map and Parallel Mode Data Structure ... 9
2.2.1. A first look at your image maps (The Level 2 Data Product) 9
2.2.2. Saving a map as a FITS file and reading it in again 12
2.2.3. Looking at the Level 1 Timeline Data ... 13
2.2.4. Looking at the Level 0.5 Timeline Data .. 16
2.2.5. Looking at the Raw Level 0 Data .. 19

2.3. SPIRE Small Map Mode Data Structure .. 20
2.3.1. A first look at your image maps (The Level 2 Data Product) 20
2.3.2. Saving a map as a FITS file and reading it in again 24
2.3.3. Looking at the Level 1 Timeline Data ... 25
2.3.4. Looking at the Level 0.5 Timeline Data .. 25
2.3.5. Looking at the Raw Level 0 Data .. 26

2.4. SPIRE Point Source Mode Data Structure ... 27
2.4.1. The Point Source Observation Mode .. 27
2.4.2. Reading the JPP into memory and saving it as a FITS file and reading it in
again ... 28
2.4.3. Looking at the Level 1 Data for Point Source Observations 29
2.4.4. Looking at the Level 0.5 Timeline Data for Point Source Observations 31
2.4.5. Looking at the Raw Level 0 Data .. 35

2.5. SPIRE Spectroscopy Data Structure .. 36
2.5.1. SPIRE spectrometer introduction ... 36
2.5.2. The Spectrometer Observation Context ... 37
2.5.3. The Spectrometer Level 1 Data Products ... 39
2.5.4. Using SpecExplorer ... 43
2.5.5. The Spectrometer Level 0.5 Data Products .. 51
2.5.6. Looking at the Raw Level 0 Data .. 55

3. SPIRE Calibration Data .. 57
3.1. SPIRE Calibration Explained ... 57

3.1.1. The SPIRE Calibration Context ... 57
3.1.2. The SPIRE Calibration Tree ... 57
3.1.3. SPIRE Calibration Product Editions ... 58
3.1.4. Updating a Calibration Tree .. 59
3.1.5. Updating Individual Calibration Products .. 59
3.1.6. Removing Calibration Products from the Tree .. 59
3.1.7. Further Information ... 60

4. Reprocessing your data ... 61
4.1. Introduction .. 61
4.2. Reprocessing SPIRE Large Map and Parallel Mode Data 61

4.2.1. Prerequites ... 61
4.2.2. Level 0 to Level 0.5 Processing (Optional) ... 63
4.2.3. Level 0.5 to Level 1 Processing .. 64
4.2.4. Level 1 to Level 2 Processing .. 68

SPIRE Data Users Manual

iv

4.3. Reprocessing SPIRE Small Map Data ... 72
4.3.1. Prerequites ... 72
4.3.2. Level 0 to Level 0.5 Processing (Optional) ... 75
4.3.3. Level 0.5 to Level 1 Processing .. 75
4.3.4. Level 1 to Level 2 Processing .. 80

4.4. Reprocessing SPIRE Point Source Mode Data ... 84
4.4.1. Prerequisites ... 84
4.4.2. Level 0 to Level 0.5 Processing (Optional) ... 87
4.4.3. Level 0.5 to Level 1 Processing .. 87
4.4.4. Level 1 to Level 2 Processing .. 91

4.5. SPIRE Spectroscopy Data Processing .. 92
4.5.1. Reprocessing SPIRE spectrometer data ... 92
4.5.2. Options available to the user ... 93
4.5.3. Detailed description of the processing script ... 94
4.5.4. The processing script ... 104

v

Preface
1. Versioning

On the front page of this manual is a version number made of three digits. The first two digits follow a
traditional versioning system (0.1, 0.2, ...), and the changes introduced with each version are detailed
below. The third digit is the SPIRE build number to which each edition of the manual is associated.
Also shown on the front page is the date of publication of the manual.

1.1. Changelog
The following was changed for 1.0

• Major updates to all sections to conform to data products and data processing as of the 4.0 branch.

• Added SPIRE Calibration chapter.

• Added aditional section on the Spectrum Explorer for SPIRE.

• Added reprocessing section for Small Map Mode.

• Expanded reprocessing section for spectrometer pipeline.

The following was changed for 0.2

• Updates to flow charts with respect to the 4.0 branch.

The following was changed for v0.1

• First version of the SDUM manual.

1

Chapter 1. Introduction
1.1. Scope of this Data User's Manual

The purpose of this document is to provide a comprehensice reference for all SPIRE users in terms of
the data structure users will encounter for on inspection of the different types of SPIRE observations,
but also as a guide on how to reprocess the data and inspect the products through the full SPIRE
pipeline. This document superceeds the SPIRE pipeline reduction formerly included in the HOWTOs
document, but has been expaned to include all modes and insights on the data struture and types.

The data structure and reprocessing guide examples contained within the SPIRE Data Users Manual
are based upon the HIPE 4.0 release - views may differ and examples may not work on previous and
subsequent releases of HIPE.

For more information on obtaining HIPE and on how to install it, getting started with it, please go to
the HIPE Quick Start Guide and the HIPE Owners Guide for a more more indepth overview of getting
started with the HIPE environment.

1.2. SPIRE observing Modes
SPIRE observing modes for both the Photometer and the Spectrometer are provided as Astronomical
Observation Templates (AOTs), and the way these AOTs are referred to may differ from resource to
resource (Hspot, HIPE, etc). There are currently 6 available observaing modes in various levels of
use and release, these are,

• Large Map Mode(Scan Mapping, POF5): Used for observations of large fields (>4x4 arcmins).
The telescope is scanned building up a map, scan line by scan line. Scan lines can be orthonally
cross-linked to produce high quality maps.

• Small Map Mode (1x1 Small Scan Map, POF10): Used for observations of large fields (>4x4 ar-
cmins). This mode replaces the former small map 64-point Jiggle, POF3 mode. The new Small Scan
Map mode consists of 2 orthoganal scan lines of fixed length. The mode operation and processing
is essentially the same as the Large Map mode. For a given observation, the area covered by both
scan legs defines a central square of side 5 arcmins although the length of the two orthogonal scan
paths are somewhat longer than this. In practice, due to the position of the arrays on the sky at the
time of a given observation, the guaranteed area for scientific use is a circle of diameter 5 arcmins.

• Point Source Mode (7-point Jiggle, POF2): Used for observations of point sources. The telescope
stares at a target and the detector arrays are jiggled, using BSM, over the target using a 7-point
pattern. The background is removed by chopping with the BSM and Nodding with the telescope.

• Parallel Mode (Parallel): Used for maps created with both SPIRE and PACS in parallel. These
are essentially equivalent to Large Map observations.

• Point Source Spectroscopy (SOF1): Used for point source spectrocopy. The Spectrometer Mech-
anism (SMEC) mirror is scanned to produce a spectrum over the full wavelength range

• Small Map Spectroscopy (SOF2): Used for creating small spectrocopic maps. The Spectrometer
Mechanism (SMEC) mirror is scanned to produce a spectrum over the full wavelength range while
the BSM jiggles over 16 positions to produce an image map.

1.3. Structure of this document
Astronomer users will receive data that has already been processed through the standard pipelines to
several Levels. The processing levels of the SPIRE pipeline and user deliverables are outlined below
in Figure 1.1.

Introduction

2

Figure 1.1. The processing levels of the SPIRE pipeline and user deliverables.

This document is divided into two broad topics. An introduction to the data structure as received from
the Herschel Science Archive (HSA) is described in Chapter 2 which includes all relevant observation
modes and processing Levels. The pipelines themselves and details on reprocessing your observations
are covered in Chapter 4.

3

Chapter 2. Looking at your data

__

2.1. SPIRE Observation Context Data Struc-
ture

2.1.1. Anatomy of a SPIRE Observation: Products,
Pools, Storage, and Building Blocks

For the purposes of both this chapter and the next (on reprocessing your data), we assume that you have
already downloaded a data set from the Herschel Science Archive and are familiar with how to put
your data into a store and how to access your data from this store within HIPE. If you haven't, please
look at the HIPE Quick Start Guide and the HIPE Owners Guide for instruction on how to do this.

Now you are the proud owner of a set of SPIRE observations. Before carrying out any processing
its most likely that you will want to have a first look at your data. SPIRE observations are supplied
in a highly organized structure that may be unfamiliar to previous astronomical datasets you have
encountered.

All data within the HCSS processing system are passed around in containers referred to as Products.
There are Products for every kind of data, e.g.;

• Raw and processed Detector Data Timelines

• Calibration Data

• Auxiliary (e.g. Pointing) Data

• Images

• Image Cubes

• Data Contexts

•

Products can contain the following (pictorially visualized in Figure 2.1);

• Meta Data

• One or more Datasets

• Processing History

Datasets can be;

• Array Tables

• Image arrays

• Composite (nested) Tables

•

Looking at your data

4

Figure 2.1. General structure of a SPIRE data Product

SPIRE (Herschel) Observations are accessed/downloaded and stored as a Pool of these products. A
Pool is basically a directory that contains the original raw data, the results of the automatic pipeline
processing and everything you need to process your observations again yourself (e.g. spacecraft point-
ing, the parameters you entered in HSPOT when you submitted the proposal, and the pipeline cali-
bration tables). Data that you reprocess yourself can also be stored into the same Pool or you may
alternatively wish to save the results in a new Pool. If you wish to send someone a set of processed data
for example, the entire Pool directory should be "tar"ed or archived and sent. Finally, once a Pool has
been created, the pool's directory name must NOT be changed or HIPE will not be able to find the data.

In general, HIPE expects all your observation pool directories to be contained in a "Local Store"
directory which can be thought of as a Super Repository for all Observation Pools on your hard disk.
By default this directory resides in ~/.hcss/lstore but can be changed and renamed by by editing the
HCSS user.props file. The structure of the Local Store is visualized in Figure 2.2

Figure 2.2. General structure of the Local Store

2.1.2. Linking it altogether: Introducing the Context
The smallest “piece” of SPIRE observational data is called a Building Block. These Building Blocks
correspond to basic operations within an observation and as the name suggests every SPIRE AOT
is built up from a combination of these building blocks. Building Blocks are usually in the form of
Timeline Data Products.

Example building blocks may be;

• A scan line in a map

• A single 7 point Jiggle

• A set of Spectrometer scans

Looking at your data

5

• A segment of housekeeping scans

• A motion of the Beam Steering Mirror (BSM)

Building Blocks and other Products are grouped into a context. A context is a special kind of product
linking other products in a coherent description and can be thought of as an inventory or catalogue of
products. The SPIRE processed observation consists of many such contexts within one giant Obser-
vation context. Therefore, Each set of building blocks have a context. Each Processing Level in the
SPIRE pipeline has a context and the entire Observation has a context. Thus a complete observation
may be thought of as a big SPIRE onion as depicted in Figure 2.3. Moreover, contexts are not just for
building block products and higher processed data products, there are contexts for Calibration Products
and contexts for Auxiliary Products (e.g. pointing) and even a context for Quality Control. The entire
SPIRE Obseravtional Context is shown in Figure 2.4 for all products from the raw building block data
to the final high level processed end products from the pipeline. This is the structure and content that
you should receive for your SPIRE observation from the Herschal Science Archive (HSA).

Figure 2.3. The Context structure within HCSS. The smallest “piece” of SPIRE observational data are
Building Blocks. Building Blocks and other Products are grouped into a context. All the data within an
entire SPIRE observation are linked by an Observation Context.

Looking at your data

6

Figure 2.4. The complete Observation Context of a SPIRE observation

2.1.3. Looking at your Observation Context in HIPE

The Observation Context can be viewed directly within HIPE. It is assumed in this example that the
data has already been downloaded from the archive and has already been stored in a pool named
GalaxyScanMap in the Local Store. We therefore have to load this pool into the HIPE environment
and extract the Observation Context for this observation. This is possible via a slightly convoluted
route using the GUI but can also be accomplished painlessly with a the few lines of code shown below;

 Pool = -'GalaxyScanMap' # Select the pool name
 storage=ProductStorage(Pool) # Register the pool
 queryResults = storage.select(Query("type=='OBS'")) # Query the pool
 MyObsContext = queryResults[0].product # Extract the Context

The first line of code selects the desired Pool from our Local Store on disk. This Pool is read in to a
storage area in memory (referred to as Registering the Pool") which we have decided to call storage.
Once the Pool has been registered, it can then be queried for the observation context by searching the
storage for the Product Type OBS. Finally, the Observation Context Product is stored in a variable we
choose to call MyObsContext. After running the above lines we see five new entries Variables
pane of HIPE shown in Figure 2.5. These variables have already been described above (Note: the
p is simply a place holder). Double clicking on the obsContext in the variable list brings up the
Observation Context observation in a new window as also shown in Figure 2.5. The Observation
Context has Summary, Meta-Data and Data panes. The Summary pane contains information on
the instrument, target position, observation ID, Operational Day and Observation Mode. The Meta-
Data pane contains all relevant information on the Product necessary to describe and process the
observation (including the information in the Summary pane). The Meta-Data for the observation
context is summarized in Table 2.1. The Observation Context Data pane contains pointers to all other

Looking at your data

7

contexts and data products contained in the Observation Pool. The Data pane contains many entries,
listed below and in Figure 2.6 (See also Figure 2.4);

• level 0: The Level 0 context containing links to the Level 0 raw Data before any pipeline pro-
cessing.

• level 0.5: The Level 0.5 context containing links to the Level 0.5 data products after the com-
mon engineering conversion has been made.

• level 1: The Level 1 context containing links to the Level 1 data products after AOT specific
pipeline processing.

• level 2: The Level 2 context containing links to the final Level 2 data products from the pipeline.

• calibration: The Calibration context pointing to all calibration products required for the pro-
cessing of SPIRE data.

• auxiliary: The context pointing to all .

• logObsContext: The context pointing to the reduction log that records the processing history
of the data.

• quality: The Quality context pointing to the quality control products for this observation.

• browseImageProduct: The context pointing to thumbnail products.

• browseProduct: The context containing information from the HSA archive.

Note that the structure of the Observation Context can also be directly seen from the command line
by typing, print MyObsContext;

HIPE> print MyObsContext
{description="Unknown", meta=[type, creator, creationDate, description, instrument,
 modelName,startDate, endDate, obsState, obsid, odNumber, cusMode, instMode],
datasets=[], history=None,
refs=[auxiliary,browseImageProduct,browseProduct,calibration,level0,
level0_5,level1,level2,logObsContext,quality]}

Here the Observation Context can be clearly seen to contain no data as such but rather a set of pointers
or references to other different kinds of contexts. In the next section, the Observation Contexts for
specific individual AOTs will be investigated in more detail allowing us to have a first look at our
processed data!

Table 2.1. Description of Meta Data in the SPIRE Observation Context

Meta Data Description

odNumber The Observational Day when the observation was made

obsid The unique Observation ID (in decimal)

startDate The start date of the observation in TAI, Zulu Time

endDate The end date of the observation

creationDate The creation date of this Product

creator How the product was created (e.g. Standard Product Generation (SPG) ver-
sion)

modelName Whether the data is from Flight or Flight Spare, etc

obsState

Looking at your data

8

Meta Data Description

How far has the observation been processed by the pipeline (Level 0, 0.5, 1
or 2)

type The Product Type (OBS = Observation Context)

instMode The instrument mode (The AOTs defined internally as POF5 for Large Map
Mode)

instrument The instrument name, in this case SPIRE

cusMode How the AOT is referred to in the observaion logs and scheduling
(SpirePhotoLargeScan)

description The Product name

Figure 2.5. The Observation Context within HIPE

Looking at your data

9

Figure 2.6. Inside the Observation Context within HIPE.

__

2.2. SPIRE Large Map and Parallel Mode Data
Structure
2.2.1. A first look at your image maps (The Level 2 Da-
ta Product)

All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the data for a SPIRE Large Map
observation, however this description applies equally to SPIRE Parallel Mode observations.

The observation we shall be looking at is a Large Map observation of the Planetary Nebulae NGC5315
taking during the Herschel-SPIRE PV phase. NGC5315 is at RA=13h53m57.00s, dec=-66d30'50.70''
and was covered by scanning the photometer arrays 3 times each in orthoganal direction. The entire
process was then repeated (i.e. this observation has 2 repetitions) giving in total 6 scans in each or-
thoganal direction making 12 scan lines in total.

It is assumed that the observation has already been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = -'OD117-ScanNGC5315-0x50001833' # Select the pool name
storage=ProductStorage(Pool) # Register the pool
queryResults = storage.select(Query("type=='OBS'")) # Query the pool
MyObsContext = queryResults[0].product # Extract the Context

For this particular observation, we chose to call our Pool OD117-ScanNGC5315-0x50001833 where
OD117 means the observation was made on Operational Day 117, Scan was the AOT mode,

Looking at your data

10

NGC5315 was the target name and 0x50001833 is the unique Observation ID in hexadecimal. Run-
ning the above script, reads the Observation Context into memory into the variable MyObsContext
which appears in the Variables pane of HIPE (See Figure 2.7). Right Clicking (or CTRL-click for
Apple Users) on the MyObsContext variable brings up another menu. Selecting Open With --
Observation Viewer will open the Observational Context for this observation. The structure
of the Observation Context was explained in Section 2.1 and he we shall look at the data inside the
Observational Context. We start with the final Product of the SPIRE Large Map pipeline - the image
maps. The maps are Level 2 Products and can therefore be found within the Level 2 Context. The maps
can be simply acccesed by clicking on the level2 folder as shown in Figure 2.8, which reveals a SPIRE
Photometer Map Product (or more technically SimpleImage Products) for each of the three SPIRE
arrays (PSW, PMW, PLW). Each Photometer Map Product contains 3 Table Datasets corresponding
to the image, error and coverage maps for each array and these are revelaed by clicking on the + sign
next to the array folder.

The image map can be viewed by clicking on the appropriate array folder (PSW, PMW, PLW) or
alternatively the image map can be displayed in a new window by right clicking on the appropriate
array folder and selecting Open With - Standard Image Viewer from the drop down menu
as shown in Figure 2.9. This action opens the image in the Image Viewer where the image can
be panned, magnified etc. Colours, cut-levels, annotation options can be accessed by right-clicking
anywhere on the image. The image, error and coverage maps can also be displayed individually by
clicking on them or by right-clicking on the appropriate dataset and selecting Open With - Image
Viewer for ArrayDatasets from the drop down menu. Finally, right-clicking on a given
image dataset and selecting Open With - Array Dataset Viewer from the drop down menu
shows the image (or error or coverage) in table form (Jy/beam for every pixel in the image) as shown
in Figure 2.10.

If you want to extract the SimpleImage for the PSW, PMW or PLW array as a data cube containing
the image, error and coverage maps to work with, rather than view it with the Image Viewer, on
the command line type the rather exhaustive:

MyMapProduct=MyObsContext.refs["level2"].product.refs["PSW"].product
Then to view each of the map datasets
Display(MyMapProduct.image)
Display(MyMapProduct.error)
Display(MyMapProduct.coverage)

where MyMapProduct can be any name we choose and the following syntax means from MyOb-
sContext we want the Level 2 product PSW array Photometer Map Product. You will also notice
that MyMapProduct now appears in the Variables Panel which can correspondingly be right-clicked
on to show the various viewing options available for this product. The next 3 lines in the above script
allow us to display the signal, error and coverage maps respectively.

Looking at your data

11

Figure 2.7. Loading and viewing the Observation Context for the Large Map Observation.

Figure 2.8. Accessing the final Level 2 Product maps

Looking at your data

12

Figure 2.9. Viewing the Level 2 Image Maps

Figure 2.10. Viewing the Level 2 Image Array Datasets

2.2.2. Saving a map as a FITS file and reading it in
again

It is possible that me may also want to look at our image maps in external applications such as DS9
for example and HIPE provides the tools for exporting our maps as conventional fits files. Following
on from the previous example above we can send our MyMapProduct(SimpleImage) product to
a FITS file by right-clicking on it in the variable list and selecting Send To - FITS file from the
drop down menu. This will open the FITS writer panel as shown in Figure 2.11 where we can type
in our desired filename and path. Click on Accept at the bottom of the panel to save the FITS file.
This fits file will then be saved as a multi-extension fits file containing the image, error and coverage
maps that can then be read into DS9 as a data cube and viewed. The same effect can be acheived on
the command line by;

FitsArchive().save('mypath/myMap.fits', MyMapProduct)

Looking at your data

13

which again saves the products as a multi-extension fits file containing the image, error and coverage
maps.

Figure 2.11. Exporting Image Maps as FITS files

Reading a FITS file into the HIPE session can be accomplished by either selecting Open File from
the File menu in the top right hand corner of the HIPE window. Alternatively, from the command
line;

myMap=simpleFitsReader('mypath/myMap.fits')

These FITS files are imported as a simpleImage and can be manipulated in the same manner as
the simpleImage products described earlier in this section.

Note

The Photometer Map Products (data cubes for each array containing the im-
age, error and coverage arrays) actually exist as fits files within the Pool
for this observation in the Local Store. These can be found in the Pool for
this example in the folder /localstore/OD117-ScanNGC5315-0x50001833/
herschel.ia.dataset.image.SimpleImage (where the poolname is "OD117-
ScanNGC5315-0x50001833"). The Photometer Map Products have the form
hspireplw..........pmp.fits

2.2.3. Looking at the Level 1 Timeline Data

The image maps have been created from the individual timelines of detectors as they were scanned
accross the target. These timelines are the Level 1 products from the Photometer Large Map Pipeline
and are also available from the Observation Context. The Level 1 Large Map products are referred to
as Photometer Scan Products. In Figure 2.12 we show how the Level 1 products can be accessed
from the observational context. Note that within the Level 1 Context there are a total of 12 Products
labelled from 0 to 12. These are all Photometer Scan Products. As noted earlier the map of NGC5315
was constructed by scanning the photometer arrays 3 times in each orthoganal direction twice making
a total of 12 scan lines in total. Although the numbering system seems anonymous, the actual name of
the Building Block can still be revealed by checking the Meta Data bbTypeName in the Photometer
Scan Product (i.e. click on one of the folders numbered 1-12). The column names give the time, and
then the signal for each detector on the arrays (not the first entry PSWR1, actually a resistor, measured

Looking at your data

14

in Volts and the following bolometers measured in Jy and a thermistor (PSWT1) again measured in
volts, etc.).

