The HIFI User's Manual
Hifi Editorial Board:

Max Avruch
Adwin Boogert
Tony Marston

Carolyn McCoey
Michael Olberg
Miriam Rengel

Russ Shipman

The HIFI User's Manual
Hifi Editorial Board:

Max Avruch

Adwin Boogert

Tony Marston

Carolyn McCoey

Michael Olberg

Miriam Rengel

Russ Shipman

Table of Contents

D = . 02 SRR 1
N DT = =01 T= O SOPPRTRIIN 1

I DT = Y 0o (1o £ PP 1

R A 001 = PSSP PPPT PPN 1
1.3.1. Herschel Observation CONEXLEuuieiiiiiieiiiiiiee e 2

2. Running the HIF]I PIPEIING ... ccvnii e e ean s 3
2.1. How to run the HifiPipeline task for AStrONOMErS.........c.ovvvviiiiiiieeiii e 3
2.1.1. HifiPipeline task in the GUIcoviiiii e 3

2.1.2. HifiPipeline in the command lineccoviiiiiiii e 6

2.2. HifiPipeline tasks for Calibration SCIENtiStSvvvviiiiiiiii e 7
2.2.1. Expert hifiPipeling taskccuuviiiiiiii e e 7

2.2.2. Individual pipeling tasksiiiiiiiiieiiie e 8

2.3. Running the Pipeline step By StEDovvveiiiiiiii e 9

2.4. How to customise pipeline algorithmscoouiiiiii i 9

G = o T I 1 I = - N 10
G300 R =g 1= I = o 10

3.2. ColUMN FOWTIAQS ... ievi e e e e e e e e ees 10

@ 0 = 1 Y = o P 14
L Y= YT o RS o= - 17
EoT0 O 1 oo (0T 1o o PR PPPTPN 17

5.2. Basic Spectrum Viewing: the PIotXY Packageocouiiiviiiiiiiiciice v, 17

5.3. Viewing wWith SPeCtrumPlOtco.uiiiii e 18

5.4. The SpectrumEXpPlOrer PaCKagecvuuuiviiiieiii et e e e e e 19

6. Changing to LSB/USB and VEIOCITYcccviiiiiiiiii e e e e e 22
6.1. Changing HIFI Frequency SCalESocvuiiiiiieiii e e e e 22
6.1.1. Changing SPECLral VIBWSccuuiiiieiii e e e e 22

6.1.2. Change Spectral Views from the command line.............cccoocoiiiiiiieienennnnn, 22

7. Mathematical Operations 0N SPECIIAvvvuuiiiii i e e e e e e e e e e eeans 24
8. HIFI Standing Wave RemMOVval TOOIoiiuiiiiiieii e e e e e e 25
8.1. Introduction FitHIfIFINGEovvviie e 25

8.2. RUNNING FitHIfIFIINGE «..vv e e 25

S] o RS o= 1 - 26
10. Sideband DECONVOIULIONuuiiiiiiiieieii et e e e e e s 27
10.1. Running the Deconvolution TOOIcocvuieiiieiii e e e 29

10.2. Viewing Deconvolution RESUILSvviiiiiiicii e e 31

11. How to make @ SPECLral CUDEc.uuiiii i e e s 34
11.1. Making a Spectral Cube viathe command line...........cccocoiviiiiiiii i, 34

A U= T o o (o T o TR = 38

11.3. Using the GUI to make a Spectral CUbEccovvieiiiiiiiii e, 40

A = 0o A P 42
G T |V = g YA oS =P 43
14. Notes for Calibration SCIENtISISuuiiiiiii e 45
14.1. INpUt/OULPUL OF SPECLIA ..euuuiei e e e e 45
14.1.1. ACCESSING SPECIIA ..uucvveeiii e ettt e e e e et e e e e e e e e e e e e eeens 45

14.1.2. EXPOItiNg SPECLIA ..vuuivvieiii e e e e e e e e e e e e e e e e e aens 49

14.2. Database, BInStruct and MIBc.uuiiiiiiiiiiiiii e 50

14.3. Accessing Versant Databaseevveeiiniiiiii et e e 52

14.4. Accessing Versant Database with Web Interface.........coovevviviiiiiiiin i 52

14.5. How to configure the CIB (for use on anon-ICC cluster maching) 53

14.6. Navigating HIFI Products: How to get a spectrum data set from an ObsContext........ 54

14.7. HIF] HOUSEKEEPINGcieeeiii i eiei et e e e e e e e e e e e e e e e e e e e aaaees 54
I A T 1 (oo (1 o1 o o PRSPPI 54

14.7.2. Accessing HOUSEKEEPING ...vuvevvneiiiieiei e e e e e 55

14.7.3. Viewing HOUSEKEEDINGevvneiiiiiii e e e e e 60

Chapter 1. Data Primer

A short introduction to the structure of Herschel HIFI data storage.

1.1. Data frames

The Herschel spacecraft stores data onboard (up two days worth) until _transmited to Earth. Science
data, such as a WBS spectrometer readout, come naturally in sets, or Frames. Data frames are
packetized for transmission from HSO to Earth. Along with House Keeping (HK) data they are
downlinked to the tracking station and thence to the Mission Operation Center (MOC) at ESOC in
Darmstadt, or to the latter directly. The data packets then flow from the MOC to the Herschel Science
Center (HSC) at ESA's European Space Astronomy Centre (ESAC) in Madrid. The HIFI ICC copies
the data from HSC, as well.

At ESAC, the data packets are 'ingested' into a database and the science data frames are reconstituted.

The combination of HK and science data creates a 'L evel 0 Observational Data Product.'

1.2. Data Products

refs. Herschel Data Product Document partl _v0.95.pdf, [_ftp:/ftp.rssd.esa.int/pub/HERSCHEL /
csdt/rel eases/doc/i alpal/doc/guide/html/pal -guide.html]

A Herschel Data Product consists of metadata keywords, tables with the actual data, and the history of
the processing that generated the product. There are various product types (Observation, Calibration,
Auxiliary, Quality Control, User Generated). The types of Observation Data Products:

1. Level -1: Raw data packets, separate HK and science frames as described above.

2. Level 0: HK and science frames grouped by time and building block ID (and perhaps other
parameters?). As close to raw data as the as the typical user would find useful to be.

3. Level 0.5: data processed to an intermediate point adequate for inspection; for HIFI they are
processed such that backend (spectrometer) effectsareremoved, essentially afrequency calibration.

4. Level 1: Detector readouts calibrated and converted to physical units, in principle instrument and
observatory independent; for HIFI, essentially an intensity calibration. It is expected that Level 1
data processing can be performed without human intervention.

5. Level 2: scientific analysis can be performed. These data products are at a publishable quality level
and should be suitable for Virtual Observatory access.

6. Level 3: These are the publishable science products with level 2 data products as input. Possibly
combined with theoretical models, other observations, laboratory data, catalogues, etc. Formats

should be Virtual Observatory compatible and these data products should be suitable for Virtual
Observatory access.

1.3. Contexts

A Context is a subclass of Product, a structure containing references to Products and necessary
metadata. A Context can contain Contexts, giving rise to Context 'trees.' Types:

1. ListContexts (for grouping products into sequences or lists, hardly used)

2. MapContexts (for grouping products into key,value dictionaries)

http://www.esa.int/esaMI/Operations/SEMO4HZTIVE_1.html#subhead7
http://www.esa.int/SPECIALS/Operations/SEM8YCSMTWE_0.html
http://www.sron.rug.nl/%7Ewikiman/wikis/HifiIlt/DataPrimer?action=AttachFile&do=get&target=Herschel_Data_Product_Document_partI_v0.95.pdf
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/pal/doc/guide/html/pal-guide.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/pal/doc/guide/html/pal-guide.html

Data Primer

1.3.1. Herschel Observation Context

A MapContext instance serves as the organisational product unit for the Herschel Data Processing
system. It contains the following contexts:

1.

2.

Level-0, Level-0.5, Level-1, Level-2, & Level-3(optional) Contexts

Cadlibration Context

. Auxiliary Context

. Quality Context

. Browse product

. Trend Analysis Context

. optional Telemetry Context: not by default, only when the HSC deems it necessary because of a

serious problem in the processing to level-0 data.

The uses of these Contexts will be described in Chapter 2.

Note that the descriptive modifiers "Product” and "Context" are often dropped conversationally.

Chapter 2. Running the HIFI pipeline

HIFI datais automatically processed through the HIFI pipeline before it can be accessed from the the
Herschel Science Archive (HSA). The HIFI pipeline is used for processing data received from one
or more of the four HIFI spectrometers into calibrated spectra or spectral cubes that are suitable for
interactive analysis. The pipeline comprises four stages of processing:

1. Take data from the satellite and minimally manipulate it into time ordered Data Frames (a
HifiTimeline, or HTP, for each spectrometer). This is a Level 0 data Product, which is the least
processed data available to Astronomers.

2. Remove backend instrumental effects - essentially a frequency calibration. There are separate
pipelines for the WBS and HRS spectrometers, and the result isa Level 0.5 Product.

3. Application of observing mode specific caibrations, i.e., subtraction of reference and off positions
and intensity calibration using Hot/Cold loads. This is done by the Level 1 pipeline and resulting
Level 1 Products are sets of frequency and intensity calibrated spectra.

4. The Level 2 pipeline removes further instrumental effects, such as standing waves, baseline slopes
and offsets. Spectra are deconvolved and, depending on the observing mode, averaged or gridded
into spectral cubes.

It is expected, especialy in the early stages of the mission, that Level 2 products will need to
be regenerated interactively by the Astronomer. Indeed, you may wish to re-run al or part of the
pipeline to change defaults, use your own, or examine each step of processing. To that end, the
ObservationContext that is obtained from the HSA contains, along with the Level 0-2 data Products,
everything you need to reprocess your observations - calibration products, satellite data - as well
quality, trend analysis, logging, and history products, which you can useto identify any problemswith
your data or its processing.

The following section explains how to re-run the pipeline using the HifiPipeline task. There are some
aspects to using the HifiPipeline task that are only likely to be useful for calibration scientists and
software engineers when looking at test or calibration data, and those are covered in the section after.
However, if you get very involved in running the pipeline you may find some of this section to be
useful.

The final section of this chapter describes your options when stepping through the pipeline (i.e.,
running each step manually) up to Level 1. Further processing steps, such as removal of standing
waves or making cubes, have dedicated chapters el sewhere in this manual.

2.1. How to run the HifiPipeline task for
Astronomers

2.1.1.

TheHifiPipelinetask linkstogether thefour stages of the pipeline described aboveand it can be used to
reprocess ObservationContexts up to any Level, for any choice of spectrometer(s) and polarisation(s).
You can aso make your own agorithms - or modify the ones provided in the scri pts/ hifi/
Pi pel i ne directory in the installation directory of HIPE - and apply them to the pipeline. The
HifiPipeline task can, of course, be run both from the GUI and the command line: we deal with the
GUI first.

HifiPipeline task in the GUI

The HifiPipeline task is run from the GUI in the following fashion:

1. « Click once on an Observation Context in the Variables pane and the "hifiPipeline" Task will
appear inthe"Applicable Tasks" folder, double click onit to open the Task dialoguein the Editor
view.

Running the HIFI pipeline

¢ Alternatively, open the "hifiPipeline" Task by double-clicking on it under the Hifi Category in
the Tasks view.

¢ A "Hifi Pipeline" View is also available from the HIPE Window menu (under Show View) but
itisnot fully implemented yet.

558 6 HIPE = Herschel Intéractive Processing Environmer
File Edin Fun Window Help

o h
e
¢ L.E
5

Fa\

Edivar =
i hifiPipeline x ',
.w
expert

ObservationContext Myobs

Insiruments: ¥l HRS-H W HRS-¥ [¥ WBS-H ¥ WBs-¥
obsid .|

Database . | |
frombavel 0.0 k
upTolevel 2.0 "
Ouput

Variable name for 0bsOw: (obsOw

Variabde name for obs. [obs

Infa

ST] i
status: [
| proaress: | [
|] Consale x
pool name=* 268437009 _obs'

IFE> storagelbs = ProductStorages()

IPE> poolObs = PoolHanager . getPool (poolnams)

IPE- storagelbs. reglster(poolibs)

IPE> gquery=herschel. ia pal query. AttribOuery{herschel . ia obs ObservationContext, “p”,
IPE> result = storagedbs.select|query)

IFE> Myobs = storagelbs. load({result{d].urn) . product

The hifiPipelineTask appears in the "Applicable" Folder in the Tasks view after clicking on the
Observation Context (MyObs) in the variable view.

Figure 2.1. HIFI pipeinetask: default view

Running the HIFI pipeline

2. The default (or basic) dialogue alows you to re-process an already existing observation context,
e.g. from the Herschel Science Archive, through the pipeline.

