The HIFI User's Manual
Hifi Editorial Board:

Max Avruch
Adwin Boogert
Tony Marston

Carolyn McCoey
Michael Olberg
Miriam Rengel

Russ Shipman

The HIFI User's Manual
Hifi Editorial Board:

Max Avruch

Adwin Boogert

Tony Marston

Carolyn McCoey

Michael Olberg

Miriam Rengel

Russ Shipman

Table of Contents

D = . 02 SRR 1
N DT = =01 T= O SOPPRTRIIN 1

I DT = Y 0o (1o £ PP 1

R A 001 = PSSP PPPT PPN 1
1.3.1. Herschel Observation CONEXLEuuieiiiiiieiiiiiiee e 2

2. Running the HIF]I PIPEIING ... ccvnii e e ean s 3
2.1. Introduction to the PIPEIINEoeiiiiii e 3

2.2. How to run the HIFI PIpelingoveenii e 3
2.2.1. hifiPipeline task in the GUIcc.iiiiiiiiii e 4

2.2.2. The hifiPipeline in the command lineccooeviiiiii i, 6

2.3. Running the Pipeline step by StEDovvvnieiiiiii e 7

2.4. How to customise pipeline algorithmscoouiiiiii i 8

G = o T T 1 I = - 9
3.1, INtroduction tO FlagSuevie e 9

T2 @ 4= 0 1 I = o N 9

3.3, ColUMN FOWTIAQS ...t e e e e e e e e aneees 10

@ 0 = 1 Y = o P 13
L Y= YT o RS o= - 17
EoT0 O 1 oo (0T 1o o PR PPPTPN 17

5.2. Basic Spectrum Viewing: the PIotXY Packagecocvuiiviiiiiiiiiiieee e, 17

5.3. Viewing wWith SPeCtrumPlOtcoouiiiiiiii e 18

5.4. The SpectrumEXpPlOrer PaCKagecvuuuiviiiieii et e e e 19
5.4.1. Starting the SpPectruMEXPIOreroovvviieii e 19

5.4.2. SElECHING SPECIIA ...uiiviiciie e e e r e 22

5.4.3. DISPlaying SPECIIA ... ccuviiiieei e e 22

5.4.4. BULION Boiiiiiiiiei ettt 23

N ST [0 1= = o P 24

B5.4.6. RESEr PaNElooiiiiiiiiii i 24

Y . 1= 1= 1< 0o = PP 24

6. Changing to LSB/USB and VEIOCITYccuviiiiiiiiii e e e e e 26
6.1. Changing HIFI FrequenCy SCalESoiveuiiiiiiieii e e s 26
6.1.1. Changing SPECLral VIBWSccuuiiiiieiiii e e e e e e 26

6.1.2. Change Spectral Views from the command line.............cccoocoiiiiiiiiinennnnn, 26

7. Mathematical Operations 0N SPECIIAcvvuiiieii e e e e e e e e e e e e eans 28
4% T [o o (0T 1o o TR PPPPTRPN 28

8. HIFI Standing Wave RemMOVal TOOIoiiuiiiiicii e e e e e e e 29
8.1. Introduction to FItHITIFIINGEoviiiii e 29

8.2. RUNNING FitHIfIFIINGE «..vv e e 29

S T g0 S o= 1 - 30
10. Sideband DECONVOIULIONuuiiiiiiiieieii et e e e e e s 31
10.1. Introduction to dODECONVOIULIONuuiiiiiiieiiiii e 31

10.2. Running the Deconvolution TOOIcocvuieiiieiii e e 33

10.3. Viewing Deconvolution RESUILSovviiiiiici e 36

11. How to Make @ SPECLral CUDEuuiiii e e e e e 39
11.1. Introduction to dOGHAAINGccvvniiiiieiie e 39

11.2. Using the GUI to make a Spectral CUbEccevviiiiiiiiiieii e, 39

11.3. Making a Spectral Cube viathe command line...........cccciviiiiiiii i, 42
11.3.2. UsSiNg Gridding Taskcceeuiiiiiiiiiieci e e e 46

12. Exporting HIFI datato CLASScoviiiiiieci et e e e e e e eanas 48
12.1. Introduction t0 NICIaSSccuuiiiiiiiie e e 48

12.2. hiClaSs BXAMPIESieeiieei e e e e e r e 48

12.3. How to read HIFI datain CLASSooiiiiiieiii e 51

G T |V = g YA oS =P 52

Chapter 1. Data Primer

A short introduction to the structure of Herschel HIFI data storage.

Last updated: 9 Oct, 2009

1.1. Data frames

The Herschel spacecraft stores data onboard (up two days worth) until _transmited to Earth. Science
data, such as a WBS spectrometer readout, come naturally in sets, or Frames. Data frames are
packetized for transmission from HSO to Earth. Along with House Keeping (HK) data they are
downlinked to the tracking station and thence to the Mission Operation Center (MOC) at ESOC in
Darmstadt, or to the latter directly. The data packets then flow from the MOC to the Herschel Science
Center (HSC) at ESA's European Space Astronomy Centre (ESAC) in Madrid. The HIFI ICC copies
the data from HSC, as well.

At ESAC, the data packets are 'ingested' into a database and the science data frames are reconstituted.

The combination of HK and science data creates a'Level 0 Observational Data Product.'

1.2. Data Products

refs. Herschel Data Product Document partl _v0.95.pdf, [_ftp:/ftp.rssd.esa.int/pub/HERSCHEL /
csdt/rel eases/doc/ia/pal /doc/gui de/html/pal -guide.html]

A Herschel Data Product consists of metadata keywords, tableswith the actual data, and the history of
the processing that generated the product. There are various product types (Observation, Calibration,
Auxiliary, Quality Control, User Generated). The types of Observation Data Products:

1. Levd -1: Raw data packets, separate HK and science frames as described above.

2. Level 0: HK and science frames grouped by time and building block ID (and perhaps other
parameters?). As close to raw data as the as the typical user would find useful to be.

3. Level 0.5: data processed to an intermediate point adequate for inspection; for HIFI they are
processed such that backend (spectrometer) effectsareremoved, essentially afrequency calibration.

4. Level 1: Detector readouts calibrated and converted to physical units, in principle instrument and
observatory independent; for HIFI, essentially an intensity calibration. It is expected that Level 1
data processing can be performed without human intervention.

5. Level 2: scientific analysis can be performed. These data products are at a publishable quality level
and should be suitable for Virtual Observatory access.

6. Level 3: These are the publishable science products with level 2 data products as input. Possibly
combined with theoretical models, other observations, laboratory data, catalogues, etc. Formats
should be Virtual Observatory compatible and these data products should be suitable for Virtual
Observatory access.

1.3. Contexts

A Context is a subclass of Product, a structure containing references to Products and necessary
metadata. A Context can contain Contexts, giving rise to Context ‘trees.' Types:

1. ListContexts (for grouping products into sequences or lists, hardly used)

2. MapContexts (for grouping products into key,value dictionaries)

http://www.esa.int/esaMI/Operations/SEMO4HZTIVE_1.html#subhead7
http://www.esa.int/SPECIALS/Operations/SEM8YCSMTWE_0.html
http://www.sron.rug.nl/%7Ewikiman/wikis/HifiIlt/DataPrimer?action=AttachFile&do=get&target=Herschel_Data_Product_Document_partI_v0.95.pdf
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/pal/doc/guide/html/pal-guide.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/pal/doc/guide/html/pal-guide.html

Data Primer

1.3.1. Herschel Observation Context

A MapContext instance serves as the organisational product unit for the Herschel Data Processing
system. It contains the following contexts:

1.

2.

Level-0, Level-0.5, Level-1, Level-2, & Level-3(optional) Contexts

Cadlibration Context

. Auxiliary Context

. Quality Context

. Browse product

. Trend Analysis Context

. optional Telemetry Context: not by default, only when the HSC deems it necessary because of a

serious problem in the processing to level-0 data.

The uses of these Contexts will be described in Chapter 2.

Note that the descriptive modifiers "Product” and "Context" are often dropped conversationally.

Chapter 2. Running the HIFI pipeline

Last updated: 1 March, 2010

2.1. Introduction to the Pipeline

HIFI datais automatically processed through the HIFI pipeline before it can be accessed from the the
Herschel Science Archive (HSA). The HIFI pipeline is used for processing data received from one
or more of the four HIFI spectrometers into calibrated spectra or spectral cubes, and comprises four
stages of processing:

1. Take data from the satellite and minimaly manipulate it into time ordered Data Frames (a
HifiTimeline, or HTP, for each spectrometer). Thisis a Level 0 data Product, which is the least
processed data available to Astronomers.

2. Remove backend instrumental effects - essentially a frequency calibration. There are separate
pipelines for the WBS and HRS spectrometers, and the result isa Level 0.5 Product. From HCSS
3.0 onward, you will not see this Product in the ObservationContext unless the generation of a
Level 1 product fails. However, you can always generate it for yourself.

3. Application of observing mode specific calibrations, i.e., subtraction of reference and off positions
and intensity calibration using Hot/Cold loads. Thisis done by the Level 1 pipeline and resulting
Level 1 Products are sets of frequency and intensity calibrated spectra.

4. The Level 2 pipeline removes further instrumental effects by converting to antenna temperature,
applying side-band gain corrections, and converting velocities to the local standard of rest frame.
Spectra are averaged, folded, or gridded into spectral cubes, as appropriate.

In theory, Level 2 products can immediately be used for scientific analysis but this is not
recommended. At the minimum you will need to remove baselines, standing waves (see Chapter 8),
spurs and other outliers, in the case of spectral scans you will need to deconvolve the spectra (see
Chapter 10). Y ou may also wish to change the temperature scale or reference frame (see Section 6.1).

Particularly in the early stages of the mission, datamay well need to belooked at much more carefully
before scientific analysis can be done. Indeed, you may wish to re-run all or part of the pipeline to
change defaults, use your own pipeline algorithm, or examine each step of processing. To that end, the
ObservationContext that is obtained from the HSA contains, along with the Level 0-2 data Products,
everything you need to reprocess your observations - calibration products, satellite data - as well
quality, logging, and history products, which you can use to identify any problems with your data or
its processing.

The following sections explain how to re-run the pipeline using the HifiPipeline task.

2.2. How to run the HIFI Pipeline

ThehifiPipeline task linkstogether the four stages of the pipeline described above and it can be used to
reprocess ObservationContexts up to any Level, for any choice of spectrometer(s) and polarisation(s).
You can aso make your own agorithms - or modify the ones provided in the scri pt s/ hifi/

Pi pel i ne directory in the installation directory of HIPE - and apply them to the pipeline.

Configuring the pipeline

@ The first step in reprocessing an observation is to configure one of the properties of the
pipeline. In the future ameans to automatically configure the pipeline for your needs will
be provided but, for now, save the following line in a .py file and run that script oncein
your session before running the pipeline.

Running the HIFI pipeline

Configuration.setProperty("hcss.ia.pal.store.spgstore","{pipelineout}")

Alternatively, you can eliminate the need to run a script by setting this property in
your .hcss/user.propsfile:

hcss.ia. pal . store.spgstore = {pi pelineout}

This property setsthe pool to which the pipelinewill, by default, write output. Y ou will see
bel ow (Saving the output:) how to save the output of the pipeline to a pool of your choice
an it isrecommended that you follow that method. Why? This pool is not overwritten but
appended to so you would need to set it everytime you ran the pipeline even if you made an
error, decided you wanted to try a different parameter, or the pipeline failed: this rapidly
becomes tiresome. Better to wait until you know you have something you want to save.

Another thing to note from thisis that pi pel i neout will become very large, and you
should delete it from time to time (simply delete the "directory” with r m).