Each Photometer Scan Product contains 5 individual Table Datasets (and a Product containing the
processing history) as shown in Figure 2.12 and defined below;

• Signal Table: A table containing the Sample Time (in seconds) and a column for the signal from
every bolometer including both detector (in Jy/beam) and non-detector (e.g. thermistor, resistor in
Volts) channels

• Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

• RA Table: A table containing the Sample Time (in seconds) and a column for the RA on the sky
in degrees for each detector (not including non-detector channels)

• Dec Table: A table containing the Sample Time (in seconds) and a column for the Dec on the sky
in degrees for each detector (not including non-detector channels)

• Temperature Table: A table containing the Sample Time (in seconds) and a column for each
Thermistor channel temperature (measured in Kelvin)

These individual Table Datasets correspond to data from a single scan line and can be viewed either
as - by right-clicking - array tables (by selecting Open With - Data Set Viewer) or plotted
(by selecting Open With - Table Plotter). Although the use of Table Plotter is beyond
the scope of this document, an example is shown in Figure 2.13 where we have selected to plot the
Sample Time against the Signal from the PSW D16 bolometer for this particular scan line.

Figure 2.12. Viewing the Level 1 Photometer Scan Products

Looking at your data

15

Figure 2.13. Plotting Level 1 Photometer Scan Product Timeline Data

Individual Table Data Sets can also be extracted from the Observational Context using the alternative
command line script. Using Figure 2.13 as a guide we can see the following;

Extract the Photometer Scan Product for the first Scan Line
ScanLine1=MyObsContext.refs["level1"].product.refs[0].product
or extract the Photometer Scan Product for the second Scan Line
ScanLine2=MyObsContext.refs["level1"].product.refs[1].product
#
Get the Signal Table from the first Scan Line
SignalScanLine1=ScanLine1['signal']
Get the array of values for the Sample Time
TimeScanLine1=SignalScanLine1['sampleTime'].data
Get the array of values for the PSW D16 Detector
PSWD16ScanLine1=SignalScanLine1['PSWD16'].data
print PSWD16ScanLine1

where ScanLine1, etc can be any name we choose and the following syntax means from MyOb-
sContext we want the Level 1 product Photometer Scan Product for the first scan line (i.e. element
[0]). You will also notice that ScanLine1 now appears in the Variables Panel which can correspond-
ingly be right-clicked on to show the various viewing options available for this product. The follow-
ing lines show the procedure for extracting the second scan line (i.e. array element [1]) and go on to
extract, for the first scan line the Signal Table Dataset. Finally the sampleTime and detector signal
for the PSWD16 detector are extarcted as normal arrays of numbers. The final list of variables in the
HIPE Variable Pane is shown in Figure 2.14.

Looking at your data

16

Figure 2.14. Plotting Level 1 Photometer Scan Product Timeline Data variable list

2.2.4. Looking at the Level 0.5 Timeline Data
These timeline data have been created by processing the raw Level 0 data through the Common Engi-
neering Conversion (Level 0 - Level 0.5) Pipeline. The Level 0.5 data are the uncalibrated, uncorrected
timelines measured in Volts. The level 0.5 products are also available from the Observation Context.
The Level 0.5 context folder can be seen in the Observation Context and can be opened by clicking on
the + next to the level0_5 folder. The Level 0.5 context contains a lot more data than the Level 1
context and includes all the data necessary to process the observation and produce science quality data.
In Figure 2.15 we show all the Level 0.5 data within the observation context. We see that there are a
total of 31 entries in the list informatively labelled from 0 to 30 (Note that PCAL calibration flashes
are no longer nade at the beginning of the observation since Operational Day OD302 for Large Map
mode and OD341 for Parallel mode). This can be compared to a total of 12 entries that we saw for the
Level 1 products. The Level 0.5 context contains all the building blocks used in the observation and
in Figure 2.15 we show how this Large-Map observation was built up from the individual building
blocks. In the figure, the building blocks can be divided into roughly 4 general types, configuration
blocks, calibration blocks, science blocks and movement blocks. The type of building block can be
revealed by clicking on a given number from 0-30 and scrolling down the Meta data window pane
to the BBtypeName entry. The individual blocks are described below in Table 2.2;

Table 2.2. Description of the Building Blocks in a Large Map Level 0.5 Context

BB number BB Type BB Hex
prefix

Description

0 SpireBbObsConfig 0xAF01 Initial configuration

1 SpireBbPhotSerendipity 0xA104 Slew to target

2 SpireBbPOF5Config 0xA050 AOT configuration

3 SpireBbPOF5Init 0xA051 Initialize the AOT

4 SpireBbPcalFlash 0xA801 Photometer Calibration Lamp Flash

5 SpireBbScanLine 0xA103 A large map scan line

6 SpireBbMove 0xAF00 Scan Line turnaround movement

7 SpireBbScanLine 0xA103 A large map scan line

8 SpireBbMove 0xAF00 Scan Line turnaround movement

.. SpireBbScanLine 0xA103 A large map scan line

.. SpireBbMove 0xAF00 Scan Line turnaround movement

Looking at your data

17

BB number BB Type BB Hex
prefix

Description

..

27 SpireBbScanLine 0xA103 A large map scan line

28 SpireBbMove 0xAF00 Scan Line turnaround movement

29 SpireBbPcalFlash 0xA801 Photometer Calibration Lamp Flash

29 SpireBbPOF5End 0xA052 End of AOT

Figure 2.15. Anatomy of Level 0.5 Building Block structure for a Large Map observation

Looking at some of the individual entries in the Level 0.5 context, it can be seen that the individual
Building Blocks are built up from a variety of different types of Products. clicking on the + sign for
a given Building Block number reveals what Products a particular Building Block is made from. In
Figure 2.16 the first handful of building blocks for our observation are opened to view the contents.
The contents are a variety of Products referred to by ancronyms such as CHKT, NHKT, PDT, POT,
SCUT, etc, described in order of importance below;

Example building blocks may be;

• PDT: The Photometer Detector Timeline contains the Level 0.5 detector data.

• NHKT: The Nominal House Keeping Timeline contains the housekeeping data with all the settings
for this observation.

Looking at your data

18

• CHKT: The Critical House Keeping Timeline contains all the critical parameters of the instrument
such as the electronics.

• SCUT: The Sub Control Unit Timeline contains monitoring data for the instrument operation for
this observation.

• POT: The Photometer Offset Timeline contains all the raw DC offsets in ADU that have already
been used in the raw data processing to set the dynamic range of the detectors.

Note that Building blocks such as the Slewing (serendipity Building Block), Calibration flash and the
scan line turnarounds all contain PDT data. Indeed, the scan line turnaround Building Block data IS
used for scientific processing. The CHKT, NHKT, POT, SCUT Products all contain a signal table,
containg data arrays and a Mask table containing flag information. The Level 0.5 PDT Photometer
Detector Timeline Products contain 4 Table dataset arrays;

• Voltage Table: A table containing the Sample Time (in seconds) and a column for the signal mea-
sured in Volts for every bolometer including both detector and non-detector (e.g. thermistor, resis-
tor) channels.

• Resistance Table: A table containing the Sample Time (in seconds) and a column for the Resistance
measured in Ohms for every bolometer including both detector and non-detector (e.g. thermistor,
resistor) channels.

• Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

• Temperature Table: A table containing the Sample Time (in seconds) and the temperature of the
6 Thermistors (2 per array) in Kelvin.

• Quality Table: A table containing any Quality Flags raised for each detector.

In Figure 2.16 the PDT for the first Scan Line Building Block has been selected. Right-clicking and
selecting Open-with - Dataset Viewer, opens the voltage table in a new window. Any of
the Table Data Sets can also be viewed graphically by selecting Open-with - Table Plotter
as shown in Figure 2.17. In the plot window the bolometer signal to plot can be selected from the
Y-axis menu and many bolometers can be overlayed by ticking the overlay box (both circled in
the plot window).

Looking at your data

19

Figure 2.16. Inside the Level 0.5 Building Block structure for a Large Map observation

Figure 2.17. Plotting the Level 0.5 data for a Large Map observation

2.2.5. Looking at the Raw Level 0 Data

The Raw data formatted from the satellite telemetry is also available within the Observation Context.
These are the Level 0 Products and will in most circumstances be of no general interest. The Level
0 Context, shown in Figure 2.18, contains 30 entries. Note that there is a significant difference in
the Level 0 data structure compared to the Level 0.5 Products. In the Level 0.5 Products, each indi-
vidual block in the observation has several data types (e.g. Scan line, Housekeeping data, etc - see
Table 2.2). However, in order to reduce the raw data volume at the Level 0 stage, all the data types
are concatonated into a single Level 0 product, referred to as a Raw SPIRE Timeline (RST) for each

Looking at your data

20

building block, i.e. A single Level 0 product contains many seperate Table datasets. Clicking on a
given number within the Level 0 context reveals the Level 0 Product for that particular building block.
These products are the raw data versions of the Level 0.5 data and contain Table Datasets such as the
Critical House Keeping timelines (CHK), Nominal House Keeping timelines (NHK), Raw Photome-
ter Detector timelines (PHOTF), Raw Photometer Offset timelines (PHOTOFF) and Sub-Control Unit
timelines (SCUNOMINAL). The Raw Photometer Detector Timeline (PHOTF) Table Dataset can be
viewed by right-clicking and selecting Open-with - Dataset Viewer, see Figure 2.18), we find
quite a different structure to the Level 0.5 PDT datasets. There are 288 columns, one for every SPIRE
channel, numbered not in the familiar PSWE8, PSWE9 notation but rather as as PHOTFARRAY001
-- PHOTFARRAY288 which corresponds to their Channel Number (from an electrical designation).
The signal is still in raw ADU and there are many different time columns which correspond to various
measures of the data frames, telemetry packets and packet sequence counts, etc. The only flags are
contained in the PHOTFADCFLAGS column which is set in the case of a problem with ADC process
in telemetry. A full description of the data structure can be found in the Products Definition Docu-
ment (HERSCHEL-HSC-DOC-0959) or the SPIRE Pipeline Description Document (SPIRE-RAL-
DOC-002437).

Figure 2.18. The Level 0 Raw Data within the Observation Context

__

2.3. SPIRE Small Map Mode Data Structure

2.3.1. A first look at your image maps (The Level 2 Da-
ta Product)

All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the data for a SPIRE Small Map
observation, however this description applies equally to SPIRE Large Map and Parallel Mode ob-
servations. The Small Map mode operation is basically identical to the nominal Large Map Mode
except that instead of a nominal 2x2 scan leg covergae of optional scan leg length, the Small Map

Looking at your data

21

mode consists of a pair of orthoganl scans (i.e. a 1x1 scan, See Figure 2.19). For a given observation
the area covered by both scan legs defines a central square of side 5 arcmins although the length of
the two orthogonal scan paths are somewhat longer than this. In practice, due to the position of the
arrays on the sky at the time of a given observation, the guaranteed area for scientific use is a circle
of diameter 5 arcmins.

Figure 2.19. The format of a Small Map observation.

The observation we shall be looking at is a Small Map observation of a standard SPIRE calibration star
Gamma Draconis taking during the Herschel-SPIRE routine calibration phase. Gamma Draconis is at
RA=17h56m36.37s, dec=51d29'20.00'' and was covered by scanning the photometer arrays once each
in orthoganal directions. The entire process was then repeated a total of 4 times (i.e. this observation
has 4 repetitions) giving in total 6 scans in each orthoganal direction making 12 scan lines in total.

It is assumed that the observation has already been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = -'OD358-SmallScanMapGammDra0x5000489F' # Select the pool name
storage=ProductStorage(Pool) # Register the pool
queryResults = storage.select(Query("type=='OBS'")) # Query the pool
MyObsContext = queryResults[0].product # Extract the Context

For this particular observation, we chose to call our Pool OD358-
SmallScanMapGammDra0x5000489F where OD358 means the observation was made on Opera-
tional Day 358, SmallScanMap was the AOT mode, GammDra was the target name and 0x5000489F
is the unique Observation ID in hexadecimal. Running the above script, reads the Observation Context
into memory into the variable MyObsContext which appears in the Variables pane of HIPE (See
Figure 2.20). Right Clicking (or CTRL-click for Apple Users) on the MyObsContext variable brings
up another menu. Selecting Open With -- Observation Viewer will open the Observational
Context for this observation. The structure of the Observation Context was explained in Section 2.1
and he we shall look at the data inside the Observational Context. We start with the final Product of

Looking at your data

22

the SPIRE Large Map pipeline - the image maps. The maps are Level 2 Products and can therefore
be found within the Level 2 Context. The maps can be simply acccesed by clicking on the level2
folder as shown in Figure 2.21, which reveals a SPIRE Photometer Map Product (or more technically
SimpleImage Products) for each of the three SPIRE arrays (PSW, PMW, PLW). Each Photometer
Map Product contains 3 Table Datasets corresponding to the image, error and coverage maps for each
array and these are revelaed by clicking on the + sign next to the array folder.

The image map can be viewed by clicking on the appropriate array folder (PSW, PMW, PLW) or
alternatively the image map can be displayed in a new window by right clicking on the appropriate
array folder and selecting Open With - Standard Image Viewer from the drop down menu
as shown in Figure 2.22. This action opens the image in the Image Viewer where the image can
be panned, magnified etc. Colours, cut-levels, annotation options can be accessed by right-clicking
anywhere on the image. The image, error and coverage maps can also be displayed individually by
clicking on them or by right-clicking on the appropriate dataset and selecting Open With - Image
Viewer for ArrayDatasets from the drop down menu. Finally, right-clicking on a given
image dataset and selecting Open With - Array Dataset Viewer from the drop down menu
shows the image (or error or coverage) in table form (Jy/beam for every pixel in the image) as shown
in Figure 2.23.

If you want to extract the SimpleImage for the PSW, PMW or PLW array as a data cube containing
the image, error and coverage maps to work with, rather than view it with the Image Viewer, on
the command line type the rather exhaustive:

MyMapProduct=MyObsContext.refs["level2"].product.refs["PSW"].product
Then to view each of the map datasets
Display(MyMapProduct.image)
Display(MyMapProduct.error)
Display(MyMapProduct.coverage)

where MyMapProduct can be any name we choose and the following syntax means from MyOb-
sContext we want the Level 2 product PSW array Photometer Map Product. You will also notice
that MyMapProduct now appears in the Variables Panel which can correspondingly be right-clicked
on to show the various viewing options available for this product. The next 3 lines in the above script
allow us to display the signal, error and coverage maps respectively. The result is shown in Figure 2.24.

Figure 2.20. Loading and viewing the Observation Context for the Small Map Observation.

Looking at your data

23

Figure 2.21. Accessing the final Level 2 Product maps

Figure 2.22. Viewing the Level 2 Image Maps

Looking at your data

24

Figure 2.23. Viewing the Level 2 Image Array Datasets

Figure 2.24. Viewing the image cube for signal, error and coverage maps

2.3.2. Saving a map as a FITS file and reading it in
again

It is possible that me may also want to look at our image maps in external applications such as DS9
for example and HIPE provides the tools for exporting our maps as conventional fits files. Writing
data out as FITS files and reading FITS files in is identical to the method described in the Large Map
Section 2.2.2.

Note

The Photometer Map Products (data cubes for each array containing the image, er-
ror and coverage arrays) actually exist as fits files within the Pool for this ob-
servation in the Local Store. These can be found in the Pool for this exam-
ple in the folder /localstore/OD358-SmallScanMapGammDra0x5000489F/
herschel.ia.dataset.image.SimpleImage (where the poolname is "OD358-
SmallScanMapGammDra0x5000489F"). The Photometer Map Products have the form
hspireplw..........pmp.fits

Looking at your data

25

2.3.3. Looking at the Level 1 Timeline Data
The image maps have been created from the individual timelines of detectors as they were scanned
accross the target. These timelines are the Level 1 products from the Photometer Small Map Pipeline
and are also available from the Observation Context. The Level 1 Small Map products are referred to
as Photometer Scan Products and are exactly the same format as the Level 1 Large Map products
described in Section 2.2.3. In Figure 2.25 we show how the Level 1 products can be accessed from
the observational context. Note that within the Level 1 Context there are a total of 8 Products labelled
from 0 to 8. These are all Photometer Scan Products. As noted earlier this map of Gamma Draconis
was constructed by scanning the photometer arrays 4 times in each orthoganal direction once making
a total of 8 scan lines in total. Although the numbering system seems anonymous, the actual name of
the Building Block can still be revealed by checking the Meta Data bbTypeName in the Photometer
Scan Product i.e. pull down the meta data information (circled in red in Figure 2.25) and then click
on one of the folders numbered 1-8 in the context. The Figure shows the signal table for one scan
line. The column names give the time, and then the signal for each detector on the arrays (not the first
entry PSWR1, actually a resistor, measured in Volts and the following bolometers measured in Jy and
a thermistor (PSWT1) again measured in volts, etc.).

Since the Small Map and Large Map modes are essentially the same, the further detailed structure of
the Small Map Level 1 Product is described in the Large Map Section 2.2.3.

Figure 2.25. Viewing the Level 1 Photometer Scan Products for the Small Map mode

2.3.4. Looking at the Level 0.5 Timeline Data
The Level 2 maps and the Level 1 timeline products represent the output from the Small Map pipeline.
These timeline data were created from the lower Level 0.5 data products (which were correspondingly
created from processing the raw Level 0 data through the Common Engineering Conversion (Level
0 - Level 0.5) Pipeline). The Level 0.5 data are the voltage calibrated, timelines measured in Volts
uncorrected for detector effects. These level 0.5 products are also available from the Observation
Context. The Level 0.5 context folder can be seen in the Observation Context and can be opened by
clicking on the + next to the level0_5 folder. The Level 0.5 context contains a lot more data than
the Level 1 context and includes all the data necessary to process the observation and produce science
quality data. In Figure 2.26 we show all the Level 0.5 data within the observation context. We see that
there are a total of 20 entries in the list informatively labelled from 0 to 20. This can be compared to a
total of 8 entries that we saw for the Level 1 products. The Level 0.5 context contains all the building

Looking at your data

26

blocks used in the observation and in Figure 2.26 we show how this Small-Map observation was built
up from the individual building blocks. In the figure, the building blocks can be divided into roughly
4 general types, configuration blocks, calibration blocks, science blocks and movement blocks. The
type of building block can be revealed by clicking on a given number from 1-20 and scrolling down
the Meta data window pane to the BBtypeName entry. The individual blocks are are the same as
for the Large Map mode and described previously in Table 2.2.

Figure 2.26. Anatomy of Level 0.5 Building Block structure for a Small Map observation

Since the Small Map and Large Map modes are essentially the same, the further detailed structure of
the Small Map Level 0.5 Products is described in the Large Map Section 2.2.4.

2.3.5. Looking at the Raw Level 0 Data

The Raw data formatted from the satellite telemetry is also available within the Observation Context.
These are the Level 0 products and will in most circumstances be of no general interest. Since the
Small Map and Large Map modes are essentially the same, the further detailed structure of the Small
Map Level 0 Products is described in the Large Map Section 2.2.5.

__

Looking at your data

27

2.4. SPIRE Point Source Mode Data Structure

2.4.1. The Point Source Observation Mode
All the information for a given SPIRE observation is contained with the Observation Context (de-
scribed in Section 2.1). In this section we shall see how to examine the data for a SPIRE Point Source
observation. A point source observation carries out a staring observation of a point source. In order to
recover the source successfully a 7-point hexagonal jiggle pattern is made around the source position.
Sky backgrounds are removed by chopping using the Beam Steering Mirror (BSM) over a distance
of plus/minus 63 arc sec and any emission due to the telescope structure is removed by nodding the
entire telescope and repeating the chop=jiggle cycle.

The observation we shall be looking at is a Point Source observation of the Planetary Nebu-
lae NGC5315 taking during the Herschel-SPIRE PV phase. NGC5315 is at RA=13h53m57.00s,
dec=-66d30'50.70'' and was covered by making 2 repetitions of the Point Source Mode which involves
makes a pair of chopped and nod cycles at each of the 7 jiggle positions in the pattern.

It is assumed that the observation has already been downloaded into a Pool within your Local Store
on your computer as described in section Section 2.1. The Observation Pool can be loaded into HIPE
using the following 4 lines of Jython Code (where the Pool is whatever name you called your Pool
for this observation in your Local Store on disk;

Pool = -'OD117-7ptNGC5315-0x50001832' # Select the pool name
storage=ProductStorage(Pool) # Register the pool
queryResults = storage.select(Query("type=='OBS'")) # Query the pool
MyObsContext = queryResults[0].product # Extract the Context

For this particular observation, we chose to call our Pool OD117-7ptNGC5315-0x50001832 where
OD117 means the observation was made on Operational Day 117, 7pt was the AOT mode, NGC5315
was the target name and 0x50001832 is the unique Observation ID in hexadecimal. Running the above
script, reads the Observation Context into memory into the variable MyObsContext which appears
in the Variables pane of HIPE (See Figure 2.27). Right Clicking (or CTRL-click for Apple Users)
on the MyObsContext variable brings up another menu. Selecting Open With -- Observation
Viewer will open the Observational Context for this observation. The structure of the Observation
Context was explained in Section 2.1 and he we shall look at the data inside the Observational Context.
We start with the final Product of the SPIRE Point Source pipeline - The Jiggled Photometer Product
(JPP). The JPP is a Level 2 Product and can therefore be found within the Level 2 Context. The JPP
can be simply acccesed by clicking on the level2 folder as shown in Figure 2.28, which reveals a
SPIRE Jiggled Photometer Product. Right-clicking on the JPP and selecting Open With - Array
Dataset Viewer from the drop down menu shows the data in table form as shown in Figure 2.28.
The JPP contains a Table Dataset with a row for each array with the following information;

• Array Name: A column listing each array PSW, PMW, PLW.

• RA: A column listing the final fitted Right Ascension for each array to the detected source within
the 7-point Jiggle pattern for the target detector in decimal degrees

• RA Error: A column listing the errors on the Right Ascension for each array

• Dec: A column listing the final fitted Declination for each array to the detected source within the
7-point Jiggle pattern for the target detector in decimal degrees

• Dec Error: A column listing the errors on the Declination for each array

• Signal: A column listing the Gaussian fitted signal for the target detector for each array to the
detected source within the 7-point Jiggle pattern in Jy (in beam flux)

Looking at your data

28

• Error: A column listing the error on the fitted signalfor each array

Figure 2.27. Loading and viewing the Observation Context for the Photometer Point Source Observation.