» Theway the dataisto be reprocessed is defined in the Input section:

a. If the hifiPipeline Task was opened from the "Applicable Tasks" folder then the Observation
Context selected in the Variables View will automatically be loaded into the Task dialogue, and
you will seeits name by the observation context bullet, which will be green. Alternatively, drag
the name of the observation context to be reprocessed from the VV ariabl es view to the observation
context bullet.

b. Select the spectrometers you wish to process data for by checking the desired instrument(s) and
polarisation(s). Both H and V polarisations of both the Wide Band Spectrometer (WBS) and
High Resolution Spectrometer (HRS) are checked by default.

c. Select whichlevelsto (re-)process from and to viathe drop-down menus. By default the pipeline
will processlevel 0 dataup to level 2. If you are accessing data from the | CC database, you can
process raw data (option -1). Data taken from the Herschel Science Archive (HSA) can be re-
processed from level O (option 0) to levels 0.5 (option 0.5), 1 (option 1), or 2 (option 2)

If you try to re-process from a higher Level datathan existsin the Observation Context then the
hifiPipelineTask will automatically select the highest existing Level. For example, if you try to
re-process from Level 0.5 to 1 but the ObservationContext only contains aLevel 0 product then
the pipeline will automatically run from Level Oto Level 1.

d. Ignore the entries for database and obsid; these can only be used by calibration scientists and
should be removed in the future.

e. At the moment, to supply your own algorithm to the pipeline (see Section 2.4) you must toggle
to the expert view, where you can load a new agorithm from file. The ways you might want
to modify the pipeline algorithms are discussed in Section 2.3. See the notes below about
customizing pipeline algoriths.

* In the Output section, choose the name of the observation context that will be produced or use
the HIPE default, obsQut . The observation context contains all the products generated by the
pipeline task and should be stored in apool in your Istore (~/.hcss/Istore/hifi-pipeline) to be able
to accessit in afuture session. The variable obs is also produced in order that the pipeline can
be re-run without the need to reset 1O parameters.

¢ Click on "accept" to run the pipeline. The status ("running” if all iswell, error messagesif not)
and the progress of the pipeline are given in the Info section at the bottom of the Task dialogue.

Running the HIFI pipeline

[+ Editor X\
(# GetObsContextpy | (2 hifiPipeline x '\
~Input
expert.. |
ObservationContext & | Myobs
Instruments: [JHRS-H [HRS-¥ [v] WES-|
obsid @
Database @
TromLevel 0.5
upTolLewvel 1.0
~Output
Yariable name for obsOut; (obsOut
Yariable name for obs: obs
Info
unknown
status:
progress: 0%
Cle

In this example, an already processed observation, 'Myobs, is being re-processed from Level 0.5
up to Level 1, both polarisations of the WBS spectrometer have been selected.

Figure 2.2. HIFI pipelinetask: default view

2.1.2. HifiPipeline in the command line

Below are some examples of running the HifiPipeline task from the command line, once again it is
assumed that an ObservationContext called Myobs has been loaded into the session.

Reprocess an Observati onContext up to Level 2 for all spectroneters
MyNewobs = hi fi Pi pel i ne(obs=Myobs)

#

Reprocess Myobs fromLevel 0.5 to Level 1, for all spectroneters
MyNewobs = hi fi Pi pel i ne(obs=Myobs, Fronievel =0.5, UpTolLevel =1)

#

Running the HIFI pipeline

#

Now r eprocess MyNewobs (which now contains data only up to Level 1) but only for

t he WBS.
WBS-H and WBS-V are the horizontal and vertical polarizations, respectively.
My/EvenNewer obs = hi fi Pi pel i ne(obs=MyNewobs, apids=['WBS-H , -'WBS-V'])

#
#

Reprocess Myobs from Level 0 to Level 0.5 for only horizontal polarization data

MyNewobs = hi fi Pi pel i ne(obs=Myobs, apids=['WS-H ,' WS-V'], FronlLevel =0,
UpToLevel =0. 5)

#
#

Now i ncl ude your own algorithmfor the Level 1 pipeline, for all spectroneters,

fromLevel 0 to 1
MyNewobs = hi fi Pi pel i ne(obs=Myobs, FroniLevel =0, UpTolLevel =1, |evel 1Al go=$ful | _path/
nyl evel 1Al go. py)

#
#

Now t he pipeline went wonky and you want to reset it!

hi fi Pi peline = hifiPipelineTask()

#

The exact ordering of the arguments does not matter.
What is an apid? " Application Program IDentifier": it is what the pipeline calls spectrometers.

Note that to implement your own algorithm, you must load the algorithm script from wherever you
saved it into HIPE and compile it (run it with >>) before you run the pipeline (see 2.4).

2.2. HifiPipeline tasks for Calibration
Scientists

2.2.1. Expert hifiPipeline task

By toggling the "expert" button on the hifiPipeline task GUI, you may additionally control more
detailed aspects of the pipeline set-up. There are code examples of their usage below.

Unless you specify otherwise when running the pipeline, it will ook for the database (db), calibration
pool (and aux pool for flight data) that you specify in your user.props file. See Section 14.2 for
information about configuring your setup and the |CC databases.

Notethat in the case that a database has been regenerated, you will need to deleteyour /.hcss/pal_cache
in order to run the pipeline or generate an HTP. Thisisworth trying if you have difficulties after any
major changes in database or configuration.

#

Access the | CC simul ati ons database and run the pipeline to generate an

observation context ('obs')
from scratch
obs = hifiPipeline(obsi d=268435702, db="ds3@ ccdb2.sron.rug.nl 0 READ")

#

If the obsid is 10 integers long (i.e. after SOVT) then append an L

obs = hifiPipeline(obsid = 3221226279L, db="sovt2 fm 1 prop@ccdbl. sron.rug.nl O
READ")

#

Process for a selection of spectroneters

obs = hifiPipeline(obsid = 3221226279L, db="sovt2_fm 1 _prop@ ccdbl.sron.rug.nl 0O
READ',
api ds=[' WBS-H ,' HRS-V'])

#
#

Select the level to process to (fromraw (-1) Level 1 (1) here)

obs = hifiPipeline(obsid = 3221226279L, db="sovt2_fm 1 _prop@ ccdbl.sron.rug.nl 0O
READ',
FroniLevel =-1, UpTolLevel =1)

#
#

If there is an ObsContext (Myobs) in the session, you can reprocess it froman

exi sting Level,

Running the HIFI pipeline

2.2.2.

e.g Level 0.5to0 1

obs = hifiPipeline(obs = Myobs, Fronievel =0.5, UpToLevel =1)

#

If the calibration tree is updated, you can re-popul ate the calibration products
in Myobs using:

obs = hifi Pi peline(obs=Myobs, cal =1)

#

#For ILT data, provide the obsMbde nane -- the data itself does not have it:

obs = hifi Pi peline(obsi d=268516902, db="ilt_fm5 prop@ccdbl.sron.rug.nl 0 READ',
obsMbde="Hi fi Poi nt ModeLoadChop")

#

Use a different tnVersion than the default in your user.props file

obs = hifi Pi peline(obsi d=268439922, db="ilt_par_5 prop@ccdb. sron.rug.nl 0 READ',
tnVersion="ilt-par")

#

You can edit the algorithmof the pipeline tasks and use themin place of the
default al gorithns,

see Section 2.4

obs = hifiPipeline(obsi d=1342179306L, db="hifi _icc_ops_1@ccdbl.sron.rug.nl 0O
READ', whsAl go=nyWsAl go,

hr sAl go=nyHr sAl go, Level 1Al go=nyLevel 1Al go)

#

Provide your own pal Store to which the pipeline will wite to:

obs = hifiPipeline(obsi d=1342179306L, db="hifi _icc_ops_1@ccdbl.sron.rug.nl 0O
READ', pal Store = nyStore)

#

C ear CachedStoreHandl er to avoid a block due to none closed stores. Note, this
cl oses ALL stores

available in this cache and may affect other applications running in the session.
obs = hifi Pipeline(obsi d=1342179306L, db="hifi _icc_ops_1@ccdbl.sron.rug.nl 0O
READ', cl ear CachedSt or eHandl er =1)

#

|f pipeline task is not behaving as you expect you could try a reset:

from herschel . hifi.pipelin inport HifiPipelineTask

hi fi Pipeline = HifiPipelineTask()

Individual pipeline tasks

In addition to using the HifiPipeline task, one can run the underlying pipeline tasks too. These tasks
handle ObservationContexts as well as HTPs, which can make using them more efficient to test one
stage of the pipeline. The API for each of thetasksisidentical and their functionalities are summarised
in the examples below. GUI forms are also available.

Note

@ The Generic pipelinetask is deprecated and the Level 1 and Level 2 pipeline tasks should
be used instead

Create a Level 0.5 HTP for WBS-H fromraw data
ht p=wbsPi pel i neTask(obsi d=3221226570L, api d=1030,
db="sovt2_fm 1 prop@ccdbl.sron.rug.nl 0 READ")

#

and then pass that to the Level 1 pipeline task
ht p=I evel 1Pi pel i neTask(ht p=ht p, api d=1030)

#

Create a Level 0.5 HTP for the HRS-H from an existing HTP, using your own
al gorithm

ht p=hr sPi pel i neTask(ht p=ht p, api d=1028 -, al go=nyHrsAl go)

#

and pass that to the Level 1 pipeline, and defining your own pal Store to wite
the output to

htp = | evel 1Pi pel i neTask(ht p=ht p, api d=1028, pal Store= nmyStore)

#

Pass an existing CbservationContext to the Level 2Pi pel i neTask

obs = | evel 2Pi pel i neTask(obs=0bs)

Running the HIFI pipeline

2.3. Running the Pipeline step by step

Running the pipeline (or one part of the pipeline) step by step allows you to inspect the results of
each step and change the default parameters of the pipeline. If you wish to create your own algorithm
(which must be written in jython) for a part of the pipeline, then thiswill likely be your first step.

It is not expected that there will be much need to customise the spectrometer pipelines (up to Level
0.5) and indeed there are only a steps of the spectrometer pipelines that have some options. It is
morelikely that you may wish to play with how off and reference spectraare subtracted in the Level
1 pipeline, although it is expected that the dafault settings should work well.

To step through the pipeline you must work directly on the appropriate level HifiTimeLine (HTP -
the dataset containing al the spectra, including calibration spectra, made during an observation for
agiven spectrometer). So the first thing you must do is extract the HTP you want to work on from
your ObservationContext, see Section 14.6 for how to do this.

When you select an HTP in the Variables view in HIPE you will notice that many tasks with names
like DoWbsDark, mkFregGrid. These are the names of al of the steps in the HIFI pipeling; mk...
signifies a step where a calibration product is being made, Do... is a step where a calibration is
applied. You can step through the pipeline using these tasks or (more efficiently) use and modify
the scriptsthat are supplied with the softwareinthescri pt s/ hi fi / Pi pel i ne directory inthe
installation directory of HIPE

For information on the steps of each level of the pipeline (their names, the order to run themin, and
what options you can change) see the HIFI Pipeline Specification document in the help, also _here
if you have access to the HIFI ICC pages.

2.4. How to customise pipeline algorithms

1. The pipeline algorithm scripts can be found in:

* WBS. $BuildDir/scripts/hifi/pipeline/wbs/WhbsPipelineAlgo.py
* HRS. $BuildDir/scripts/hifi/pipeline/hrs/HrsPipelineAlgo.py
» Level 1. $BuildDir/scripts/hifi/pipeline/generic/Level 1PipelineAlgo.py

* Level 2. $BuildDir/scripts/hifi/pipeline/generic/Level 2PipelineAlgo.py

2. Open the algorithim you wish to customise in the editor, edit it (and save!)

3. Compile your agorithm by running the script with >>

4. Apply the algorithm to the pipeline as described in the sections above.

http://www.sron.rug.nl/docserver/wiki/doku.php?id=docbook:hifi-pipeline1

Chapter 3. Flags in HIFI data

Flags (also called masks) are identifiers of specific issues with the data, such as saturated pixelsor a
possible spur, that can affect the quality of the final product. Flags are used to identify affected data
and to make a caution during its processing.

A Flag has a defined name and a value, which specifies the nature of the flag. The flags are divided
into two categories, depending on whether they apply to anindividual channel (pixel), or to acomplete
Dataframe. They are called channel f lags, and column rowflags, respectively.

Note

@ There are aso Quality Flags, which are found in the Quality Product in the
ObservationContaxt and are used to provide you with means to make a quick assessment
of the quality of your data, they are discussed in chapter Chapter 4

3.1. Channel flags

Channel (or pixel) flags apply to individual pixelsand are added asacolumn inthe HTP. Their names
are also added to the metadata of a dataset during processing and this is used for the history of the
pipeline; it also means that you can tell that, e,g., the WBS pipeline has been applied if you see things
like "isMasked" and "checkZero" in the metadata.

For each pixel there are 32 flags which can be set, currently 8 are defined, and the definition of the
mask bits and valuesin HIFI datais given here:

Flag Name Value Description

Bad pixel 0 If thisbit is set, the sample
contains a bad pixel

Saturated pixel 1 If this bit is set, the sample was
saturated

Not observed 2 If this bit is set, the sampleis
not observed

Not Calibrated 3 If thisbit is set, the sampleis
not calibrated

In overlap region 4 If thisbit is set, the sampleis

in the subband overlap region.
|.e. it can be seen better in the
adjacent subband.

Glitch detected 5 If this bit is set, the sampleis
not observed

Dark pixel 6 If this bit is set, the sampleis
used to measure the dark

Spur candidate 7 If thisbit is set, the sampleis

acandidateto beaspur. Itisa
‘candidate’ since not all things
flagged by the spurfinder are
necessarily spurs

3.2. Column rowflags

Column rowflags (the "rowflag" column in the HIFI spectrum TableDataset) apply to the complete
Dataframes (DF) or rows in a HifiSpectrumDataset (HSD).