2.2.1. hifiPipeline task in the GUI

Opening the hifiPipeline GUI;

The hifiPipeline task is run from the GUI in the following fashion:

* Click once on an Observation Context in the Variables pane and the "hifiPipeline" Task will appear
in the "Applicable Tasks' folder, double click on it to open the Task dialogue in the Editor view.

« Alternatively, open the "hifiPipeline" Task by double-clicking on it under the Hifi Category in the
Tasks view.

« A "Hifi Pipeline" View is also available from the HIPE Window menu (under Show View) but it
is not fully implemented yet.

Running the HIFI pipeline

File Edin Run Window Help
e Ha|lnspx
“Emm:'x

2 hififipeline x

| a0 1o exper mode.., |
Qs ervamonConiest I'_ MyOibs
Instrume s [¥ HRS-H [HRS=V [¥] WES-M [
fraomiLevel 0.0
upTolevel 2.0
palstore § <Novariable s

Variable name for abs: [obs

Infig

Ty
slafus:

progress: | [

Clea

[Console

IPE>
hmz:- MyOba = getObaervatien|l142180798)

The hifiPipeline task appears in the "Applicable" Folder in the Tasks view after clicking on the
Observation Context (MyObs) in the variable view.

Figure 2.1. HIFI pipelinetask: default view

Running the hifiPipeline GUI:

The default (or basic) dialogue alows you to re-process an already existing observation context, e.g.
from the Herschel Science Archive, through the pipeline. The default set-up of the pipeline is to

reprocessdatafromlevel 0to 2 for all four spectrometers (or as many aswere used in the observation).

* Theway the datais to be reprocessed is defined in the Input section:

Running the HIFI pipeline

2.2.2.

1. If the hifiPipeline task was opened from the" Applicable Tasks" folder then the ObservationContext
selected in the Variables View will automatically be loaded into the Task dialogue, and you will
see its name by the observation context bullet, which will be green. Alternatively, drag the name of
the observation context to be reprocessed from the V ariables view to the observation context bullet.

2. Select the spectrometers you wish to process data for by checking the desired instrument(s) and
polarisation(s). Both H and V polarisations of both the Wide Band Spectrometer (WBS) and High
Resolution Spectrometer (HRS) are checked by defaullt.

3. Select which levels to (re-)process from and to via the drop-down menus. By default the pipeline
will process level O data up to level 2. Data taken from the Herschel Science Archive (HSA) can
be re-processed from level O (option 0) to levels 0.5 (option 0.5), 1 (option 1), or 2 (option 2)

If you try to re-process from a higher Level data than exists in the Observation Context then the
hifiPipelineTask will automatically select the highest existing Level. For example, if you try to re-
process from Level 0.5 to 1 but the ObservationContext only contains a Level 0 product then the
pipeline will automatically run from Level Oto Leve 1.

4. You can supply your own algorithm to the pipeline (see Section 2.4). Click on the folder to browse
for thefile, or supply the full path in the text box. The ways you might want to modify the pipeline
algorithms are discussed in Section 2.3. See the notes below about customizing pipeline agoriths.

* Inthe Output section, choose the name of the observation context that will be produced or use the
HIPE default, obs.

* Click on "accept" to run the pipeline. The status ("running” if all is well, error messages if not)
and the progress of the pipeline are given in the Info section at the bottom of the Task dialogue.
Y ou will also see more informative messages about the status of the pipeline written in the console
and terminal.

Saving the output:
There are several methods you can use to save your reprocessed observation.
 Right click on the output ObservationContext obs and select "Send to Local store”

* When you run the pipeline, you can specify which pool the output should be written to. In the
console type,

nane="My- pi pel i ne-out"
pool =Pr oduct St or age(Local St oreFactory. get Store (nane))
and drag pool to the pal Store bullet in the GUI.

The "Expert" mode of the hifiPipelineisintended for Calibration Scientists and Engineers, and is not
described here.

The hifiPipeline in the command line

Below are some examples of running the hifiPipeline task from the command line, once again it is
assumed that an ObservationContext called Myobs has been loaded into the session.

Reprocess an Observati onContext up to Level 2 for all spectroneters:

MyNewobs = hi fi Pi pel i ne(obs=Myobs)

#

Reprocess Myobs fromLevel 0.5 to Level 1, for all spectroneters:

MyNewobs = hi fi Pi pel i ne(obs=Myobs, Fronievel =0.5, UpTolLevel =1)

#

Now reprocess MyNewobs (whi ch now contains data only up to Level 1) but only for
t he WBS.

WBS-H and WBS-V are the horizontal and vertical polarizations, respectively:

Running the HIFI pipeline

My/EvenNewer obs = hi fi Pi pel i ne(obs=MyNewobs, apids=['WBS-H , -'WBS-V'])

#

Reprocess Myobs fromLevel O to Level 0.5 for only horizontal polarization data:
MyNewobs = hi fi Pi pel i ne(obs=Myobs, apids=['WS-H ,' WBS-V'], FronLevel =0,

UpToLevel =0. 5)

#

Now i ncl ude your own algorithmfor the Level 1 pipeline, for all spectroneters,
fromLevel 0 to 1:

MyNewobs = hi fi Pi pel i ne(obs=Myobs, FronlLevel =0, UpToLevel =1,

| evel 1Al go={ful | _pat h} nyl evel 1Al go. py)

#

Specify the pool to which the pipeline should wite output:

name=" M- pi pel i ne-out"

pool =Pr oduct St or age(Local St oreFactory. get Store (nane))

MyNewobs = hi fi Pi pel i ne(obs=Myobs, pal St ore=pool)

#

|If the pipeline is not behaving as you expect (keeping old values, for exanple)
try resetting it:

hi fi Pi peline = hifiPipelineTask()

#

The exact ordering of the arguments does not matter.

What is an apid? "Application Program |Dentifier": it is what the pipeline calls spectrometers.

Note that to implement your own agorithm, you must load the algorithm script from wherever you
saved it into HIPE and compileit (run it with >>) before you run the pipeline (see Section 2.4).

To save My NewCbs to pool:

storage = Product St orage()

pool = Pool Manager . get Pool (" MyPool ")
st or age. regi st er (pool)

st or age. save(MyNewObs)

2.3. Running the Pipeline step by step

* Running the pipeline, or one part of the pipeline, step by step allowsyou to inspect theresults of each
step and change the default parameters of the pipeline. If you wish to create your own algorithm,
which must be written in jython, for a part of the pipeline, then thiswill likely be your first step.

* Itisnot expected that there will be much need to customise the spectrometer pipelines (up to Level
0.5) and indeed there are only a few steps of the spectrometer pipelines that have some options. It
is more likely that you may wish to play with how off and reference spectra are subtracted in the
Level 1 pipeline, although it is expected that the default settings should work well.

» To step through the pipeline you must work directly on the appropriate level HifiTimeLine (HTP
- the dataset containing all the spectra, including calibration spectra, made during an observation
for a given spectrometer). So the first thing you must do is extract the HTP you want to work on
from your ObservationContext:

* Drag an HTP from the ObservationContext tree in either the Context Viewer or Observation
Viewer into the Variables view, and rename it if you desire by right clicking on the new variable
and selecting "rename”.

¢ Inthe command line, the formalism to extract an HTPis
htp = obs.refs["l evel 2"]. product . refs["HRS-V-USB"]. product
"level2" and "HRS-V-USB" should be replaced by the level and backend combination desired.

* Whenyou select an HTP in the Variables view in HIPE you will notice that many tasks with names
like DoWbsDark, mkFregGrid. These are the names of all of the steps in the HIFI pipeling; mk...

Running the HIFI pipeline

signifies a step where a calibration product is being made, Do... is a step where a calibration is
applied. You can step through the pipeline using these tasks or (more efficiently) use and modify
the scriptsthat are supplied with the softwareinthescri pt s/ hi fi / Pi pel i ne directory inthe
installation directory of HIPE

* For information on the steps of each level of the pipeline (their names, the order to run themin, and
what options you can change) see the HIFI Pipeline Specification document, see 7?72.

2.4. How to customise pipeline algorithms

1. The pipeline algorithm scripts can be found in:

* WBS. $BuildDir/scriptg/hifi/pipeline/wbs/WbsPipelineAlgo.py

» HRS. $BuildDir/scripts/hifi/pipeline/hrs/HrsPipelineAlgo.py

* Level 1. $BuildDir/scripts/hifi/pipeline/generic/Level 1PipelineAlgo.py

» Level 2. $BuildDir/scriptg/hifi/pipeline/generic/Level 2PipelineAlgo.py
2. Open the algorithim you wish to customise in the editor, edit it (and save!)
3. Compile your agorithm by running the script with >>

4. Apply the algorithm to the pipeline as described in the sections above.

Chapter 3. Flags in HIFI data

Last updated: 11 Feb 2010

3.1. Introduction to flags

Flags (also called masks) are identifiers of specific issues with the data, such as saturated pixels or a
possible spur, that can affect the quality of the final product. Flags are used to identify affected data
and to make a caution during its processing.

A Flag has a defined name and a value, which specifies the nature of the flag. The flags are divided
into two categories, depending on whether they apply to an individual channel (pixel), or to acomplete
Dataframe. They are called channel f lags, and column rowflags, respectively.

Note

@ There are aso Quality Flags, which are found in the Quality Product in the
ObservationContaxt and are used to provide you with means to make a quick assessment
of the quality of your data, they are discussed in chapter Chapter 4

3.2. Channel flags

Channel (or pixel) flags apply to individual pixelsand are added asacolumninthe HTP. Their names
are also added to the metadata of a dataset during processing and this is used for the history of the
pipeling; it also means that you can tell that, e,g., the WBS pipeline has been applied if you see things
like "isMasked" and "checkZero" in the metadata.

For each pixel there are 32 flags which can be set, currently 8 are defined, and the definition of the
mask bits and valuesin HIFI datais given here:

Flag Name Value Description

Bad pixel 0 If thisbit is set, the sample
contains a bad pixel

Saturated pixel 1 If this bit is set, the sample was
saturated

Not observed 2 If thisbit is set, the sampleis
not observed

Not Calibrated 3 If this bit is set, the sampleis
not calibrated

In overlap region 4 If this bit is set, the sampleis

in the subband overlap region.
|.e. it can be seen better in the
adjacent subband.

Glitch detected 5 If this bit is set, the sampleis
not observed

Dark pixel 6 If thisbit is set, the sampleis
used to measure the dark

Spur candidate 7 If thisbit is set, the sampleis

acandidateto beaspur. Itisa
‘candidate’ since not all things
flagged by the spurfinder are
necessarily spurs

Flagsin HIFI data

3.3. Column rowflags

Column rowflags (the "rowflag" column in the HIFI spectrum TableDataset) apply to the complete
Dataframes (DF) or rows in a HifiSpectrumDataset (HSD).

For bit nthe valueis computed according toval ue=2("" . Thefirst 5 bits are about the packets from
which the DataFrame (DF) is reconstructed, and are unlikely to ever occur. Below is atable showing
the current names and values of HIFI rowflags:

Flag Name Bit Value Description

PacketOrder 1 1 Error in the
packet order while
constructing the
DataFrame

PacketL ength 2 2 Error in the packet
length while
constructing the
DataFrame

TooMuchData 3 4 More data than can be
fit in aDataFrame

FirstPacket 4 8 Error in the start packet
while constructing the
DataFrame

NoBlocks 5 16 No block information
present while
constructing the
DataFrame

Spare 6 32

spare 7 64

UnaignedHK 8 128 HK could not

be aligned with
DataFrames. When the
columns "df _transfer"
and "hk_transfer" in
the TableDataset are
different, bit 8 isset

noChopper 9 256 No valid Chopper
information. Set when
the flagbit is zero in the
DFs, extracted from the
HK packetsif possible

noComChop 10 512 No valid Commanded
Chopper information.
Set when the flagbit
iserointhe DFs,
extracted from the HK
packetsif possible

noFreqMon 11 1024 No valid Frequency
Monitor information.
Set when the flaghit
iszerointhe DFs,
extracted from the HK
packetsif possible

10

Flagsin HIFI data

Flag Name

Bit

Value

Description

nolLoCodeOffset

12

2048

Novalid LO code
offset information. Set
when the flagbit is zero
in the DFs, extracted
from the HK packets if
possible

noLoCodeMain

13

4096

No valid LO code main
information. Set when
the flagbit is zero in the
DFs, extracted from the
HK packets if possible.