Figure 2.28. Accessing the final Level 2 Product Jiggled Photometer Product

2.4.2. Reading the JPP into memory and saving it as a
FITS file and reading it in again

It is possible that me may also want to export our data and HIPE provides the tools for exporting
data products as conventional fits files. The Level 2 JPP can be read into memory with the following
admittadly long-winded command from the command line;

read entire Product
myJPP=MyObsContext.refs["level2"].product.refs["JPP"].product
#
read the RA data array
myRa=myJPP["outputDataset"]["ra"].data
print myRa
read the RA for PSW array
myRaPSW=myJPP["outputDataset"]["ra"].data[0]
print myRaPSW

This creates a new entry myJPP in the Variables Pane of HIPE which can correspondingly be right-
clicked on to show the various viewing options available for this product. The next 4 lines in the above
script allow us to read in and print out the data for the Right Ascension for all arrays and for just the

Looking at your data

29

PSW array (creating entries for myRa and myRaPSW in the variable pane). The JPP Level 2 Product
can be saved as a FITS file by the following command line entry;

FitsArchive().save('mypath/myJPP.fits', myJPP)

where mypath is the desired path. Alternatively the product can be sent to a FITS file by right-clicking
on it in the variable list and selecting Send To - FITS file from the drop down menu. This will
open the FITS writer panel as shown in Figure 2.29 where we can type in our desired filename and
path. Click on Accept at the bottom of the panel to save the FITS file.

Figure 2.29. Exporting the JPP as a FITS file

Reading a FITS file into the HIPE session can be accomplished by either selecting Open File from
the File menu in the top right hand corner of the HIPE window. Alternatively, from the command
line;

myJPP=simpleFitsReader('mypath/myJPP.fits')

These FITS files are imported as an JPP Product dataset and can be manipulated in the same
manner as described earlier throughout this section.

Note

The JPP actually exist as a fits file within the Pool for this obser-
vation in the Local Store. These can be found in the Pool for this
example in the folder /localstore/OD117-7ptNGC5315-0x50001832/
herschel.spire.ia.dataset.JiggPhotProduct (where the pool-
name is "OD117-7ptNGC5315-0x50001832"). The JPP will have the
hspirephotometer........jpp.fits

2.4.3. Looking at the Level 1 Data for Point Source Ob-
servations

The final Level 2 Jiggle Photometer Product has been created from a Gaussian fit to the 7-point jiggle
pattern of a target bolometer. The information on the individual jiggle positions for all bolometers is
contained within the Level 1 Product and are also available from the Observation Context. The Level
1 Point Source mode product is referred to as the Averaged Pointed Photometer Product (APPP).
In Figure 2.30 we show how the Level 1 product can be accessed from the observational context. The

Looking at your data

30

APPP holds information for each of the 7 jiggle positions for all bolometers after the signal has been
demodulated (chopped) and de-nodded.

Each Averaged Pointed Photometer Product contains 7 individual Table Datasets (and a Product con-
taining the processing history) as shown in Figure 2.30 and defined below;

• Signal Table: A table containing a column for the Jiggle ID (1-7 position) and a column for the
signal from every detector channel (in Jy/beam)

• Error Table: A table containing a column for the signal error from every detector channel (in Jy/
beam)

• Dec Table: A table containing a column for the declination on the sky in degrees for every detector
channel

• Dec Error Table: A table containing a column for the errors in declination on the sky in degrees
for every detector channel

• RA Table: A table containing a column for the right ascension on the sky in degrees for every
detector channel

• RA Error Table: A table containing a column for the errors in right ascension on the sky in degrees
for every detector channel

• Mask Table: A table containing the mask value for every detector channel corresponding to which
processing flags have been raised. The masks are defined in the SPIRE Pipeline User Guide doc-
ument

The APPP be viewed either - by right-clicking - array tables (by selecting Open With - Data Set
Viewer) or plotted (by selecting Open With - Table Plotter). Although the use of Table
Plotter is beyond the scope of this document, an example is shown in Figure 2.31 where we have
selected to plot the Jiggle ID against the Signal from the PSW E10 bolometer for the APPP.

Figure 2.30. Viewing the Level 1 Averaged Pointed Photometer Product

Looking at your data

31

Figure 2.31. Plotting Level 1 APPP Data Product

2.4.4. Looking at the Level 0.5 Timeline Data for Point
Source Observations

The Level 2 JPP and the Level 1 APPP products represent the output from the Point Source pipeline.
These data products were created from the lower Level 0.5 data products (which were correspondingly
created from processing the raw Level 0 data through the Common Engineering Conversion (Level
0 - Level 0.5) Pipeline). The Level 0.5 data are the voltage calibrated, timelines measured in Volts
uncorrected for detector effects. These level 0.5 products are also available from the Observation
Context. The Level 0.5 context folder can be seen in the Observation Context and can be opened by
clicking on the + next to the level0_5 folder. The Level 0.5 context contains a lot more data than
the Level 1 context and includes all the data necessary to process the observation and produce science
quality data. In Figure 2.32 we show all the Level 0.5 data within the observation context (Note that
since Operational Day OD302 PCAL calibration flashes are no longer nade at the beginning of the
observation). We see that there are a total of 23 entries in the list informatively labelled from 0 to 22.
This can be compared to the single final product that we saw for the Level 1 data. The Level 0.5 context
contains all the building blocks used in the observation and in Figure 2.32 we show how this Point
Source observation was built up from the individual building blocks. In the figure, the building blocks
can be divided into roughly 4 general types, configuration blocks, calibration blocks, science blocks
and movement blocks. The type of building block can be revealed by clicking on a given number from
0-22 and scrolling down the Meta data window pane to the BBtypeName entry. The individual
blocks are described below in Table 2.3. This observation involves two repetitions of the Point Source
Mode. A single science building block consists an operation at a given Nod position (denoted A or B)
and moving to the first jiggle position on the 7-point pattern, chopping 8 times on/off source, moving
to the second position, until all 7 positions have been visited (plus one more at the centre). This
operation is then repeated at the next nod positin (position B), repeated at B and then once more at nod
position A. One repetiotion thus corresponds to a single ABBA nod cycle, therefore this observation
will consist of 2 ABBA cycles.

Looking at your data

32

Figure 2.32. Anatomy of Level 0.5 Building Block structure for a Point Source observation

Table 2.3. Description of the Building Blocks in a Point Source Mode Level 0.5 Context

BB number BB Type BB Hex
prefix

Description

0 SpireBb_StartObsAll 0xB6C8 Begin Observation

1 SpireBbPOF2Config 0xA020 Initial configuration of the Point Source AOT

2 SpireBbPOF2Init 0xA021 Initialize the Point Source AOT

3 SpireBbPcalFlash 0xA801 Photometer Calibration Lamp Flash

4 SpireBbJiggle 0xA321 Carry out chopped motion around 7-point jig-
gle pattern at first nod position

5 SpireBbMove 0xAF00 Movment of Nod position (position A to B)

6 SpireBbJiggle 0xA321 Carry out chopped motion around 7-point jig-
gle pattern at second nod position

7 SpireBbMove 0xAF00 Movment of Nod position (dwell at position B)

8 SpireBbJiggle 0xA321

Looking at your data

33

BB number BB Type BB Hex
prefix

Description

Carry out chopped motion around 7-point jig-
gle pattern at second nod position

9 SpireBbMove 0xAF00 Movment of Nod position (position B to A)

10 SpireBbJiggle 0xA321 Carry out chopped motion around 7-point jig-
gle pattern at first nod position

11 SpireBbMove 0xAF00 Movment of Nod position (dwell at position A)

12 -- 19 Repeat entries 4-11

20 SpireBbPcalFlash 0xA801 Photometer Calibration Lamp Flash

21 SpireBbPOF2End 0xA022 End of AOT

22 SpireBb_EndObsAll 0xB6C7 End Observation

Looking at some of the individual entries in the Level 0.5 context, it can be seen that the individual
Building Blocks are built up from a variety of different types of Products. clicking on the + sign for
a given Building Block number reveals what Products a particular Building Block is made from. In
Figure 2.33 the first handful of building blocks for our observation are opened to view the contents.
The contents are a variety of Products referred to by ancronyms such as CHKT, NHKT, PDT, BSMT,
POT, SCUT, etc, described in order of importance below;

Example building blocks may be;

• PDT: The Photometer Detector Timeline contains the Level 0.5 detector data.

• BSMT: The Beam Steering Mechanism Timeline contains the information of the BSM (chop and
jiggle positions as a function of time).

• NHKT: The Nominal House Keeping Timeline contains the housekeeping data with all the settings
for this observation.

• CHKT: The Critical House Keeping Timeline contains all the critical parameters of the instrument
such as the electronics.

• SCUT: The Sub Control Unit Timeline contains monitoring data for the instrument operation for
this observation.

• POT: The Photometer Offset Timeline contains all the raw DC offsets in ADU that have already
been used in the raw data processing to set the dynamic range of the detectors.

Looking at your data

34

Figure 2.33. Inside the Level 0.5 Building Block structure for a Point Source observation

The CHKT, NHKT, BSMT, POT, SCUT Products all contain a signal table, containg data arrays and
a Mask table containing flag information. The Level 0.5 PDT Photometer Detector Timeline Products
contain 5 Table dataset arrays;

• Voltage Table: A table containing the Sample Time (in seconds) and a column for the signal mea-
sured in Volts for every bolometer including both detector and non-detector (e.g. thermistor, resis-
tor) channels.

• Resistance Table: A table containing the Sample Time (in seconds) and a column for the Resistance
measured in Ohms for every bolometer including both detector and non-detector (e.g. thermistor,
resistor) channels.

• Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

• Quality Table: A table containing any Quality Flags raised for each detector.

• Temperature Table: A table containing the Sample Time (in seconds) and the temperature of the
6 Thermistors (2 per array) in Kelvin.

In Figure 2.33 the PDT for the first Jiggle Building Block has been selected. Right-clicking and
selecting Open-with - Dataset Viewer, opens the voltage table in a new window. Any of
the Table Data Sets can also be viewed graphically by selecting Open-with - Table Plotter
as shown in Figure 2.34. In the plot window the bolometer signal to plot can be selected from the
Y-axis menu (circled in the plot window) and in this example the signal versus sample time for
bolometer PSW E6 has been selected. In the figure, we also plot a marked line selected from the

Looking at your data

35

Display Style box (also circled in the plot window). In Figure 2.34 the on and off chop positions
and the circuit around the 7 jggle positions can be clearly seen.

Figure 2.34. Plotting the Level 0.5 data for a 7-point Jiggle Point Source observation

2.4.5. Looking at the Raw Level 0 Data

The Raw data formatted from the satellite telemetry is also available within the Observation Context.
These are the Level 0 Products and will in most circumstances be of no general interest. The Level
0 Context, shown in Figure 2.35, contains 23 entries. Note that there is a significant difference in
the Level 0 data structure compared to the Level 0.5 Products. In the Level 0.5 Products, each indi-
vidual block in the observation has several data types (e.g. Scan line, Housekeeping data, etc - see
Table 2.3). However, in order to reduce the raw data volume at the Level 0 stage, all the data types
are concatonated into a single Level 0 product, referred to as a Raw SPIRE Timeline (RST) for each
building block, i.e. A single Level 0 product contains many seperate Table datasets. Clicking on a
given number within the Level 0 context reveals the Level 0 Product for that particular building block.
These products are the raw data versions of the Level 0.5 data and contain Table Datasets such as the
Critical House Keeping timelines (CHK), Nominal House Keeping timelines (NHK), Raw Photometer
Detector timelines (PHOTF), Raw BSM timelines (BSNNOMINAL), Raw Photometer Offset timelines
(PHOTOFF) and Sub-Control Unit timelines (SCUNOMINAL). The Raw Photometer Detector Time-
line (PHOTF) Table Dataset can be viewed by right-clicking and selecting Open-with - Dataset
Viewer, see Figure 2.35), we find quite a different structure to the Level 0.5 PDT datasets. There
are 288 columns, one for every SPIRE channel, numbered not in the familiar PSWE8, PSWE9 nota-
tion but rather as as PHOTFARRAY001 -- PHOTFARRAY288 which corresponds to their Channel
Number (from an electrical designation). The signal is still in raw ADU and there are many different
time columns which correspond to various measures of the data frames, telemetry packets and packet
sequence counts, etc. The only flags are contained in the PHOTFADCFLAGS column which is set in
the case of a problem with ADC process in telemetry. A full description of the data structure can be
found in the Products Definition Document (HERSCHEL-HSC-DOC-0959) or the SPIRE Pipeline
Description Document (SPIRE-RAL-DOC-002437).

Looking at your data

36

Figure 2.35. The Level 0 Raw Data within the Observation Context

__

2.5. SPIRE Spectroscopy Data Structure

2.5.1. SPIRE spectrometer introduction

This section is dedicated to familiarizing the reader with the appearance of the data from the SPIRE
spectrometer within HIPE and how to visualize the data.

There are 6 different observing mode combinations for the SPIRE spectrometer (and within each of
these, the spectral resolution could be High, Medium or Low). The corresponding pipeline script for
each of the 6 combinations is shown belowin Figure 2.36:

Figure 2.36. SPIRE spectrometer modes

The Level-1 data products returned by the standard pipeline are the same for all 6 observing combi-
nations. They consist of the raw interferograms (in Volts), and the final spectra for each detector in
the array calibrated assuming uniformly extended emission (in W/m2/Hz/sr). The Level-2 products,
however, depend on whether the observation was “Sparse, Point” or not. For a Sparse-Point observa-
tion, the final product contains the data from the central detector pair calibrated assuming it is a point
source (in Jy). For all other modes, the final product is a gridded spectral cube, calibrated assuming
it is uniformly extended emission (in W/m2/Hz/sr). In all cases, for Level-1 and Level-2 spectra and
spectral cubes, an unapodized and an apodized version is produced. This is summarised in Table 2.4
for the Level 1 products and Table 2.4 for the Level 2 products respectively:

Looking at your data

37

Table 2.4. Description of spectrometer Level-1 products

Pipeline Sampling Pointing Product Units

All All All Interferogram before processing
for every detector

V

All All All Unapodized spectrum for every
detector

W/m2/Hz/sr

All All All Apodized spectrum for every
detector

W/m2/Hz/sr

Table 2.5. Description of spectrometer Level-2 products

Pipeline Sampling Pointing Product Units

SOF1 Sparse Point Single point spectrum for SS-
WD4/SLWC3

Jy

SOF1 Sparse Raster Gridded cube, map pixel
38”/70”

W/m2/Hz/sr

SOF2 Intermediate Point Gridded cube, map pixel
19”/35”

W/m2/Hz/sr

SOF2 Intermediate Raster Gridded cube, map pixel
19”/35”

W/m2/Hz/sr

SOF2 Full Point Gridded cube, map pixel
9.5”/17.5”

W/m2/Hz/sr

SOF2 Full Raster Gridded cube, map pixel
9.5”/17.5”

W/m2/Hz/sr

The calibration for Level-1 spectra is based on observations of the emission from the Herschel tele-
scope (i.e. observations of dark sky), and a model of its emission spectrum. As the telescope emission
completely fills the beam in a uniform way, this gives a calibration that is appropriate for a smooth
uniformly extended source. The units are given as brightness and so a measure of the beam area is
necessary to convert to in-beam flux density.

For sparse-point observations, a conversion is applied to create a Level-2 spectrum calibrated assum-
ing an unresolved point source. This correction takes account of the size of the beam, and also the
difference in coupling efficiency for an extended and a point source. The correction is derived empir-
ically by comparing the “extended” calibration derived from the telescope with a “point” calibration
derived from Uranus, and the standard Herschel Uranus model. The beam size and coupling efficiency
are determined from a combination of this empirical correction, and observations of the SPIRE spec-
trometer beam shape measured on Neptune.

For mapping observations, a spectral cube is created which re-grids the hexagonally packed detector
arrays onto a rectangular grid. The units of the final data cube are W/m2/Hz/sr assuming uniformly
extended emission.

In this example, a fully processed observation context is loaded into HIPE and inspected. Level-1
data products are extracted from the observation context and then visualized. Finally, portions of a
data product are extracted and plotted, giving the user direct access to the data. The data, shown here,
derive from an observation of the galaxy IC342. The observation was made on September 21, 2009,
Herschel's Operational Day 130.

2.5.2. The Spectrometer Observation Context

2.5.2.1. Load an observation context into HIPE

In HIPE, one can access the observation contexts from data pools as follows:

Looking at your data

38

1. Declare a ProductStorage: i.e. the name of the pool:

storage = ProductStorage("name-of-pool")

2. Query for an observation context which is identified by its type being equal to OBS:

results = storage.select(Query("type=='OBS'"))

3. Load the observation into the HIPE session:

observation = results[0].product

The introductory script loads three observation contexts from three separate data pools. Please refer
to the script for the exact syntax. An observation context is a HIPE object which can contain several
data products.

2.5.2.2. Inspect an observation context in HIPE

HIPE provides convenient GUI tools to inspect an observation context. Begin with the observation
context for the low resolution observation (OBSID=0x50001AB8). In the HIPE Variables View, select
lrObservation with a right mouse click and then Open With > Observation Viewer. HIPE will present
the Summary view of the observation, including the image of four spectra, one unapodized and one
apodized, derived from each of the center detectors of the two SPIRE spectrometer detector arrays:
SLWC3 and SSWD4. Clicking the small arrow to the left of Summary in the observation viewer will
hide the observation summary and present the detailed view of the observation context:

Figure 2.37. Viewing the SPIRE observation context

The viewing pane shows the many sub-contexts contained in the observation context in a folder-like
layout.

Next, inspect the level-1 context. In the Data area of the Editor for lrObservation, select level1 with a
right mouse click and select Open With > Context Viewer. Inside the Level 1 context there is one main
entry named “Point_0_Jiggle_0_LR” which stands for the first and only raster point (index 0), the first
and only jiggle position (index 0) at Low Resolution. This is the only building block contained in this
observation. Double-click this building block to see the three entries it contains. Each one represents
a different SPIRE spectrometer level-1 data product:

1. apodized_spectrum: Level 1 Apodized Spectrum Product

2. interferogram: Level 1 Interferogram Product

Looking at your data

39

3. unapodized_spectrum: Level 1 Unapodized Spectrum Product

Figure 2.38. Viewing the SPIRE Level 1 context

2.5.3. The Spectrometer Level 1 Data Products

2.5.3.1. Extract the Level 1 data products

Before inspecting the contents of the level-1 data products, we first extract a selection of these products
as separate variables in HIPE. The syntax required to access a level-1 product within an observation
context is as follows:

Level1Product = observation.refs["level1"].product.
refs[BuildingBlock].product.refs[ProductName].product

For example, the following command will extract the level-1 interferogram product from the high
resolution observation context:

hrInterferogram = hrObservation.refs["level1"].product.
refs["Point_0_Jiggle_0_HR"].product.refs["interferogram"].product

Note that the right hand side of this command is spelled out at the top of the Data area of the Context
Viewer in HIPE. Clicking the copy icon at the top right corner will copy the command string into the
clipboard and can then be pasted into the command console.

2.5.3.2. Inspect the Level 1 data products

HIPE offers dedicated visualization tools to inspect the level-1 interferogram and spectrum products.

The following steps demonstrate how one can inspect the contents of the datasets within a level-1 data
product as tables. In this example, a dataset in the level-1 interferogram product of the high resolution
observation is examined.

1. Select the hrInterferogram variable with right mouse click, select Open With > Product Viewer.

2. Scroll down to the bottom of the newly opened view. Within the folder-like structure, unfold Dataset
0001 by clicking the plus symbol to its left and select SLWC3 with a right mouse click. Select
Open With > Dataset Viewer to view the numeric values of the dataset.

Looking at your data

40

3. These values can be easily written into a text file with comma-separated values with the command
quoted below. The equivalent command will work to save a particular spectrum into a text file:
asciiTableWriter(file="C:/SLWC3Interferogram.txt",
table=hrInterferogram["0001"]["SLWC3"])

asciiTableWriter(file="C:/SLWC3Spectrum.txt",
table=hrSpectrum["0000"]["SLWC3"])

Figure 2.39. Inspecting data from a level-1 product as tables

The following steps demonstrate how one can conveniently plot the contents of the level-1 data prod-
uct. In this example, the interferograms for a given detector in the level-1 interferogram product of
the high resolution observation are examined.

1. In the Variables pane, select the hrInterferogram variable with right mouse click, select Open With
> Spec SDI Explorer. Do the same for mrInterferogram, and lrInterferogram.

2. In the hrInterferogram view, select detector SLWC3 with a left mouse click. In the other views,
select the same detector but do so with a double-click of the left mouse button to over-plot the
interferograms.

Figure 2.40. The SDI Explorer allows to select and plot data from a level-1 interferogram product

Looking at your data

41

2.5.3.3. Extract and plot Level 1 data

The remainder of this chapter shows how to extract and plot interferograms and spectra:

1. Extract the individual data vectors from the product datasets

General syntax:

wave = spectrum[scanNumber][detector].getWave()

flux = spectrum[scanNumber][detector].getFlux()

Specific syntax:

hrWn = hrSpectrum[0]["SLWC3"].getWave()

hrFlux = hrSpectrum[0]["SLWC3"].getFlux()

2. Plot the results.

General syntax:

p = PlotXY()

p.addLayer(LayerXY(x,y))

Specific sample syntax:

detector = "SLWC3"

plotTitle = "Inspect Level 1 Spectra "+detector

p = PlotXY(titleText = plotTitle)

hrLayer = LayerXY(hrWn, hrFlux, name="HR")

p.addLayer(hrLayer)

Using the above examples, the following plots should be displayed:

Looking at your data

42

Figure 2.41. Comparing three interferograms from the SLWC3 detector

Figure 2.42. Comparing three spectra from the SLWC3 detector

Looking at your data

43

2.5.4. Using SpecExplorer

The Spectrometer Detector Explorer, also known as SpecExplorer, is a GUI-based visualization tool
that allows efficient inspection of the contents of the two SPIRE products: Spectrometer Detector
Interferogram (SDI) and Spectrometer Detector Spectrum (SDS). The following sections detail the
features of SpecExplorer.

2.5.4.1. Starting SpecExplorer

SpecExplorer is an application that can be called from the interactive data processing environment
HIPE. At least one instance of one of the classes Spectrometer Detector Interferogram or Spectrometer
Detector Spectrum must already be available in memory. For example, such a product can be loaded
into memory via the Product Access Layer.

In HIPE, identify the product for visualization from the Products list and right-click the Spectrometer
Detector Interferogram or Spectrometer Detector Spectrum product, follow the “Open With” menu
entry and select the SpecExplorer from the drop-down menu (see Figure 2.43).

The SpecExplorer can also be called from the command line. SpecExplorer will visualize any Spec-
trometer Detector Interferogram (SDI) or Spectrometer Detector Spectrum product (SDS). In the HIPE
command line window, we will load a product of the name SDS after entering the following com-
mands:

from herschel.spire.ia.gui import SpecExplorer

SpecExplorer(SDS)

Figure 2.43. Starting the SpecExplorer via HIPE.