10

Flagsin HIFI data

For bit nthe valueis computed according toval ue=2("" . Thefirst 5 bits are about the packets from
which the DataFrame (DF) is reconstructed, and are unlikely to ever occur. Below is atable showing
the current names and values of HIFI rowflags:

Flag Name Bit Value Description

PacketOrder 1 1 Error inthe
packet order while
constructing the
DataFrame

PacketL ength 2 2 Error in the packet
length while
constructing the
DataFrame

TooMuchData 3 4 More data than can be
fit in aDataFrame

FirstPacket 4 8 Error in the start packet
while constructing the
DataFrame

NoBlocks 5 16 No block information
present while
constructing the
DataFrame

spare 6 32

Spare 7 64

UnalignedHK 8 128 HK could not

be aligned with
DataFrames. When the
columns"df_transfer"
and "hk_transfer" in
the TableDataset are
different, bit 8 is set

noChopper 9 256 No valid Chopper
information. Set when
the flagbit is zero in the
DFs, extracted from the
HK packetsif possible

noComChop 10 512 No valid Commanded
Chopper information.
Set when the flagbit
iserointhe DFs,
extracted from the HK
packetsif possible

noFregMon 11 1024 No valid Frequency
Monitor information.
Set when the flaghbit
is zero in the DFs,
extracted from the HK
packetsif possible

noL oCodeOffset 12 2048 No valid LO code
offset information. Set
when the flaghit is zero
in the DFs, extracted

11

Flagsin HIFI data

Flag Name

Bit

Value

Description

from the HK packets if
possible

noLoCodeMain

13

4096

No valid LO code main
information. Set when
the flagbit is zero in the
DFs, extracted from the
HK packets if possible.

BbidCorrection

14

8192

Correction of Bbid, see
SPR 1963. Not relevant
any more. It was during
SOVT testing, but the
onboard software has
been corrected since

MixerCurrentDeviation

15

16384

Differencein
mixer currents
exceeds tolerance
when applying
DoRefSubtract.

MixerCurrentDeviation

16

32768

Differencein
mixer currents
exceeds tolerance
when applying
DoOffSubtract.

MixerCurrentDeviation

17

65536

Differencein
mixer currents
exceeds tolerance
when applying
DoFluxHotCold or
MkFluxHotCold.

NoHotColdCalibration

18

131072

Division by the
bandpass has not been
carried through

12

Flagsin HIFI data

=] Editor X

a & obs.refs|]product {& obs refsl]product i obs refs[..] product |+ obs.refsl..dataset”] x

4D T T T | T T T | T T T | T T T | T T T | T T T T T

35
30

2.5

1S
1.0
0.5

0.0

flux
IIII|IIII|IIII|IIII|IIII?IIII'IIII'IIII'IIII

5 I A Y S Y O) 0 O . I 0 I O
3800 4000 4200 4400 4800 4300 S000 =)

frequency (MHz)

[

00

4 F Pl i

Chopper
=1.19984 13

AL 123 4 IMATT nriytes

[;_&i, Hj__st_:_}_r\..rlg Log El console x

HIPE> poolname='268435841 ohs'

HIPE> storage = ProductStorage()

HIFE> pool = FoolManager.getFool({poolname)
HIPE> storage.register(pool)

HIPE> result = storage.select{query)
HIFE> obs = storage.load(result[0].urn).product
HIPE=

HIFE= query=herschel.ja.pal.query.AttribQuery(herschel.ia.ohs.0bservationContext,"

e

Caption: Example of aHIFI spectrum TableDataset, which containsthe "rowflag" columnwith avalue
of 256.

13

Chapter 4. Quality Flags

Quality Flags are raised during standard processing of HIFI data. Flags should be created from every
processing step of the pipeline, from theinitial creation of the Hifi TimelineProduct (Level 0), through
to the final product of Level2 processing. If all goes well, the flags will have their default values but
if a certain processing step is unable to perform the action it was designed for the flag will take a
different value. If the pipeline produces aflag other than the default value, thisflag is promoted to the
Quality Report. Thusthe quality report is by definition alist of thingsidentified as have gone wrong.
A quality report is found from the ObservationContext:

obs.refs["quality"].product

Please note the difference between a quality flag and flagging data. In flagging data you identify that,
for example, agiven channel sampleis saturated; if those channels are saturated repeatedly during the
observation then the quality flag "SATURATEDNUMBER" wil be raised.

Below isalist of the current available types of quality flags for the HIFI pipeline, for each level. The
format below gives flag name, flag description, and flag default value.

Level O Quality Flags.

Quality Flags

UNALIGNED_HK("unalignedHK data","Percentage of Dataframes which have unaligned HK",
0.0)

NOCHOPPER("noChopperHK data"," Percentage of DFs having no chopper information”, 0.0)

NOCOM CHOP("noCommandedChopperHK data"," Percentage of DFs having no commanded
chopper information”, 0.0)

NOFREQMON("noFrequencyMonitorHK data’, " Percentage of DFs having no frequency monitor
information", 0.0)

NOL COFFS("noL oCodeOffsetHK data"," Percentage of DFs having no LO Code offset
information"”, 0.0)

NOLCMAIN("noLoCodeMainHK data"," Percentage of DFs having no LO Code main
information", 0.0)

BBID_CORRECTION("bbidCorrection"," Percentage of Bbids corrected according to commanded
Bhids", 0.0)

DATAFRAMES OUTOFORDER("dataframesOutOfOrder","Unordered or duplicate Dataframes
found", false)

MISSING_DATA("missingData","L ess data found than expected"”, false)
SURPLUS DATA("surplusData’,"More data found than expected", false)

Level 0.5 Quality Flags: WBS.

Quality Flags

COMBFLAG(QWhbsFreg.VALIDATE,"Hag for all COMB of the observation”,false)
ZEROFLAG(QWhbsZero.VALIDATE, "Flag for all Zero of the observation"” false)
SPIKENUMBER(QWbsSpikes. NUMBER, "Maximum number of spikes detected in a Comb", 0)

SATURATEDNUMBER("pixel Saturated”,"Maximum number of saturated pixel detected in a
single spectrum",0l)

SDARKFLAG("darkFlag"," Spectrum contains saturated dark " ,false)
BADPIXELS("badPixels’,"Number of channels marked as BAD due repeated saturations”,0l)

14

Quality Flags

Level 0.5 Quality Flags: HRS.

Quality Flags

NOQDC("noQDC", "No Quantization Distortion Correction could be processed.” false)

FASTQDC("fastQDC", "Fast Quantization Distortion Correction processed. Not optimal." ,false)

NOPOWCOR("noPowerCorrection","No Power Correction could be processed.” false)

Level 1.0 Quality Flags.

Check data structure.

Quality Flags

OBSERVINGMODE("observingMode"," Observing mode not recognized - consult the pipeline
configuration xml file.", false)

UNKNOWNBBTY PE("unknownBbType","Bbtype not known.", false)

Check freq grid.

Quality Flags

FREQUENCY DRIFT("maxFreqDrift", "Unacceptable maximum drift in the frequency grid
detected.”, false)

FREQUENCY CHECK S("'noFreqChecks", "Frequency checks and/or frequency grouping failed.”,
fase)

Check phases.

Quality Flags

CHOPPERPATTERN("chopperPattern”, "Pattern observed for the Chopper not as expected in all
datasets.”, false)

CHOPPERVALUES("chopperValues', "Number of distinct Chopper values not as expected in all
datasets.”, false)

LOFPATTERN("lof Pattern”, " Pattern observed for the LoFrequency not as expected in all
datasets.”, false)

LOFVALUES("lofValues', "Number of distinct LOF values not as expected in all datasets.”, false)

BUFFERPATTERN("bufferPattern”, "Pattern observed for the buffer not as expected in all
datasets.”, false)

BUFFERVALUES("bufferValues', "Number of distinct buffer values not as expected in all
datasets.”, false)

PHA SECHECK S("noPhaseChecks", "Not all phase checks could not be carried through or
completed.", false)

Hot/cold-calibration.

Quality Flags

HOTCOLDDATA ("hotcoldData"," Data measured from hot and cold loads not sufficient for hot/
cold calibration.", false)

TSYSFLAG("tsysFlag","Hot/cold calibration not successful.", false)

INTENSITYCALIBRATION("intensityCalibration”, "Intensity calibration not or not for all
spectra carried through.”, false)

Channel weights.

15

Quality Flags

Quality Flags

CHANNELWEIGHTSFLAG("channel Weights'," Problem occurred while computing channel-
dependent weights. No weights added.”, false)

Refer ence subtraction.

Quality Flags

REFSUBTRACTIONFLAG("ref Subtraction”, " Reference subtraction not processed - maybe
identification of phases not successful.", false)

Off smooth.

Quality Flags

NOOFFBASELINE("noBaseline”, "No off baseline could be calculated.”, false)

Off subtraction.

Quality Flags

ONOFFSEQUENCE("onoffSequence”," ON/OFF datasets not in expected sequence (...-ON-OFF-
ON-OFF-... or ...-ON-OFF-OFF-ON-ON-....", false)

ONOFFPAIRSIZE("onoffLength", "Some ON/OFF dataset pairs found with unequal number of
rows.", false)

ONOFFPROCESSING("onoffProcessing”, "More ON- than OFF-datasets found in the data - not
all ON-datasets could be processed with OFF-dataset(s).", false)

OFFBASELINESUBTRACTION("offBaselineSubtraction”, "No off baseline subtraction carried
through since no off baseline data available.”, false)

DATALOSSINAVERAGE("average', " Some data has been lost while computing the average over
many datasets.”, false)

16

Chapter 5. Viewing Spectra

5.1. Introduction

HIFI spectracan bevisualised in several ways, at variouslevelsof sophistication and user-friendliness.
Here the PlotXY and SpectrumExplorer packages are described.

5.2. Basic Spectrum Viewing: the PlotXY
Package

PlotXY() is the basic package to plot arrays of data points in the HCSS, and it can be used to plot
HIFI spectraaswell. It hasalot of options, making the plots highly configurable. Hereis an example
of plotting a HIFI spectrum:

 Get the frequency and flux datato be plotted from the spectrumdataset 'sd':
freq=sd. get Wave() . get (0)
fl ux=sd. get Fl ux(). get (0)

e The simplest possible plot:
out =Pl ot XY(freq, flux)

* When plotting multiple spectrum datasets, say 'sd1' and 'sd2' in one figure:
#get the wavelengths and fluxes to be plotted
freql=sdl. get Wave() . get (0)
fluxl=sdl. get Fl ux().get(0)
freq2=sd2. get Wave() . get (0)
fl ux2=sd2. get Fl ux() . get (0)

#create the plot variable

p=PI ot XY()

#create the plots in batch mode

p. bat ch=1

#define the layer variable

H=[]

#remove any non-numbers (NaN's, Infinites etc.)

val i d=f | ux1. where(l S_FI NI TE)

#create layer for first plot

| =Layer XY(freql[valid], fluxl][valid])

#append to layer variable

17

Viewing Spectra

I'l.append(l)
#repeat the above for the 2nd plot to be overlaid
val i d=fl ux2. where(I'S_FI NI TE)
| =Layer XY(freqg2[valid],flux2[valid])
I'l.append(l)
#define the plot layers that have just been created
p. | ayers=l|
#get out of batch mode. This actually creates the plot
p. bat ch=0
» And thisis how some common features of the plot are modified.
p. set Yrange([0, 1.5])

p.setTitleText("This is an exanple plot")

5.3. Viewing with SpectrumPlot

Itisalso possibleto display spectrawithout taking apart the dataformat asis described in the previous
section. All Herschel spectra types can be displayed with the Spect r unPl ot package.

If spect r umisaHerschel Spectral type (Spectrumld, Spectrum2d) then:

spl ot =Spect runPl ot (spect rum useFrane=1)

will simply display the spectrum aong with some standard header information. The useFr ame=1
allowsfor the possiblility of creating aplot without actually viewing it at first, but asthelast step. The
SpectrumPlot moduleis build on PlotXY, and so many of the features you would usein Pl ot XY you
can also use for Spect r unP| ot . Below are afew examples:

from herschel . i a. tool box. spectrum gui inport SpectrunPl ot
from herschel .ia.gui.plot.renderer. Styl eEngi ne. Chart Type i nport H STOGRAM LI NECHART
#

#

Creating the plot

sp=Spect runPl ot (spect rum useFr ane=1)

#

#

addi ng a second spectrumto the plot

sp. add(spect run®)

#

#Start

fresh again

p = SpectrunPl ot (spectrum useFrane=1)
#

#get

gr aphs

g0 = p. get Gaphs()[0]

g2 = p.getGaphs()[2]

#

#di splay as |ine graph or histogram
g0. | ayer. styl e. chart Type = H STOGRAM
g2.l ayer. styl e. chart Type

= LI NECHART

#

18

Viewing Spectra

#add

annot ati ons

g0. | ayer. addAnnot ati on(Annot ati on(4000, 1, "M
annot ati on"))

g0. | ayer. addAnnot at i on(Annot ati on(5000, 0. 98, "My
annot ati on"))

#

#sel ect

a range of data

g0. | ayer. xaxi s. addMar ker (Axi sMar ker (4200, 4400))
g2. | ayer. xaxi s. addMar ker (Axi sMar ker (6000, 6500))

These last lines will produce the following plot:

¥y annot ation

Observation: 268510098

backend: WBS -H activeband: 1h,
lofte queney, 527 995958, sds_type: chopse

I:l-gglaIIIIIIIII|IIII|IIII|IIII|IIII|IIII|IIIIIIIIIIII

0.994

0.5992

0.890

0988

flux

0925

0924

0982

My ammotation

0.930

':IQ?S IIIIIIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
3500 4000 4500 5000 5500 8000 6500 7OOO 7500 8000 3500

Frequency scale (MHz)

Figure5.1.