BbidCorrection

14

8192

Correction of Bbid, see
SPR 1963. Not relevant
any more. It was during
SOVT testing, but the
onboard software has
been corrected since

MixerCurrentDeviation

15

16384

Differencein
mixer currents
exceeds tolerance
when applying
DoRefSubtract.

MixerCurrentDeviation

16

32768

Differencein
mixer currents
exceeds tolerance
when applying
DoOffSubtract.

MixerCurrentDeviation

17

65536

Differencein
mixer currents
exceeds tolerance
when applying
DoFluxHotCold or
MkFluxHotCold.

NoHotColdCalibration

18

131072

Division by the
bandpass has not been
carried through

SuspectLO

19

262144

LO Frequency islisted
in the Bad Frequency
Table. Data not
necessarily is corrupted

SpurDetected

20

524288

Spur detected in the
cold load. Data (partia
or total) is corrupted

IgnoreData

21

1048576

User has the option to
set this flag. Sometools
(e.g. doDeconvolution)
will honor it

11

Flagsin HIFI data

=] Editor X

a & obs.refs|]product {& obs refsl]product i obs refs[..] product |+ obs.refsl..dataset”] x

4D T T T | T T T | T T T | T T T | T T T | T T T T T

35
30

2.5

1S
1.0
0.5

0.0

flux
IIII|IIII|IIII|IIII|IIII?IIII'IIII'IIII'IIII

5 I A Y S Y O) 0 O . I 0 I O
3800 4000 4200 4400 4800 4300 S000 =)

frequency (MHz)

[

00

4 F Pl i

Chopper
=1.19984 13

AL 123 4 IMATT nriytes

[;_&i, Hj__st_:_}_r\..rlg Log El console x

HIPE> poolname='268435841 ohs'

HIPE> storage = ProductStorage()

HIFE> pool = FoolManager.getFool({poolname)
HIPE> storage.register(pool)

HIPE> result = storage.select{query)
HIFE> obs = storage.load(result[0].urn).product
HIPE=

HIFE= query=herschel.ja.pal.query.AttribQuery(herschel.ia.ohs.0bservationContext,"

e

Caption: Example of aHIFI spectrum TableDataset, which containsthe "rowflag" columnwith avalue
of 256.

12

Chapter 4. Quality Flags

Last updated: 10 Feb, 2010

Quality Flags are raised during standard processing of HIFI data. Flags should be created from every
processing step of the pipeline, from theinitial creation of the Hifi TimelineProduct (Level 0), through
to the final product of Level2 processing. If all goes well, the flags will have their default values but
if a certain processing step is unable to perform the action it was designed for the flag will take a
different value. If the pipeline produces aflag other than the default value, thisflag is promoted to the
Quality Report. Thusthe quality report is by definition alist of thingsidentified as have gone wrong.
A quality report is found from the ObservationContext:

obs.refs["quality"].product

Please note the difference between a quality flag and flagging data. In flagging data you identify that,
for example, agiven channel sampleis saturated; if those channels are saturated repeatedly during the
observation then the quality flag "SATURATEDNUMBER" wil be raised.

Below isalist of the current available types of quality flags for the HIFI pipeline, for each level. The
format below gives flag name, flag description, and flag default value.

Level O Quality Flags.

Quality Flags

UNALIGNED_HK("unaignedHKdata"," Percentage of Dataframes which have unaligned HK",
0.0)

NOCHOPPER("noChopperHK data"," Percentage of DFs having no chopper information”, 0.0)

NOCOM CHOP("noCommandedChopperHK data"," Percentage of DFs having no commanded
chopper information”, 0.0)

NOFREQMON("noFrequencyMonitorHK data’, " Percentage of DFs having no frequency monitor
information", 0.0)

NOL COFFS("noL oCodeOffsetHK data"," Percentage of DFs having no LO Code offset
information"”, 0.0)

NOLCMAIN("noLoCodeMainHK data"," Percentage of DFs having no LO Code main
information"”, 0.0)

BBID_CORRECTION("bbidCorrection”,"Percentage of Bbids corrected according to commanded
Bhids", 0.0)

DATAFRAMES OUTOFORDER("dataframesOutOfOrder","Unordered or duplicate Dataframes
found", false)

MISSING_DATA("missingData","L ess data found than expected"”, false)
SURPLUS DATA("surplusData’,"More data found than expected", false)

Quality Flagswith Range Consequences for Action required
specified thresholds science data

FPU_MIXER_CURREN[T("egilkkeBPArent”," FPU | maybe a degraded
Check: Mixer current is|2xnom_value], for SIS |baseline
Out Of Limit", false)

[30pA, 60pA], for HEB | maybe a degraded

baseline quality
FPU_MIXER_CURRENT_VARIANCE("mixerConestieyzdegcaicd-PU
Check: Mixer current baseline quality

13

Quality Flags

Quality Flagswith
specified thresholds

Range

Consequences for
science data

Action required

variance is Out Of
Limit", false)

FPU_MIXER_VOLTAGHEGmI xeiveliagey' FPU

Check: Mixer Voltage
isOut Of Limit", false)

nom_value+100uV]

maybe a serious
problem

Inform engineering
team

FPU_MIXER_MA GNEJnOtiRRENT] 96ixer M ajrasdineaul tH5

Check: Mixer Magnet
Current is Out Of
Limit", false)

nom_valuex1.04]

unstable

FPU_MIXER_MAGN EJnBESISIUERIDE (" magn

Check: Mixer Magnet
Resistance is Out Of
Limit", false)

nom_valuex1.2]

45 L ST SFPU

Inform engineering
team

FPU_CHOPPER(" fpuChfypmerdfFi0.05 V,

Check: chopper
measured values differ
from the commanded",
false)

nom_offset+0.05 V]

potential pointing or
readout problems

Check other pointing
out of limit flags

FPU_DIPLEXER_RESI
Check: Diplexer
Resistance is Out Of
Limit", false)

nominal_valuex1.2]

Sl OBEI(ekol&erRes taadelSBRtblem

Inform engineering
team

FPU_LNA("Ina","FPU
Check: IF Amplifier
values are Out Of
Limit", false)

[-15V, +0.5V]

IF power level ok?
--> maybe unstable
baseline. Level
dropped?--> transistor
faulty

Inform engineering
team

FPU_HOT_LOAD("hot

[eari1 16RY

serious problem with

Inform engineering

Check: Hot load the heater or withthe |team

temperature is Out Of readout

Limit", false)

SFPU_COLD_L OAD("¢cpldRoad] " FPU serious problem Inform engineering
Check: Cold load team

temperature is Out Of

Limit", false)

FPU_LEVEL_TEMP("l(Ie52:5 KPU serious problem Inform engineering
Check: Level O with the thermal team
Temperatureis Out Of environment or with

Limit", false) the readout

Level 0.5 Quality Flags:

WBS.

Quality Flags

COMBFLAG(QWhbsFreg.VALIDATE,"Hag for all COMB of the observation”,false)

ZEROFLAG(QWhbsZero.VALIDATE, "Flag for all Zero of the observation” false)

SPIKENUMBER(QWbsSpikes.NUMBER, "Maximum number of spikes detected in a Comb", 0)

SATURATEDNUMBER("pixel Saturated”," Maximum number of saturated pixel detected in a

single spectrum",0l)

SDARKFLAG("darkFlag"," Spectrum contains saturated dark ",false)

BADPIXELS("badPixels',"Number of channels marked as BAD due repeated saturations”,0l)

14

Quality Flags

Level 0.5 Quality Flags: HRS.

Quality Flags

NOQDC("noQDC", "No Quantization Distortion Correction could be processed.” false)

FASTQDC("fastQDC", "Fast Quantization Distortion Correction processed. Not optimal." ,false)

NOPOWCOR("noPowerCorrection","No Power Correction could be processed.” false)

Level 1.0 Quality Flags.

Check data structure.

Quality Flags

OBSERVINGMODE("observingMode"," Observing mode not recognized - consult the pipeline
configuration xml file.", false)

UNKNOWNBBTY PE("unknownBbType","Bbtype not known.", false)

Check freq grid.

Quality Flags

FREQUENCY DRIFT("maxFreqDrift", "Unacceptable maximum drift in the frequency grid
detected.”, false)

FREQUENCY CHECK S("'noFreqChecks", "Frequency checks and/or frequency grouping failed.”,
fase)

Check phases.

Quality Flags

CHOPPERPATTERN("chopperPattern”, "Pattern observed for the Chopper not as expected in all
datasets.”, false)

CHOPPERVALUES("chopperValues', "Number of distinct Chopper values not as expected in all
datasets.”, false)

LOFPATTERN("lof Pattern”, " Pattern observed for the LoFrequency not as expected in all
datasets.”, false)

LOFVALUES("lofValues', "Number of distinct LOF values not as expected in all datasets.”, false)

BUFFERPATTERN("bufferPattern”, "Pattern observed for the buffer not as expected in all
datasets.”, false)

BUFFERVALUES("bufferValues', "Number of distinct buffer values not as expected in all
datasets.”, false)

PHA SECHECK S("noPhaseChecks", "Not all phase checks could not be carried through or
completed.", false)

Hot/cold-calibration.

Quality Flags

HOTCOLDDATA ("hotcoldData"," Data measured from hot and cold loads not sufficient for hot/
cold calibration.", false)

TSYSFLAG("tsysFlag","Hot/cold calibration not successful.", false)

INTENSITYCALIBRATION("intensityCalibration”, "Intensity calibration not or not for all
spectra carried through.”, false)

Channel weights.

15

Quality Flags

Quality Flags

CHANNELWEIGHTSFLAG("channel Weights'," Problem occurred while computing channel-
dependent weights. No weights added.”, false)

Refer ence subtraction.

Quality Flags

REFSUBTRACTIONFLAG("ref Subtraction”, " Reference subtraction not processed - maybe
identification of phases not successful.", false)

Off smooth.

Quality Flags

NOOFFBASELINE("noBaseline”, "No off baseline could be calculated.”, false)

Off subtraction.

Quality Flags

ONOFFSEQUENCE("onoffSequence”," ON/OFF datasets not in expected sequence (...-ON-OFF-
ON-OFF-... or ...-ON-OFF-OFF-ON-ON-....", false)

ONOFFPAIRSIZE("onoffLength", "Some ON/OFF dataset pairs found with unequal number of
rows.", false)

ONOFFPROCESSING("onoffProcessing”, "More ON- than OFF-datasets found in the data - not
all ON-datasets could be processed with OFF-dataset(s).", false)

OFFBASELINESUBTRACTION("offBaselineSubtraction”, "No off baseline subtraction carried
through since no off baseline data available.”, false)

DATALOSSINAVERAGE("average', " Some data has been lost while computing the average over
many datasets.”, false)

16

Chapter 5. Viewing Spectra

Last updated: 19 Dec, 2009

5.1. Introduction

HIFI spectracan bevisualised in several ways, at variouslevelsof sophistication and user-friendliness.
Here the PlotXY and SpectrumExplorer packages are described.