2.5.4.2. SpecExplorer Layout

The Graphical User Interface of the SpecExplorer is divided into four sections: The Bolometer De-
tector Arrays Spectrometer Long Wavelength (SLW) on the top to the left, the Spectrometer Short
Wavelength (SSW) on the top to the right. The Control Panel is on the bottom left and the Preferences
Panel is on the bottom right (see the Figure 2.44).

Looking at your data

44

Figure 2.44. SpecExplorer Graphical User Interface.

Bolometer Detector Arrays Display

The top panels of the SpecExplorer contain the display of the two detector arrays (see Figure 2.45).

Figure 2.45. SpecExplorer – Bolometer Detector Arrays Display.

This display allows the user to select any of the detectors of the SPIRE spectrometer: The long wave-
length array on the left and the short wavelength array on the right. The detector layout reflects their
arrangement in a honeycomb pattern. Clicking on one or more of these detectors allows the user to
plot the data said detector recorded.

Control Panel

The Control Panel (see Figure 2.46) allows users to:

• Select a subset of the scans within the data product (Scan Selection).

• Create plots of many datasets on one page (Thumbnails).

• Define the fill colours for the detectors (Colour Scheme Range).

Looking at your data

45

Figure 2.46. SpecExplorer - Control Panel.

Scan Selection

This section of the Control Panel (see Figure 2.47) allows the user to select which scans are plotted:

• The Forward and Reverse buttons allow the plotting of scans based on the direction of those scans.
Since all scans should be either forward or reverse, checking both options will plot all the scans
in one product.

• The Single option allows the user to plot one scan at a time.

• The All Scans option plots all the scans of a given detector in the product.

• Free Text: Users can specify a range of scans to be plotted in a free text field. For example, if the
user wishes to plot scans 1 through 4 and scans 7 and 8, this can be specified as follows in the user
selected scans section: 1-4 7,8. The wildcard * will select all scans.

Figure 2.47. Control Panel - Scan Selection.

Thumbnails

In order to enable the user to compare data from many detectors, the SpecExplorer allows the user to
create numerous plots on a single page. The resulting data plots are small in order to fit all requested
plots on one screen, leading to "thumbnail" images of the data. The result is a single window that
contains a number of thumbnail data plots arranged in the same pattern as that of the detectors in
the Bolometer Detector Array display, a honeycomb pattern. The scaling of the main plot window is
applied to each thumbnail image. If no plot window is currently open, the selection of the Initial Scale
on the Preferences Panel is applied. The Initial Scale is basically the scaling that allows for a focused
view of the plotted data (see Figure 2.50). Three selections are available under the Thumbnail drop-
down menu (see Figure 2.48):

Looking at your data

46

1. SLW to plot data which were recorded by the detectors in the long wavelength detector array. De-
pending on the selection in the Preferences Panel, data are shown only for the nominal or unvi-
gnetted detectors.

2. SSW to plot data which were recorded by the detectors in the short wavelength detector array. De-
pending on the selection in the Preferences Panel, data are shown only for the nominal or unvi-
gnetted detectors.

3. Co-Aligned to plot data which were recorded by the co-aligned detectors in SLW and SSW. De-
pending on the selection in the Preferences Panel, data are shown for all the nominal or only the
unvignetted co-aligned detectors.

Figure 2.48. Control Panel – Thumbnails – Thumbnails Selections.

Colour Scheme Range

This section allows the user to change and control the colour scheme used to determine the colours
used in the honeycomb "images" for the Detectors Display (see Figure 2.49). Two colour schemes are
available which both go from white (high values) to black (low values): Grey Scale and Heat. The
values for the colour scheme are set to the average of the detector data within a user-specified data
range. The range slider, and the indices and values displayed next to it, specify the abscissa range in
the interferograms or spectra which is used to compute the average signal value and subsequently set
the colours. Note that only the abscissa indices, not the values, can be entered by the user.

Figure 2.49. Control Panel - Colour Scheme.

Preferences Panel

This panel (see Figure 2.50) allows the user to :

• Select which detectors are to be displayed in the Bolometer Detector Array Display and the Thumb-
nails.

• Select the initial scale of the plots.

• Customize the title, subtitle, and legend entries for the main plot area.

• Select whether spectral phase is given in units of radians or degrees. Note that the spectral phase

φ(S) is defined as tan φ (S) = Imaginary (S) / Real (S).

• Select the quantity used in the plot when complex data are presented, to either Real or Imaginary,
or Phase, or Absolute. This selection is only available if the product contains complex data with
real and imaginary components.

Looking at your data

47

Figure 2.50. SpecExplorer - Preferences Panel.

The “Nominal detectors only” option allows the user to display only the nominal detectors in the
detector arrays, i.e. those detectors which make sky observations. The “Unvignetted only” option
allows the user to display only the unvignetted detectors in the detector arrays, i.e. those detectors
which have an unvignetted Field of View through the Herschel telescope.

The two selection check boxes for the “Initial scale” allow the user to select whether the initial scale
of a plot reflects the last user choice (“User”) or whether the plot presents the optical passband defined
by the instrument, i.e. 10 – 35 cm-1 for data from SLW and 25 – 55 cm-1 for data from SSW and 10
– 55 cm-1 if data are plotted from detectors from both arrays (“Passband”). The ordinate will scale
with the data for the passband option. If neither box is checked, then the plot will self-scale according
to the data.

The edit buttons allow the user to customize the title, subtitle, and legend of the main plot area. All
descriptors from the data product are available regardless of the level where the metadata reside.

In case the spectral phase is plotted, the “Phase” section allows the user to plot the phase in Radians

from - π / 2 to + π / 2 or in Degrees from -180° to 180°. This selection only applies to the first time
when phase data are plotted. Changing this selection subsequently does not have any effect on the
plot until a new plot is created.

The “Plot Type” section allows the user to specify which aspect of the spectral flux is plotted
where it is given as a complex number. The absolute value of a complex number is given by

.

2.5.4.3. Example 1: Plotting and Overplotting

In order to inspect data from a specific scan and detector from a specific product, perform the following
steps:

1. Start the SpecExplorer for the product in question.

2. In the Scan Selection section of the Control Panel, specify which scan(s) should be plotted, e.g.
all reverse scans.

Looking at your data

48

3. In the Preferences Panel, click the buttons for edit titles, subtitles, and legends to customize these
fields. Fields are populated by the entries in the inspected product and free text can be added by
the user. Default title, subtitle, and legend information are stored and can be retrieved through the
customization window. See Figure 2.51.

4. In the Preferences Panel, select the Initial Scaling needed, e.g. Passband.

5. In the Preferences Panel, select the Plot Type, e.g. the Absolute value of a complex number.

6. In the Detectors Display shown in Figure 2.44, single left mouse click the detector to plot its data,
e.g. SLWD3. A new PlotXY window will open with the SSWD3 detector plotted as shown in
Figure 2.52.

7. For an overplot, double-click with the left mouse button on an additional detector to plot its data,
e.g. SSWC2 (see Figure 2.53). A single click would have created a new plot containing data from
SSWC2 only.

Figure 2.51. Edit Title

Looking at your data

49

Figure 2.52. Single plot of the reverse scans 1 and 3.

Looking at your data

50

Figure 2.53. Overplot of data from two different detectors in two different detector arrays.

2.5.4.4. Example 2: Making a Thumbnail Image

In order to compare data from different detectors on the same page perform the following steps:

1. Start the SpecExplorer for the product in question.

2. In the Scan Selection section of the Control Panel specify which scan(s) should be plotted, e.g.
scan number 1.

3. Open the main plot window by performing the steps in Section 2.5.4.3, select the range to be plotted
on the thumbnail images, e.g. from 25 cm-1 to 40 cm-1.

4. In the Preferences Panel, check whether to get thumbnail images from all, only the nominal, or
only the unvignetted detectors, e.g. “Unvignetted only”.

5. From the Thumbnails drop-down menu on the Control Panel, select to get thumbnail images from
SLW, SSW, or the co-aligned detectors on SLW and SSW (see Figure 2.54).

Looking at your data

51

Figure 2.54. Thumbnail images of the unvignetted SSW detectors in the spectral region selected in the main
plot window.

2.5.5. The Spectrometer Level 0.5 Data Products

The Level 1 data products were created from the lower Level 0.5 data products (which were corre-
spondingly created from processing the raw Level 0 data through the Common Engineering Conver-
sion (Level 0 - Level 0.5) Pipeline). The Level 0.5 data are the voltage calibrated, timelines measured
in Volts uncorrected for detector effects. These level 0.5 products are also available from the Obser-
vation Context. The Level 0.5 context folder can be seen in the Observation Context and can be opened
by clicking on the + next to the level0_5 folder. The Level 0.5 context contains a lot more data
than the Level 1 context and includes all the data necessary to process the observation and produce
science quality data. In Figure 2.55 we show all the Level 0.5 data within the observation context.
We see that there are a total of 15 entries in the list informatively labelled from 0 to 14. This can be
compared to the single final product that we saw for the Level 1 data. The Level 0.5 context contains
all the building blocks used in the observation and in Figure 2.55 we show how this spectrometer
observation was built up from the individual building blocks. In the figure, the building blocks can
be divided into roughly 4 general types, configuration blocks, calibration blocks, science blocks and
movement blocks. The type of building block can be revealed by clicking on a given number from
0-14 and scrolling down the Meta data window pane to the BBtypeName entry. The individual
blocks are described below in Table 2.6.

Looking at your data

52

Figure 2.55. Anatomy of Level 0.5 Building Block structure for a spectrometer observation

Table 2.6. Description of the Building Blocks in a Spectrometer Level 0.5 Context

BB number BB Type BB Hex
prefix

Description

0 SpireBb_StartObsAll 0xB6C8 Begin Observation

1 SpireBbSOF1Config 0xA0B0 Initial configuration of the Spectrometer SOF1
AOT

2 SpireBbSmecInit 0x8213 Initialize the SMEC

3 SpireBbSOF1Init 0xA0B1 Initialize the AOT

4 SpireBbBsmMove 0xA107 Move BSM to position for this set of FTS
scans

5 SpireBbSetBsmSam-
pling

0x8641 Set BSM sampling rate for FTS scanning

6 SpireBbSetSmecSam-
pling

0x8642 Set SMEC sampling rate for FTS scanning

7 SpireBbFtsScan 0xAF00 Science FTS scans

8 SpireBb_BsmMove 0xB6CC Reset BSM position after scanning

Looking at your data

53

BB number BB Type BB Hex
prefix

Description

9 SpireBb_MoveSmec2Home0xB6C2 Move SMEC to home position after scanning

10 SpireBbSetBsmSam-
pling

0x8641 Reset BSM sampling rate after scanning

11 SpireBbSetSmecSam-
pling

0x8642 Reset SMEC sampling rate after scanning

12 SpireBbPcalFlash 0xB6B9 Calibration Lamp Flash

13 SpireBb_MoveSmec 0xB6C3 Move SMEC to rest position

14 SpireBbSOF1End 0xA0B2 End AOT Observation

Looking at some of the individual entries in the Level 0.5 context, it can be seen that the individual
Building Blocks are built up from a variety of different types of Products. clicking on the + sign for
a given Building Block number reveals what Products a particular Building Block is made from. In
Figure 2.56 the first handful of building blocks for our observation are opened to view the contents.
The contents are a variety of Products referred to by ancronyms such as CHKT, NHKT, SDT, BSMT,
SOT, SCUT, etc, described in order of importance below;

Example building blocks may be;

• SDT: The Spectrometer Detector Timeline contains the Level 0.5 detector data.

• BSMT: The Beam Steering Mechanism Timeline contains the information of the BSM.

• SMECT: TheSpectrometer Mechanism Timeline contains the information of the position of the
SMEC (the moving FTS mirror) as a function of time.

• NHKT: The Nominal House Keeping Timeline contains the housekeeping data with all the settings
for this observation.

• CHKT: The Critical House Keeping Timeline contains all the critical parameters of the instrument
such as the electronics.

• SCUT: The Sub Control Unit Timeline contains monitoring data for the instrument operation for
this observation.

• SOT: The Spectrometer Offset Timeline contains all the raw DC offsets in ADU that have already
been used in the raw data processing to set the dynamic range of the detectors.

• MCUET: The Mechanism Control Unit Engineering Timeline contains information on the SMEC
(position sensors etc).

Looking at your data

54

Figure 2.56. Inside the Level 0.5 Building Block structure for a spectrometer observation

The CHKT, NHKT, BSMT, SOT, SCUT Products all contain a signal table, containg data arrays and a
Mask table containing flag information. The Level 0.5 SDT Spectrometer Detector Timeline Products
contain 5 Table dataset arrays;

• Voltage Table: A table containing the Sample Time (in seconds) and a column for the signal mea-
sured in Volts for every bolometer including both detector and non-detector (e.g. thermistor, resis-
tor) channels.

• Resistance Table: A table containing the Sample Time (in seconds) and a column for the Resistance
measured in Ohms for every bolometer including both detector and non-detector (e.g. thermistor,
resistor) channels.

• Mask Table: A table containing the Sample Time (in seconds) and a column for every bolome-
ter including both detector and non-detector (e.g. thermistor, resistor) channels with a mask value
corresponding to which processing flags have been raised. The masks are defined in the SPIRE
Pipeline User Guide document

• Quality Table: A table containing any Quality Flags raised for each detector.

• Temperature Table: A table containing the Sample Time (in seconds) and the temperature of the
Thermistors in Kelvin.

In Figure 2.56 the SDT Building Block has been selected. Right-clicking and selecting Open-with
- Dataset Viewer, opens the voltage table in a new window. Any of the Table Data Sets can
also be viewed graphically by selecting Open-with - Table Plotter as shown in Figure 2.57.
In the plot window the bolometer signal to plot can be selected from the Y-axis menu (circled in
the plot window) and in this example the signal versus sample time for bolometer SSW D4 has been
selected. In the figure, the forward and reverse scans of the SMEC can be seen.

Looking at your data

55

Figure 2.57. Plotting the Level 0.5 data for a Spectrometer observation

2.5.6. Looking at the Raw Level 0 Data

The Raw data formatted from the satellite telemetry is also available within the Observation Context.
These are the Level 0 Products and will in most circumstances be of no general interest. The Level
0 Context, shown in Figure 2.58, contains 15 entries. Note that there is a significant difference in the
Level 0 data structure compared to the Level 0.5 Products. In the Level 0.5 Products, each individual
block in the observation has several data types (e.g. Scan line, Housekeeping data, etc - see Table 2.6
). However, in order to reduce the raw data volume at the Level 0 stage, all the data types are conca-
tonated into a single Level 0 product, referred to as a Raw SPIRE Timeline (RST) for each building
block, i.e. A single Level 0 product contains many seperate Table datasets. Clicking on a given num-
ber within the Level 0 context reveals the Level 0 Product for that particular building block. These
products are the raw data versions of the Level 0.5 data and contain Table Datasets such as the Critical
House Keeping timelines (CHK), Nominal House Keeping timelines (NHK), Raw Spectrometer Detec-
tor timelines (SPECF), Raw SMEC timelines (SMECSELECT), Raw BSM timelines (BSNNOMINAL),
Raw Spectrometer Offset timelines (SPECOFF) and Sub-Control Unit timelines (SCUNOMINAL). The
Raw Spectrometer Detector Timeline (SPECF) Table Dataset can be viewed by right-clicking and
selecting Open-with - Dataset Viewer, see Figure 2.58), we find quite a different structure
to the Level 0.5 SDT datasets. There are 72 columns, one for every SPIRE channel, numbered not
in the familiar SSWD4, SLWC3 notation but rather as as SPECFARRAY001 -- SPECFARRAY072
which corresponds to their Channel Number (from an electrical designation). The signal is still in raw
ADU and there are many different time columns which correspond to various measures of the data
frames, telemetry packets and packet sequence counts, etc. The only flags are contained in the SPEC-
FADCFLAGS column which is set in the case of a problem with ADC process in telemetry. A full de-
scription of the data structure can be found in the Products Definition Document (HERSCHEL-HSC-
DOC-0959) or the SPIRE Pipeline Description Document (SPIRE-RAL-DOC-002437).

Looking at your data

56

Figure 2.58. The Level 0 Raw Data within the Observation Context

__

57

Chapter 3. SPIRE Calibration Data
__

3.1. SPIRE Calibration Explained

3.1.1. The SPIRE Calibration Context
Calibration data is attached to the Observation Context for every observation. This section describes
how to access, understand and update (if necessary) the calibration data. The calibration context which
contains all of the SPIRE calibration products for both Photometer and Spectrometer can be extracted
from the Observation Context as follows (where the observation context has alraedy been read into
a variable called obs):

cal = obs.calibration

The view when this is visualised in the Observation or Context Viewer is shown in Figure 3.1. This
viewer shows that there are two sub-contexts – one for Photometer and one for the Spectrometer, as
well as some products that are common and so listed separately. The individual calibration products
are contained within the “phot” and “spec” calibration contexts.

Figure 3.1. The SPIRE calibration context.

3.1.2. The SPIRE Calibration Tree
The calibration of the SPIRE instrument is likely to be improved throughout the mission and beyond as
we gain better understanding of the instrument performance. The collection of all calibration products
for SPIRE are referred to as the “Calibration Tree”, and as this is updated, the calibration tree number
changes. The version of the calibration tree is contained within the metadata of the calibration context,
for example:

SPIRE Calibration Data

58

print obs.calibration.version
spire_cal_4_0

Calibration trees are often (but not always) related to a particular version of Hipe.

3.1.3. SPIRE Calibration Product Editions
Several calibration products have different contents depending on the conditions of the observation (for
example, the values may change at different times, or may depend on whether “bright” or “nominal”
mode was used, etc.). These are referred to as “editions”. The Calibration Context Viewer lists the
dependency of the editions next to each calibration product, and gives access to all of the different
editions (shown as an example in Figure 3.2).

Figure 3.2. SPIRE calibration editions.

In a script, in simple cases (such as time dependency), the Observation Context can select the correct
edition automatically. In other cases, the variables upon which the product depends must be supplied
to get the correct product from a List. Some examples of accessing individual products in a script from
the phot and spec contexts are: Spectrometer band edges product, which has no dependency,

bandEdge = obs.calibration.spec.bandEdge

Photometer channel mask product (details which detectors are defined as dead, or noisy) – the correct
time dependent edition for this observation is selected automatically,

chanMask = obs.calibration.phot.chanMask

Flux Conversion products are selected automatically for the Photometer (dependency is on whether
nominal or bright mode was used and the observing date), but for the Spectrometer, where the product
also depends on jiggle position, spectral resolution and apodization function, the correct product must
be selected from a List,

photFluxConv = obs.calibration.phot.fluxConv
specFluxConv =
obs.calibration.spec.fluxConvList.getProduct(6, -"HR", -"unapod", -"nominal",
obs.startDate)

SPIRE Calibration Data

59

When the SPIRE calibration products are saved in FITS file format, the naming convention for the indi-
vidual product edition files is derived from “SCal” (for SPIRE Calibration), plus “Phot” or “Spec” (for
Photometer of Spectrometer), the name of the product, the dependencies (if there are any), and the
version number of that particular edition. For example:

SCalPhotBolPar_v3.fits
SCalSpecInterRef_12_CR_nominal_20050222_v1.fits

Time dependency is specified in the file name by the start date at which the edition becomes valid.

3.1.4. Updating a Calibration Tree
When an observation is processed by the HSC and placed into the Herschel Science Archive, it has
the particular calibration tree of the time attached (and used in the automatic pipeline). It is possible
to update this calibration tree that is attached to the observation, either to a more recent version, or
to a previous version (e.g. to determine the effect of an update in calibration products). The latest
calibration tree can be downloaded from the HSA directly from within Hipe, using,

calNew = spireCal(calTree="spire_cal_4_0")

This will pop-up a dialog box asking for user login and password for the HSA. Alternatively, the
calibration tree can be loaded from a .jar file (if you have one) that has been saved on the local disk,

calNew = spireCal(jarFile="spire_cal_4_0.jar")

Once the updated calibration tree has been downloaded, it can be added to the Observation Context
to replace the existing tree using,

obs.calibration.update(calNew)

To save this change, the Observation Context would then need to be written out to a pool on the local
disk.

3.1.5. Updating Individual Calibration Products
The tasks in the pipeline take individual calibration products as input. This means that any individual
calibration product can be supplied directly to the task if an updated test version is available. The
name/filename of calibration product used is recorded in the processing history of the data.

3.1.6. Removing Calibration Products from the Tree
It is possible to remove some calibration products from the Calibration Context if it is taking up
too much disk space. For example, the Spectrometer calibration context is quite large - if only the
Photometer calibration products are needed, the Spectrometer part of the Calibration Context can be
removed using:

obs.calibration.spec.refs.clear()

The modified calibration tree could then be written back to the disk (if desired) as a new pool,

SPIRE Calibration Data

60

poolName = -"spire_cal_4_0_phot"
store = ProductStorage(poolName)
store.save(obs.calibration)

3.1.7. Further Information
Further details of (expert) methods to control or manipulate the calibration tree can be found in the
SPIRE Developer’s Reference Manual API documentation (javadoc) in the entry listed under:

herschel.spire.ia.cal.SpireCal

__

61

Chapter 4. Reprocessing your data
4.1. Introduction

Now that you have inspected your data products, you may feel that you would like to reprocess your
data from the Level 0.5 products onwards, and in time to diverge away from the standard pipeline
processing provided by the HSC. This section provides an overview of the steps required to process
your datasets from Level 0.5 onwards, and on how to inspect your final Level 1 and Level 2 products.

__

4.2. Reprocessing SPIRE Large Map and Par-
allel Mode Data

4.2.1. Prerequites
The Large Map mode is essentially the same as the SPIRE component of the Parallel Mode - for both
modes, this processing guide will allow you to reprocess your data. For this data reprocessing example,
we assume that you wish to reprocess your data starting from Level 0.5 products. For this data repro-
cessing example, we will be using the Large Map observation (obsID: 1342183475) of NGC 5315.
We will in this example assume that you have received the engineering pipeline processed Level 0.5
data products from the HSC, and have stored them in a storage pool "1342183475_POF5_NGC5315",
either by a direct download or through HIPE.

You can access the POF5 pipeline processing script by clicling on 'Pipeline' on the top bar within
HIPE, selecting 'SPIRE' and then clicking on 'Photometer Large Map pipeline script (POF5)' - the
script will open up in the Editor window within HIPE.