5.4. The SpectrumExplorer Package

The SpectrumExplorer package allows oneto visualize HIFI, PACS, and SPIRE SpectrumDatasetsin
auserfriendly, interactiveway. To activateit, click on a SpectrumDataset in the V ariableswindow with
the right mouse button and select 'Open With' and 'Spectrum Explorer'. This will plot the spectrum.
If the SpectrumDataset is wrapped in an ObservationContext or a TimelineProduct, double-click on it
in the Variables window and then click down the product tree to the desired SpectrumDataset. Then
you will see something like this:

19

Viewing Spectra

HIPE - Herschel Interactive Processing Environ
File Edit Run Window Help
T EHsAL@DEEOO s =y Y E
™ Editor X
CL obs -1-1- obs.refs...taset”] x\
plot
4-G_IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
35
30
25
20
15
10
05
00F e e
_G.SZIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII
3500 4000 4500 =000 =500 5000 6500 7000 7
frequency (MHz)
subplot [S856.3, 1.41]
x
AL 1 2 2 4 sequenc... | packet ti... dark ohs time
1 [N 1593776... [[[61.1274...[1593776... -
2 |1 1| 2 1593776... [[[64.1927...|1593776...
: HENN1: 1593776... [[[64.3663...[1593776...
4 20 1593776, [[[58.4735...[1593776...
5 26 1593776, [[[58.6789...[1593776..
i 28 1E Q2 TTE M1 7442 1E S TTE :.

In the shown example of the HIFI instrument, individual WBS sub-bands or scans can be plotted by
clicking on the appropriate boxes in the bottom panel and removed by double-clicking. The plot can
be modified interactively or other actions can be performed after clicking the appropriate button at

20

Viewing Spectra

the top panel. The same actions can aso be selected by clicking the right mouse button on the plot
window. From left to right:

button 1: new... (file, script)
button 2: save the plot to afile. One can chose from a number of file formats.
button 3: print the plot.

button 4: this is the default mode when SpectrumExplorer is started. Change the horizontal and
vertical plot ranges by drawing arectangular box using the left mouse button. Also, one can scroll
the spectrum along the horizontal and vertical axes by clicking on an axiswith the left mouse button
and then moving the mouse or using the mouse wheel. Control-left mouse button will un-zoom the
plot (or use the Zoom option under the right mouse button).

button 5: highlight a plotted spectrum by clicking on it with the left mouse button. Then with the
right mouse button, under 'Spectrum' chose an operation to be applied to the selected spectrum.
Subsequently a GUI for the particular operation will appear. Enter any details and click on 'Accept’
in the GUI. Note that currently this will only work if the dataset was selected directly from the
Variables window, not from the ObservationContext or TimelineProduct tree. In the latter case,
create avariable first by dragging the dataset from the Outline window to the Variables window.

button 6: highlight spectral ranges by using the left or middle mouse buttons. This will create a
vertical grey bar. Inthe near future (likely HIPE 1.2) all sorts of tasks can be applied to the marked
area(s), e.g. flagging datapoints and fitting lines and Gaussians.

button 7: select specific data points with the left mouse button. In the near future (likely HIPE 1.2)
one will be able to flag or remove these points.

button 8: click on a spectrum and drag it to another or a new panel (note that dragging to the left
and top of the original panel is mot possible). The spectrum can also be dragged to the Variables
window whereiswill be stored as anew variable.

button 9: pan through the spectrum by clicking the left mouse button and moving the mouse.

button 10: only show the active plot panel, and change the axisratio in order to fit the screen. Click
button 7 again to show all panels.

button 11: add (or remove) agrid to the plot
button 12: display or hide the plot legend
button 13: switch between line and histogram mode

button 14: apply afilter to the attributes of a SpectrumDataset, such as chopper position, flags, etc.
The filter GUI will appear at the bottom right of the SpectrumExplorer window. Attributes can be
selected from a drop down menu. The filter values can be entered as ranges, e.g. sequence numbers
18-20 can be selected by entering '18-20' or '19+/-2' under filter'.

button 15: any plot parameter (plot range, titles, colors etc.) can be modified in the same way as
for the PlotXY () package.

Finally, it isaso possible to...

...overplot multiple SpectrumDatasets. If the dataset is listed in the Variables window, click and
drag it to the area under the SpectrumExplorer plot window, and a new tab for that dataset will
appear that can be selected subsequently.

...add, remove, or invert axes by right-mouse clicking on an axis. In the future it will be possible to
change the units of the axis aswell (e.g. USB/LSB/IF/V1sr for HIFI).

21

Chapter 6. Changing to LSB/USB and
Velocity

6.1. Changing HIFI Frequency Scales

6.1.1.

In practice there at two methods of altering the HIFI frequency scales: using the Spectrum Explorer
GUI or from the command line. These two approaches differ in one fundamental way. The
command line tasks will actually change the data, by resetting the frequency to upper/lower sideband
representation or velocity. The GUI only changes what is seen in the SpectrumExplorer, the data
themselves are not changed.

There are four fundamental ways of representing the frequency scale for HIFI: the intermediate
frequency (default), the upper sideband frequency, the lower sideband frequency, or by velocity.

One final note, currently the HIFI pipeline is providing the "final" spectra represented in both USB
and LSB. The level 2 product names are tagged LSB or USB it is still possible from these spectrato
transform back to |F or the other sideband.

Changing Spectral Views

The SpectrumExplorer provides internal means of viewing spectra. These views are only for display
purposes and do not change the data.

6.1.1.1. LSB/USB

Assuming you have activated aspectrum in a SpectrumExplorer window. To move between aspectrum
seen in the Intermediate Frequency, USB or LSB, right mouse click on the frequency access (not the
title of the access, but the axisitself). A pull down menu for the access will appear.

6.1.1.2. Velocity

6.1.2.

Change Spectral Views from the command line

6.1.2.1. LSB/USB

The task to convert the actual frequency scale in a HifiTimelineProduct or HifiSpectrumDataset is
called ConvertFrequencyTask. Assuming spectrum is the variable name for a HifiSpectrumDataset
with the frequency scale of the datain expressed as | F frequencies.

cft=Convert FrequencyTask()
cft(sds=spectrumto="1|sbhfrequency")

Of coursg, it isalso possible to convert to the upper sideband. for thisthe keyword is " usbfrequency".

cft (sds=spectrum to="usbfrequency')

To convert back to the IF, use:

cft(sds=spectrum to='frequency')

22

Changing to LSB/USB and Vel ocity

The ConvertFrequencyTask works equally well on the HifiTimelineProduct itself. In this case al the
internal HifiSpectrumDatasets are converted. This is not something you should do in the early stages
(before level 0.5) of the HIFI pipeline. For example on alevel 1 HifiTimelineProduct:

cft =Convert FrequencyTask()
cft(htp=hifitinmelineproduct, to='frequency')

| Note

S Direct application of the ConvertFrequencyTask changes the data listed in the spectrum.
Conversion back to the original IF scaleis possible, just use the to="frequency’ option.

6.1.2.2. Velocity

The ConvertFregencyTask also works to convert the frequency scale to a velocity scale once given
the reference frequency.

cft =Convert FrequencyTask()
cft(sds=spectrumto="velocity', reference=576.268, i nupper =Fal se)

In the above example, | had to specify the reference frequency in GHz and whether this reference
frequency isfor the upper (inupper=True) or lower (inupper=False) sideband.

Another call to ConvertFrequencyTask using "to = 'frequency™ will undo the change to velocity as
well.

6.1.2.3. Review of ConvertFrequencyTask

The ConvertFrequencyTask works on HifiSpectrumDatasets or Hifi TimelineProducts. The task uses
the keywords "sds" for HifiSpectrumDataset and "htp" for HifiTimelineProducts. The conversion of
frequenciesis done using the "to" keyword. The following table shows the various possibilities:

to= Description Other keywords necessary
frequency Converts to the Intermediate None
Frequency scale.
usbfrequency Converts to the Upper side band | None
Frequency scale.
I sbfrequency Convertsto the lower side band |None
Frequency scale.
velocity Converts to the velocity scalein |reference=reference frequency,
km/s inupper=(True or False)

23

Chapter 7. Mathematical Operations
on Spectra

Please see the Data Analysis Guide for more up-to-date information.

24

Chapter 8. HIFI Standing Wave
Removal Tool

8.1. Introduction FitHifiFringe

FitHifiFringe is atool to remove standing waves from level 1 and level 2 HIFI spectra. It makes use
of the general sine wave fitting task FitFringe, but has been adapted to read HIFI SpectrumDatasets,
and provide input and defaults applicable to HIFI spectra. For details on the sine wave fitting method,
please consult the FitFringe manual.

FitHifiFringeisbeing tested on PV data. It can be applied to all bands, with the caveat that the standing
waves in HEB bands 6 and 7 are not sine waves, and hence can only be fitted in an approximate way
by fitting a combination of many sine waves.

Also note that presently FitHifiFringe can only be applied to WBS, not HRS, spectra.

8.2. Running FitHifiFringe

FitHifiFringe can berun by clicking onaWBSlevel 1 or 2 SpectrumDataset variable and then double-
clicking on the applicable task. Alternatively it can be run on the command line as follows:

fhf = FitH fiFringe()
sds_out = fhf(sdsl=sds_in, nfringes=2, m dcycl e=150.)

Theinput sds inisaWBS level 1 or level 2 SpectrumDataset. The output sds_out SpectrumDataset
isidentical to the input, but with the fitted sine waves subtracted from the flux columns.

The following input parameters are allowed:
* nfringes. number of sine wavesto be fitted [DEFAULT: 1]

» midcycle: Thisisan important parameter the user can supply. It isthe typical standing wave period
in the spectrum (in MHz). Any structure with periods much longer than that will be considered
baseline, and no sine waves will be fitted to it. Any narrow peaks (spurs, emission or absorption
lines) will be masked. [DEFAULT: 176 MHZ]

 cycle start of sine wave period search range [DEFAULT: 2727 MHZ]

» plot=Fase: only show plot of end-result for each scan [DEFAULT: 3 plots per scan: (1) period
versus Chi*2 (2) a before/after plot including the line mask (3) the before/after plot and the
subtracted sine wave]

» ncycle: number of cyclesto check [DEFAULT: 450]

 averscan=True: determine standing waves on average of all scans, and then subtract this from each
scan [DEFAULT: process each scan separately] NOTE: this option only availablein HIPE > 1.2

25

Chapter 9. Fitting Spectra

Please see the Spectrum Fitting chapter in the Data Analysis Guide.

26

Chapter 10. Sideband Deconvolution

The deconvolution tool is the post-Level 2 processor to separate the "folded" double sideband (DSB)
datainherently produced by the heterodyne process into asingle sideband (SSB) result. Seethe figure
below. Fluxes (F_DSB) in the DSB spectrum are given by:

F DSB(nu_IF) =g u*F_sky(nu LO+nu_IF) + g I*F _sky(nu_LO-nu_IF)

where nu_LO+/-nu_IF are sky frequencies, and g_| and g_u are sideband gain (imbalance) factors,
typicaly closeto 1. The deconvolution is used to reduce WBS Spectral Surveys, which are collections
of observations taken at many LO settings so as to constrain the solution. The algorithm finds a SSB
solution that best models the observed DSB observations through iterative chi-square minimization
(Comito and Schilke 2002). The algorithm automatically runs twice, first with gain factors set to 1.0
for stability, and then a second time, starting with the SSB solution of the first run, but this time
allowing the gain values to be optimized as well.

27

Sideband Deconvolution

200
ARNRARANERRRR AN

TIK]

ST)

JIF NI T T N N
Synthetic Spe

. .
o ﬂ\v\‘

¥4

: “M

_ M MJMMWU
800.0 [GHz] 804.
816.0 [GHz] 812.

Double sideband
Spectrum

Sideband Deconvolution

10.1

The deconvolution tool isrun AFTER the level 2 pipelinein HCSS 1.2. Thelevel 2 pipeline performs
the following tasks:

 gplitsthe datainto upper and lower sideband representations
» appliesagain correction specific to the LO frequency and sideband of the spectra
» corrects frequencies for spacecraft radial velocities

» resamples the spectra onto a fixed grid. For WBS this is done at 0.5 MHz spacing, with the first
frequency snapped to the nearest 0.5 MHz

Any HIFI observation context will contain Level 2 products if run through the standard product
generation.