5.2. Basic Spectrum Viewing: the PlotXY
Package

PlotXY/() is the basic package to plot arrays of data points in the HCSS, and it can be used to plot
HIFI spectraaswell. It hasalot of options, making the plots highly configurable. Hereis an example
of plotting a HIFI spectrum:
» Get the freguency and flux datato be plotted from the spectrumdataset 'sd':
freq=sd. get Wave() . get (0)
fl ux=sd. get Fl ux() . get (0)
e The simplest possible plot:
out =Pl ot XY(freq, flux)
» When plotting multiple spectrum datasets, say 'sd1’ and 'sd2' in one figure:
#get the wavelengths and fluxes to be plotted
freql=sdl. get Wave().get (0)
fl uxl=sdl. get Fl ux().get (0)
freq2=sd2. get Wave() . get (0)
fl ux2=sd2. get Fl ux().get (0)
#create the plot variable
p=PI ot XY()
#create the plotsin batch mode
p. batch=1
#define the layer variable
H=[]
#remove any non-numbers (NaN's, Infinites etc.)
val i d=f | ux1. where(l S_FI NI TE)
#create layer for first plot

| =Layer XY(freql[valid],fluxl[valid])
17

Viewing Spectra

#append to layer variable
I'l.append(l)
#repeat the above for the 2nd plot to be overlaid
val i d=f | ux2. where(1 S_FI NI TE)
| =Layer XY(freqg2[valid], flux2[valid])
I'l.append(l)
#define the plot layers that have just been created
p.l ayers=l|
#get out of batch mode. This actually creates the plot
p. bat ch=0

* And thisis how some common features of the plot are modified.
p. set Yrange([0, 1.5])

p.setTitleText("This is an exanple plot")

5.3. Viewing with SpectrumPlot

Itisalso possibleto display spectrawithout taking apart the dataformat asis described in the previous
section. All Herschel spectratypes can be displayed with the Spect r unPl ot package.

If spect r umisaHerschel Spectral type (Spectrumld, Spectrum2d) then:

spl ot =Spect runPl ot (spect rum useFrane=1)

will simply display the spectrum along with some standard header information. The useFr ane=1
allowsfor the possiblility of creating aplot without actually viewing it at first, but asthelast step. The
SpectrumPlot moduleis build on PlotXY, and so many of the features you would usein Pl ot XY you
can also usefor Spect r unPl ot . Below are afew examples:

from herschel . i a. tool box. spectrum gui inport SpectrunPl ot
from herschel .ia.gui.plot.renderer. Styl eEngi ne. Chart Type i nport H STOGRAM LI NECHART
#

#

Creating the plot

sp=Spect runPl ot (spect rum useFrane=1)

#

#

addi ng a second spectrumto the plot

sp. add(spect run)

#

#Start

fresh again

p = SpectrunPl ot (spectrum useFrane=1)
#

#get

gr aphs

g0 = p. get G aphs()[0]

g2 = p.get G aphs()[2]

#

#di splay as line graph or histogram
g0. | ayer. styl e. chart Type = H STOGRAM

18

Viewing Spectra

g2.l ayer. styl e. chart Type

= LI NECHART

#

#add

annot ati ons

g0. | ayer. addAnnot ati on(Annot ati on(4000, 1, "M
annot ati on"))

g0. | ayer. addAnnot at i on(Annot ati on(5000, 0. 98, "My
annot ati on"))

#

#sel ect

a range of data

g0. | ayer. xaxi s. addMar ker (Axi sMar ker (4200, 4400))
g2. | ayer. xaxi s. addMar ker (Axi sMar ker (6000, 6500))

These last lines will produce the following plot:

¥y annot ation

Observation: 268510098

backend: WBS -H activeband: 1h,
lofte queney, 527 995958, sds_type: chopse

I:l-gglaIIIIIIIII|IIII|IIII|IIII|IIII|IIII|IIIIIIIIIIII

0.994
0.5992

0.890

0988

flux

0925

0924

0982

My ammotation

0.930

':IQ?S IIIIIIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
3500 4000 4500 5000 5500 8000 6500 7OOO 7500 8000 3500

Frequency scale (MHz)

Figure5.1.

5.4. The SpectrumExplorer Package
5.4.1. Starting the SpectrumExplorer

The SpectrumExplorer package allows oneto visualize HIFI, PACS, and SPIRE SpectrumDatasetsin
auserfriendly, interactive way. To activateit, click on a SpectrumDataset or Product in the Variables

19

Viewing Spectra

window or Observation Viewer with the right mouse button and select 'Open With' and 'Spectrum
Explorer'. If thisis the default, it suffices to double-click on the variable.

Initially an empty plot is displayed in the top part of the window that is opened and a selection panel
is displayed in the bottom part.

Thelook of the selection panel depends on the SpectrumDataset type. A typical exampleis displayed
in the following picture. When the added SpectrumDataset is a Spectral Cube, a cube visualizer is
displayed instead with which spectra can be selected.

20

Viewing Spectra

File Edit Run Window Help
e Ao DE | =e e
] Editor x ',

-1+hr51.r X

1.0

0.8

0.6

0.4

0.2

0.0

-(.2

-0.4

-0.6

1.0 0.8 0.6 0.4

subplot [-0.18 , 0.24]

Al 1 2 2456 7 8 9101112131415 16 obs time Chopper
0.0 | | Pl o] n] x| %] x] 1626823, -4.409
Lo | | Palslolalslalelalelelelxl«lx] 1626823 -4 49

Viewing Spectra

5.4.2.

When a Product is selected for display, the bottom part will show a 'loading datasets..." message as
long as the Product is being processed. Each SpectrumDataset found in the Product is added to the
selection panel.

Thelocation of thedivisor between both panel s can be changed through drag drop interaction. Clicking
on one of the little black arrows displayed on the left edge of this divisor extents a single panel to
itsfull size.

Selecting Spectra

The attribute columns in the selection panel can be used to find spectra that one wishes to plot. A
single click on a header of such column sorts the rows according to that column's entries. Clicking it
again inverts the sort order. A double click removes the sort and therefore brings the ordering back
toitsinitial state.

With drag and drop, the columnsthemselves can bereordered. A right click on onethe headers showsa
dialogue box with aselection list of all column headers. With thislist the columnscan also bereordered
or even hidden from view. Hold the shift button to hide/display awhole range of columns at once.

Furthermore, specific spectra can be selected by applying a filter on the attribute columns. Open the
filter panel by selecting Dialogs -> Filter from the right-mouse click menu or by clicking on the filter
icon in the button toolbar at the top of the HIPE screen. Specify the attribute name (from one of
the column headers) and enter the filter values, that can be ranges, circular ranges or exact values.
The filters are combined by applying the 'AND' operator. Clicking on the green circle next to a filter
temporarily disables that filter. Clicking on the red cross removes it from the panel.

| x filters |

attribute filter
df_transfer 300 - 400 @ (3
Chopper 4.4 +/-0.1 @ | 3
blbnumber 1 HE

5.4.3. Displaying Spectra

In the general selection panel at the bottom, each row depicts an individual spectrum. The numbersin
thefirst column show theindex of the spectrum within the SpectrumDataset. If SpectrumExplorer was
opened on a Product, the index is preceded by the index of the SpectrumDataset within the Product.
For example, 2.3 denotes the fourth spectrum within the third SpectrumDataset within the Product
(given that both indices start with 0).

Clicking the button in the first column displays all segmentsin that spectrum. A double-click removes
them from the plot. The same accounts for the top row of buttons: clicking displays a single segment
for all spectra, while double-clicking removes them from the plot. The 'ALL' button in the top left
corner of the selection panel displays all segments of all spectra. Finally, individual segments can be
displayed by the clicking the approprate box. The colour of the button is changed to the colour of
the spectrum displayed in the plot. In case a Product is displayed with SpectrumDatasets containing
different numbers of segments, the invalid segments are disabled and displayed with a grey 'x'. An
example is shown in the figure above.

22

Viewing Spectra

5.4.4. Button Bar

H e X Lk M| ® @ THLEE N A

At the top of the HIPE screen, the SpectrumExplorer buttons following the ‘New..." and 'Open File...'
buttons have the following meaning:

* button 1. save the plot asa PNG, PDF, EPS or JPEG file
* button 2: send the plot to the printer

 button 3: zoom mode. This is the default mode when SpectrumExplorer is started. Change the
horizontal and vertical plot ranges by drawing a rectangular box using the left mouse button.
Control-1eft mouse button will un-zoom the plot (or use the Autorange option under the right mouse
button).

* button 4: select spectra. A clicked spectrum will be displayed with abold line. Any operation, such
as the Tasks under the right mouse button, will then only apply to this particular spectrum. Also
the selected spectrum can be dragged to a new panel (note that dragging to the left and top of the
original panel is not possible). The spectrum can aso be dragged to the Variables window where
it will be stored as a new variable.

* button 5: pan mode. Pan through the spectrum by clicking the left mouse button and moving the
mouse. If one only wants to pan along the x or y axes, click on the axis with the |eft mouse button
and then move the mouse (or use the mouse whesl).

* button 6: select ranges. Click and drag to select rangesin a plot (the middle mouse button can be
used anytime for this as well). Thiswill create a vertical grey bar. Then in the spectrum selection
mode (button 4), only thiswill be saved as a new variable.

* button 7: select points. Click and/or drag with the left mouse button to select one or more spectral
points. These points can later be flagged or removed.

* button 8: (de-) activate preview mode. In preview mode a quick preview is displayed of al rows
selected in the selection panel.

* button 9: display/hide grid in the active sub plot

* button 10: display/hide the plot legend

* button 11: switch between line and histogram mode

* button 12: display flagged channels

* button 13: show/hide the plot title

* button 14: open filter panel

* button 15: show metadata of the displayed SpectrumDataset

* button 16: open araster panel showing all plotsin the selection panel

 button 17: open the properties panel in the top-right part of the SpectrumExplorer to view and
modify any plot parameter. The panel can also be opened using the 'Properties..." option under the

right-click popup menu. If aparicular element in the context contains no changeable properties, the
plot properties are displayed.

23

Viewing Spectra

5.4.5. Plot Interactions

5.4.6.

5.4.7.

The Spectrum Explorer provides context-dependent plot interactions. The behaviour of mouse
interaction depends on the location of the mouse cursor. The actual context is displayed in the left
bottom corner of the plot panel. Next to the context you'll find the location of the mouse cursor in plot
coordinates. The following table provides the some contexts and the mouse interaction behaviour.

Context Click Ctrl-click Drag Scroll
Subplot Set as'active Zoom/Select/Pan | Zoom
Axis Pan Zoom
Spectrum Select spectrum | Extend selection | Move spectrum to

another subplot

Select point Extract spectrum

to anew variable

Use spectrum

astask input

parameter
Selection Same as above
Marker edge Resize marker

A right click on a plot shows a popup menu with global and context specific options. Right clicking
below or besides aplot givesthe option to add another subpl ot in that place. The new subpl ot becomes
‘active’. New selected spectra are displayed in the active subplot. To activate another subplot, right
click on that subplot and check the radio button named ‘active'.

Raster Panel

When SpectrumExplorer isused in raster mode (sel ected using the Raster button at the top button bar),
asingle spectrum is plotted plot for each row in the selection panel. This selection can be altered by
making use of the filter panel. When all spectra contain pointing information, the plots are laid out on
alatitude/longitude plane. Otherwise the plots are displayed in arectangular grid.

The wave and flux ranges above the plot can be atered by textual input or by scrolling on top of the
text field. After doing this, the slide bars below the ranges can be used to slide the sub range through
the plots.

Use the scroll wheel on top of the plot to zoom. A single click on a plot opens the spectrum in the
plot view of the SpectrumExplorer.

Preferences

Default SpectrumExplorer settings can be modified using the Edit-->Preferences button at the very
top of the HIPE screen. The following options are available:

* Initial tool: specifies whether the Spectrum Explorer should start in zoom or select mode.
» ChartType: display plot in line style or histogram

» Display grid: on or off

» Display legend: on or off

 Start in preview mode: on or off

For a specific SpectrumDataset type, title/subtitle and legend element can be specified. Metadata
fields and attribute fields can befilled in automatically by specifying the fiel ds name between angular
brackets. Optionally with a printf-style format suffix. For example

24

Viewing Spectra

| ongi t ude% 2f "
inthelegend element field displaysthe value of the longitude attribute for each spectrum in the legend

25

Chapter 6. Changing to LSB/USB and
Velocity

6.1. Changing HIFI Frequency Scales

6.1.1.