Figure 4.1. Selecting the POF5 pipeline script

To start processing, first, we need to make sure that you have imported all needed classes and task
definitions required to run the POF5/Large Map pipeline:

Import all needed classes
from herschel.spire.all import *
from herschel.ia.all import *
from herschel.ia.task.mode import *
from herschel.ia.pg import ProductSink
from java.lang import *
from java.util import *
from herschel.ia.obs.util import ObsParameter

Reprocessing your data

62

from herschel.ia.pal.pool.lstore.util import TemporalPool

Import the script tasks.py that contains the task definitions
from herschel.spire.ia.pipeline.scripts.POF5.POF5_tasks import *

Input definition
from herschel.spire.ia.pipeline.scripts.POF5.POF5_input import *

Import the script obsLoader.py that allows to load an ObservationContext from a
storage.
from herschel.spire.ia.scripts.tools.obsLoader import *

We must search our local pool "1342183475_POF5_NGC5315" for our observation context. We will
run the ObsLoader pop-up window and input the ObsID and the name of the local pool to load the
observation context, and open an pop up dialog box to take inputs such as if we wish to look at plots
of intermediately processed pipeline products, the type of map-making (naive or MadMap) and which
point you wisg to start processing from (e.g. Level 0):

Open the input dialog to enter inputs
inputs.openDialog()

Open a dialog to load the ObservationContext if -"obs" is not defined.
try:
 obsid=obs.obsid
except NameError:
 loader=ObsLoader()
 obs=loader.getObs().product
pass

Figure 4.2. Setting parameters for processing

Figure 4.3. Using ObsLoader to load the observation

The pipeline also includes a check that the data really is SPIRE data, by raising a BadDataException
if the data isn't:

Check that the data are really SPIRE data
if obs.instrument -!= -"SPIRE":
 raise BadDataException("This ObservationContext cannot be processed with this
pipeline: it contains -"+obs.instrument+" data, not SPIRE data")

Reprocessing your data

63

Next, we shall create a creator variable to store the relevant origin metadata for the Level and Level
2 contexts, a logger to follow the progress of the pipeline's execution, set up the time origin for any
output plots and then finally, extract the ObsId of our observation and the calibration and auxillary
products required for processing the POF10 pipeline:

this is used to put in the creator metadata of level 1 and level 2 context the
version of SPG or of the pipeline
that was executed
creator=herschel.share.util.Configuration.getProperty("hcss.ia.dataset.creator", -"$Revision:
1.68 $")

#create a logger for the pipeline
logger=TaskModeManager.getMode().getLogger()

Shift of time origin for plots
t0=obs.startDate.microsecondsSince1958()*1e-6
obsid=obs.obsid
print -"processing OBSID=",obsid,"("+hex(obsid)+")"

Extract from the observation context the calibration products that
will be used in the script
bsmPos=obs.calibration.phot.bsmPos
bsmOps=obs.calibration.phot.bsmOps
detAngOff=obs.calibration.phot.detAngOff
elecCross=obs.calibration.phot.elecCross
optCross=obs.calibration.phot.optCross

Extract from the observation context the auxiliary products that
will be used in the script
hpp=obs.auxiliary.pointing
siam=obs.auxiliary.siam

We set up the Product Sink to perform our processing instead of simply using only memory and then
we initialise it:

Set this to FALSE if you don't want to use the ProductSink
and do all the processing in memory
tempStorage=Boolean.TRUE

Initialize the ProductSink with a TemporalPool that will be removed when the
HIPE session is closed, in case of interactive mode.
The TemporalPool is created in a directory starting from the path defined by the
var.hcss.workdir property. If this directory is inaccessible or not convenient,
please
change this property to a proper value.
if TaskModeManager.getType().toString() == -"INTERACTIVE" and tempStorage:
 pname="tmp"+hex(System.currentTimeMillis())[2:-1]
 tmppool=TemporalPool.createTmpPool(pname,TemporalPool.CloseMode.DELETE_ON_CLOSE)
 ProductSink.getInstance().productStorage=ProductStorage(tmppool)
pass

4.2.2. Level 0 to Level 0.5 Processing (Optional)
If you do not have Level 0.5 products to hand, you will need to make the engineering conversion
first from the raw Level 0 products - basically, we are converting the raw telemetry in the form of
products into engineering units such as bolometer voltages and resistances timelines. We can run the
engineering conversion pipeline from the Level 0 products obtained from the HSA to obtain our Level
0.5 products using:

From Level 0 to Level 0.5
if inputs.level=="level0":
 # Make Engineering conversion of level 0 products
 level0_5= engConversion(obs.level0,cal=obs.calibration, tempStorage=tempStorage)

Reprocessing your data

64

 # Add the result to the observation in level 0.5
 obs.level0_5=level0_5
else:
 level0_5=obs.level0_5
pass

4.2.3. Level 0.5 to Level 1 Processing
Now, we can process our data from Level 0.5 to Level 1. Looping over the scan lines to start building
up the map, we take the engineering products to calculate the BSM angles and the SPIRE pointing
product. We then perform a number of corrections to the data, after which we will have produced the
Level 1 pipeline data product. The pipeline for Level 0.5 to Level 1 processing involves the following
sequence of processing modules. The pipeline works on a Photometer Detector Timeline (PDT) and
requires the Nominal Housekeeping Timeline (NHKT). Additional auxilliary products are required
for the telescope pointing information. The figure below outlines the steps required to process the
Small Map pipeline.

Figure 4.4. The SPIRE POF5 Photometer Large Map pipeline.

In order to execute these steps in the most efficient manner possible, we execute a number of pipeline
tasks within a single loop. A simplified vesion of this loop, adapted from the POF10 pipeline script,
is given below:

if inputs.level=="level0" or inputs.level=="level0_5":
 # Create Level1 context
 level1=Level1Context(obsid)
 for key in level0_5.meta.keySet():
 if key -!= -"creator" and (not key.endswith("Date")) and key -!= -"fileName" and \
 key -!= -"type" and key -!= -"description":
 level1.meta[key]=level0_5.meta[key].copy()
 level1.creator=creator
 bbids=level0_5.getBbids(0xa103)
 nlines=len(bbids)
 print -"number of scan lines:",nlines
 #
 # Loop over scan lines
 for bbid in bbids:
 block=level0_5.get(bbid)

Reprocessing your data

65

 print -"processing BBID="+hex(bbid)
 # Now move to engineering data products
 pdt = block.pdt
 nhkt = block.nhkt

 #
 # access and attach turnaround data to the nominal scan line
 bbCount=bbid & 0xFFFF
 pdtLead=None
 nhktLead=None
 pdtTrail=None
 nhktTrail=None
 if bbCount >1:
 blockLead=level0_5.get(0xaf000000L+bbCount-1)
 pdtLead=blockLead.pdt
 nhktLead=blockLead.nhkt
 if pdtLead -!= None and pdtLead.sampleTime[-1] < pdt.sampleTime[0]-3.0:
 pdtLead=None
 nhktLead=None
 if bbid < MAX(Long1d(bbids)):
 blockTrail=level0_5.get(0xaf000000L+bbCount)
 pdtTrail=blockTrail.pdt
 nhktTrail=blockTrail.nhkt
 if pdtTrail -!= None and pdtTrail.sampleTime[0] > pdt.sampleTime[-1]+3.0:
 pdtTrail=None
 nhktTrail=None
 pdt=joinPhotDetTimelines(pdt,pdtLead,pdtTrail)
 nhkt=joinNhkTimelines(nhkt,nhktLead,nhktTrail)
 #
 # calculate BSM angles
 bat=calcBsmAngles(nhkt,bsmPos=bsmPos)
 #
 # create the SpirePointingProduct
 spp=createSpirePointing(detAngOff=detAngOff,bat=bat,hpp=hpp,siam=siam)
 #
 # run electrical crosstalk correction
 pdt=elecCrossCorrection(pdt,elecCross=elecCross)
 #
 # run the deglitch
 pdt=waveletDeglitcher(pdt, scaleMin=1.0, scaleMax=8.0, scaleInterval=5,
holderMin=-1.9,\
 holderMax=-0.3, correlationThreshold=0.69)
 #
 # run electrical Low Pass Filter response correction
 pdt=lpfResponseCorrection(pdt,lpfPar=lpfPar)
 #
 # run the flux conversion
 fluxConv=fluxConvList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=photFluxConversion(pdt,fluxConv=fluxConv)
 #
 # run the temeperature drift correction

 tempDriftCorr=tempDriftCorrList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=temperatureDriftCorrection(pdt,tempDriftCorr=tempDriftCorr)
 #
 # run bolometer time response correction
 pdt=bolometerResponseCorrection(pdt,chanTimeConst=chanTimeConst)
 #
 # run optical crosstalk correction
 pdt=photOptCrossCorrection(pdt,optCross=optCross)
 #
 # add pointing
 psp=associateSkyPosition(pdt,spp=spp)
 #
 # cut the timeline back to scan line range.
 # If you want include turnaround data in map making, call the following
 # task with the option -"extend=True"
 psp=cutPhotDetTimelines(psp)

 # Store Photometer Scan Product in Level 1 product storage
 if tempStorage:
 ref=ProductSink.getInstance().save(psp)

Reprocessing your data

66

 level1.addRef(ref)
 else:
 level1.addProduct(psp)
 #
 print -"Completed BBID=0x%x (%i/%i)"%(bbid,count+1,nlines)
 # set the progress
 count=count+1
 inputs.progress = 20+(60*count)/nlines
 #
 if level1.count == 0:
 logger.severe("No scan line processed due to missing data. This observation
CANNOT be processed!")
 print -"No scan line processed due to missing data. This observation CANNOT be
processed!"
 raise MissingDataException("No scan line processed due to missing data. This
observation CANNOT be processed!")
 #
 obs.level1=level1
 # promote to LEVEL1_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL1_PROCESSED
else:
 level1=obs.level1
pass

To break this up into its constituent parts, first of all, we create the Level 1 context:

 # Create Level1 context
 level1=Level1Context(obsid)
 for key in level0_5.meta.keySet():
 if key -!= -"creator" and (not key.endswith("Date")) and key -!= -"fileName" and \
 key -!= -"type" and key -!= -"description":
 level1.meta[key]=level0_5.meta[key].copy()
 level1.creator=creator
 bbids=level0_5.getBbids(0xa103)
 nlines=len(bbids)
 print -"number of scan lines:",nlines
 #

We loop over the scan lines and attach the engineering data to the scan lines:

 # Loop over scan lines
 for bbid in bbids:
 block=level0_5.get(bbid)
 print -"processing BBID="+hex(bbid)
 # Now move to engineering data products
 pdt = block.pdt
 nhkt = block.nhkt

 # access and attach turnaround data to the nominal scan line
 bbCount=bbid & 0xFFFF
 pdtLead=None
 nhktLead=None
 pdtTrail=None
 nhktTrail=None
 if bbCount >1:
 blockLead=level0_5.get(0xaf000000L+bbCount-1)
 pdtLead=blockLead.pdt
 nhktLead=blockLead.nhkt
 if pdtLead -!= None and pdtLead.sampleTime[-1] < pdt.sampleTime[0]-3.0:
 pdtLead=None
 nhktLead=None
 if bbid < MAX(Long1d(bbids)):
 blockTrail=level0_5.get(0xaf000000L+bbCount)
 pdtTrail=blockTrail.pdt
 nhktTrail=blockTrail.nhkt
 if pdtTrail -!= None and pdtTrail.sampleTime[0] > pdt.sampleTime[-1]+3.0:
 pdtTrail=None
 nhktTrail=None
 pdt=joinPhotDetTimelines(pdt,pdtLead,pdtTrail)

Reprocessing your data

67

 nhkt=joinNhkTimelines(nhkt,nhktLead,nhktTrail)

Next, we calculate the BSM angles and compute the SPIRE Pointing Product:

 # calculate BSM angles
 bat=calcBsmAngles(nhkt,bsmPos=bsmPos)
 #
 # create the SpirePointingProduct
 spp=createSpirePointing(detAngOff=detAngOff,bat=bat,hpp=hpp,siam=siam)
 #

We now perform a number of corrections to the data - electrical crosstalk correction, deglitching, elec-
trical Low Pass Filter response correction, flux conversion, temeperature drift correction, bolometer
time response correction. Most of these are dependent on the calibation products you imported earlier
in the pipeline, so to tweak, you must supply the updated relevant calibration product. The exception
is deglitching, where you can edit the input parameters to the module directly. Discussion of the pa-
rameters of this module is beyond the scope of this discussion - instead, please inspect the relevant
section of the SPIRE Users Manual for a more in-depth treatment of the paarmeters for this module.

 # run electrical crosstalk correction
 pdt=elecCrossCorrection(pdt,elecCross=elecCross)
 #
 # run the deglitch
 pdt=waveletDeglitcher(pdt, scaleMin=1.0, scaleMax=8.0, scaleInterval=5,
holderMin=-1.9,\
 holderMax=-0.3, correlationThreshold=0.69)
 #
 # run electrical Low Pass Filter response correction
 pdt=lpfResponseCorrection(pdt,lpfPar=lpfPar)
 #
 # run the flux conversion
 fluxConv=fluxConvList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=photFluxConversion(pdt,fluxConv=fluxConv)
 #
 # run the temeperature drift correction

 tempDriftCorr=tempDriftCorrList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=temperatureDriftCorrection(pdt,tempDriftCorr=tempDriftCorr)
 #
 # run bolometer time response correction
 pdt=bolometerResponseCorrection(pdt,chanTimeConst=chanTimeConst)
 #
 # run optical crosstalk correction
 pdt=photOptCrossCorrection(pdt,optCross=optCross)

We then add the pointing product, and cut the timeline back to follow the scan line range:

 # add pointing
 psp=associateSkyPosition(pdt,spp=spp)
 #
 # cut the timeline back to scan line range.
 # If you want include turnaround data in map making, call the following
 # task with the option -"extend=True"
 psp=cutPhotDetTimelines(psp)
 #

Reprocessing your data

68

Figure 4.5. Detector signal timelines

Finally for this stage of the pipeline, we shall store our product in the Level 1 context:

 if tempStorage:
 ref=ProductSink.getInstance().save(psp)
 level1.addRef(ref)
 else:
 level1.addProduct(psp)

 obs.level1=level1
 # promote to LEVEL1_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL1_PROCESSED

And that brings us to the end of our Level 1 processing for Small Map.

4.2.4. Level 1 to Level 2 Processing
Our next step is to convert our Level 1 photometer product into our final maps, which constitute the
Level 2 products for the Small Map pipeline.

if inputs.mapping -!= -'none':
 #
 # Flag to switch on and off the baseline removal
 useRemoveBaseline=True
 #
 # Create a SpireListContext to be used as input of map making
 scans=SpireListContext()
 #
 # Run baseline removal and populate the map making input
 for i in range(level1.count):
 if useRemoveBaseline:
 psp=level1.getProduct(i)
 psp=removeBaseline(psp,chanNum=chanNum)
 if tempStorage:
 ref=ProductSink.getInstance().save(psp)

Reprocessing your data

69

 scans.addRef(ref)
 else:
 scans.addProduct(psp)
 else:
 scans.addRef(level1.refs[i])
 pass
 #
 # Run mapmaking
 if inputs.mapping == -'naive':
 mapPlw=naiveScanMapper(scans, array="PLW")
 inputs.progress=85
 mapPmw=naiveScanMapper(scans, array="PMW")
 inputs.progress=90
 mapPsw=naiveScanMapper(scans, array="PSW")
 else:

 chanNoise=obs.calibration.phot.chanNoiseList.getProduct(level1.getProduct(0).meta["biasMode"].value,
\
 level1.getProduct(0).startDate)
 mapPlw=madScanMapper(scans, array="PLW",chanNoise=chanNoise)
 inputs.progress=85
 mapPmw=madScanMapper(scans, array="PMW",chanNoise=chanNoise)
 inputs.progress=90
 mapPsw=madScanMapper(scans, array="PSW",chanNoise=chanNoise)
 pass
 #
 # Create a context with level 2 products (maps) and attach it to the observation
context
 level2=MapContext()
 for key in level1.meta.keySet():
 if key -!= -"creator" and key -!= -"creationDate":
 level2.meta[key]=level1.meta[key].copy()
 level2.creator=creator
 level2.type="level2context"
 level2.description="Context for SPIRE Level 2 products"
 level2.meta["level"]=StringParameter("20", -"The level of the product")
 level2.refs.put("PLW",ProductRef(mapPlw))
 level2.refs.put("PMW",ProductRef(mapPmw))
 level2.refs.put("PSW",ProductRef(mapPsw))
 obs.level2=level2
 #
 # promote to LEVEL2_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL2_PROCESSED
 #
 # Create browse product and image
 createRgbImage=CreateRgbImageTask()
 browseProduct=createRgbImage(red=mapPlw,green=mapPmw,blue=mapPsw,percent=98.0,redFactor=1.0,
\
 greenFactor=1.0,blueFactor=1.0)
 #
 # Populate metadata of the browse product
 for par in ObsParameter.values():
 if obs.meta.containsKey(par.key) and par.key -!= -"fileName":
 browseProduct.meta[par.key]=obs.meta[par.key].copy()
 pass
 browseProduct.startDate=obs.startDate
 browseProduct.endDate=obs.endDate
 browseProduct.instrument=obs.instrument
 browseProduct.modelName=obs.modelName
 browseProduct.description="Browse Product"
 browseProduct.type="BROWSE"
 #
 # Attach the browse product to the ObservationContext
 obs.browseProduct=browseProduct
 #
 # Generate the browse image
 from herschel.ia.gui.image import ImageUtil
 imageUtil = ImageUtil()
 browseProductImage=imageUtil.getRgbTiledImage(\
 browseProduct["red"].data, browseProduct["green"].data,
browseProduct["blue"].data)
 obs.browseProductImage=browseProductImage.asBufferedImage

Reprocessing your data

70

pass

Assuming that we have requested mapping products, we first of all flag the pipeline to perform base-
line subtraction, set up a List Context to be used as input to the map making, perform the baseline
subtraction on our Level 1 product and store it in our List Context:

 # Flag to switch on and off the baseline removal
 useRemoveBaseline=True
 #
 # Create a SpireListContext to be used as input of map making
 scans=SpireListContext()
 #
 # Run baseline removal and populate the map making input
 for i in range(level1.count):
 if useRemoveBaseline:
 psp=level1.getProduct(i)
 psp=removeBaseline(psp,chanNum=chanNum)
 if tempStorage:
 ref=ProductSink.getInstance().save(psp)
 scans.addRef(ref)
 else:
 scans.addProduct(psp)
 else:
 scans.addRef(level1.refs[i])
 pass

We use this as input for the map maker. The type of map produced is dependent on your input at the
very start of the pipeline - naive or MadMap.

 # Run mapmaking
 if inputs.mapping == -'naive':
 mapPlw=naiveScanMapper(scans, array="PLW")
 inputs.progress=85
 mapPmw=naiveScanMapper(scans, array="PMW")
 inputs.progress=90
 mapPsw=naiveScanMapper(scans, array="PSW")
 else:

 chanNoise=obs.calibration.phot.chanNoiseList.getProduct(level1.getProduct(0).meta["biasMode"].value,
\
 level1.getProduct(0).startDate)
 mapPlw=madScanMapper(scans, array="PLW",chanNoise=chanNoise)
 inputs.progress=85
 mapPmw=madScanMapper(scans, array="PMW",chanNoise=chanNoise)
 inputs.progress=90
 mapPsw=madScanMapper(scans, array="PSW",chanNoise=chanNoise)
 pass

Three maps are each produced for PSW, PMW and PLW, and are visible through the Product Viewer
by right-clicking on the required variable in the Variable pane and selecting 'Open With':

Reprocessing your data

71

Figure 4.6. Selecting the Product Viewer

the actual map with fluxes (denoted as 'image');

Figure 4.7. Setting parameters for processing

the statistical flux error map (denoted as 'error'):

Figure 4.8. Setting parameters for processing

and an image which shows the coverage map for our scans (denoted as 'coverage'):

Reprocessing your data

72

Figure 4.9. Setting parameters for processing

We can export our images to FITS files by right clicking on the respective variable in the Variable
pane (e.g. mapPsw), and selecting 'Send To -> FITS file'.

We finally scan create a context to store our maps as Level 2 products, and attach them to the obser-
vation context.

 # Create a context with level 2 products (maps) and attach it to the observation
context
 level2=MapContext()
 for key in level1.meta.keySet():
 if key -!= -"creator" and key -!= -"creationDate":
 level2.meta[key]=level1.meta[key].copy()
 level2.creator=creator
 level2.type="level2context"
 level2.description="Context for SPIRE Level 2 products"
 level2.meta["level"]=StringParameter("20", -"The level of the product")
 level2.refs.put("PLW",ProductRef(mapPlw))
 level2.refs.put("PMW",ProductRef(mapPmw))
 level2.refs.put("PSW",ProductRef(mapPsw))
 obs.level2=level2
 #
 # promote to LEVEL2_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL2_PROCESSED

Congratulations! You have now re-processed your Small Map data all the way to the final Level 2
maps!

__

4.3. Reprocessing SPIRE Small Map Data

4.3.1. Prerequites

For this data reprocessing example, we will be using the Small Map observation (obsID: 1342195871)
of the star Gamma Draconis. We will in this example assume that you have received the engineering
pipeline processed Level 0.5 data products from the HSC, and have stored them in a storage pool
"1342195871_POF10_GammaDra", either by a direct download or through HIPE.

You can access the POF10 pipeline processing script by clicling on 'Pipeline' on the top bar within
HIPE, selecting 'SPIRE' and then clicking on 'Photometer Small Map pipeline script (POF10)' - the
script will open up in the Editor window within HIPE.