Running the Deconvolution Tool

Assuming the observation context is named "MyObsContext”, the user can run the deconvol ution task
on the command line with the default parameters by simply invoking:

resul t =DoDeconvol uti on() (obs=MyObsCont ext)

The default parameters can be modified as follows:

resul t =DoDeconvol uti on() (obs=MyObsCont ext,
pol ari zati on=1, nax_i terati ons=200,

t ol erance=0. 001, channel _wei ghti ng = True)

» max_iterations: Tells decon to stop after a specified number of interations if it has not converged
by then

* tolerance: Specifies the tolerance of the solution. Lower values means it takes longer to converge

* bin_size: Tells deconvolution to bin data into a specified size (in Mhz). Effectively smooths the
input

* polarization : Observations contexts store H and V polarizations. Y ou can specify which to reduce
with this option. O=H, 1=V

» channel_weighting : Toggles whether or not the deconvol ution uses the weight values in the data

The Deconvolution Tool can aso be run from a GUI by clicking on the the obs context in the
"Variables' window, then double clicking 'doDeconvolution’ in the "Task" list.

29

Sideband Deconvolution

000 X HIPE

File Edit Eun Window Help
 Am=

] Editor %',
" (2 doDeconvolution x\

-lnput
obs* : & | obs
polarization : W _POL
bin_size : o |0s
frax_iterations : o 200
tolerance : o |Doolo
channel_weighting : 2 [
plot_dsk LSB_aonlky
-Qutput
Yariable name for decon_result: |decon_result
-Info
running
status:
progress:)

| £l console x\

HIFE:=
HIFPE:=
HIPE:=
HIFPE:=

— |HIFE=

HIFE= decon_result =
dolecorwvolution(obs=ohs,polarization=1,bin_size=0.5%,max_1t:

— . 1 —

Sideband Deconvolution

Like other GUIsin the system, once the 'Accept’ button is hit, the command line version iswritten in
the console window so users know exactly how the task was called. This output can be cut and paste
into user scripts for repeatability.

10.2. Viewing Deconvolution Results

» The output product result can be viewed with the product viewer.

» Thesingle sideband result (ssh) is a dataset that can be viewed with the SpectrumExplorer. On the
command line, it can be extracted from the product as follows: ssb=decon_resul t["ssb"]
This contains the deconvolved spectrum, and is the primary output of the tool.

» Thedataset "gain" can be viewed with dataset inspector. On the command line, it can be extracted
from the product with: gai ns=decon_r esul t[" gai n"] Thedeconvolution tool can estimate
the sideband gains due to the redundant nature of the data taking. These estimates are stored per
LO tuning in this product.

* The meta data added to ssb includes number of iterations and the tolerance, as can be seen in the
HIPE screenshot below.

31

Sideband Deconvolution

YYD
File Edit Eun Window Help

=
] Editor %',

[l' pipelineTask. oy \{-.ﬂ doDeconvalution \{-.E decon_result T :E

decon_result

Spectrumld

Meta Data

narmme wallue Linit

W avEname fred
W AVELINIT MHz
wavedescription Single sidelband Freguency
bin_size 05
may _iterations 200
tolerance Q0010

= decon_result decon_resul t["ssbh"]
o B
@ gain
= [= History 10
@ Histonscript a
@ HistoryTasks
@ Histor/farameter A —
4 L
2 L
0 — ni. sy
5 | | |
55100 56100 57100 5810 ¢
Spectrume
ALL
1 [
1 4

Sideband Deconvolution

33

Chapter 11. How to make a spectral
cube

Spectral cubesfrom OTF mapping observationsare produced as part of the SPG pipelineand arealevel
2 product. However, re-processing of spectral cubes from aLevel 2 product islikely desirable; thisis
done using the doGridding Task after calibrations of baseline, sideband gain, and antennatemperature.

Thedefault operation of thetask isto select the science datasetsfrom an HTP and create acubefor each
given spectrometer subband. Each slice of the cube is produced by computing atwo dimensional grid
covering the area of the sky observed in amapping mode. For each pixel inthegrid, thetask computesa
normalized Gaussian convolution of those spectra (equally weighted) falling in the convol ution kernel
around that pixel. After running the task you will have an array of cubes, one for each subband.

The SimpleCube product can be analyzed with the CubeSpectrumAnalysisT ool box.

11.1. Making a Spectral Cube via the
command line

As a part of the automated (SPG) pipeline, Dogridding handles ObservationContexts but if you are
making a cube yourself then you should use a Level-2 HifiTimelineProduct (HTP). As of HCSS 1.0,
the HTP contains the satel lite pointing information required to run the task but if you are using old data
you must also supply the pointing, SIAM and uplink products. Some examples of usage are below

o Data selection:

Make cubes for all the subbands, then display the first one:

cubes = doGri ddi ng(ht p=ht p)
cubes_count = | en(cubes)
cube = cubes[0]

Di spl ay(cube)

Or you might automatically create a separate variable for each cube as in the following routine:

get a separate variable for each cube conputed for each subband
for subband in range(len(cubes)):

cube = cubes[subband]

subband = cube. net a[' subband'] . val ue

cube_nane = -"cube_%l" % subband

vars()[cube_nane] = cube

The medata of each cube will include a "subband" parameter stating the subband of the spectra
which was used to compute the cube. This can be checked with,

print cube. neta[' subband']

* You may select just apart of the spectrum for each subband to be processed, that is, to generate the
cube for arange of the channels of the given spectra. This can be done by providing a "channels’
input, which is an Int2d array. This has to contain as many rows as subbands are to be processed.
Each row must have two elements, the start and end channel to be read.

The next example shows how to create a cube for the first and fourth subbands of a given
spectrometer, reading just the channels 200 to 1200 in the first one, and the channels 400 to 700
in the second:

How to make a spectral cube

channel Ranges = | ntd2()
channel Ranges. append(| nt 1d([200, 1200]), 0) # O nmeans append row w se
channel Ranges. append(| nt 1d([400, 700]), 0)

cubes = doGri ddi ng(ht p=htp, subband = Int1d([1,4]), channel s=channel Ranges)

Select datasets by type: the default action isto take the science data sets that are on the source and
thisis normally sufficient. However, there may be observations where the dataset type to be read
to make the cube has a different dataset type (e.g. an engineering observationswhose typeis called
"other", instead of "science"). Y ou can aso select the off positions too.

cubes = doGri ddi ng(ht p=htp, dataset Type="sci ence", ignoreXfs=false)

Select some datasets by index instead of picking all the "science” datasets (datasetTypeisignored if
thisisused): herewe select subbbands 2 and 4, and datasets 3, 4, and 5 from the HTP. The weighting
can also be specified to be "equal” (this is default) or that computed in DoChannelWeights in the
Level 1 pipeline ("selection”):

cubes = doGiddi ng(ht p=htp, subbands=Intld([2,4]), datasetlndices=([3,4,5]),
wei ght Mode="sel ecti on")

cubes = doGriddi ng(ht p=htp, subbands=Intild([2,4]),

dat aset _i ndi ces=I nt1d([3, 4,5]), wei ght Mode="sel ecti on")

cube_subband_2 = cubes[0]

cube_subband_4 = cubes[1]

Geometry:
Specify the (antenna) beam size:

Y ou can specify which is the half power beam width of the instrument i.e. the beam width. In the
case of HIFI, case the beam is symmetric hence a single value is needed. However, one might in
principle provide two different sizes along the x and y axis, thus specifying the dimensions of an
eliptical beam.

When thisinput is not provided the gridding task computes a default value for the HIFI beam size,
based on a known function of the observed frequency. At present the formula used for the default
caseis:

HPBW = 75.44726 * wavelengthimm]

specify the size of the beam

cubes = doG i ddi ng(ht p=ht p, beam=Doubl eld([15. 4]))

specify the size of the beam In this case the beamis w der along the

vertical axis.
cubes = gri ddi ngTask(ht p=ht p, beam=Doubl e1d([10., 20.]))

If the beam size is specified, and the pixel sizeis not specified, the pixel size will be function of the
beam size taking into account the Nyquist criterion and the smooth factor (if any given). Usually,
for nyquist sampling, the default pixel size becomes half the beam size.

Specify the type of filter:
By default the convolutionis performed with agaussian filter function, however, the user can specify
other filter types.

cubes = doGidding(htp=htp, filterType="box")

At present the available filter functions are box function (best for Raster maps) and a Gaussian
function (best for OTF). Other filter functions maybe added in next releases.

35

How to make a spectral cube

the default filter type is gaussian
cubes = doGiddi ng(htp=htp, filterType="gaussian")

Specify the parameters of the filter along each axis:

The parameters that characterize each filter can be modified. For example, to use a box filter with
adifferent length:

paraneters = [Doubl eld([0.5]), Doubl eld([1.5])]
cubes =
doGri ddi ng(ht p=ht p, wei ght Mode="equal ", filter Type="box", filterParanms=par anet ers)

The next example specifies the parameters length and sigma of the Gaussian filter function, when
using agaussian filter (default case).

the -"influence area" is the area surrounding a grid point

where the al gorithmnmust pick up all the avail able data points.
influence_area = 1.95 # length in pixels

sigma of the gaussian function tinmes SQRT(2)

sigma_sqrt2 = 0.3 # in pixels

xFi | ter Paranmet ers = Doubl eld([influence_area, sigma_sqrt2])

default case

influence_area = 1.8; signa_sqrt2 = 0. 36

yFi |l ter Paranmeters = Doubl eld([influence_area, sigma_sqrt2])

cubes = doGiddi ng(htp=htp,filterType="gaussi an", xFilterParans=
xFi |l terParanmeters, yFilterParanms = yFilterParaneters)

it is also possible to pass both set of paraneters in a single input:

paraneters = [Doubl eld([1.8,0.4]), Doubleld([1.6,0.3])]

cubes =

doGri ddi ng(ht p=ht p, wei ght Mode="equal ", fil ter Type="gaussi an", filterParanms=par anet ers)

The following example modifies the default parameters of the box filters (their length):

custom ze a box filter i.e. set the length of the pixel, neasured in pixels
paraneters = [Doubl eld([0.5]), Doubleld([1.5])]

cubes =

doGri ddi ng(ht p=ht p, wei ght Mode="equal ", filter Type="box", filterParanms=par anet ers)

Note: bear in mind that the default values of each type of filter are thought to optimize the
convolution.

Specify the size of the pixels:

The user can choose a pixel size different from the pixel size computed by default (based on other
inputs and on the angular dimensions of the observed area).

The pixel sizemust be given in seconds of arc. For example, to assign apixel size of 20 arcsec along
both axes the user can specify the pi xel Si ze input

cubes =
doGri ddi ng(ht p=ht p, wei ght Mode="sel ection",filterType="gaussi an", pi xel Si ze=Doubl e1d([15]))

And to assign a different pixel size along the x and y axis, the given Doubleld must have two
elements. For example, to get pixels 15 arcsec wide and 25 tall, the pixelSize input should be
Doubleld([15,25]):

36

How to make a spectral cube

cubes =
doGri ddi ng(ht p=ht p, wei ght Mode="sel ecti on", filterType="gaussi an", pi xel Si ze=Doubl eld([15, 25]))

By default the pixel size is computed so that it is optimal, based on the other parameters given to
the task. If neither beam size nor smooth factor have been provided, the task will compute a default
HPBW and then it will choose pixel size equal to the half of this HPBW, i.e. it will assume that the
sampling was done with following the nyquist criterion. The default pixel size will be the biggest
of the values (HPBW/4) and (HPBW/(2* smoothFactor)). By default the smoothFactor is 1.0 (no
smoothing factor applied), so that the default pixel size becomes the half of the beam size.

If the map dimensions in pixelswere specified, the pixel size will be simply the division of the area
actually observed by the number of pixels specified in the map size parameter.

If an smooth factor is provided, the pixel size will be the largest of HPBW/4 and
(HPBWY/2)* smoothFactor

 Specify the dimensions of the map:

The user can specify the size of the map, in pixels, by means of the mapSize parameter. For example:

cubes = doGri ddi ng(ht p=htp, nmapSi ze=Int 1d([10, 20]))
cube = cubes[0]

will create a cube 10 pixels wide and 20 pixels high. When this parameter is not specified the task
computes the optimal dimensions taking into account the (antenna) beam size as well as the area
of the sky covered by the input spectra.

* Specify the reference pixel

The user can specify which is the reference pixel of the grid. It is aso possible to define the
coordinates of that reference pixel. If the latter is not provided the reference pixel will provide the
coordinates, measured in pixels, of the projection centre, whichis, initsturn, computed asthe center
of the coordinates of the input spectra (usually the centre of the map). Hence if the user provides a
reference pixel, the user is defining where, in the regular grid, lies the centre of the observed area.

Please note that the convention for the pixels computed for the regular grid of the output cubesis
that the (0,0) pixel corresponds to the center of bottom-most, left-most pixel of the regular grid.
Please note that this differsin -1 from the usual convention for FITS images, where the center of
the bottom-most, left-most pixel has coordinates (1.0, 1.0).

If the user specifies only this refPixel input and the user does not specify the coordinates of that
pixel, thiswill computed so that it gets the pixel coordinates of the centre of the input spectra.