In practice there at two methods of altering the HIFI frequency scales: using the Spectrum Explorer
GUI or from the command line. These two approaches differ in one fundamental way. The
command line tasks will actually change the data, by resetting the frequency to upper/lower sideband
representation or velocity. The GUI only changes what is seen in the SpectrumExplorer, the data
themselves are not changed.

There are four fundamental ways of representing the frequency scale for HIFI: the intermediate
frequency (default), the upper sideband frequency, the lower sideband frequency, or by velocity.

One final note, currently the HIFI pipeline is providing the "final" spectra represented in both USB
and LSB. The level 2 product names are tagged LSB or USB it is still possible from these spectrato
transform back to |F or the other sideband.

Changing Spectral Views

The SpectrumExplorer provides internal means of viewing spectra. These views are only for display
purposes and do not change the data.

6.1.1.1. LSB/USB

Assuming you have activated aspectrum in a SpectrumExplorer window. To move between aspectrum
seen in the Intermediate Frequency, USB or LSB, right mouse click on the frequency access (not the
title of the access, but the axisitself). A pull down menu for the access will appear.

6.1.1.2. Velocity

6.1.2.

Change Spectral Views from the command line

6.1.2.1. LSB/USB

The task to convert the actual frequency scale in a HifiTimelineProduct or HifiSpectrumDataset is
called ConvertFrequencyTask. Assuming spectrum is the variable name for a HifiSpectrumDataset
with the frequency scale of the datain expressed as | F frequencies.

cft=Convert FrequencyTask()
cft(sds=spectrumto="1|sbhfrequency")

Of coursg, it isalso possible to convert to the upper sideband. for thisthe keyword is " usbfrequency".

cft (sds=spectrum to="usbfrequency')

To convert back to the IF, use:

cft(sds=spectrum to='frequency')

26

Changing to LSB/USB and Vel ocity

The ConvertFrequencyTask works equally well on the HifiTimelineProduct itself. In this case al the
internal HifiSpectrumDatasets are converted. This is not something you should do in the early stages
(before level 0.5) of the HIFI pipeline. For example on alevel 1 HifiTimelineProduct:

cft =Convert FrequencyTask()
cft(htp=hifitinmelineproduct, to='frequency')

| Note

S Direct application of the ConvertFrequencyTask changes the data listed in the spectrum.
Conversion back to the original IF scaleis possible, just use the to="frequency’ option.

6.1.2.2. Velocity

The ConvertFregencyTask also works to convert the frequency scale to a velocity scale once given
the reference frequency.

cft =Convert FrequencyTask()
cft(sds=spectrumto="velocity', reference=576.268, i nupper =Fal se)

In the above example, | had to specify the reference frequency in GHz and whether this reference
frequency isfor the upper (inupper=True) or lower (inupper=False) sideband.

Another call to ConvertFrequencyTask using "to = 'frequency™ will undo the change to velocity as
well.

6.1.2.3. Review of ConvertFrequencyTask

The ConvertFrequencyTask works on HifiSpectrumDatasets or Hifi TimelineProducts. The task uses
the keywords "sds" for HifiSpectrumDataset and "htp" for HifiTimelineProducts. The conversion of
frequenciesis done using the "to" keyword. The following table shows the various possibilities:

to= Description Other keywords necessary
frequency Converts to the Intermediate None
Frequency scale.
usbfrequency Converts to the Upper side band | None
Frequency scale.
I sbfrequency Convertsto the lower side band |None
Frequency scale.
velocity Converts to the velocity scalein |reference=reference frequency,
km/s inupper=(True or False)

27

Chapter 7. Mathematical Operations
on Spectra

7.1. Introduction

K

Data Analysis Guide

The Data Analysis Guide contains the most updated information for the spectrum
arithmetics module. Please see the ???? chapter for more up-to-date information.

28

Chapter 8. HIFI Standing Wave
Removal Tool

Last updated: 3 Nov, 2009

8.1. Introduction to FitHifiFringe

FitHifiFringe is atool to remove standing waves from level 1 and level 2 HIFI spectra. It makes use
of the general sine wave fitting task FitFringe, but has been adapted to read HIFI SpectrumDatasets,
and provide input and defaults applicable to HIFI spectra. For details on the sine wave fitting method,
please consult the FitFringe manual, 77?7

FitHifiFringeisbeing tested on PV data. It can be applied to all bands, with the caveat that the standing
waves in HEB bands 6 and 7 are not sine waves, and hence can only be fitted in an approximate way
by fitting a combination of many sine waves.

Also note that presently FitHifiFringe can only be applied to WBS, not HRS, spectra.

8.2. Running FitHifiFringe

FitHifiFringe can berun by clicking onaWBSlevel 1 or 2 SpectrumDataset variable and then double-
clicking on the applicable task. Alternatively it can be run on the command line as follows:

fhf = FitH fiFringe()
sds_out = fhf(sdsl=sds_in, nfringes=2, m dcycl e=150.)

Theinput sds inisaWBS level 1 or level 2 SpectrumDataset. The output sds_out SpectrumDataset
isidentical to the input, but with the fitted sine waves subtracted from the flux columns.

The following input parameters are allowed:
* nfringes. number of sine wavesto be fitted [DEFAULT: 1]

» midcycle: Thisisan important parameter the user can supply. It isthe typical standing wave period
in the spectrum (in MHz). Any structure with periods much longer than that will be considered
baseline, and no sine waves will be fitted to it. Any narrow peaks (spurs, emission or absorption
lines) will be masked. [DEFAULT: 176 MHZ]

 cycle start of sine wave period search range [DEFAULT: 2727 MHZ]

» plot=Fase: only show plot of end-result for each scan [DEFAULT: 3 plots per scan: (1) period
versus Chi*2 (2) a before/after plot including the line mask (3) the before/after plot and the
subtracted sine wave]

» ncycle: number of cyclesto check [DEFAULT: 450]

» averscan=True: determine standing waves on average of all scans, and then subtract this from each
scan [DEFAULT: process each scan separately] NOTE: this option only availablein HIPE > 1.2

29

Chapter 9. Fitting Spectra

Data Analysis Guide
@ The Data Analysis Guide contains the most updated information for the spectrum fitting
module. Please see the ???? chapter for more up-to-date information.

30

Chapter 10. Sideband Deconvolution

Last updated: 1 March, 2010

10.1. Introduction to doDeconvolution

The deconvolution tool is the post-Level 2 processor to separate the "folded" double sideband (DSB)
datainherently produced by the heterodyne process into asingle sideband (SSB) result. Seethe figure
below. Fluxes (F_DSB) in the DSB spectrum are given by:

F_DSB(nu_IF) =g u*F_sky(nu_LO+nu_IF) + g_I*F_sky(nu_LO-nu_IF)

where nu_L O+/-nu_IF are sky frequencies, and g_| and g_u are sideband gain (imbalance) factors,
typically closeto 1. The deconvolution is used to reduce WBS Spectral Surveys, which are collections
of observations taken at many LO settings so as to constrain the solution. The algorithm finds a SSB
solution that best models the observed DSB observations through iterative chi-square minimization
(Comito and Schilke 2002).

31

Sideband Deconvolution

200
ARNRARANERRRR AN

TIK]

ST)

JIF NI T T N N
Synthetic Spe

. .
o ﬂ\v\‘

¥4

: “M

_ M MJMMWU
800.0 [GHz] 804.
816.0 [GHz] 812.

Double sideband
Spectrum

Sideband Deconvolution

Thedeconvolutiontool isrun AFTER thelevel 2 pipeline. Thelevel 2 pipeline performsthefollowing
tasks:

 gsplitsthe data into upper and lower sideband representations
» appliesagain correction specific to the LO frequency and sideband of the spectra
« corrects frequencies for spacecraft radial velocities

 resamples the spectra onto a fixed grid. For WBS this is done at 0.5 MHz spacing, with the first
frequency snapped to the nearest 0.5 MHz

Any HIFI observation context will contain Level 2 products if run through the standard product
generation.

10.2

Running the Deconvolution Tool

Assuming the observation context is named "MyObsContext”, the user can run the deconvolution task
on the command line with the default parameters by simply invoking:

resul t =doDeconvol uti on(obs=MyCbsCont ext)

The full range of parameters and their defaults are as follows:

decon_result =

doDeconvol ution(pol ari zati on=0, bi n_si ze=5. 0E- 4, max_i t erati ons=200,

t ol erance=0. 0010, gai n=0, channel _wei ghti ng=Fal se, i gnore_mask=524288, pl ot _dsb=0,
use_entropy=Fal se, | anbdal_channel s=0. 0, | anbda2_gai ns=0. 0, cont _of f set =0. 0, expert

* polarization: Observations contexts store H and V polarisations. You can specify which to
deconvolve with this option. 0=H, 1=V

 bin_size: Tells deconvolution the sampling interval of the single sideband solution. A value of 0.5
MHz is recommended to match the WBS sampling.

» max_iterations: Tells doDeconvolution to stop after a specified number of interations if it has not
converged by then

* tolerance: Specifies the tolerance of the solution. When the rms of the residual of the fit changes
fractionally by less than tolerance, the algorithm stops iterating. A value of 0.001 is best. Below
this value, the algorithm may produce poor baselines.

» gain: Toggles gain optimisation on and off. If on, doDeconvolution will run twice, first with gain
factors set to 1.0 for stability, and then a second time, starting with the SSB solution of the first run,
but this time allowing the gain values to be optimized as well.

» channel_weighting: Toggles whether or not the deconvolution uses the weight values in the data,
to weight less noisy data.

* ignore_mask: Looksfor arow mask identifying spurs so strong they corrupt the entire spectrm, and
will ignore that spectrum during deconvolution. The defaults are still being determined.

 plot_dsh: Togglesvisualisation on and off. When on, the SSB output solution against the DSB input
can be viewed.

» use_entropy: The user can turn "On" or "Off" terms which incorporate the maximum entropy
method in the deconvolution.

33

Sideband Deconvolution

lamdbal_channels: Used in maximum entropy method. The relative importance of maximizing the
SSB channel entropy of the solution, along with matching the observed spectrais controlled by this
weighting coefficient.

lambda2_gains: Used in maximum entropy method. Therel ativeimportance of maximizing thegain
entropy of the solution, along with matching the observed spectra is controlled by this weighting
coefficient.

cont_offset: Used in maximum entropy method. The user can insert a" continuum offset” value to
insurethat no negative fluxes enter and disrupt the entropy calculation. The offset is subtracted after
the solution is reached.

expert: Toggle on an off expert use of the tool, which allows viewing of interim products. These
are a snap-shot of the solution as a function of iteration, and include goodness of fit measurements
such as Chi-squared. Note thisis memory intensive.

Maximum Extropy:
@ The maximum entry option is "turned on" as a"stop-gap" measure to help abad situation
with the input data. The bad situation can include:

1. Insufficient redundancy, say aredundancy of less than R=4;
2. Too few lines (since line strengths guide the deconvolution);
3. Poor, or excessively noisy data;

4. Also, if the solution of the nominal deconvolution contains periodic noise patterns, or
the solved gains deviate widely from 1.0.

The inclusion of the maximum entropy method adds a term to to the quantity being
minimized. Without this term, the quantity being minimized is the Chi-square difference
between observed double sideband (DBS) spectra and the modelled DBS spectra. The
minimization is accomplished by atering the SSB model spectrum from which the DSB
model spectra are derived. But, when the input data are of poor quality, sparse sampling,
or contain few lines, repetitive noise structures may appear in the solution and/or thefitted
gain values may begin to diverge and become non-physical. Since the entropy of these
artifactsislow, we compute theinverse of the solution entropy and add it to the Chi-square
value at each iteration. In thisway the deconvolution must still match the observations but
has the additional task of keeping the entropy of its solution high, yielding a non-highly
patterned result. Turning on the entropy terms hel ps the deconvolution "behave."