Reprocessing your data

73

Figure 4.10. Selecting the POF10 pipeline script

To start processing, first, we need to make sure that you have imported all needed classes and task
definitions required to run the POF2/point source pipeline:

Import all needed classes
from herschel.spire.all import *
from herschel.ia.all import *
from herschel.ia.task.mode import *
from herschel.ia.pg import ProductSink
from java.lang import *
from java.util import *
from herschel.ia.obs.util import ObsParameter
from herschel.ia.pal.pool.lstore.util import TemporalPool

Import the script tasks.py that contains the task definitions
from herschel.spire.ia.pipeline.scripts.POF10.POF10_tasks import *

Input definition
from herschel.spire.ia.pipeline.scripts.POF10.POF10_input import *

Import the script obsLoader.py that allows to load an ObservationContext from a
storage.
from herschel.spire.ia.scripts.tools.obsLoader import *

We must search our local pool "1342195871_POF10_GammaDra" for our observation context. We
will run the ObsLoader pop-up window and input the ObsID and the name of the local pool to load
the observation context, and open an pop up dialog box to take inputs such as if we wish to look at
plots of intermediately processed pipeline products, the type of map-making (naive or MadMap) and
which point you wisg to start processing from (e.g. Level 0):

Open the input dialog to enter inputs
inputs.openDialog()

Open a dialog to load the ObservationContext if -"obs" is not defined.
try:
 obsid=obs.obsid
except NameError:
 loader=ObsLoader()
 obs=loader.getObs().product
pass

Reprocessing your data

74

Figure 4.11. Setting parameters for processing

Figure 4.12. Using ObsLoader to load the observation

The pipeline also includes a check that the data really is SPIRE data, by raising a BadDataException
if the data isn't:

Check that the data are really SPIRE data
if obs.instrument -!= -"SPIRE":
 raise BadDataException("This ObservationContext cannot be processed with this
pipeline: it contains -"+obs.instrument+" data, not SPIRE data")

We set up the Product Sink to perform our processing instead of simply using only memory and then
we initialise it:

Set this to FALSE if you don't want to use the ProductSink
and do all the processing in memory
tempStorage=Boolean.TRUE

Initialize the ProductSink with a TemporalPool that will be removed when the
HIPE session is closed, in case of interactive mode.
The TemporalPool is created in a directory starting from the path defined by the
var.hcss.workdir property. If this directory is inaccessible or not convenient,
please
change this property to a proper value.
if TaskModeManager.getType().toString() == -"INTERACTIVE" and tempStorage:
 pname="tmp"+hex(System.currentTimeMillis())[2:-1]
 tmppool=TemporalPool.createTmpPool(pname,TemporalPool.CloseMode.DELETE_ON_CLOSE)
 ProductSink.getInstance().productStorage=ProductStorage(tmppool)
pass

Next, we shall create a creator variable to store the relevant origin metadata for the Level and Level
2 contexts, a logger to follow the progress of the pipeline's execution, set up the time origin for any
output plots and then finally, extract the ObsId of our observation and the calibration and auxillary
products required for processing the POF10 pipeline:

Reprocessing your data

75

this is used to put in the creator metadata of level 1 and level 2 context the
version of SPG or of the pipeline
that was executed
creator=herschel.share.util.Configuration.getProperty("hcss.ia.dataset.creator", -"$Revision:
1.2.2.2 $")

#create a logger for the pipeline
logger=TaskModeManager.getMode().getLogger()

Shift of time origin for plots
t0=obs.startDate.microsecondsSince1958()*1e-6
obsid=obs.obsid
print -"processing OBSID=",obsid,"("+hex(obsid)+")"

Extract from the observation context the calibration products that
will be used in the script
bsmPos=obs.calibration.phot.bsmPos
bsmOps=obs.calibration.phot.bsmOps
detAngOff=obs.calibration.phot.detAngOff
elecCross=obs.calibration.phot.elecCross
optCross=obs.calibration.phot.optCross

Extract from the observation context the auxiliary products that
will be used in the script
hpp=obs.auxiliary.pointing
siam=obs.auxiliary.siam

4.3.2. Level 0 to Level 0.5 Processing (Optional)

If you do not have Level 0.5 products to hand, you will need to make the engineering conversion
first from the raw Level 0 products - basically, we are converting the raw telemetry in the form of
products into engineering units such as bolometer voltages and resistances timelines. We can run the
engineering conversion pipeline from the Level 0 products obtained from the HSA to obtain our Level
0.5 products using:

From Level 0 to Level 0.5
if inputs.level=="level0":
 # Make Engineering conversion of level 0 products
 level0_5= engConversion(obs.level0,cal=obs.calibration, tempStorage=tempStorage)
 # Add the result to the observation in level 0.5
 obs.level0_5=level0_5
else:
 level0_5=obs.level0_5
pass

set the progress
inputs.progress=20
counter for computing progress
count=0

4.3.3. Level 0.5 to Level 1 Processing

Now, we can process our data from Level 0.5 to Level 1. Looping over the scan lines to start building
up the map, we take the engineering products to calculate the BSM angles and the SPIRE pointing
product. We then perform a number of corrections to the data, after which we will have produced the
Level 1 pipeline data product. The pipeline for Level 0.5 to Level 1 processing involves the following
sequence of processing modules. The pipeline works on a Photometer Detector Timeline (PDT) and
requires the Nominal Housekeeping Timeline (NHKT). Additional auxilliary products are required
for the telescope pointing information. The figure below outlines the steps required to process the
Small Map pipeline.

Reprocessing your data

76

Figure 4.13. The SPIRE POF10 Photometer Small Map pipeline.

In order to execute these steps in the most efficient manner possible, we execute a number of pipeline
tasks within a single loop. A simplified vesion of this loop, adapted from the POF10 pipeline script,
is given below:

From Level 0.5 to Level 1
if inputs.level=="level0" or inputs.level=="level0_5":
 # Create Level1 context
 level1=Level1Context(obsid)
 for key in level0_5.meta.keySet():
 if key -!= -"creator" and (not key.endswith("Date")) and key -!= -"fileName" and \
 key -!= -"type" and key -!= -"description":
 level1.meta[key]=level0_5.meta[key].copy()
 level1.creator=creator
 bbids=level0_5.getBbids(0xa103)
 nlines=len(bbids)
 print -"number of scan lines:",nlines
 #
 # Loop over scan lines
 for bbid in bbids:
 block=level0_5.get(bbid)
 print -"processing BBID="+hex(bbid)
 # Now move to engineering data products
 pdt = block.pdt
 nhkt = block.nhkt
 #
 # access and attach turnaround data to the nominal scan line
 bbCount=bbid & 0xFFFF
 pdtLead=None
 nhktLead=None
 pdtTrail=None
 nhktTrail=None
 if bbCount >1:
 blockLead=level0_5.get(0xaf000000L+bbCount-1)
 pdtLead=blockLead.pdt
 nhktLead=blockLead.nhkt
 if pdtLead -!= None and pdtLead.sampleTime[-1] < pdt.sampleTime[0]-3.0:
 pdtLead=None
 nhktLead=None
 if bbid < MAX(Long1d(bbids)):
 blockTrail=level0_5.get(0xaf000000L+bbCount)
 pdtTrail=blockTrail.pdt

Reprocessing your data

77

 nhktTrail=blockTrail.nhkt
 if pdtTrail -!= None and pdtTrail.sampleTime[0] > pdt.sampleTime[-1]+3.0:
 pdtTrail=None
 nhktTrail=None
 pdt=joinPhotDetTimelines(pdt,pdtLead,pdtTrail)
 nhkt=joinNhkTimelines(nhkt,nhktLead,nhktTrail)
 #
 # calculate BSM angles
 bat=calcBsmAngles(nhkt,bsmPos=bsmPos)
 #
 # create the SpirePointingProduct
 spp=createSpirePointing(detAngOff=detAngOff,bat=bat,hpp=hpp,siam=siam)
 #
 # run electrical crosstalk correction
 pdt=elecCrossCorrection(pdt,elecCross=elecCross)
 #
 # run the deglitch
 pdt=waveletDeglitcher(pdt, scaleMin=1.0, scaleMax=8.0, scaleInterval=5,
holderMin=-1.9,\
 holderMax=-0.3, correlationThreshold=0.69)
 #
 # run electrical Low Pass Filter response correction
 pdt=lpfResponseCorrection(pdt,lpfPar=lpfPar)
 #
 # run the flux conversion
 fluxConv=fluxConvList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=photFluxConversion(pdt,fluxConv=fluxConv)
 #
 # run the temeperature drift correction

 tempDriftCorr=tempDriftCorrList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=temperatureDriftCorrection(pdt,tempDriftCorr=tempDriftCorr)
 #
 # run bolometer time response correction
 pdt=bolometerResponseCorrection(pdt,chanTimeConst=chanTimeConst)
 #
 # run optical crosstalk correction
 pdt=photOptCrossCorrection(pdt,optCross=optCross)
 #
 # add pointing
 psp=associateSkyPosition(pdt,spp=spp)
 #
 # cut the timeline back to scan line range.
 # If you want include turnaround data in map making, call the following
 # task with the option -"extend=True"
 psp=cutPhotDetTimelines(psp)

 # Store Photometer Scan Product in Level 1 product storage
 if tempStorage:
 ref=ProductSink.getInstance().save(psp)
 level1.addRef(ref)
 else:
 level1.addProduct(psp)
 #
 print -"Completed BBID=0x%x (%i/%i)"%(bbid,count+1,nlines)
 # set the progress
 count=count+1
 inputs.progress = 20+(60*count)/nlines
 raise MissingDataException("No scan line processed due to missing data. This
observation CANNOT be processed!")
 #
 obs.level1=level1
 # promote to LEVEL1_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL1_PROCESSED
else:
 level1=obs.level1
pass

To break this up into its constituent parts, first of all, we create the Level 1 context:

 # Create Level1 context

Reprocessing your data

78

 level1=Level1Context(obsid)
 for key in level0_5.meta.keySet():
 if key -!= -"creator" and (not key.endswith("Date")) and key -!= -"fileName" and \
 key -!= -"type" and key -!= -"description":
 level1.meta[key]=level0_5.meta[key].copy()
 level1.creator=creator
 bbids=level0_5.getBbids(0xa103)
 nlines=len(bbids)
 print -"number of scan lines:",nlines
 #

We loop over the scan lines and attach the engineering data to the scan lines:

 # Loop over scan lines
 for bbid in bbids:
 block=level0_5.get(bbid)
 print -"processing BBID="+hex(bbid)
 # Now move to engineering data products
 pdt = block.pdt
 nhkt = block.nhkt

 # access and attach turnaround data to the nominal scan line
 bbCount=bbid & 0xFFFF
 pdtLead=None
 nhktLead=None
 pdtTrail=None
 nhktTrail=None
 if bbCount >1:
 blockLead=level0_5.get(0xaf000000L+bbCount-1)
 pdtLead=blockLead.pdt
 nhktLead=blockLead.nhkt
 if pdtLead -!= None and pdtLead.sampleTime[-1] < pdt.sampleTime[0]-3.0:
 pdtLead=None
 nhktLead=None
 if bbid < MAX(Long1d(bbids)):
 blockTrail=level0_5.get(0xaf000000L+bbCount)
 pdtTrail=blockTrail.pdt
 nhktTrail=blockTrail.nhkt
 if pdtTrail -!= None and pdtTrail.sampleTime[0] > pdt.sampleTime[-1]+3.0:
 pdtTrail=None
 nhktTrail=None
 pdt=joinPhotDetTimelines(pdt,pdtLead,pdtTrail)
 nhkt=joinNhkTimelines(nhkt,nhktLead,nhktTrail)

Next, we calculate the BSM angles and compute the SPIRE Pointing Product:

 # calculate BSM angles
 bat=calcBsmAngles(nhkt,bsmPos=bsmPos)
 #
 # create the SpirePointingProduct
 spp=createSpirePointing(detAngOff=detAngOff,bat=bat,hpp=hpp,siam=siam)
 #

We now perform a number of corrections to the data - electrical crosstalk correction, deglitching, elec-
trical Low Pass Filter response correction, flux conversion, temeperature drift correction, bolometer
time response correction. Most of these are dependent on the calibation products you imported earlier
in the pipeline, so to tweak, you must supply the updated relevant calibration product. The exception
is deglitching, where you can edit the input parameters to the module directly. Discussion of the pa-
rameters of this module is beyond the scope of this discussion - instead, please inspect the relevant
section of the SPIRE Users Manual for a more in-depth treatment of the paarmeters for this module.

 # run electrical crosstalk correction
 pdt=elecCrossCorrection(pdt,elecCross=elecCross)
 #
 # run the deglitch

Reprocessing your data

79

 pdt=waveletDeglitcher(pdt, scaleMin=1.0, scaleMax=8.0, scaleInterval=5,
holderMin=-1.9,\
 holderMax=-0.3, correlationThreshold=0.69)
 #
 # run electrical Low Pass Filter response correction
 pdt=lpfResponseCorrection(pdt,lpfPar=lpfPar)
 #
 # run the flux conversion
 fluxConv=fluxConvList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=photFluxConversion(pdt,fluxConv=fluxConv)
 #
 # run the temeperature drift correction

 tempDriftCorr=tempDriftCorrList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=temperatureDriftCorrection(pdt,tempDriftCorr=tempDriftCorr)
 #
 # run bolometer time response correction
 pdt=bolometerResponseCorrection(pdt,chanTimeConst=chanTimeConst)
 #
 # run optical crosstalk correction
 pdt=photOptCrossCorrection(pdt,optCross=optCross)

We then add the pointing product, and cut the timeline back to follow the scan line range:

 # add pointing
 psp=associateSkyPosition(pdt,spp=spp)
 #
 # cut the timeline back to scan line range.
 # If you want include turnaround data in map making, call the following
 # task with the option -"extend=True"
 psp=cutPhotDetTimelines(psp)
 #

Figure 4.14. Detector signal timelines

Finally for this stage of the pipeline, we shall store our product in the Level 1 context:

Reprocessing your data

80

 if tempStorage:
 ref=ProductSink.getInstance().save(psp)
 level1.addRef(ref)
 else:
 level1.addProduct(psp)

 obs.level1=level1
 # promote to LEVEL1_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL1_PROCESSED

And that brings us to the end of our Level 1 processing for Small Map.

4.3.4. Level 1 to Level 2 Processing
Our next step is to convert our Level 1 photometer product into our final maps, which constitute the
Level 2 products for the Small Map pipeline.

if inputs.mapping -!= -'none':
 #
 # Flag to switch on and off the baseline removal
 useRemoveBaseline=True
 #
 # Create a SpireListContext to be used as input of map making
 scans=SpireListContext()
 #
 # Run baseline removal and populate the map making input
 for i in range(level1.count):
 if useRemoveBaseline:
 psp=level1.getProduct(i)
 psp=removeBaseline(psp,chanNum=chanNum)
 if tempStorage:
 ref=ProductSink.getInstance().save(psp)
 scans.addRef(ref)
 else:
 scans.addProduct(psp)
 else:
 scans.addRef(level1.refs[i])
 pass
 #
 # Run mapmaking
 if inputs.mapping == -'naive':
 mapPlw=naiveScanMapper(scans, array="PLW")
 inputs.progress=85
 mapPmw=naiveScanMapper(scans, array="PMW")
 inputs.progress=90
 mapPsw=naiveScanMapper(scans, array="PSW")
 else:

 chanNoise=obs.calibration.phot.chanNoiseList.getProduct(level1.getProduct(0).meta["biasMode"].value,
\
 level1.getProduct(0).startDate)
 mapPlw=madScanMapper(scans, array="PLW",chanNoise=chanNoise)
 inputs.progress=85
 mapPmw=madScanMapper(scans, array="PMW",chanNoise=chanNoise)
 inputs.progress=90
 mapPsw=madScanMapper(scans, array="PSW",chanNoise=chanNoise)
 pass
 #
 # Create a context with level 2 products (maps) and attach it to the observation
context
 level2=MapContext()
 for key in level1.meta.keySet():
 if key -!= -"creator" and key -!= -"creationDate":
 level2.meta[key]=level1.meta[key].copy()
 level2.creator=creator
 level2.type="level2context"
 level2.description="Context for SPIRE Level 2 products"
 level2.meta["level"]=StringParameter("20", -"The level of the product")

Reprocessing your data

81

 level2.refs.put("PLW",ProductRef(mapPlw))
 level2.refs.put("PMW",ProductRef(mapPmw))
 level2.refs.put("PSW",ProductRef(mapPsw))
 obs.level2=level2
 #
 # promote to LEVEL2_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL2_PROCESSED
 #
 # Create browse product and image
 createRgbImage=CreateRgbImageTask()
 browseProduct=createRgbImage(red=mapPlw,green=mapPmw,blue=mapPsw,percent=98.0,redFactor=1.0,
\
 greenFactor=1.0,blueFactor=1.0)
 #
 # Populate metadata of the browse product
 for par in ObsParameter.values():
 if obs.meta.containsKey(par.key) and par.key -!= -"fileName":
 browseProduct.meta[par.key]=obs.meta[par.key].copy()
 pass
 browseProduct.startDate=obs.startDate
 browseProduct.endDate=obs.endDate
 browseProduct.instrument=obs.instrument
 browseProduct.modelName=obs.modelName
 browseProduct.description="Browse Product"
 browseProduct.type="BROWSE"
 #
 # Attach the browse product to the ObservationContext
 obs.browseProduct=browseProduct
 #
 # Generate the browse image
 from herschel.ia.gui.image import ImageUtil
 imageUtil = ImageUtil()
 browseProductImage=imageUtil.getRgbTiledImage(\
 browseProduct["red"].data, browseProduct["green"].data,
browseProduct["blue"].data)
 obs.browseProductImage=browseProductImage.asBufferedImage
pass

Assuming that we have requested mapping products, we first of all flag the pipeline to perform base-
line subtraction, set up a List Context to be used as input to the map making, perform the baseline
subtraction on our Level 1 product and store it in our List Context:

 # Flag to switch on and off the baseline removal
 useRemoveBaseline=True
 #
 # Create a SpireListContext to be used as input of map making
 scans=SpireListContext()
 #
 # Run baseline removal and populate the map making input
 for i in range(level1.count):
 if useRemoveBaseline:
 psp=level1.getProduct(i)
 psp=removeBaseline(psp,chanNum=chanNum)
 if tempStorage:
 ref=ProductSink.getInstance().save(psp)
 scans.addRef(ref)
 else:
 scans.addProduct(psp)
 else:
 scans.addRef(level1.refs[i])
 pass

We use this as input for the map maker. The type of map produced is dependent on your input at the
very start of the pipeline - naive or MadMap.

 # Run mapmaking
 if inputs.mapping == -'naive':
 mapPlw=naiveScanMapper(scans, array="PLW")

Reprocessing your data

82

 inputs.progress=85
 mapPmw=naiveScanMapper(scans, array="PMW")
 inputs.progress=90
 mapPsw=naiveScanMapper(scans, array="PSW")
 else:

 chanNoise=obs.calibration.phot.chanNoiseList.getProduct(level1.getProduct(0).meta["biasMode"].value,
\
 level1.getProduct(0).startDate)
 mapPlw=madScanMapper(scans, array="PLW",chanNoise=chanNoise)
 inputs.progress=85
 mapPmw=madScanMapper(scans, array="PMW",chanNoise=chanNoise)
 inputs.progress=90
 mapPsw=madScanMapper(scans, array="PSW",chanNoise=chanNoise)
 pass

Three maps are each produced for PSW, PMW and PLW, and are visible through the Product Viewer
by right-clicking on the required variable in the Variable pane and selecting 'Open With':

Figure 4.15. Selecting the Product Viewer

the actual map with fluxes (denoted as 'image');

Figure 4.16. Setting parameters for processing

the statistical flux error map (denoted as 'error'):

Reprocessing your data

83

Figure 4.17. Setting parameters for processing

and an image which shows the coverage map for our scans (denoted as 'coverage'):

Figure 4.18. Setting parameters for processing

We can export our images to FITS files by right clicking on the respective variable in the Variable
pane (e.g. mapPsw), and selecting 'Send To -> FITS file'.

We finally scan create a context to store our maps as Level 2 products, and attach them to the obser-
vation context.

 # Create a context with level 2 products (maps) and attach it to the observation
context
 level2=MapContext()
 for key in level1.meta.keySet():
 if key -!= -"creator" and key -!= -"creationDate":
 level2.meta[key]=level1.meta[key].copy()
 level2.creator=creator
 level2.type="level2context"
 level2.description="Context for SPIRE Level 2 products"
 level2.meta["level"]=StringParameter("20", -"The level of the product")
 level2.refs.put("PLW",ProductRef(mapPlw))
 level2.refs.put("PMW",ProductRef(mapPmw))
 level2.refs.put("PSW",ProductRef(mapPsw))
 obs.level2=level2
 #
 # promote to LEVEL2_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL2_PROCESSED

Congratulations! You have now re-processed your Small Map data all the way to the final Level 2
maps!

__

Reprocessing your data

84

4.4. Reprocessing SPIRE Point Source Mode
Data

4.4.1. Prerequisites
For this data reprocessing example, we will be using the Point Source observation (obsID:
1342183474) of NGC 5315. We will in this example assume that you have received the engineering
pipeline processed Level 0.5 data products from the HSC, and have stored them in a storage pool
"1342183474_POF2_NGC5315", either by a direct download or through HIPE. The figure below out-
lines the steps required to process the Jiggle pipeline.

Figure 4.19. The SPIRE POF2 Photometer Point Source pipeline.

You can access the POF2 pipeline processing script by clicling on 'Pipeline' on the top bar within
HIPE, selecting 'SPIRE' and then clicking on 'Photometer Point Source pipeline script (POF2)' - the
script will open up in the Editor window within HIPE.