For example, if we want to force that the reference pixd is the pixel (3.5, 4.0), then the refPixel
input will be Doubleld([3.5, 4.]). If no refPixelCoordinates are provided, then the centre of the
coordinates of the input spectra will be locate at the pixd (3.5, 4.0) of the regular grid i.e. at the
FITS pixel (4.5, 5.0) from the bottom-most, |eft-most pixel of the cube. This means that the value
of the CRPXI1 parameter of the result cube will be equal to 4.5 and the value of the CRPIX2
parameter will be equal to 5.0 (remind that the cube header uses the usual FITS convention about
pixel coordinates).

cubes = doGri ddi ng(ht p=htp, ref Pi xel = Doubl eld([3.5, 4.0]))

By setting both refPixel and the refPixelCoordinates input explained below, the user can place
the regular grid at any arbitray location, although the user is adviced to let the task automatically
compute these so that the grid is located at a suitable place fully covering the observed spectra.

« Specify the coordinates of the reference pixel:

37

How to make a spectral cube

In addition to choosing a reference pixel, the user can also specify its celestial coordinatesi.e. the
longitude and latitude of the point chosen as the reference pixel of the cubes to be made by the
gridding task.

For instance, to make that the reference pixel is located at the coordinates (RA,DEC) = (308.9,
40.36) degrees, a refPixel Coordinates input can be provided with these coordinates. Let's say, in
addition, that the user wants that these reference pixel is the (0,0) pixel located at the bottom left
corner of theimage. Then refPixel = (0,0). Thenthe user should call doGridding likeinthefollowing
example:

ref Pi xel = Doubl eld([0, 0])

| ongi tude = 307.9

| atitude = 40. 36

r ef Pi xel Coordi nates = Doubl eld([| ongi tude, |atitude])
cubes = doGri ddi ng(ht p=htp, ref Pi xel =Doubl e1d([0, 0]),

r ef Pi xel Coor di nat es=Doubl eld([| ongi tude, |atitude]))

or:

cubes = doG i ddi ng(ht p=ht p, ref Pi xel =r ef Pi xel ,

r ef Pi xel Coor di nat es=r ef Pi xel Coor di nat es)

#one can check that cubes[i].wcs.crvall == | ongitude and cube[i].wcs.crval 2 ==
| atitude:

print cubes[i].ws.crvall == |ongitude # 1, True

print cube[i].wcs.crval2 == latitude # 1, True

Please note that if only the refPixel Coordinates input is provided, the user will be choosing the
coordinates of the centre of the map.

By setting both refPixel and refPixel Coordinates the user can place the regular grid at any arbitrary
location, although the user is adviced to let the task automatically compute these so that the grid is
located at a suitable place fully covering the observed spectra.

11.2. Using Gridding Task

Another task is available, called GriddingTask, to make cubes of images. It works with any dataset
or product that happens to implement the SpectrumContainer or SpectrumContainerBox interfaces.
It can also work with a collection of SpectrumContainer's. Said without using the Java jargon means
that it can accept various simple inputs, such as an Spectrum2d or an Spectrumld since these are
SpectrumContainers.

Y ou may also creat your own collection of datasets, and passit to the GriddingTask in order to provide
the spectra to be read to make a cube by performing an spatial regridding (a convolution) of these
spectra onto a regular grid computed based on the coordinates of the given spectra (and on optional
inputs about the shape of the grid which can be given by the end users).

GriddingTask and the Spectrum Toolbox. The user can make use of the spectrum selection tools
of the spectrum tool box, to perform any selection of spectrafollowed by the usage of the GriddingTask
to create a cube for each segment of the spectrain these sel ections. The following example shows how
to combine SelectSpectrum with the GriddingTask:

first, create an instance of the Sel ect Spectrum task

sel ector = herschel . hifi.pipeline.util.tools. SelectSpectrun()

use Sel ect Spectrumto get a single HifiSpectrunDataset with the spectra that
fulfill certain criteria

e.g. here one selects those spectra where its containing dataset has bbtype
equal to 6022

sel ected = sel ector(htp=htp, selection_| ookup={'bbtype':[6022]},
return_si ngl e_ds=Bool ean. TRUE -)

one mi ght have a glance at the spectra in the -"selection" dataset e.g. in the
Tabl ePl ot t er

38

How to make a spectral cube

cube = griddi ngTask(sel ect ed)
cubes = gri ddi ngTask. cubes

Making a Spectral SimpleCube with the GriddingTask .

make a dataset with all the spectra fromall the science datasets
(isLine == true => bbtype == 6022)

sel ector = herschel . hifi.pipeline.util.tools. Sel ectSpectrun()
sel ected = sel ector(htp=htp, selection_|ookup={"'bbtype':[6022]},
return_si ngl e_ds=Bool ean. TRUE -)

sci enceOnl ndi ces = htp.summary['isLine'].data.where(\
ht p. summary['i sLine']. data == Bool ean. TRUE)
bbid = htp.summary[' Bbid']. data[sci enceOnl ndi ces]

#anot her way of selecting...
sel ected = sel ector (htp=htp, \

sel ecti on_| ookup={' bbtype' : bbid[0]}, \
return_si ngl e_ds=Bool ean. TRUE -)

He o m o o o e oo
the gridding task that can work with any SpectrunContai ner or collection of
SpectrunCont ai ners, |ike the sel ected above
e

cube = griddi ngTask(cont ai ner=sel ect ed)

#get a point spectrumfromthis sel ection,

ds_spectrum = sel ect ed. get Poi nt Spect rum(1)

ds_segment = ds_spectrum get Segnent (3) # read its third subband -: get
Spect ral Segnent .

pl ot Segnent = Pl ot XY(ds_segnent . wave, ds_segnent . f| ux, xti tl e=' Frequency
(Miz)' ,ytitle="Intensity")

e

now let's play with the result cubes

#

#

each cube is a Spectral Sinpl eCube which in its turn is an SpectruntContai ner

hence we profit all the spectrumtool boxes: arithnetics, statistics, etc.

and we can e.g.directly obtain a point spectrumas for any other SpectrunContai ner

row = 0; colum = 10;
spect rum = cube. get Poi nt Spect r un(r ow, col umm)

print spectrum getLongitude()
print spectrum getlLatitude()

print spectrum segnent!| ndi ces
you can check that the cube, hence its spectra has a single -"segnent" or subband

segnent = spectrum get Segnent (0)
or...
segnent = spectrum get Segnment (spectrum segnent | ndi ces[0])

pl ot Spect rum = Pl ot XY(segnment . get Wave(), segment . get Fl ux(), xtitl e=' Frequency
(MHz)',ytitle="Intensity")

There are several ways to visualize a cube such as
the CubeSpectrumAnal ysi sTool box:

cat = CubeSpectrumAnal ysi sTool box(cube)

you can also visualize it with the SpectrunmExpl orer,
since the cube is an SpectrunCont ai ner

or sinply display it as a cube of immges:

39

How to make a spectral cube

11.3.

di spl ay = Di spl ay(cube)

Optional inputsfor the GriddingTask.

Most of the optional inputs of the DoGridding task are also applicable to the griddingTask namely:
weightMode, filterType, mapSize, refPixel, refPixel Coordinates, pixel Size, smoothFactor, filterType,
filterParams, detail, extrapolate and the input Wcs

In addition, there are other optional inputs which are specific to this task, namely container and
containerBox

Using the GUI to make a Spectral Cube

The doGridding Task can be found in the "Applicable" folder of the Tasks view when an HTP is
selected in the variable view; double-click on it to open the dialogue in the Editor View. The GUI is
still aprototype and it is recommended to use the command line to run DoGridding for the time being.

40

How to make a spectral cube

T Editor %\,

(# GetobsCantext.py "0 hififipeiine | 2 doGriading =
hup* : B <Mo wariabies
subbands ; @ <Moo wariables
beam : m = Defaul=
datasetindices : E' < Defaul>
datasetType ; ® [science
datasetTypas - |E| <Defaults
ignoredFFs @ 8 ¥
weightMode | o |equal
channels @ £Mo variables
mapSize : ® | <Detaul>
reiPinel @ | <Defaun>
refPixalOffiset ; lEI < Default>
pizelSize - [T| = Detaul=
smoothFacor - EI < DEfault>
fiterType : (R
filkerfarams EI = Defaul=
obs : © <No varlables=
apid; ® |
pointing : B «£No variable>
fiam : B <Moo variabies
uplink : @ <Mo variable>
offsetsTabile : B <o variables

1]

Figure11.1. The doGridding task GUI form

41

Chapter 12. Trend Analysis

To bewritten

42

Chapter 13. Memory Issues

Onoccasion, onecanrunintothej ava heap space error when using HCSS software, especially
when running the pipeline. Here are some things to help:

1. User release. Choosethe"Advance" installation and increase the maximum amount of memory
available to HIPE (the "User" installation allocates 1 Gb by default).

2. Modify the memory allocation (j ava. vm nenory. m n and j ava. vm nenory. max) in
${install.dir}/installed. properties

3. The"garbage collection" command Syst em gc () isalso useful to force clearing memory. HIPE
will automatically do this when memory becomes too full.

4. Swap Store Properties. It is possible to use the hard disk as swap space to preserve the
memory available in HIPE. The following properties are defined to preserve computer memory.
This becomes especially useful when pipeline processing long observations on alaptop, or on apc
with a 32 bit Operating System (TBC) and with average or limited memories capacities. However,
any Task that uses or changes any HifiProduct (e.g., HifiTimelineProduct) will benefit from the
use of swap space.

The following properties can be defined (intheuser . pr ops file or using the "Hifi Product" tab
inpr opgen) to set or to configure the Swap mechanism.

 hcss.hifi.pipéline.product.memory = true: Setting the value of this property to "true"
enabl es the swap mechanism. Note that the default valueis "false”.

* hcss.hifi.pipeline.product.swapstore = " swapStore". This is the name of the LocalStore
where the temporary data will be saved. The default location is:${ user . hone}/ . hcss/
| store/ swapStore .

 hcss.hifi.pipeline.product.swapratio = 0.25: This property determines how much the swap
mechanism is used and is used to set the threshold level of free memory. When anew dataset is
set or retrieved from the HifiProduct, the HifiProduct will check the size of the dataset and the
free memory in the system. If the condition:

(memory free)* swapratio < dataset size

ismet, then all the floating datasets contained in the HifiProduct will be saved in the swap store.
This property should have value between 0 and 1 and has a default value of 0.25.

If the value is O all datasets will be always stored in the swap store. Thisis safe, but it could
create performance delay (in the time needed to process the pipeline) due to the access time to
the hard disk.

In the case of long observations, setting the property to 1 could be dangerous because memory
problems(likeJava. heap. space excepti on), may still occur, athough the pipeline will
try to have the best performance possible.

* hcss.hifi.pipeline.product.savedisk = true: This property determines whether an existing
observation in the swap store should be overwritten or not. It is strongly suggested to keep the
value = true, otherwise the space used in the hard disk will increase in proportion to the number
of times aproduct is saved in the swap store.

Note
@ SwapUtil Class: At the moment, the pipeline does not clean the swap store after

| the processing. To avgigd the swap siore completely Tilling the hard disk when many

Memory Issues

observations are processed, it is suggested one manually remove the swap store by
either deleting the swapStore directory, or in HIPE:

from herschel . hifi.pipeline.product inmport SwapUtil
SwapUtil . del ete()

Chapter 14. Notes for Calibration
Scientists

14.1. Input/Output of Spectra
14.1.1. Accessing Spectra

HIFI spectra can be stored in various formats, and there are various ways to access them.

14.1.1.1. Accessing Spectrain a DbPool

At the ICC, HIFI pre- and post-pipeline data are stored in online databases called DbPools, and can
be retrieved relatively easily and stored locally.

Product Pools

A Product Pool or Pool is a database where Products are stored. The database is implemented in
different ways, for example as a directory tree on disk (a Local Store product pool), or a Versant
database (a DbPool). What matters is that they can talk to the software in the Product Access Layer
(PAL) of HCSS. Let's consider concrete examples of HCSS routines for data processing. A useful
page when pondering jython scripts for HCSS: [_ftp:/ftp.rssd.esa.int/pub/HERSCHEL /csdt/rel eases/
doc/api/index.html]

Product Access Layer

One should not work directly with pools. The ProductStorage interface is meant to satisfy your need
to query, load, and save products in pools. A set of methods residing in herschel.ia.pal are meant to
provide auniform interface between you and the data you want, which may belocated far-flung pools.

The PAL can tak to several types of pools, some of which are: CachedPool, DbPool, HsaPoal,
LocalStore (note despite the name, it's a pool, not to be confused with the ProductStorage class
mentioned below). A DbPool isaVersant database, usually remote but not necessarily. A Loca Store
is a database in the form of a directory structure full of FITS files on a disk mounted on the user's
machine. A CachedPool is, unsurprisingly, alocally cached copy of products and metadata retrieved
from remote pools.

The methods in herschel.ia.pal .ProductStorage() provide an interface to pools.

H PE> from herschel .ia.pal inport *
H PE> store = Product St or age()
"store" isready to accept and interface with pools | choose to register within it.