The two lamda factors are the two relative weights of the entropy terms for the channel
solution (SSB spectrum) and the gain values. To use the maximum entropy lambdaterms,
set the weight low, e.g. channel weight to 10"-5 and gain weight to 0. Slowly increase
either of these weights (10"-4, 10"-3,... and look for an improvement. The weights should
not exceed 10"-1.

The Deconvolution Tool can aso be run from a GUI by clicking on the the obs context in the
"Variables' window, then double clicking 'doDeconvolution’ in the "Task" list.

Sideband Deconvolution

2}
=] Editor x

Mj O doDeconvolution X ',

rinput
abs™ ® <Mowvariable »
bin_size : & 05
talerance | & 00010
channel_weighting - e [
plat_dsb - MO_PLOT
lambdal_channels : @& 00
cont_offsat B 00

routput

Variable name Tor ﬂ!(ﬂl‘l_f!!l.l“‘.:lﬂl!t on_resul

rInfi

raady
status:

progress. |

Like other GUIs in the system, once the 'Accept’ button is hit, the command line version iswritten in
the console window so users know exactly how the task was called. This output can be cut and paste
into user scripts for repeatability.

35

Sideband Deconvolution

10.3. Viewing Deconvolution Results

» The output product result can be viewed with the product viewer.

» Thesingle sideband result (ssh) is a dataset that can be viewed with the SpectrumExplorer. On the
command line, it can be extracted from the product as follows: ssb=decon_resul t["ssb"]
This contains the deconvolved spectrum, and is the primary output of the tool.

» Thedataset "gain" can be viewed with dataset inspector. On the command line, it can be extracted
from the product with: gai ns=decon_r esul t [" gai n"] Thedeconvolution tool can estimate
the sideband gains due to the redundant nature of the data taking. These estimates are stored per
LO tuning in this product.

* The meta data added to ssb includes number of iterations and the tolerance, as can be seen in the
HIPE screenshot below.

36

Sideband Deconvolution

YYD
File Edit Eun Window Help

=
] Editor %',

[l' pipelineTask. oy \{-.ﬂ doDeconvalution \{-.E decon_result T :E

decon_result

Spectrumld

Meta Data

narmme wallue Linit

W avEname fred
W AVELINIT MHz
wavedescription Single sidelband Freguency
bin_size 05
may _iterations 200
tolerance Q0010

= decon_result decon_resul t["ssbh"]
o B
@ gain
= [= History 10
@ Histonscript a
@ HistoryTasks
@ Histor/farameter A —
4 L
2 L
0 — ni. sy
5 | | |
55100 56100 57100 5810 ¢
Spectrume
ALL
1 [
1 4

Sideband Deconvolution

38

Chapter 11. How to make a spectral
cube

11.1.

11.2

Last updated: 1 March, 2010

Introduction to doGridding

Spectral cubes from OTF mapping observations are produced as part of the SPG pipeline and are
alevel 2 product. However, re-processing of spectral cubes from a Level 1 or 2 product is likely
desirable; this is done using the doGridding Task after calibrations of baseline, sideband gain, and
antenna temperature. It is also important that the spectra have been resampled to a linear frequency
axis (doFregGrid in the Level-1 pipeline).

The default operation of thetask isto sel ect the science datasetsfrom an HT P and create acubefor each
given spectrometer subband. Each dlice of the cube is produced by computing atwo dimensional grid
covering the area of the sky observed in amapping mode. For each pixel inthegrid, thetask computesa
normalized Gaussian convolution of those spectra (equally weighted) falling in the convol ution kernel
around that pixel. After running the task you will have an array of cubes, one for each subband and,
in 3.0, a "cubesContext" variable that allows you to easily browse the cubes without need to extract
them from the cube array.

The SimpleCube product can be viewed and analyzed in the SpectrumExplorer, see ????, and with the
CubeSpectrumAnalysisToolbox, see 7772.

Using the GUI to make a Spectral Cube

The doGridding Task can be found in the "Applicable”" folder of the Tasks view when an HTP is
selected in the variable view; double-click on it to open the dialogue in the Editor View. Y ou can aso
find the task under the Task View in 'By Category' -> 'HIFI".

As a part of the automated (SPG) pipeline, doGridding handles ObservationContexts but if you are
making acube yourself then you should use aL evel-2 Hifi TimelineProduct (HTP). The reason for this
isthat doGridding assumes that the spectra have alinear frequency axis, and this may not be the case
for Level-0.5 or Level-1 HTP, where there can still be overlap of subbands. Resampling to a linear
frequency axisis carried out in the doFreqGrid step of the Level-2 pipeline.

Using the GUI you can passan HTPto the task. Y ou can a so specify the subbands for which to create
cubes (useful if you know alinefalls only in one subband), the beam size, the weights to be used, the
type of convolution filter, and the parameters of the filter.

By hovering the mouse over the parameter namesin the GUI, you can find more information and some
tips on usage. There are two drop-down menus in the GUI, one to select the type of weighting - either
all spectra equally weighted, or you can read the weights column from the dataset, which will carry
forward any weightings you have already applied to the data - and one to select either a Gaussian
or a box filter for the convolution. For all the other parameters, you must specify a variable in the
command line and drag that variable to the appropriate bullet to modify the defaults of the task. Here
are some examples.

 subbands: by default, cubes are created for all subbands in the HTP. To specify, for example,
subbands 2 and 3 create the variable subbands:

subbands=Int 1d([2, 3])

and drag it to the subbands bullet.

39

How to make a spectral cube

» beam: thedefault half power beam width (beam size) is calculated to be appropriate to the frequency
at which the observation is carried out, but you may wish to simulate a different beam size.

beam=Doubl e1d([40. 0])
Drag thisto the beam bullet.
» XxFilterParams, yFilterParams: the appropriate values for these depend on the filter being used (box

filter or the default Gaussian), see the next section for more notes. Here an example appropriate
for abox filter.

xFi |t er Paranmet ers Doubl e1d([0. 5])

yFi |l t er Paranet ers Doubl eld([1. 5])

40

How to make a spectral cube

| Editor x\

-

{2 doGridding x\

-lnput
htp
subbands
beam
weightMode
filterType
xFilterParams

yFilterParams

-Output
Variable name for cubes: cubes
Variable name for cubesContext: |cubesContext
Variable name for yPoints: vPoints
-Info
ready
status:
progress:

Figure 11.1. ThedoGridding task GUI form

Aswith al GUI formsin HIPE, clicking "accept" will start running the task. The outputs you will be
most interested in are the array containing all the cubes created (default name cubes), anamend the
map context, that allows you to easily browse and view the cubes (default name cubesCont ext .
Y ou can view these cubes with the SpectrumExplorer and the CubeSpectrumAnalysisToolbox.

There are a so other output produced. xPoints and yPoints give the offsets (measured in radians with
respect to the projection centre). The convolutionTable notes which spectra have contributed to each
pixel, but is only generated when the detail tab in the expert GUI is checked.

41

How to make a spectral cube

Clicking on the expert button will toggle to aversion of the GUI designed for those who want to really
redesign their cubes. There are many more options available, and they can be passed to the GUI in the
same way. They are discussed in the context of the command line in the next section.

11.3. Making a Spectral Cube via the
command line

Some exampl es of usage are below:
» Data selection:

Make cubes for all the subbands, then display the first one:

cubes = doGriddi ng(ht p=ht p)
cubes_count = | en(cubes)
cube = cubes[0]

Di spl ay(cube)

Or you might automatically create a separate variable for each cube as in the following routine:

get a separate variable for each cube conputed for each subband
for subband in range(l en(cubes)):

cube = cubes[subband]

subband = cube. net a[' subband']. val ue

cube_name = -"cube_%l" % subband

vars()[cube_nane] = cube

The medata of each cube will include a "subband" parameter stating the subband of the spectra
which was used to compute the cube. This can be checked with,

print cube. meta[' subband']

* You may select just apart of the spectrum for each subband to be processed, that is, to generate the
cube for arange of the channels of the given spectra. This can be done by providing a "channels'
input, which is an Int2d array. This has to contain as many rows as subbands are to be processed.
Each row must have two elements, the start and end channel to be read.

The next example shows how to create a cube for the first and fourth subbands of a given
spectrometer, reading just the channels 200 to 1200 in the first one, and the channels 400 to 700
in the second:

channel Ranges = I ntd2()
channel Ranges. append(| nt 1d([200, 1200]), 0) # 0 neans append row W se
channel Ranges. append(| nt 1d([400, 700]), O0)

cubes = doGri ddi ng(ht p=htp, subband = Intld([1,4]), channel s=channel Ranges)

» Select datasets by type: the default action is to take the science data sets that are on the source and
thisis normally sufficient. However, there may be observations where the dataset type to be read
to make the cube has a different dataset type (e.g. an engineering observationswhose typeiscalled
"other", instead of "science"). Y ou can aso select the off positions too.

cubes = doGriddi ng(htp=htp, datasetType="science", ignoreOfs=false)

» Select some datasets by index instead of picking all the"science” datasets (datasetTypeisignored if
thisisused): herewe select subbbands 2 and 4, and datasets 3, 4, and 5 from the HTP. Theweighting
can also be specified to be "equal” (this is default) or that computed in DoChannelWeights in the
Level 1 pipeline ("selection”):

42

How to make a spectral cube

cubes = doGri ddi ng(ht p=htp, subbands=Int1ld([2,4]), datasetlndices=([3,4,5]),
wei ght Mode="sel ecti on")

cubes = doGri ddi ng(ht p=htp, subbands=Intld([2,4]),

dat aset _i ndi ces=Int1d([3, 4,5]), weightMde="sel ection")

cube_subband_2 cubes|[0]

cube_subband_4 cubes|[1]

Geometry:
Specify the (antenna) beam size:

Y ou can specify which is the half power beam width of the instrument i.e. the beam width. In the
case of HIFI, case the beam is symmetric hence a single value is needed. However, one might in
principle provide two different sizes along the x and y axis, thus specifying the dimensions of an
eliptical beam.

When thisinput is not provided the gridding task computes a default value for the HIFI beam size,
based on a known function of the observed frequency. At present the formula used for the default
caseis:

HPBW = 75.44726 * wavelength[mm]

specify the size of the beam
cubes = doGr i ddi ng(ht p=ht p, beam=Doubl eld([15. 4]))

specify the size of the beam In this case the beamis w der along the

vertical axis.
cubes = gri ddi ngTask(ht p=ht p, beam=Doubl e1d([10., 20.]))

If the beam size is specified, and the pixel sizeis not specified, the pixel sizewill be function of the
beam size taking into account the Nyquist criterion and the smooth factor (if any given). Usually,
for nyquist sampling, the default pixel size becomes half the beam size.

Specify the type of filter:

By default the convolutionisperformed with agaussian filter function, however, the user can specify
other filter types.

cubes = doGiddi ng(htp=htp, filterType="box")

At present the available filter functions are box function (best for Raster maps) and a Gaussian
function (best for OTF). Other filter functions maybe added in next releases.

the default filter type is gaussian
cubes = doGiddi ng(htp=htp, filterType="gaussian")

Specify the parameters of the filter along each axis:

The parameters that characterize each filter can be modified. For example, to use a box filter with
adifferent length:

paraneters = [Doubl eld([0.5]), Doubl eld([1.5])]
cubes =
doGri ddi ng(ht p=ht p, wei ght Mode="equal ", filter Type="box", filterParanms=par anet ers)

The next example specifies the parameters length and sigma of the Gaussian filter function, when
using agaussian filter (default case).