Reprocessing your data

85

Figure 4.20. Selecting the POF2 pipeline script

To start processing, first, we need to make sure that you have imported all needed classes and task
definitions required to run the POF2/point source pipeline:

Import all needed classes
from herschel.spire.all import *
from herschel.spire.util import *
from herschel.ia.all import *
from herschel.ia.task.mode import *
from java.lang import Long
from java.util import *

Import the script tasks.py that contains the task definitions
from herschel.spire.ia.pipeline.scripts.POF2.POF2_tasks import *

Import the script input.py that contains the input definitions
from herschel.spire.ia.pipeline.scripts.POF2.POF2_input import *

Import the script obsLoader.py that allows to load an ObservationContext from a
storage.
from herschel.spire.ia.scripts.tools.obsLoader import *

We must search our local pool "1342183474_POF2_NGC5315" for our observation context. We will
run the ObsLoader pop-up window and input the ObsID and the name of the local pool to load the
observation context, and open an pop up dialog box to take inputs such as if we wish to look at plots
of intermediately processed pipeline products:

Open the input dialog to enter inputs
inputs.openDialog()

Open a dialog to load the ObservationContext if -"obs" is not defined.
try:
 obsid=obs.obsid
except NameError:
 loader=ObsLoader()
 obs=loader.getObs().product
pass

Reprocessing your data

86

Figure 4.21. Using ObsLoader to load the observation

Figure 4.22. Using ObsLoader to load the observation

The pipeline also includes a check that the data really is SPIRE data, by raising a BadDataException
if the data isn't:

Check that the data are really SPIRE data
if obs.instrument -!= -"SPIRE":
 raise BadDataException("This ObservationContext cannot be processed with this
pipeline: it contains -"+obs.instrument+" data, not SPIRE data")

Next, we shall create we shall create a creator variable to store the relevant origin metadata for the
Level and Level 2 contexts, a logger to follow the progress of the pipeline's execution, set up the time
origin for any output plots and then finally, extract the ObsId of our observation and the calibration
and auxillary products required for processing the POF2 pipeline:

this is used to put in the creator metadata of level 1 and level 2 context the
version of SPG or of the pipeline
that was executed
creator=herschel.share.util.Configuration.getProperty("hcss.ia.dataset.creator", -"$Revision:
1.68 $")

#create a logger for the pipeline
logger=TaskModeManager.getMode().getLogger()

Shift of time origin for plots
t0=obs.startDate.microsecondsSince1958()*1e-6
obsid=obs.obsid
print -"processing OBSID=",obsid,"("+hex(obsid)+")"

Extract from the observation context the calibration products that
will be used in the script
bsmPos=obs.calibration.phot.bsmPos
bsmOps=obs.calibration.phot.bsmOps
detAngOff=obs.calibration.phot.detAngOff
elecCross=obs.calibration.phot.elecCross
optCross=obs.calibration.phot.optCross

Extract from the observation context the auxiliary products that
will be used in the script
hpp=obs.auxiliary.pointing
siam=obs.auxiliary.siam

Reprocessing your data

87

4.4.2. Level 0 to Level 0.5 Processing (Optional)

If you do not have Level 0.5 products to hand, you will need to make the engineering conversion
first from the raw Level 0 products - basically, we are converting the raw telemetry in the form of
products into engineering units such as bolometer voltages and resistances timelines. We can run the
engineering conversion pipeline from the Level 0 products obtained from the HSA to obtain our Level
0.5 products using:

From Level 0 to Level 0.5
if inputs.level=="level0":
 # Run Engineering Conversion of level 0 products
 level0_5= engConversion(obs.level0,cal=obs.calibration)
 # Add the result to the observation in level 0.5
 obs.level0_5=level0_5
else:
 level0_5=obs.level0_5
#
set the progress
inputs.progress=20
counter for computing progress
count=0

4.4.3. Level 0.5 to Level 1 Processing

Now, we can process our data from Level 0.5 to Level 1. Looping over each BBID, we first convert
the BSM telemetry into a Y, Y and Z angle timeline and then into a chopper id/jiggle id timeline. We
can use these to create the SPIRE pointing product. We then perform a number of corrections to the
data, after which we will have produced the Level 1 pipeline data product. In order to execute these
steps in the most efficient manner possible, we execute a number of pipeline tasks within a single loop.
A simplified vesion of this loop, adapted from the POF2 pipeline script, is given below:

From Level 0.5 to Level 1
if inputs.level=="level0" or inputs.level=="level0_5":
 #
 dpparr=[DenodInput()]
 nrep=1
 nblocks=len(level0_5.getBbids(0xa321))
 #
 for bbid in level0_5.getBbids(0xa321):
 print -"Starting BBID=",hex(bbid)
 block=level0_5.get(obsid,bbid)
 # Get basic engineering data products
 pdt = block.pdt
 bsmt = block.bsmt

 # run the task to convert BSM telemetry in a Y angle and Z angle timeline
 bat=calcBsmAngles(bsmt,bsmPos=bsmPos)

 # run the task to convert BSM telemetry in a chopper id & jiggle id timeline
 cjt = calcBsmFlags(bsmt, bsmOps=bsmOps)
 #
 #create the SpirePointingProduct
 spp=createSpirePointing(detAngOff=detAngOff,bat=bat,hpp=hpp, siam=siam)
 #
 # run the electrical crosstalk correction
 pdt=elecCrossCorrection(pdt,elecCross=elecCross)
 #
 # run the deglitch
 pdt=waveletDeglitcher(pdt, scaleMin=1.0, scaleMax=8.0, scaleInterval=5,
holderMin=-1.6,\
 holderMax=-0.1, correlationThreshold=0.6, correctGlitches=inputs.correctGlitches)
 #
 # run the flux conversion

Reprocessing your data

88

 fluxConv=obs.calibration.phot.fluxConvList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
 pdt=photFluxConversion(pdt,fluxConv)
 #
 # associate the sky position
 ppt=associateSkyPosition(pdt,spp=spp)
 #
 # run the Demodulation task
 dpp = demodulate(ppt, cjt=cjt)
 #
 # second level deglitching
 dpp = secondDeglitching(dpp)
 #
 # average on jiggle position
 dpp = jiggleAverage(dpp)

 #
 ncyc=((dpp.bbCount-1)/4)+1
 if ncyc >= nrep+1:
 for k in range(ncyc-nrep):
 dpparr.append(DenodInput())
 dpparr[ncyc-1].addProduct(dpp)
 nrep=ncyc
 else:
 dpparr[ncyc-1].addProduct(dpp)
 print -"Completed BBID=0x%x (%i/%i)"%(bbid,count+1,nblocks)
 # set the progress
 count=count+1
 inputs.progress = 20+(60*count)/nblocks
 #
 # denodding
 ppps=[]
 for i in range(nrep):
 denin=dpparr[i]
 if denin.count == 0:
 print -"nod cycle -",i," doesn't have any data"
 logger.severe("nod cycle -"+i.toString()+" doesn't have any data")
 continue
 ppp=deNodding(denin)
 ppps.append(ppp)
 #
 if len(ppps) == 0:
 print -"No PPP produced due to missing data. This observation CANNOT be
processed!"
 logger.severe("No PPP produced due to missing data. This observation CANNOT be
processed!")
 raise MissingDataException("No PPP produced due to missing data. This
observation CANNOT be processed!")
 #
 for i in range(len(ppps)):
 # run the optical crosstalk correction
 ppps[i]=photOptCrossCorrection(ppps[i],optCross=optCross)
 #
 # averaging over nodding
 appp = nodAverage(ppps)
 #
 # Add level 1 context to observation context
 level1=Level1Context(obsid)
 for key in level0_5.meta.keySet():
 if key -!= -"creator" and (not key.endswith("Date")) and key -!= -"fileName" and \
 key -!= -"type" and key -!= -"description":
 level1.meta[key]=level0_5.meta[key].copy()
 level1.creator=creator
 level1.addProduct(appp)
 obs.level1 = level1

 # promote to LEVEL1_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL1_PROCESSED
else:
 level1=obs.level1
 appp=level1.getProduct(0)
pass

Reprocessing your data

89

To break up this loop into its constituent parts, first of all, we set dpparr as an array to host input the
data after it has been demodulated later in the pipeline, and obtain the number of buidling blocks from
the Level 0.5 products:

dpparr=[DenodInput()]
 nrep=1
 nblocks=len(level0_5.getBbids(0xa321))

Next, we grab the engineering products from the Level 0.5 output product:

block=level0_5.get(obsid,bbid)
Get basic engineering data products
pdt = block.pdt
bsmt = block.bsmt

The next required step is to convert the BSM telemetry into a Y angle and Z angle timeline, and a
chopper ID/jiggle ID timeline, respectively - using this ouput product in conjunction with the pointing
and the SIAM files, we can create the SPIRE Pointing Product:

run the task to convert BSM telemetry in a Y angle and Z angle timeline
bat=calcBsmAngles(bsmt,bsmPos=bsmPos)

run the task to convert BSM telemetry in a chopper id & jiggle id timeline
cjt = calcBsmFlags(bsmt, bsmOps=bsmOps)

#create the SpirePointingProduct
spp=createSpirePointing(detAngOff=detAngOff,bat=bat,hpp=hpp, siam=siam)

Figure 4.23. BSM Angle Timeline

Reprocessing your data

90

We then in turn provide a number of corrections to our Level 0.5 datasets - electrical crosstalk cor-
rection, deglitching, flux conversion, sky position association, demodulation of the data, second level
deglitching and averaging of the demodulated data. The deglitching task parameters can be tweaked
as required - see the SPIRE Users Manual for a more in-depth discussion of the parameters for this
task, and the ranges allowed.

run the electrical crosstalk correction
pdt=elecCrossCorrection(pdt,elecCross=elecCross)

run the deglitch
pdt=waveletDeglitcher(pdt, scaleMin=1.0, scaleMax=8.0, scaleInterval=5,
holderMin=-1.6,\
 holderMax=-0.1, correlationThreshold=0.6, correctGlitches=inputs.correctGlitches)

run the flux conversion
fluxConv=obs.calibration.phot.fluxConvList.getProduct(pdt.meta["biasMode"].value,pdt.startDate)
pdt=photFluxConversion(pdt,fluxConv)

associate the sky position
ppt=associateSkyPosition(pdt,spp=spp)

run the Demodulation task
dpp = demodulate(ppt, cjt=cjt)

second level deglitching
dpp = secondDeglitching(dpp)

average on jiggle position
dpp = jiggleAverage(dpp)

Figure 4.24. Averaged demodulated data

This is repeated over the full number of nod cycles, and the averaged, demodulated output is appended
to the dpparr output product:

 #
 ncyc=((dpp.bbCount-1)/4)+1

Reprocessing your data

91

 if ncyc >= nrep+1:
 for k in range(ncyc-nrep):
 dpparr.append(DenodInput())
 dpparr[ncyc-1].addProduct(dpp)
 nrep=ncyc
 else:
 dpparr[ncyc-1].addProduct(dpp)
 print -"Completed BBID=0x%x (%i/%i)"%(bbid,count+1,nblocks)

 # set the progress
 count=count+1
 inputs.progress = 20+(60*count)/nblocks

The demodulated data is then denodded, the optical crosstalk correction is applied and finally, the
data is nod averaged:

 denodding
 ppps=[]
 for i in range(nrep):
 denin=dpparr[i]
 ppp=deNodding(denin)
 ppps.append(ppp)
 #
 for i in range(len(ppps)):
 # run the optical crosstalk correction
 ppps[i]=photOptCrossCorrection(ppps[i],optCross=optCross)
 #
 # averaging over nodding
 appp = nodAverage(ppps)

This nod averaged product forms the Level 1 output product, and is written out as such from the
pipeline. The Level 1 context is then added to the observation context, finishing Level 1 processing.

 # Add level 1 context to observation context
 level1=Level1Context(obsid)
 for key in level0_5.meta.keySet():
 if key -!= -"creator" and (not key.endswith("Date")) and key -!= -"fileName" and \
 key -!= -"type" and key -!= -"description":
 level1.meta[key]=level0_5.meta[key].copy()
 level1.creator=creator
 level1.addProduct(appp)
 obs.level1 = level1

 # promote to LEVEL1_PROCESSED
 obs.obsState = ObservationContext.OBS_STATE_LEVEL1_PROCESSED

4.4.4. Level 1 to Level 2 Processing
In the final step of the POF2 Point Source pipeline processing, we can obtain the final Level 2 products
for Point Source Observations, by passing the APP to the "pointSourceFlux" module, and by inspecting
the output JPP product:

user products
jpsfp = pointSourceFit (appp)
jpp = sourceFlux (jpsfp)

This completes the standard POF2 pipeline.

Congratulations! You have now successfully reprocessed your point source data from Level 0 to the
final Level 2 user products! Additional and more detailed information regarding the data processing
modules and the data at the various levels of processing can be found in the SPIRE Users Manual.

Reprocessing your data

92

__

4.5. SPIRE Spectroscopy Data Processing

4.5.1. Reprocessing SPIRE spectrometer data
In the standard processing applied at the HSC, the SPIRE spectrometer pipeline is divided into two
scripts - one for sparse observations (SOF1) and one for intermediate (4 point jiggle), or fully (16
point jiggle) sampled observations (SOF2). In either case the observation may consist of a set of
telescope pointings in a raster pattern on the sky. The sequence of processing steps applied to the data
are illustrated schematically in Figure 4.25.

Figure 4.25. The SPIRE Spectrometer pipeline.

Reprocessing your data

93

Reprocessing your observation using the simple steps described in this chapter may improve your
results significantly over the output of the standard pipeline for HCSS v4 (or earlier) for two main
reasons:

1. The standard pipeline up to HCSS v4 uses a single sky measurement to remove the telescope and
instrument background emission. In reality, both background levels vary from day to day. Day-
dependent reference observations are now available to subtract a background that better matches
the thermal conditions during the science observation.

2. The calibration products evolve rapidly at this point. It is very likely that your standard pipeline
results were generated using an older calibration tree version. Updated calibration products can be
applied using the latest calibration context.

While the data reprocessing described here usually results in an improvement to the final spectrum,
there may still be some spectral artifacts (particularly for weaker sources). These will be further dealt
with in HCSS v5.

Currently, the reprocessing steps outlined here apply only to sparsely sampled observations. Further
details of the additional processing needed for mapping observations will be added for HCSS v5.

In order to reprocess your data, you have to do the following:

1. Download the raw data from the HSA

2. Update the calibration tree attached to the observation to spire_cal_4_0

3. Get the SCalSpecInterRef calibration product closest in time to your observation from the SPIRE
ICC website

4. Re-run the pipeline from level-0.5 data using updated calibration files

The following sections explain these steps in more detail using an interactive pipeline script that is
reproduced in full at the end of the chapter. The two standard pipeline scripts for the Spectrometer
are also available from within Hipe (from the "pipeline" button in the taskbar), but they contain many
lines of code specific to automated processing in the standard processing environment. Eventually,
the simpler interactive script will also be available from the taskbar in Hipe, but not yet in HCSS v4.

4.5.2. Options available to the user
1 Set your OBSID and pool name

Specify the observation ID (obsid) and data pool name that contains the level 0.5 data for your
observation, i.e. the pool name where you have stored the data downloaded from the archive.

myObsID = [obsid]
myDataPool = [pool name]

2 Choose to limit the number of detectors

Setting this option to be true will result in only the central detectors SLWC3 and SSWD4 being
processed. If this option is set to be false, all the detectors will be processed. Selecting only the
central detectors saves both processing time and memory usage.

processOnlyCenterDetectors = 1

3 Select the dark sky reference interferogram

Using a reference interferogram which was taken under different conditions is the main cause of
errors in the resulting spectra. To produce an accurate spectrum, a reference interferogram taken in

Reprocessing your data

94

similar conditions to that of the source observation must be subtracted. Often, the best choice for a
reference interferogram is the one which was taken closest in time to the source observation. The
reference interferogram calibration files can be downloaded from the SPIRE ICC website http://
www.spire.rl.ac.uk/icc/InterRefFiles.html The reference observations taken each day may be shal-
lower than the source observation and introduce noise. Eventually, the goal is to provide deep ref-
erence observations that match the thermal conditions during the science observation.

myInterRef = -"[Enter path here + filename]"

For example:

myInterRef = \
"SCalSpecInterRef_CR_nominal_20050222_50002AA3_average_fourier_ALL_DETS.fits"

4 Choose to apodize interferograms or not

Choosing apodize = 1 will apply the standard apodization function to the interferogram, reducing
the ringing in the instrument line shape wings at the cost of spectral resolution. Setting apodize
= 0 will avoid apodization altogether and preserve the best spectral resolution available from the
SPIRE spectrometer.

apodize = 0

5 Define the output directory

The output directory defined here will be used to save the resulting FITS files containing the final
spectra.

outDir = -"[Enter path here]"

4.5.3. Detailed description of the processing script

4.5.3.1. Define some Jython "Methods"

The methods shown at the beginning of the script are used for merging the observation building blocks
together. These methods are needed for data taken prior to OD 302 since a calibration building block
was sometimes inserted into the middle of an observation. Since OD 302, calibration building blocks
are only placed at the end of each observation, and the spectral scans are not divided up.

def mergeNhkt(nhkts):
 for i in range(1, len(nhkts)):
 nhkts[0]['signal'].addRowsByIndex(nhkts[i]['signal'])
 nhkts[0]['mask'].addRowsByIndex(nhkts[i]['mask'])
 nhkts[0].meta['endDate'].value = nhkts[-1].meta['endDate'].value
 return nhkts[0]

def mergeSdis(sdis):
 bigSdi = SpectrometerDetectorInterferogram()
 bigSdi.meta = MetaData(sdis[0].meta)
 scanNumbers = []
 for sdi in sdis:
 scanNumbers.append(sdi.getNumScans())
 if len(sdis) == 1:
 return sdis[0]
 i=0

http://www.spire.rl.ac.uk/icc/InterRefFiles.html
http://www.spire.rl.ac.uk/icc/InterRefFiles.html

Reprocessing your data

95

 for sdi in sdis:
 toAdd = SUM(scanNumbers[i+1:len(scanNumbers)])
 for scanNumber in sdi.getScanNumbers():
 thisScan = sdi.removeScan(scanNumber)
 thisScan.setScanNumber(thisScan.getScanNumber()+toAdd)
 bigSdi.setScan(thisScan)
 i=i+1
 return bigSdi

4.5.3.2. Define the central detectors and thermistors and dark pix-
els

The value of the boolean variable "processOnlyCenterDetectors" was defined in the user input section.
Here, we specify the names of the central detectors, thermistors, and dark pixels so that if "proces-
sOnlyCenterDetectors" was set to 1, we know which detectors to keep and which to remove later in
the script.

detsToKeep = ["SLWC3", -"SSWD4"]
therms = ["SLWT1", -"SLWT2", -"SSWT1", -"SSWT2", \
 -"SSWDP1", -"SSWDP2", -"SLWDP1", -"SLWDP2"]
firstCut = therms
firstCut.extend(detsToKeep)

4.5.3.3. Load an observation context into HIPE

The following lines read in the observation from the local storage.

storage = ProductStorage(myDataPool)
obs = storage.select(MetaQuery(ObservationContext,\
 -"p","p.meta['obsid'].value == %iL"%myObsID))[0].product

4.5.3.4. Attach the latest calibration tree to the observation

In general, the appropriate calibration files will be included with the observation data. However, only
very recent data in the HSA have the latest calibration files attached. Therefore, the following two
lines fetch the v4 calibration tree from the HSA (will ask for username and password), and update the
observation context by attaching them. If you run the script for many observations, you could read the
calibration context from the HSA, save it as a local pool to disk, and read it in from there (rather than
fetching from the HSA for every observation).

cal = spireCal(calTree="spire_cal_4_0")
obs.calibration.update(cal)

4.5.3.5. Start processing from the Level 0.5 products

Use the following code in HIPE to load in the Level 0.5 products relevant to an FTS Scan building
block (bbid = 0xa106XXXX: the first scanning building block is 0xa1060001) - there is usually only
one scanning building block that contains the observation data (except for long observations before
OD302 - see above). The following lines set up empty Jython lists to contain the results for each
building block, and starts a loop over the scanning building blocks.

sdis = []
nhkts = []
for bbid in obs.level0_5.getBbids(0xa106):

Reprocessing your data

96

4.5.3.6. Extracting the Spectrometer Detector Timeline

The following line extracts the detector timeline product from the observation context. In the sample
data given below, the observation contains 20 spectral scans, see Figure 4.26. The data taken during
one scan are described in more detail in Figure 4.27.

 sdt = obs.level0_5.get(myObsID, bbid).sdt

Figure 4.26. The timeline of the SLWC3 detector for 20 scans.

Figure 4.27. Annotated interference pattern for one scan.

4.5.3.7. Nominal House Keeping Timeline

The following line extracts the nominal housekeeping timeline product from the observation context.
This product contains the instrument "housekeeping" data - for example, temperatures of various in-
strument components, as well as voltages, phases, etc.

 nhkt = obs.level0_5.get(myObsID, bbid).nhkt

For example, follow the steps below to view instrument thermometry:

1. Open the nhkt file from the variables list by double clicking on it.

2. Right-click on "Signal" and open with "TablePlotter"

Reprocessing your data

97

3. Activate the drop-down menu for the different axes to plot any of the instrument sensor measure-
ments, e.g. SCALTEMP.

Figure 4.28. SCALTEMP, a good indication of the temperature of the optical bench, as a function of time
during the observation.

4.5.3.8. Spectrometer MEChanism Timeline

The following line extracts the spectrometer mirror mechanism timeline product from the observation
context. This product contains data concerning the position of the mirror that is mounted on the linear
translation stage mechanism.

 smect = obs.level0_5.get(myObsID, bbid).smect

The TablePlotter can be used in the same fashion as with the NHKT product to produce a sample plot
of the mirror scan distance during the observation.

Figure 4.29. The position of the stage mechanism as a function of time during the observation.

Reprocessing your data

98

The correlation between the SCALTEMP plot in Figure 4.28 and the mirror stage mechanism plot in
Figure 4.29 indicates that the instrument temperature is affected by the operation of the stage mech-
anism.