How do | grab apool and stick it into store? Use the PoolManager. If | take a shot in the dark:
HI PE> firstpool = Pool Manager. get Pool (' foo')
HI PE> store.register(firstpool)

HI PE> print store.getPool s()
[herschel . i a. pal . pool . | store. FitsProduct Pool : f 00]

What happened: hipe looked at the property 'hcss.ia.pal.pool.foo'

45

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Notes for Calibration Scientists

H PE> from herschel . share. util inport Configuration
HI PE> print Configuration.getConfigurationProperty("hcss.ia.pal.pool.foo")
None

Because in this case it is not defined, a new Product Pool of type hcss.ia.pal.defaulttype was created
and put in store;

HI PE> print Configuration.getConfigurationProperty("hcss.ia.pal.defaulttype")
| store

By the way, these config variables are also visible using the propgen gui.

Let's connect to a remote pool, a versant database at the SRON ICC. | might think | can use the
PoolManager getPool () method again after changing hcss.ia.pal .defaulttype to "db"

HI PE> Confi guration. set Property("hcss.ia.pal.defaulttype", "db")
HI PE> print Configuration.getConfigurationProperty("hcss.ia.pal.defaulttype")
db

and perhaps other settings, but it doesn't work, in my experience.

Use the DbPool class. The important Configuration parameters for DbPool methods are
var.database.devel and var.database.server

HI PE> print Configuration.getConfigurationProperty("var.database. devel ")
hifi _icc_ops_1l@ccdbl. sron.rug.nl XYZ READ

HI PE> print Configuration.getConfigurationProperty("var. database. server")
@ ccdbl. sron. rug. nl

But don't change these. Instead, create anew configuration property, associate it with the DbPool, and
register it in the store;

H PE>
Configuration. setProperty("interesting db", -"hifi_ops_obs_icc_l@ccdbl. sron.rug.nl
0 READ")

HI PE> store.register(DbPool . getlnstance("interesting_db"))

Now | can peruse the product poolsin my product storage:

HI PE> print store.getPool s()
[herschel . i a. pal . pool .| store. Fi tsProduct Pool : f 00,
herschel . i a. pal . pool . db. DbPool @be4a2c]

Thefirst pool you register is automatically your ‘prime' pool and is writable:

H PE> print store.getWitabl ePool ()
herschel . i a. pal . pool . | store. Fi t sProduct Pool : f oo

NOTE! There seemsto beabug preventing reading and writing from the same store. In my experience,
writing to pool foo will fail. Open a second store and register foo there.

So, finaly, let's take some data products from the dbpool and save them in our localstore pool for
offline use. Thereisagui, but | can't recommend it, | haven't figured out how to useiit.

46

Notes for Calibration Scientists

HI PE> result = browseProduct (store)

| prefer the command-line.

How are products in the pool identified? By URNSs (Universal Resource Name). A product always
has a urn. You may also 'tag' products, and you may find some convenient tags have been created
for you (they have). But being naive, let's get a list of al ObservationContexts in our store.
Remember, ObservationContexts are the basic units of Herschel data processing. Pools are databases,
S0 it's not surprising that we can query them. For information on query formats, see package
herschel.ia.pal.query: [http://www.rssd.esa.int/SD-general/Projects/Herschel /hscdt/rel eases/doc/api/
herschel/ia/pal/query/package-summary.html#package description]

H PE> q = Query(QbservationContext,"p","1")
H PE> gresult = store.select(q)

This will return a list of all objects of type ObservationContext in all pools registered in store. It's
actually alist of ProductRefs- referencesto ObservationContexts. That'sto conserve memory. DON'T
do a query on type Product on the current database, it will take hoursif not daysto return. The "p" is
just a placeholder, used in more selective queries (see link above).

gresultisalist of ProductRefs:

HI PE> print qresult[O0]

urn:db_hifi _ops_obs_icc_1: herschel .ia. obs. Cbservati onCont ext : 39036

H PE> a = gresul t[0]

H PE> print a.__class__

herschel . i a. pal . Product Ref

H PE> print a.neta

{type=0BS, creat or=Hi fi Pi pel i ne, creati onDat e=2009- 08- 15T16: 50: 23. 224000
TAl (1629046223224000), descri pti on=anot her
observation...,instrunent=H Fl, nodel Name=FLI| GHT

st ar t Dat e=2009- 08- 01T21: 43: 16. 000000 TAl
(1627854196000000) , endDat e=2009- 08- 01T21: 49: 40. 000000 TAI (1627854580000000)

obsSt at e=LEVELO_PROCESSED, obsi d=1342181162, odNunber =80, obsMde=Hi f i EngSwi t chonLQ, ori gi n=I nst runent
Control Centre, aorlLabel =Cal i brati on_np_13- Swi t chonLO4a- OD80
aot =Hi fi EngSwi t chonLQ, equi nox=2000. 0, m ssi onConfi g=MC_H19 P13_S17_PV, obj ect =No
Poi nti ng, raDeSys=I CRS, ra=309. 79251954150624, dec=68. 0193187761005, posAngl e=358. 13260329747203
raNomi nal =0. 0, decNoni nal =0. 0, t el escope=Her schel Space
Obser vat ory, obser ver =unknown, pr oposal =Cal i brati on_pvhi fi _8, poi nti ngMbde=No- poi nti ng}

Probably, there's an ObslD in which you're interested, for example 1342181163:

H PE> from herschel .ia.nuneric inport *
HI PE> obsids = Longld([(i.neta["obsid"].value) for i in gresult])
H PE> print obsids
[1342181162L, 1342180840L, -... -, 1342180571L]
H PE> i dx = obsi ds. where(obsids == 1342181163L)
H PE> ny_obscontext = qgresult[idx.tolnt1ld()[0]].product
H PE> print ny_obscontext.__class__
herschel . i a. obs. Cbser vat i onCont ext
H PE> print ny_obscont ext
{descri pti on="anot her observation...", neta=[type, creator, creationDate
description, instrument, nodel Name, startDate, endDate
obsState, obsid, odNumber, obsMode, origin, aorLabel, aot, equinox
m ssi onConfi g, object, raDeSys, ra, dec, posAngle, raNoni nal
decNomi nal, tel escope, observer, proposal, pointinghde], datasets=[H story],
hi st ory=None, refs=[auxiliary,calibration,levelO,]level 0_5,
I evel 1,1 evel 2,1 ogObsCont ext, qual i ty, trendAnal ysi s] }

47

http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/api/herschel/ia/pal/query/package-summary.html#package_description
http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/api/herschel/ia/pal/query/package-summary.html#package_description

Notes for Calibration Scientists

Or another way, using the tag "observations" which has been created in the current database by Peer:

HI PE> observations = store.| oad(store.getU nFronrag("observations")). product

-"observations" is a MapContext, a hash of CObservationContexts indexed by
Observati onl D keys:

HI PE> ny_2nd_obscont ext = observati ons. get Product ("1342181163L")

Now save the observationcontext to our localstore pool. There's a rub here: remember that an
observation context contains references to other contexts. Those references might point to productsin
pools we have not yet registered. If you try to save the observationcontext now it will fail for want
of being able to access these other data.

At present, you must register the dbpools for at least the Auxiliary and Calibration contexts:

HI PE> Confi guration. set Property("aux_dbpool","hifi_ops_aux@ccdbl. sron.rug.nl 0
READ")

Hl PE> aux = DbPool . get | nst ance("aux_dbpool ")

HI PE> Confi guration. setProperty("cal _dbpool","hifi_ops_cal @ccdbl.sron.rug.nl 0
READ")

HI PE> cal = DbPool . getl nstance("cal _dbpool ")

Hl PE> store.register(cal)

HI PE> store.register(aux)

Further, there seemsto be a bug (SPR HCSS-7885) loading and saving to the same store. If you try
to save to the prime pool in your store, it will fail silently. Until thisis fixed, create a second storein
which you have only your local store for saving, and write to that:

HI PE> store2 = Product St orage()

HI PE> writepool = Pool Manager. get Pool (' write_pool ")
HI PE> store2.register(witepool)

HI PE> st ore2. save(my_obscont ext)

14.1.1.2. Accessing Spectrain Local Pool

By default, spectral products are stored on alocal disk in 'local store' format in the directory .hcss/
Istore/. The user can modify the format and storage location by adding the following properties to
the configuration filesin the user's .hcss directory (usually .hcss/user.props) before starting the HIPE
session:

#store datain alocal store (‘Istore)

hcss.ia.pal.defaulttype = Istore

#default location of data storage

hcss.ia. pal.pool.lstore.dir = ${user. hone}/.hcss/Istore

Regardless of data format or location, spectra are loaded into the HIPE session with the following
three steps:

1. register the pools of interest, so they can be accessed. For example if pools 'testl' and 'test2' exist,
they are registered as follows:

storage = Product St orage()

pool 1 Pool Manager . get Pool ("test1")

pool 2 Pool Manager . get Pool ("t est 2")

48

http://herschel.esac.esa.int/jira/browse/HCSS-7885

Notes for Calibration Scientists

storage. regi ster(pool 1)
st orage. regi st er(pool 2)
2. obtain the unique 'urn' reference numbers of the spectrum products of interest. This can be obtained
* interactively:
resul t =br owsePr oduct (st or age)
 from the command line
query = Query("creator == 'ny nane'")
result = storage. sel ect(query)
3. finaly, load the spectral products. In this case, the first onein thelist of returned urn's:

prod = storage.load(result[0].urn). product

14.1.1.3. Accessing Fits Files
Fitsfiles can be loaded from disk as follows:
fa=Fi t sArchive()

prod = fa.load("fil ename")

14.1.2. Exporting Spectra

HIFI spectra can be stored in various ways. While users may import data from the HSA or, for
calibration scientists, the Versant database (section "Accessing Versant Database'), they usually store
their products on alocal disk in one of the following ways.

14.1.2.1. Export to Local Pool

Spectra can be stored in fits format in a 'local store'. Set up this storage, and its location, in the
configuration files in the user's .hcss directory:

#store data as local store (‘lstore’)

hcss.ia.pal.defaulttype = Istore

#default locations of data storage

hcss.ia. pal.pool.lstore.dir = ${user.hone}/.hcss/Istore
To export spectra, first create a pool caled, e.g., 'test’, and then save the product in it:
storage = Product St orage()

pool = Pool Manager. get Pool ("test")

st orage. regi ster (pool)

st orage. save(product)

14.1.2.2. Export to Fits File

To export spectrato fits files, issue the following HIPE commands:

49

Notes for Calibration Scientists

14.2

fa=Fi t sArchi ve()

fa.save("fil ename", product)

Database, Binstruct and MIB

HIFI data are uniquely labeled by an obsid and are stored in HIFI ICC Versant Databases. Go to the
Download page from the ICC internal pages to download Versant software. See the Databases page
to find which database an obsid is associated with, and |CC Database contents for information about
the observation.

Databases are named according to the data'stest environment, for example | ST dataisheld in databases
labelled i st _f m x_prop (x is an integer), while simulator data is stored in ds 3, and flight data
inhi fi_ops_obs_x.

* You can change database within HIPE by, for example:

from herschel . share. util inport Configuration
Configuration. set Property("var. database. devel ", hifi_icc_ops_1@ ccdbl. sron.rug.nl
0 READ)

* You can also set your preferred default database in the user . pr ops filein your .hcss directory.
For example:

Set sinulator database as default
var . dat abase. devel = ds3@ccdb2.sron.rug.nl 0 READ

Thehi fi - cal database containscalibrationinformation needed to processdatathrough the pipeline.
There are two ways of getting thisinformation into a Herschel DP session:

1. Usethe databases at the HIFI ICC, adevel oper version of HIPE should be configured to do this. If
you have a problem, check that thislineisin your propertiesfile:

hcss. bi nstruct. hifi.m b. pal . dat abase = hifi-cal @ccdbl. sron.rug.nl 0 READ

2. Oringtal the hi fi-cal locally onyour machinefrom acopy of that at the ICC. First, download
the local store copy of the MIB (hifi-cal) from the ICC download page. and unpack thisin your
. hcss directory.

Current MIB (13 Sept 2009) . Use hifi-cal-26-Jun-2009.tgz

Next, changethe Binstruct property in user.props so that it will look for alocal copy of the database:

Comment out setting that points to | CC database

#hcss. binstruct. hifi.factory = herschel . hifi.share. binstruct. Hi fi Bi nstruct Factory
hcss. binstruct. hifi.factory = herschel. binstruct. Defaul t Bi nstruct Factory

hcss. binstruct. hifi.m b. pal.pool nanme = hifi-cal

#

FOR 1.1 Track ALSO | NCLUDE

hcss. i a. obs. cal . rel ease = devel oper

This will now point to a local pool to get the MIB (Mission Information Base) needed to create
the Hifi TimelineProduct.

MI1B Updates

@ Please note that each time the MIB (or calibrations) is updated these will be present in the
database hi fi - cal _dev but, if you are using aloca pool, you will have to update it
yourself. Do this by reloading the hifi-cal from the hifi-icc pages.