43

How to make a spectral cube

the -"influence area" is the area surrounding a grid point

where the al gorithmmust pick up all the avail able data points.
influence_area = 1.95 # length in pixels

sigma of the gaussian function tines SQRT(2)

sigma_sqrt2 = 0.3 # in pixels

xFi | ter Paranmeters = Doubl eld([influence_area, sigma_sqrt2])

default case

i nfluence_area = 1.8; signa_sqrt2 = 0. 36

yFi | ter Paranmeters = Doubl eld([influence_area, sigma_sqrt2])

cubes = doGiddi ng(htp=htp,filterType="gaussi an", xFilterParans=
xFi |l terParaneters, yFilterParanms = yFilterParaneters)

it is also possible to pass both set of paraneters in a single input:

paraneters = [Doubl eld([1.8,0.4]), Doubleld([1.6,0.3])]

cubes =

doGri ddi ng(ht p=ht p, wei ght Mode="equal ", fil ter Type="gaussi an", filterParanms=par anet ers)

The following example modifies the default parameters of the box filters (their length):

custonize a box filter i.e. set the length of the pixel, neasured in pixels
paraneters = [Doubl eld([0.5]), Doubl eld([1.5])]

cubes =

doGri ddi ng(ht p=ht p, wei ght Mode="equal ", filter Type="box", filterParanms=par anet ers)

Note: bear in mind that the default values of each type of filter are thought to optimize the
convolution.

Specify the size of the pixels:

The user can choose a pixel size different from the pixel size computed by default (based on other
inputs and on the angular dimensions of the observed areq).

Thepixel sizemust be given in seconds of arc. For example, to assign apixel size of 20 arcsec along
both axes the user can specify the pi xel Si ze input

cubes =
doGri ddi ng(ht p=ht p, wei ght Mode="sel ection", filterType="gaussi an", pi xel Si ze=Doubl eld([15]))

And to assign a different pixel size along the x and y axis, the given Doubleld must have two
elements. For example, to get pixels 15 arcsec wide and 25 tall, the pixelSize input should be
Doubleld([15,25]):

cubes =
doGri ddi ng(ht p=ht p, wei ght Mode="sel ecti on", filterType="gaussi an", pi xel Si ze=Doubl eld([15, 25]))

By default the pixel size is computed so that it is optimal, based on the other parameters given to
the task. If neither beam size nor smooth factor have been provided, the task will compute a default
HPBW and then it will choose pixel size equal to the half of thisHPBW, i.e. it will assume that the
sampling was done with following the nyquist criterion. The default pixel size will be the biggest
of the values (HPBW/4) and (HPBW/(2* smoothFactor)). By default the smoothFactor is 1.0 (no
smoothing factor applied), so that the default pixel size becomes the half of the beam size.

If the map dimensionsin pixels were specified, the pixel sizewill be simply the division of the area
actually observed by the number of pixels specified in the map size parameter.

If an smooth factor is provided, the pixel size will be the largest of HPBW/4 and
(HPBW/2)* smoothFactor

How to make a spectral cube

* Specify the dimensions of the map:

Theuser can specify the size of the map, in pixels, by means of the mapSize parameter. For example:

cubes = doGri ddi ng(ht p=htp, napSi ze=Int 1d([10, 20]))
cube = cubes[0]

will create a cube 10 pixels wide and 20 pixels high. When this parameter is not specified the task
computes the optimal dimensions taking into account the (antenna) beam size as well as the area
of the sky covered by the input spectra.

* Specify the reference pixel

The user can specify which is the reference pixel of the grid. It is also possible to define the
coordinates of that reference pixel. If the latter is not provided the reference pixel will provide the
coordinates, measured in pixels, of the projection centre, whichis, initsturn, computed asthe center
of the coordinates of the input spectra (usually the centre of the map). Hence if the user provides a
reference pixel, the user is defining where, in the regular grid, lies the centre of the observed area.

Please note that the convention for the pixels computed for the regular grid of the output cubesis
that the (0,0) pixel corresponds to the center of bottom-most, left-most pixel of the regular grid.
Please note that this differsin -1 from the usual convention for FITS images, where the center of
the bottom-most, left-most pixel has coordinates (1.0, 1.0).

If the user specifies only this refPixel input and the user does not specify the coordinates of that
pixel, thiswill computed so that it gets the pixel coordinates of the centre of the input spectra.

For example, if we want to force that the reference pixd is the pixel (3.5, 4.0), then the refPixel
input will be Doubleld([3.5, 4.]). If no refPixelCoordinates are provided, then the centre of the
coordinates of the input spectra will be locate at the pixd (3.5, 4.0) of the regular grid i.e. at the
FITS pixel (4.5, 5.0) from the bottom-most, |eft-most pixel of the cube. This means that the value
of the CRPXI1 parameter of the result cube will be equal to 4.5 and the value of the CRPIX2
parameter will be equal to 5.0 (remind that the cube header uses the usual FITS convention about
pixel coordinates).

cubes = doGri ddi ng(ht p=htp, ref Pi xel = Doubl eld([3.5, 4.0]))

By setting both refPixel and the refPixel Coordinates input explained below, the user can place
the regular grid at any arbitray location, although the user is adviced to let the task automatically
compute these so that the grid is located at a suitable place fully covering the observed spectra.

» Specify the coordinates of the reference pixel:

In addition to choosing a reference pixel, the user can also specify its celestial coordinatesi.e. the
longitude and latitude of the point chosen as the reference pixel of the cubes to be made by the
gridding task.

For instance, to make that the reference pixel is located at the coordinates (RA,DEC) = (308.9,
40.36) degrees, a refPixel Coordinates input can be provided with these coordinates. Let's say, in
addition, that the user wants that these reference pixel is the (0,0) pixel located at the bottom left
corner of theimage. Then refPixel = (0,0). Thenthe user should call doGridding likeinthefollowing
example:

ref Pi xel = Doubl eld([0, 0])

| ongi tude = 307.9

| atitude = 40. 36

r ef Pi xel Coordi nates = Doubl eld([| ongi tude, latitude])
cubes = doGri ddi ng(ht p=htp, ref Pi xel =Doubl e1d([0, 0]),
r ef Pi xel Coor di nat es=Doubl eld([| ongi tude, |atitude]))

45

How to make a spectral cube

or:
cubes = doGiddi ng(ht p=htp, refPi xel =r ef Pi xel
r ef Pi xel Coor di nat es=r ef Pi xel Coor di nat es)

#one can check that cubes[i].wcs.crvall == | ongi tude and cube[i].wcs.crval 2 ==
| atitude:

print cubes[i].wecs.crvall == |longitude # 1, True

print cube[i].wecs.crval2 == latitude # 1, True

Please note that if only the refPixelCoordinates input is provided, the user will be choosing the
coordinates of the centre of the map.

By setting both refPixel and refPixel Coordinates the user can place the regular grid at any arbitrary
location, athough the user is adviced to let the task automatically compute these so that the grid is
located at a suitable place fully covering the observed spectra.

11.3.1. Using Gridding Task

Another task is available, called Gridding, to make cubes of images. It works with any dataset or
product that happens to implement the SpectrumContainer or SpectrumContainerBox interfaces. It
can aso work with a collection of SpectrumContainer's. Said without using the Java jargon means
that it can accept various simple inputs, such as an Spectrum2d or an Spectrumld since these are
SpectrumContainers.

Y ou may also creat your own collection of datasets, and passit to the Gridding task in order to provide
the spectra to be read to make a cube by performing an spatial regridding (a convolution) of these
spectra onto a regular grid computed based on the coordinates of the given spectra (and on optional
inputs about the shape of the grid which can be given by the end users).

The Gridding task and the Spectrum Toolbox. The user can make use of the spectrum selection
toolsof the spectrum toolbox, to perform any selection of spectrafollowed by the usage of the Gridding
task to create a cube for each segment of the spectrain these selections. The following example shows
how to combine SelectSpectrum with the Gridding task:

first, create an instance of the Sel ect Spectrum task

sel ector = herschel . hifi.pipeline.util.tools. Sel ectSpectrumn()

use Sel ect Spectrumto get a single HifiSpectrunDataset with the spectra that
fulfill certain criteria

e.g. here one selects those spectra where its containing dataset has bbtype
equal to 6022

sel ected = sel ector(htp=htp, selection_| ookup={'bbtype':[6022]},
return_si ngl e_ds=Bool ean. TRUE -)

one mi ght have a glance at the spectra in the -"selection" dataset e.g. in the
Tabl ePl ot t er

cube = griddi ng(sel ect ed)

cubes = griddi ng. cubes

Making a Spectral SimpleCube with the Gridding task .

make a dataset with all the spectra fromall the science datasets
(isLine == true => bbtype == 6022)

sel ector = herschel . hifi.pipeline.util.tools. Sel ectSpectrun()
sel ected = sel ector (htp=htp, selection_| ookup={"'bbtype':[6022]},
return_si ngl e_ds=Bool ean. TRUE -)

sci enceOnl ndi ces = htp.summary['isLine'].data.where(\

ht p. summary['i sLine']. data == Bool ean. TRUE)

bbid = htp.summary[' Bbid']. data[sci enceOnl ndi ces]

#anot her way of sel ecting..

sel ected = sel ector (htp=htp, \

46

How to make a spectral cube

sel ecti on_| ookup={' bbtype' : bbid[0]}, \
return_singl e_ds=Bool ean. TRUE -)

Ho o m o m o e o e oo
the Gidding task that can work with any SpectrunmContai ner or collection of
SpectrunCont ai ners, like the sel ected above

S Do oooCooDCooOCCoCOCCOoODCCoOCCoOCCoOCCOOCSODCSCO0CoO0CooCCOCOCCoDOCCoOCCoOCCoOOCSoDoSo

cube = griddi ng(contai ner=sel ect ed)

#get a point spectrumfromthis sel ection,

ds_spectrum = sel ect ed. get Poi nt Spect run(1)

ds_segnment = ds_spectrum get Segnent (3) # read its third subband -: get
Spect ral Segnent .

pl ot Segnent = Pl ot XY(ds_segnent . wave, ds_segnent. f| ux, xti tl e=' Frequency
(MHz)' ,ytitle="Intensity")

S Do oooCooDCooOCCoCOCCOoODCCoOCCoOCCoOCCOOCSODCSCO0CoO0CooCCOCOCCoDOCCoOCCoOCCoOOCSoDoSo

now let's play with the result cubes

#

#

each cube is a Spectral Sinpl eCube which in its turn is an SpectruntContai ner

hence we profit all the spectrumtool boxes: arithnetics, statistics, etc.

and we can e.g.directly obtain a point spectrumas for any other SpectruntContai ner

row = 0; colum = 10;
spect rum = cube. get Poi nt Spect r un(r ow, col umm)

print spectrum getLongitude()

print spectrum getlLatitude()

print spectrum segnent| ndi ces

you can check that the cube, hence its spectra has a single -"segnent" or subband
segnent = spectrum get Segnent (0)

or...

segnent = spectrum get Segnent (spectrum segnent | ndi ces[0])

pl ot Spect rum = Pl ot XY(segnent . get Wave(), segnment . get Fl ux(), xtitl e=' Frequency
(MHz)' ,ytitle="Intensity")

There are several ways to visualize a cube such as
the CubeSpectrumAnal ysi sTool box:

cat = CubeSpectrumAnal ysi sTool box(cube)

you can also visualize it with the SpectrunExpl orer,
since the cube is an SpectrunCont ai ner

or sinply display it as a cube of inmmges:
di spl ay = Di spl ay(cube)

Optional inputsfor the Gridding task.