4.5.3.9. Removing unnecessary channels

At this point, we remove the detectors that are not required (using the list of detectors to keep which
was defined above).

 if (processOnlyCenterDetectors):
 for chan in sdt.channelNames:
 if chan not in firstCut:
 sdt.removeColumn(chan)

4.5.3.10. Apply first level deglitching

The waveletDeglitcher removes the effects of cosmic rays from the SDT and replaces the gaps with
a polynomial fit since an interferogram with gaps cannot undergo a correct Fourier transform. We
recommend not altering the parameters of this correction.

 sdt = waveletDeglitcher(sdt,reconstructionPointsAfter=3, \
 reconstructionPointsBefore=2, \
 correctGlitches=Boolean.TRUE,\
 scaleMin=1, scaleMax=8, scaleInterval=5,\
 holderMin=-1.4, holderMax=-0.6,\
 correlationThreshold=0.85,\
 optionReconstruction="polynomialFitting",\
 degreePoly=6, fitPoints=8)

4.5.3.11. Apply the Non-linearity and Temperature Drift Correc-
tions

The non-linearity correction is required because the response of the bolometric detectors is non-linear
for substantially increased flux rates. The reponse of the bolometers also depends upon their operating
temperature. Therefore temperature drift and non-linearity corrections must be applied together.

 sdt = specNonLinearityCorrection(sdt, \
 nonLinCorr=obs.calibration.spec.nonLinCorr)
 sdt = temperatureDriftCorrection(sdt, \
 tempDriftCorr=obs.calibration.spec.tempDriftCorr)

4.5.3.12. Remove the thermistor channels

After the temperature drift correction the thermistor channels can be removed.

 if (processOnlyCenterDetectors):
 for chan in sdt.channelNames:
 if chan not in detsToKeep:
 sdt.removeColumn(chan)

4.5.3.13. Correct the detector signals for clipping

The detectors have a finite dynamic range and can saturate when observing a particularly strong source.
This results in an interference pattern peak which has been "clipped" off, eventually leading to an

Reprocessing your data

99

incorrect spectrum. Consequently, saturated detector signals must be reconstructed prior to the Fourier
transform.

 sdt = clippingCorrection (sdt)

4.5.3.14. Correct the detector signals for time shifts

The thermal response of the detectors and the read-out electronics is not instantaneous and imparts a
time delay to the recorded signals that is corrected here.

 sdt = timeDomainPhaseCorrection(sdt,\
 lpfPar=obs.calibration.spec.lpfPar,\
 chanTimeConst=obs.calibration.spec.chanTimeConst)

4.5.3.15. Create a Spire Pointing product

The SPIRE pointing product allows the calculation of the position on the sky that the instrument
detectors were viewing. This is different from the line of sight of the Herschel telescope for potentially
three reasons:

1. The detector arrays are offset from the boresight of the Herschel telescope.

2. If you are using more than just the central detectors, these are offset by a different angle.

3. The beam steering mirror can also alter the angular offset of the detector.

 bat = calcBsmAngles(nhkt, bsmPos=obs.calibration.spec.bsmPos)
 spp = createSpirePointing(hpp=obs.auxiliary.pointing, siam=obs.auxiliary.siam, \
 detAngOff=obs.calibration.spec.detAngOff, bat=bat)

4.5.3.16. Interpolate SDT and SMECT to create Interferograms

With the knowledge of the optical path difference from the SMECT combined with the SDT that has
been corrected for non linear response, temperature drift, clipping and signal time delay, a level-1 in-
terferogram can produced. The interferogram (i.e. the signal as a function of optical path difference) for
each scanning building block is appended to the list of Spectrometer Detector Interferograms (SDIs)
which is then merged into a single SDI outside of the loop.

 sdi = createIfgm(sdt=sdt, smect=smect, nhkt=nhkt, spp=spp, \
 smecZpd=obs.calibration.spec.smecZpd,\
 chanTimeOff=obs.calibration.spec.chanTimeOff,\
 smecStepFactor=obs.calibration.spec.smecStepFactor,\
 interpolType= -"spline")
 sdis.append(sdi)
 nhkts.append(nhkt)
sdi = mergeSdis(sdis)
nhkt = mergeNhkt(nhkts)

4.5.3.17. Subtract the interferogram baseline and apply second
level deglitching

By running the pipeline script line by line, you can inspect the results at each stage to gain a more
visual representation of the alterations from each processing step. If you compare the SDI before and

Reprocessing your data

100

after baseline correction, you will notice that the baseline after the correction should be at zero (but
note that once the correction has been applied it overwrites the input variable!).

sdi = baselineCorrection(sdi, type="fourier", threshold=4)
sdi = deglitchIfgm(sdi, deglitchType="MAD", thresholdFactor=4)

4.5.3.18. Subtract the reference interferogram from the source in-
terferograms

The following step subtracts the reference interferogram contained in the calibration file specified in
the user input section of the script.

interRef = fitsReader(myInterRef)
sdi = telescopeScalSubtraction(sdi, interRef=interRef, nhkt=nhkt)

The resulting interferogram is shown in Figure 4.30.

Figure 4.30. The source interferogram.

4.5.3.19. Apply Interferogram Phase correction

Since the strong signal in the SDI is not always exactly centred at zero in optical path difference,
this must be corrected before the Fourier transform to produce the final spectrum. This correction is
achieved by extracting the symmetric double-sided portion of the SDI (see Figure 4.31), followed
by a Fourier transform which will produce a spectrum containing both real and imaginary parts (see
Figure 4.32). The arctan of the ratio of the imaginary over the real part of the complex spectrum
is commonly referred to as phase. The phase correction adjusts the central position of the extracted
symmetric portion of the SDI so as to eliminate the imaginary part of the spectrum. Once this phase
correction is found, the same correction is applied to the whole SDI prior to the Fourier transform to
produce the almost finalised spectrum.

Reprocessing your data

101

Figure 4.31. The double-sided portion of the interferogram.

Figure 4.32. The complex spectrum from the double-sided interferogram.

presdi = apodizeIfgm(sdi, apodType="prePhaseCorr", apodName="aNB_20")
dsds = fourierTransform(sdi=presdi, ftType="prePhaseCorr", zeroPad="None")
sdi = phaseCorrection(sdi, sds=dsds, \
 polyDegree=2, pcfSize=127, \
 nlp=obs.calibration.spec.nlp, \
 phaseCorrLim=obs.calibration.spec.phaseCorrLim)

Also, if the "apodize" variable is set to True, the interferogram is apodized prior to the Fourier trans-
form using the standard apodization function.

Reprocessing your data

102

if apodize:
 sdi = apodizeIfgm(sdi, apodType="postPhaseCorr", apodName="aNB_15")

4.5.3.20. Transform the Phase-corrected interferograms

The phase corrected SDIs can now undergo the Fourier transform to produce the almost finalised
spectrum (see Figure 4.33). The spectrum stretches from 0 to approximately 200 wavenumbers for
both detectors, covering a much wider spectral range than the optical passband of the instrument.

ssds = fourierTransform(sdi=sdi, ftType="postPhaseCorr", zeroPad="standard")

Figure 4.33. The phase-corrected spectrum from a single scan.

4.5.3.21. Read in the appropriate flux conversion calibration prod-
ucts

The following lines get the correct flux conversion and beam parameter calibration products depending
on whether apodization has been selected in the user input section.

if apodize:
 fluxConv = obs.calibration.spec.fluxConv
 beamParam = obs.calibration.spec.beamParamList.getProduct(1, -"nominal", \
 obs.startDate)
else:
 fluxConv = obs.calibration.spec.fluxConvList.getProduct("HR", -"unapod", \
 -"nominal", obs.startDate)
 beamParam = obs.calibration.spec.beamParamList.getProduct(0, -"nominal", \
 obs.startDate)

4.5.3.22. Average the spectra and remove out-of-band data

The spectra can be averaged by combining all of the observed scans, or by combining forward and
backward scans of the mirror separately. In the following line, "separateScanDirections" is set to zero,
indicating that all scans are to be averaged together. If it was set to 1, forward and backward scans
would be kept separately. The keyword boolean "INCLUDE_OOB" is set to 0 to truncate spectral
data to the optical passband, the scientifically useful wavenumber range - see the resulting spectrum
in Figure 4.34. If this keyword was set to 1, the spectral data would not have been truncated. The
slight undulation of the spectrum is caused by the Relative Spectral Response Function of the SLW
and SSW filters.

Reprocessing your data

103

ssds = averageSpectra(ssds, separateScanDirections=0, \
 INCLUDE_OOB=0, bandEdge=obs.calibration.spec.bandEdge)

Figure 4.34. The average spectrum from the source observation.

4.5.3.23. Flux conversion

The following commands correct the flux values for the RSRF and convert them into units of Janskys
(10-26 W/m2/Hz). The initial conversion applies a correction assuming a uniformly extended source.
This is then saved in a copy called "extended". The original data for the central detectors is then further
corrected (using the beam parameters calibration product) assuming a point source, see Figure 4.35.

ssds = specFluxConversion(ssds, fluxConv=fluxConv)
extended = ssds.copy()
pointSourceSds = specFluxConversion(sds=ssds, fluxConv=fluxConv, \
 beamParam=beamParam, APPLY_POINT_SOURCE=1)

The variable "extended" is a copy of the ssds product prior to the point source flux conversion, since
the pointSourceSds command would overwrite the original ssds variable.

Reprocessing your data

104

Figure 4.35. The final, flux-calibrated source spectrum.

in HCSS v4, the label for the flux unit for point sources is incorrect. Currently, the labeled specifies
W/m2/Hz, when in actual fact, the unit should be Jy (10-26 W/m2/Hz).

There may still be some effects of incorrect telescope and instrument subtraction (particularly for
weaker sources). In the spectrum shown here, there is a slight flattening below 20 cm-1 due to a mis-
match in instrument temperatures. The step between the signal from the two detector arrays may either
be due to incorrect telescope temperature in the reference, or to the source being extended in the beam.
These remaining corrections will be addressed in HCSS v5.

4.5.3.24. Save the resulting spectra

The following lines store the extended and point source calibrated spectral products into fits files for
further analysis.

if apodize:
 simpleFitsWriter(extended, -"%s%i_finalSpectrum_extended_apodized.fits"\
 %(outDir,myObsID))
 simpleFitsWriter(pointSourceSds, -"%s%i_finalSpectrum_point_apodized.fits"\
 %(outDir,myObsID))
else:
 simpleFitsWriter(extended, -"%s%i_finalSpectrum_extended.fits"\
 %(outDir,myObsID))
 simpleFitsWriter(pointSourceSds, -"%s%i_finalSpectrum_point.fits"\
 %(outDir,myObsID))

4.5.4. The processing script

###
Purpose: A simplified version of SPIRE SOF1 pipeline script distributed
with HIPE 4.0. This is for data reprocessing by a user using
the latest SPIRE calibration products and a user specified background
interferogram for telescope and instrument subtraction.

In addition, the user has the options of (i) processing only
the central detectors (SSWD4/SLWC3) to speed up processing and

Reprocessing your data

105

to lighten the memory load, and (ii) producing either unapodized
or apodized spectra.
#
The results are two FITS files containing the final spectra with
extended-source and point-source flux calibration, respectively.

Usage: The user needs to specify the options in the simple user input
section at the beginning of the script.
#
Updated: 29/07/2010
#
###

###
>>>>>>> User_selectable_options:
#
(A) Specific OBSID and the name of the data storage in your Local Pool:
myObsID = [obsid]
myDataPool = [pool name]
#
(B) Only processing the center detector if processOnlyCenterDetectors = 1,
or all detector channels otherwise:
processOnlyCenterDetectors = 1
#
(C) Provide the file name for the dark sky reference interferogram,
myRefInter = -"[Enter path here + filename]"
#
(D) The final spectrum will be unapodized (if apodize = 0) or apodized (if
apodize = 1):
apodize = 0
#
(E) Specify the output directory for writing the resulting spectrum into a
FITS file:
outDir = -"[Enter path here]"
#
>>>>>>> End_of_user_choices
###

Define some Jython -"methods" (to merge building blocks together):
def mergeNhkt(nhkts):
 for i in range(1, len(nhkts)):
 nhkts[0]['signal'].addRowsByIndex(nhkts[i]['signal'])
 nhkts[0]['mask'].addRowsByIndex(nhkts[i]['mask'])
 nhkts[0].meta['endDate'].value = nhkts[-1].meta['endDate'].value
 return nhkts[0]

def mergeSdis(sdis):
 bigSdi = SpectrometerDetectorInterferogram()
 bigSdi.meta = MetaData(sdis[0].meta)
 scanNumbers = []
 for sdi in sdis:
 scanNumbers.append(sdi.getNumScans())
 if len(sdis) == 1:
 return sdis[0]
 i=0
 for sdi in sdis:
 toAdd = SUM(scanNumbers[i+1:len(scanNumbers)])
 for scanNumber in sdi.getScanNumbers():
 thisScan = sdi.removeScan(scanNumber)
 thisScan.setScanNumber(thisScan.getScanNumber()+toAdd)
 bigSdi.setScan(thisScan)
 i=i+1
 return bigSdi
##

Define the central detectors and thermistors and dark pixels:
detsToKeep = ["SLWC3", -"SSWD4"]
therms = ["SLWT1", -"SLWT2", -"SSWT1", -"SSWT2", \
 -"SSWDP1", -"SSWDP2", -"SLWDP1", -"SLWDP2"]
firstCut = therms
firstCut.extend(detsToKeep)

Reprocessing your data

106

Load in an observation context into HIPE:
storage = ProductStorage(myDataPool)
obs = storage.select(MetaQuery(ObservationContext,\
 -"p","p.meta['obsid'].value == %iL"%myObsID))[0].product

get the latest calibration tree relevant to HCSS v4 from the HSA
cal = spireCal(calTree="spire_cal_4_0")
attatch it to observation context
obs.calibration.update(cal)

Start to process the observation from Level 0.5
Process each SMEC scan building block (0xa106) individually, append to a list,
and then merge.
sdis = []
nhkts = []
for bbid in obs.level0_5.getBbids(0xa106):
 sdt = obs.level0_5.get(myObsID, bbid).sdt
 nhkt = obs.level0_5.get(myObsID, bbid).nhkt
 smect = obs.level0_5.get(myObsID, bbid).smect

 # remove all detectors except the center ones, termistors and dark channels:
 if (processOnlyCenterDetectors):
 for chan in sdt.channelNames:
 if chan not in firstCut:
 sdt.removeColumn(chan)

 # Do the 1st level deglitching:
 sdt = waveletDeglitcher(sdt,reconstructionPointsAfter=3, \
 reconstructionPointsBefore=2, \
 correctGlitches=Boolean.TRUE,\
 scaleMin=1, scaleMax=8, scaleInterval=5,\
 holderMin=-1.4, holderMax=-0.6,\
 correlationThreshold=0.85,\
 optionReconstruction="polynomialFitting",\
 degreePoly=6, fitPoints=8)

 # Run the Non-linearity and Temp Drift correction steps
 sdt = specNonLinearityCorrection(sdt, \
 nonLinCorr=obs.calibration.spec.nonLinCorr)
 sdt = temperatureDriftCorrection(sdt, \
 tempDriftCorr=obs.calibration.spec.tempDriftCorr)

 # Now also remove thermistors and dark pixels if the user wants process
 # the central detectors only:
 if (processOnlyCenterDetectors):
 for chan in sdt.channelNames:
 if chan not in detsToKeep:
 sdt.removeColumn(chan)

 # Do clipping repair if needed:
 sdt = clippingCorrection (sdt)

 # Time domain phase correction:
 sdt = timeDomainPhaseCorrection(sdt,\
 lpfPar=obs.calibration.spec.lpfPar,\
 chanTimeConst=obs.calibration.spec.chanTimeConst)

 # Add pointing info:
 bat = calcBsmAngles(nhkt, bsmPos=obs.calibration.spec.bsmPos)
 spp = createSpirePointing(hpp=obs.auxiliary.pointing, siam=obs.auxiliary.siam, \
 detAngOff=obs.calibration.spec.detAngOff, bat=bat)

 # Create interferogram:
 sdi = createIfgm(sdt=sdt, smect=smect, nhkt=nhkt, spp=spp, \
 smecZpd=obs.calibration.spec.smecZpd,\
 chanTimeOff=obs.calibration.spec.chanTimeOff,\
 smecStepFactor=obs.calibration.spec.smecStepFactor,\
 interpolType= -"spline")

 # Append this building block to the list:
 sdis.append(sdi)
 nhkts.append(nhkt)

Reprocessing your data

107

Merge all the building blocks into one:
sdi = mergeSdis(sdis)
nhkt = mergeNhkt(nhkts)

Baseline correction and 2nd-level deglitching:
sdi = baselineCorrection(sdi, type="fourier", threshold=4)
sdi = deglitchIfgm(sdi, deglitchType="MAD", thresholdFactor=4)

Subtract a background in the interferogram domain:
interRef = fitsReader(myRefInter)
sdi = telescopeScalSubtraction(sdi, interRef=interRef, nhkt=nhkt)

Phase correction:
presdi = apodizeIfgm(sdi, apodType="prePhaseCorr", apodName="aNB_20")
dsds = fourierTransform(sdi=presdi, ftType="prePhaseCorr", zeroPad="None")
sdi = phaseCorrection(sdi, sds=dsds, \
 polyDegree=2, pcfSize=127, \
 nlp=obs.calibration.spec.nlp, \
 phaseCorrLim=obs.calibration.spec.phaseCorrLim)

Creat the apodized interferogram:
if apodize:
 sdi = apodizeIfgm(sdi, apodType="postPhaseCorr", apodName="aNB_15")

Fourier transform to the spectral domain:
ssds = fourierTransform(sdi, ftType="postPhaseCorr", zeroPad="standard")

Get the flux conversion calibration products:
if apodize:
 fluxConv = obs.calibration.spec.fluxConv
 beamParam = obs.calibration.spec.beamParamList.getProduct(1, -"nominal", \
 obs.startDate)
else:
 fluxConv = obs.calibration.spec.fluxConvList.getProduct("HR", -"unapod", \
 -"nominal", obs.startDate)
 beamParam = obs.calibration.spec.beamParamList.getProduct(0, -"nominal", \
 obs.startDate)

Average scans together and apply flux conversion:
ssds = averageSpectra(ssds, separateScanDirections=0, \
 INCLUDE_OOB=0, bandEdge=obs.calibration.spec.bandEdge)
ssds = specFluxConversion(ssds, fluxConv=fluxConv)

keep a copy of the level-1 spectra (extended source calibration):
extended = ssds.copy()

Also apply point-source flux calibration:
pointSourceSds = specFluxConversion(sds=ssds, fluxConv=fluxConv, \
 beamParam=beamParam, APPLY_POINT_SOURCE=1)

Save the final spectra to FITS (both extended and point source calibrated):
if apodize:
 simpleFitsWriter(extended, -"%s%i_finalSpectrum_extended_apodized.fits"\
 %(outDir,myObsID))
 simpleFitsWriter(pointSourceSds, -"%s%i_finalSpectrum_point_apodized.fits"\
 %(outDir,myObsID))
else:
 simpleFitsWriter(extended, -"%s%i_finalSpectrum_extended.fits"\
 %(outDir,myObsID))
 simpleFitsWriter(pointSourceSds, -"%s%i_finalSpectrum_point.fits"\
 %(outDir,myObsID))

End of the script

__

	SPIRE Data Users Manual
	Table of Contents
	Preface
	1. Versioning
	1.1. Changelog

	Chapter 1. Introduction
	1.1. Scope of this Data User's Manual
	1.2. SPIRE observing Modes
	1.3. Structure of this document

	Chapter 2. Looking at your data
	2.1. SPIRE Observation Context Data Structure
	2.1.1. Anatomy of a SPIRE Observation: Products, Pools, Storage, and Building Blocks
	2.1.2. Linking it altogether: Introducing the Context
	2.1.3. Looking at your Observation Context in HIPE

	2.2. SPIRE Large Map and Parallel Mode Data Structure
	2.2.1. A first look at your image maps (The Level 2 Data Product)
	2.2.2. Saving a map as a FITS file and reading it in again
	2.2.3. Looking at the Level 1 Timeline Data
	2.2.4. Looking at the Level 0.5 Timeline Data
	2.2.5. Looking at the Raw Level 0 Data

	2.3. SPIRE Small Map Mode Data Structure
	2.3.1. A first look at your image maps (The Level 2 Data Product)
	2.3.2. Saving a map as a FITS file and reading it in again
	2.3.3. Looking at the Level 1 Timeline Data
	2.3.4. Looking at the Level 0.5 Timeline Data
	2.3.5. Looking at the Raw Level 0 Data

	2.4. SPIRE Point Source Mode Data Structure
	2.4.1. The Point Source Observation Mode
	2.4.2. Reading the JPP into memory and saving it as a FITS file and reading it in again
	2.4.3. Looking at the Level 1 Data for Point Source Observations
	2.4.4. Looking at the Level 0.5 Timeline Data for Point Source Observations
	2.4.5. Looking at the Raw Level 0 Data

	2.5. SPIRE Spectroscopy Data Structure
	2.5.1. SPIRE spectrometer introduction
	2.5.2. The Spectrometer Observation Context
	2.5.2.1. Load an observation context into HIPE
	2.5.2.2. Inspect an observation context in HIPE

	2.5.3. The Spectrometer Level 1 Data Products
	2.5.3.1. Extract the Level 1 data products
	2.5.3.2. Inspect the Level 1 data products
	2.5.3.3. Extract and plot Level 1 data

	2.5.4. Using SpecExplorer
	2.5.4.1. Starting SpecExplorer
	2.5.4.2. SpecExplorer Layout
	Bolometer Detector Arrays Display
	Control Panel
	Scan Selection
	Thumbnails
	Colour Scheme Range

	Preferences Panel

	2.5.4.3. Example 1: Plotting and Overplotting
	2.5.4.4. Example 2: Making a Thumbnail Image

	2.5.5. The Spectrometer Level 0.5 Data Products
	2.5.6. Looking at the Raw Level 0 Data

	Chapter 3. SPIRE Calibration Data
	3.1. SPIRE Calibration Explained
	3.1.1. The SPIRE Calibration Context
	3.1.2. The SPIRE Calibration Tree
	3.1.3. SPIRE Calibration Product Editions
	3.1.4. Updating a Calibration Tree
	3.1.5. Updating Individual Calibration Products
	3.1.6. Removing Calibration Products from the Tree
	3.1.7. Further Information

	Chapter 4. Reprocessing your data
	4.1. Introduction
	4.2. Reprocessing SPIRE Large Map and Parallel Mode Data
	4.2.1. Prerequites
	4.2.2. Level 0 to Level 0.5 Processing (Optional)
	4.2.3. Level 0.5 to Level 1 Processing
	4.2.4. Level 1 to Level 2 Processing

	4.3. Reprocessing SPIRE Small Map Data
	4.3.1. Prerequites
	4.3.2. Level 0 to Level 0.5 Processing (Optional)
	4.3.3. Level 0.5 to Level 1 Processing
	4.3.4. Level 1 to Level 2 Processing

	4.4. Reprocessing SPIRE Point Source Mode Data
	4.4.1. Prerequisites
	4.4.2. Level 0 to Level 0.5 Processing (Optional)
	4.4.3. Level 0.5 to Level 1 Processing
	4.4.4. Level 1 to Level 2 Processing

	4.5. SPIRE Spectroscopy Data Processing
	4.5.1. Reprocessing SPIRE spectrometer data
	4.5.2. Options available to the user
	4.5.3. Detailed description of the processing script
	4.5.3.1. Define some Jython "Methods"
	4.5.3.2. Define the central detectors and thermistors and dark pixels
	4.5.3.3. Load an observation context into HIPE
	4.5.3.4. Attach the latest calibration tree to the observation
	4.5.3.5. Start processing from the Level 0.5 products
	4.5.3.6. Extracting the Spectrometer Detector Timeline
	4.5.3.7. Nominal House Keeping Timeline
	4.5.3.8. Spectrometer MEChanism Timeline
	4.5.3.9. Removing unnecessary channels
	4.5.3.10. Apply first level deglitching
	4.5.3.11. Apply the Non-linearity and Temperature Drift Corrections
	4.5.3.12. Remove the thermistor channels
	4.5.3.13. Correct the detector signals for clipping
	4.5.3.14. Correct the detector signals for time shifts
	4.5.3.15. Create a Spire Pointing product
	4.5.3.16. Interpolate SDT and SMECT to create Interferograms
	4.5.3.17. Subtract the interferogram baseline and apply second level deglitching
	4.5.3.18. Subtract the reference interferogram from the source interferograms
	4.5.3.19. Apply Interferogram Phase correction
	4.5.3.20. Transform the Phase-corrected interferograms
	4.5.3.21. Read in the appropriate flux conversion calibration products
	4.5.3.22. Average the spectra and remove out-of-band data
	4.5.3.23. Flux conversion
	4.5.3.24. Save the resulting spectra

	4.5.4. The processing script