Most of the optional inputs of the DoGridding task are also applicable to the Gridding task namely:
weightMode, filterType, mapSize, refPixel, refPixel Coordinates, pixel Size, smoothFactor, filterType,
filterParams, detail, extrapolate and the input Wcs

In addition, there are other optional inputs which are specific to this task, namely container and
containerBox

47

Chapter 12. Exporting HIFI data to
CLASS

Last updated: 1 March, 2010

12.1. Introduction to hiClass

12.2

It is possible to export all Herschel datato FITS files using FitsArchive(), but these are not readable
by CLASS. Therefore, hiClass has been developed to export HIFI spectrato a FITSfile that CLASS
can read. Please note that this task is for HIFI data only, it cannot be used for PACS or SPIRE data.

The hiClass task can be used for SpectrumDatasets or HTP of level 0.5, 1, and 2 data, but not raw data
(level 0). The following information from is exported to CLASS:

» Thefluxes, of course
» Thefrequenciesin acolumn, if you ask for it (see examples)

» Obsld, BbType, Bbld, SequenceNumber. The way CLASS will store and handle it is still being
discussed.

» The name of the observed source, which is computed from the BBType.

e The Rest Frequency, Image Frequency, Channel References, Frequency Step. HiClass aways
choses the centre of the spectrum as the reference.

 Dates of observation, and name of the instrument (HIFI plus spectrometer and polarisation).
* Pointing information.

e Tsys

The hiClass task is a wrapper around the HiClass object defined in herschel/hifi/dp/tools/
hiclass _tools.py. Only the usage of the hiClass task is described here, if you want to work directly
with the HiClass object, you can read further documentation about how the HiClass object works,
including examples, by typing in the console

print herschel.hifi.dp.tools.hiclass tools. doc__

hiClass examples

1. Export one dataset to aFITSfile:

H Cl assTask() (dataset = nyspectra, fileName = -'nyspectra.fits')
2. Export one HIFI timeline product to a FITSfile:
H Cl assTask() (product = nmyhtp, fileName = -'nyhtp.fits")

The fitsfileiswritten in the installation directory of HIPE.

48

Exporting HIFI datato CLASS

Y ou should specify one of (but never both) dataset or product, and an output filename. The remaining
properties of hiClass and their defaults are as follows:

Hi C assTask() (product =myht p, fileNanme='nyhtp.fits',
export Frequency=Fal se, doubl ePreci si on=True, bl anki ngVal ue=-1000,
raNom nal =38. 27531, decNomi nal =-76. 949043, vel oSour ce=NaN,
specsys=")

» exportFrequency = False: When set to True, the resulting FITS file will contain columns with the
valueof theintermediate or sky frequency for each channel, which CLASS doesnot handle properly.
It is recommended that you leave this to false unless you use this task to export your spectra to
FITSin order to read them with IDL, and if you want to export the irregular WBS frequency axis
aong with it.

doublePrecision = True: Recommended to leave to true, particularly for spectral scans.

blankingValue = -1000: NaNs in the flux columns will be replaced by this value. Thisis the only
way to blank channelsin CLASS as CLASS does not handle flags or NaNs.

» raNominal =NaN, decNomina = NaN: raNominal and decNominal allow the user to set the 'central’
position of the observation he/she wishes to export. All the positions offsets will be calculated
from the point(raNomina ; decNominal). Thisis of primordial importance for maps, and if you are
exporting map data you are strongly recommended to set these.

If raNominal or decNominal isnot provided, then HiClasswill try to find it in the dataset or product
that you provide. At present, only the ObservationContext contains this information stored in its
metadata parameters, raNominal and decNominal - these are the values you gave in HSpot. The
HifiTimelineProduct is supposed to contain a copy of the ObservationContext nominal ra and dec
but it does not yet. However, another set of coordinatesis available at that level and can be used to
have the same origin for al the datasets contained in the HTP. These coordinates are the average
coordinates of the entire observation and are stored in the metadata parameters"ra" and "dec". Until
the HTP does contain the correct coordinates, these average values are used.

» veloSource=NaN: If let to its default value, then HiClass will try to find the velocity of the source
in the dataset. The velocity is expressed in the frame in which the frequencies of the dataset are
expressed (usually the observatory or the LSR). As aways, the velocity is positive if the source
moves away from the observer.

» specsys=" : If left to its default value (empty string), then HiClass will try to find in the datasets
the reference frame in which the frequencies are expressed. Setting this parameter to something
else than " will override whatever reference frame the datasets may refer to. At present there are
two choices:

 'topocentric' : the frequencies are expressed in the the satellite frame. The satellite velocity
correction was not applied.

» 'LSRK': thefreguenciesareinthelocal standard of rest. They have been corrected from the effect
of the satellite velocity. Thereis still no correction of the source velocity.

There is a hiClass GUI available, accessable from the Tasks View under General->HIFI. If you use
the GUI you cannot touch the exportFrequency or doublePrecision properties.

49

Exporting HIFI datato CLASS

File Edit Run Window Help

e HG| = > » %

[’_| Editor x\
[" HVProfile...rison.py i{\l"' *hifidemo...ringe.py \{f' flagSpurDatasets.py P
-Input
dataset: -
blankingValue: @ [-1000
raNominal: @ [38.27531
veloSource: ® (13.2
hiClassObj: @ <No variable>
~Output

Variable name for hiClassObj: |hiClassObj

-Info

running
status:

progress:

| El Console x\

:&mgﬁwneasan%@?mm 1340...
Prncesslng spectrum 1341...

Proc esslng spectrum 1342

Process1 ectrum . ,
ﬁéﬁ% %@/ aﬁﬁ%meit ClassFile. The blanking value has been left at the
é g on“ahd velocity are given as well as a frequency

==

= o

Exporting HIFI datato CLASS

12.3. How to read HIFI data in CLASS

First, make sure you use arecent version of CLASS. The version from august 2009 works nicely, and
we can assume that any posterior version will work as well. It is important for you to use a recent
version because:

Old versions use Fortran 77 and will not be able to dynamically alocate the memory needed to read
big spectralike WBS ones (8000 channels),

Old versions do not know about the subscan number, and will not be able to make any difference
between the different subbands of a spectrum.

Old versions have troubles with reading double precision values from FITSfiles.

Some versions (first half of 2009) have a broken code which totally prevents reading any FITSfile
with along header.

CLASS is not able to work directly within FITS files. So you have to convert the FITS file into a
CLASSfile:

file out MyH Fl Spectra. hifi mul
fits read M/H Fl Spectra.fits

Now you have a CLASS file named MyHIFISpectra.hifi (you can use whatever you want as an
extension) you can access like you always do in CLASS:

file in MyH FI Spectra. hif

find

get first
set unit f i
pl ot

51

Chapter 13. Memory Issues

Last updated: 28 Feb 2010

On occasion, onecan runintothej ava heap space error when using HCSS software, especially
when running the pipeline. Here are some things to help:

1. User release. Choosethe "Advance" installation and increase the maximum amount of memory
available to HIPE (the "User" installation allocates 1 Gb by default).

2. Modify the memory alocation (j ava. vm nenory. m n and j ava. vm nenory. nax) in
. hcss/ Hi pe. props

3. The"garbage collection" command Syst em gc () isalso useful to force clearing memory. HIPE
will automatically do this when memory becomes too full.

4. Swap StoreProperties: Itispossibleto usethehard disk as swap spaceto preserve the memory
availablein HIPE, and HIPE does this by default. The following properties are defined to preserve
computer memory. This becomes especially useful when pipeline processing long observations on
alaptop, or on a pc with a 32 bit Operating System (TBC) and with average or limited memories
capacities. However, any Task that uses or changes any HifiProduct (e.g., HifiTimelineProduct)
will benefit from the use of swap space.

The following properties can be modified (in the user . pr ops file or using the "Hifi Product”
tab in pr opgen) to set or to configure the Swap mechanism.

 hcss.hifi.pipéine.product.memory = true: Setting the value of this property to "true"
enabl es the swap mechanism. Note that the default valueis "false”.

* hcss.hifi.pipeline.product.swapstore = " swapStore". This is the name of the LocalStore
where the temporary data will be saved. The default location is:${ user. hone}/ . hcss/
| store/ swapStore .

* hcss.hifi.pipeline.product.swapratio = 0.25: This property determines how much the swap
mechanism is used and is used to set the threshold level of free memory. When anew dataset is
set or retrieved from the HifiProduct, the HifiProduct will check the size of the dataset and the
free memory in the system. If the condition:

(memory free)* swapratio < dataset size
ismet, then all the floating datasets contained in the HifiProduct will be saved in the swap store.

This property should have value between 0 and 1 and has a default value of 0.25.

If the value is O all datasets will be always stored in the swap store. This is safe, but it could
create performance delay (in the time needed to process the pipeline) due to the access time to
the hard disk.

In the case of long observations, setting the property to 1 could be dangerous because memory
problems(likeJava. heap. space excepti on), may still occur, athough the pipeline will
try to have the best performance possible.

* hcss.hifi.pipeline.product.savedisk = true: This property determines whether an existing
observation in the swap store should be overwritten or not. It is strongly suggested to keep the
value = true, otherwise the space used in the hard disk will increase in proportion to the number
of times aproduct is saved in the swap store.

Note
@ SwapUtil Class: At the moment, the pipeline does not clean the swap store after
the processing. To avoid the swap store completely filling the hard disk when many

52

Memory Issues

observations are processed, it is suggested one manually remove the swap store by
either deleting the swapStore directory, or in HIPE:

from herschel . hifi.pipeline.product inmport SwapUtil
SwapUtil . del ete()

53

	The HIFI User's Manual
	Table of Contents
	Chapter 1. Data Primer
	1.1. Data frames
	1.2. Data Products
	1.3. Contexts
	1.3.1. Herschel Observation Context

	Chapter 2. Running the HIFI pipeline
	2.1. Introduction to the Pipeline
	2.2. How to run the HIFI Pipeline
	2.2.1. hifiPipeline task in the GUI
	2.2.2. The hifiPipeline in the command line

	2.3. Running the Pipeline step by step
	2.4. How to customise pipeline algorithms

	Chapter 3. Flags in HIFI data
	3.1. Introduction to flags
	3.2. Channel flags
	3.3. Column rowflags

	Chapter 4. Quality Flags
	Chapter 5. Viewing Spectra
	5.1. Introduction
	5.2. Basic Spectrum Viewing: the PlotXY Package
	5.3. Viewing with SpectrumPlot
	5.4. The SpectrumExplorer Package
	5.4.1. Starting the SpectrumExplorer
	5.4.2. Selecting Spectra
	5.4.3. Displaying Spectra
	5.4.4. Button Bar
	5.4.5. Plot Interactions
	5.4.6. Raster Panel
	5.4.7. Preferences

	Chapter 6. Changing to LSB/USB and Velocity
	6.1. Changing HIFI Frequency Scales
	6.1.1. Changing Spectral Views
	6.1.1.1. LSB/USB
	6.1.1.2. Velocity

	6.1.2. Change Spectral Views from the command line
	6.1.2.1. LSB/USB
	6.1.2.2. Velocity
	6.1.2.3. Review of ConvertFrequencyTask

	Chapter 7. Mathematical Operations on Spectra
	7.1. Introduction

	Chapter 8. HIFI Standing Wave Removal Tool
	8.1. Introduction to FitHifiFringe
	8.2. Running FitHifiFringe

	Chapter 9. Fitting Spectra
	Chapter 10. Sideband Deconvolution
	10.1. Introduction to doDeconvolution
	10.2. Running the Deconvolution Tool
	10.3. Viewing Deconvolution Results

	Chapter 11. How to make a spectral cube
	11.1. Introduction to doGridding
	11.2. Using the GUI to make a Spectral Cube
	11.3. Making a Spectral Cube via the command line
	11.3.1. Using Gridding Task

	Chapter 12. Exporting HIFI data to CLASS
	12.1. Introduction to hiClass
	12.2. hiClass examples
	12.3. How to read HIFI data in CLASS

	Chapter 13. Memory Issues