50

http://www.sron.rug.nl/hifi_icc/protected/index.html
http://www.sron.rug.nl/hifi_icc/protected/databases/Hifi-Database-Listing.html
http://www.sron.rug.nl/hifi_icc/protected/userinfo/download
http://www.sron.rug.nl/hifi_icc/protected/userinfo/download/hifi-cal-17-Aug-MOC-3-2009.tgz

Notes for Calibration Scientists

The MIB data are needed to define and interpret uplink commands and downlink housekeeping.
The housekeeping is interpreted using the binstruct module and are associated with a MIB via the
TmVersion tables, which map a MIB to a period in time. We have different tm-version tables for
each test environment (e.g., "ilt-gm", "ilt-fm", "ilt-par", "ist-fm"). Y ou can set the tmversion with the

following binstruct property:

hcss. binstruct. hifi.mb.pal.tmversion_map = ilt-fm

The TmVersion to apply per database is as follows:

Table14.1. TMVersionsto apply

Database tm_version table MIB type
ilt_par_* ilt-par hcss. binstruct. hifi.services

her schel . bi nstruct. m bl M bPal Ser vi
ilt fm* ilt-fm hcss. binstruct. hifi.services

herschel . bi nstruct. nm b, M bPal Servi
ist fm* ist-fm hcss. binstruct. hifi.services

her schel . bi nstruct. m bl M bPal Ser vi
sovt _* ist-all hcss. binstruct. services

her schel . bi nstruct . hpsdb. HosdbPal S
hifi_icc_ops_1, ds* flight hcss. bi nstruct. servi ces

her schel . bi nstruct. hps

db. HpsdbPal S

Note that the binstruct properties for the test environments have an additional substring (hi fi) to
make them ICC dependent. The TmVersion tables for sovt _and hifi _i cc_ops_1 data are
merged so satellite housekeeping can also be inspected.

The automatic use of the different tmVersion tables to associate HouseK eeping data via its mission
configuration name will be available when SPR 2111 isimplemented.

In the meantime, use the following workaround to change the MIB on the fly

#wor karound all owi ng to conpare data distributed over the different setups:
#assume tmversion is by default -"ilt-fnl, i.

tnmversion =

apply this data, for ex:

hdf = accessDat aFrameTask(obsid =
= -"ilt_fmb5_prop@ccdb. sron.rug. nl
= nmyobsid, apid

hk = accessPacket Task(obsi d

= -"ilt_fm5_prop@ccdb. sron.rug. nl

0 READ')

0 READ')

htp = Hifi Ti mel i neProduct (hdf, hk)
now switch to next instrunment setup:

Confi guration. set Property(' hcss. bi nstruct. m b. pal .tmversion_map',

Now i nportant reset binstruct:

from hcss. bi nstruct inport

myobsi d, apid =

mydb is one of the ilt databases

nmyapi d

nmyapi d, db

I nstrunent Properties

I nstrunent Properties.getlnstance().initialize()

Confi guration. get Property(' hcss. binstruct. m b. pal.tmversion_map')

, db

~"ist-fnt)

#

continue with data available in one of the -"ist-fnf databases
hdf = accessDat aFr aneTask(obsid = nmyobsid, apid = nyapid, db
= -"ist_fm4_prop@ccdb. sron.rug.nl 0 READ")

hk = accessPacket Task(obsi d = nyobsid, apid = nyapid, db

-"ist_fm4_prop@ccdb. sron. rug. nl

0 READ')

htp = Hifi Ti mel i neProduct (hdf, hk)

#
that's it!

51

Notes for Calibration Scientists

14.3. Accessing Versant Database

Level 0 spectra are obtained from the Versant database as follows:

1. before starting HIPE, set the relevant server and database in $HOME/.hcss/default.props or in
$HOME/.hcssymyconfig. For example:

var . dat abase. server = @ccdb. sron.rug.nl 0 READ
var . dat abase. devel = ilt_fm5_prop${var. dat abase. server}
2. then in HIPE, set the obsid to be retrieved: obsi d=268494774
3. get the housekeeping data: hk=AccessPacket Task() (obsi d=obsi d, api d=1026)

4. get the data frames: df =AccessDat aFr ameTask() (obsi d=obsi d, api d=1030). The
meaning of common APIDs:

apid=1028 HRS prime/horizontal polarization
apid=1029 HRS prime/vertical polarization
apid=1030 WBS prime/horizontal polarization
apid=1031 WBS prime/vertical polarization

5. next step is often the creation of a HifiTimeline product from the retrieved data frames and
housekeeping data:

ht p=Hi fi Ti nel i nePr oduct (df, hk)

6. notethat stepsc., d., and e. can bevery slow, if run on computerslocated far away from the Versant
database, even for obsids with short integration times.

14.4. Accessing Versant Database with Web
Interface

The | CC databases can now be accessed using aweb interface (especially useful for Mac users!) using
CIB 1.1, or newer.

To use the web interface, the following properties must be set in your user.propsfile:

hcss. access. connecti on=her schel . access. net. Net wor kConnecti on
hcss. access. aut henti cati on=true
hcss. access. url =http://129.125. 20. 1: 8181/ hcss/tm

Dataframesand packets are accessed as above and an HT P can then be generated but, for themoment, it
isnot properly formed and successfully stepping through the pipeline will require some manipulation.
The first time you do this a pop-up will ask for a username and password (contact Kevin for these),
which will then be stored in encrypted format in your Hipe.propsfile.

It is not possible to run the pipeline task via the web interface; however, the ICC product pools can
be accessed by the following:

from herschel .ia.pal.pool.http inport Httpd ientPool

pool = HtpdientPool ("http://129.125.20.1:8181/hcss/pal", -"sinB-
obs@ccdbl. sron.rug.nl 0 READ', -"usernane", -"password")

storage = Product St orage (pool)

st orage. aut henti cate()

52

Notes for Calibration Scientists

ref = storage.select (Query (CbservationContext, -"1"))

print ref
will return alist of urns. To load an Observation Context into your session, herethe 5thinthelist, use:

obs = storage.| oad(ref[4].urn). product

14.5. How to configure the CIB (for use on a
non-ICC cluster machine)

1. The CIB is correctly configured on the ICC cluster machines but to use it on your own machine
you need to set the property path manually. Here is one way to do it:

« Install build of choice and make a soft link between it and a generically named target, e.g.,
In -s hess.icc.hifi-1.1.1627 hcss.icc. hifi-current
* Inyour .cshrc/.teshre file add

set env HCSS_PROPS ${HOVE}/ . hcss/ user. props: ${ HOVE} /
hcss.icc. hifi-current/config/hifi-new props

For bash, export HCSS_PROPS=${ HOVE}/ . hcss/ user . pr ops: ${ HOVE} /
hcss.icc. hifi-current/config/hifi.props

* For builds earlier than 1624 you also need to set in your .hcss/user.props
var. hifi.dir=var. hcss.dir

2. Torun the pipeline you should then only need:
obs=hi fi Pi pel i ne(obsi d=obsi d, db=dat abase)

3. Inorder touse aloca MIB and auxilliary data from the ICC, put in your .hcss/user.props file:
hcss. i a. pal .store.spgstore = {pipelineout, cal-local, aux-icc}
Other options:

* cal-icc, uses calibration from ICC (default)
* cal-hsa, uses calibration from the HSA pool
* aux-hsa, uses auxiliary datafrom the HSA pool

The scripts these options invoke can be found in the config directory and adapted if need be for,
e.g., databases at the NHSC or Cologne.

4. Some other properties maybe useful to set in .hcss/user.props.

All ocate menory to H PE

j ava. vm menory. m n=64m

java. vm menory. max=1900m

#

Set up pipeline stores

hcss. i a. pal . store. spgstore={pi pel i neout, cal-local, aux-icc}

#

Access to HSA (needed for cal-hsa, or aux-hsa)

hcss. i a. pal . pool . hsa. hai 0.1 ogi n_usr= # Contact | CC for usernane
hcss. i a. pal . pool . hsa. hai 0. | ogi n_pwd= # Contact |CC for password

53

Notes for Calibration Scientists

hcss. i a. pal . pool . hsa. hai 0. appl y_aut henti cati on=true

14.6. Navigating HIFI Products: How to get a
spectrum data set from an ObsContext

The following script shows how to extract an ObservationContext from the Flight Products database
pool at the ICC:

from herschel . share. util inport Configuration

Configuration. setProperty("hifi-obs","hifi_ops_obs_1@ccdbl. sron.rug.nl
0 READ")

storage = Product St orage()

st or age. regi st er (DbPool . get | nstance("hi fi-obs"))

#below | retrieved the urn nunber fromthe internal database |listing
that Kevin provides for

hifi_ops_obs_1

urn="urn: db_0_10090: her schel . i a. obs. Cbser vat i onCont ext : 24256"
urn="urn: db_0_10090: her schel . i a. obs. Cbservat i onCont ext : 42136"

#

#The next step | oads the reference

ref =st orage. | oad(urn)

#

#The final step will actually downl oad the Cbservati onContext into your
H PE session

Note at this step you can retrieve all levels of H Fl pipeline
processi ng, AUX product and Quality #Products. Al these products are
not yet |oaded in your session, but they will be once you request

#t hem

obs=ref . product

#

To get the LoTrendTabl e which is produce for every observation
| ot rend=obs. ref s["trendAnal ysi s"]. product.refs["LoTrendTabl e"]. product["dataset"]

To get the HIFl levell tineline product for WBS-H
ht p_wbsh=obs. refs["l evel 1"]. product . refs["WBS-H'] . product

14.7. HIFI Housekeeping

14.7.1. Introduction

Datafrom onboard sensors monitoring HIFI or Herschel performance are stored in the databases along
with the science data. They are available to 'expert’ users who have access to the raw data packets, but
arenot visibleto the'general user,' ie. you must have access privilegesto adatabase at the HSC or ICC.

Telemetry (TM) data are produced on board the spacecraft and collected and processed by the
Spacecraft Management Unit (SMU). TM is formmatted in compliance with the CCSDS-compatible
ESA Packet Telemetry Standard. TM is prioritized based on content for downlink during the
Daily Telecommunication Period (DTCP). There are four types of TM packets stored on board:
Telecommand verification packets, event packets, Housekeeping (HK) packets, and Science packets.

TMIngestion is the processing of raw telemetry packets into TmSourcePackets and storage in the
operational database at the HSC (see _here also). All TM packets are stored in the HSC database; in
addition, TM packets containing science data are processed to produce Data Frames which are then
also stored in the HSC database. The format of TM SourcePackets can be found _here . The HIFI-
specific HK packets are described in this document.

The Housekeeping (HK) section walks through some basic guidelines to accessing, viewing, and
exporting HK data.

http://herschel.be/twiki/bin/view/Hcss/TmIngestion
http://herschel.be/twiki/bin/view/Hcss/TmSourcePacket

Notes for Calibration Scientists

See also Chapter 3. "DP Commands" of the User's Reference Manual for more examples.

14.7.2. Accessing Housekeeping

HK data can be both digital and analog and has some similarities in structure with the dataframes
packets. Two methods for obtaining HK data are described here: (a) command line, in which case
HK packets and science Dataframes are queried from the database and stored in an array or table,
and (b) a GUI created by the the script ObservationSelector(), available in the user-scripts area of the
‘'expert’ HIPE installation. At the time of writing, the GUI method fails due to recent code changes
in HCSS, so beware.

A brief description of how to get Level 0 dataisgivenin Section 14.1.1. Data framesin the database
are basically accessed after setting the relevant server and database.

Asdescribed inthe HIFI HK 1CD document, the APIDsfor periodic HK dataare 1026 (Primary chain)
and 1027 (Redundant), and for essential HK data 1024 (P) and 1025 (R).

The HIFI backend APIDs are HRS-H:1028, HRS-V:1029, WBS-H: 1030, and WBS-V:1031.

To put al the periodic HK datafor HRS-H (P) for a certain obsid into a TableDataset:

from herschel . hifi.hrs inmport *
obsi d=3221226629L

api d = 1028

hkapid = 1026

db = -"sovt2_fm4 prop@ccdbl. sron.rug.nl 0 READ

hk = accessPacket Task(obsid = obsid, apid = hkapid, db = db)
hkDat aset = HrsHK(). creat eHKDat aset (apid, -"All", hk)

Toview the HK datain agraphical table:

Hr sHKVi ewTask() (nodel ="FM', api d=api d, hk_Ii st =hk)

To create a TimelineProduct from the HK and Data Frames:

df = accessDat aFraneTask(obsi d=obsi d, api d=api d)
htp = Hifi Ti mel i neProduct (df, hk)

A set of convenience scripts for accessing HK datais available in the user-supplied scripts directory.
These scripts will be installed with HIPE if you choose the 'Expert' installation. For example,

from herschel . hifi.scripts.users.vol ker inport al
NOTE: code examples below this point are obsolete. Update coming.

dat af ranes = (bservationSel ector() (obsid, spectrometer, gui).

To display the values of all digital and analog HK values of the HRS into a JTable:

from herschel . hifi.hrs.task.inmport *
hkDat aset = Hr sGet HKTask() (api d=1028, obsi d=268494774)
Hr sVi ewHKTask() (nodel ="FM', api d=1028, hk=hkDat aset)

To print to an ASCII table file information on periodic HK for LO during an observation:

lo = LO_HK dunp()
t (268494774, 5, 10)

55

Notes for Calibration Scientists

To print to ASCII table file spectra taken with either WBS. ASCI| table spectra also accompanied by
aset of useful HK data

t = WBS_Export_ascii()
t (observati on=268494774, plot="V")

To read and select data set for an spectrometer (wbs or hrs):
observat i on=ReadCbservati on() (obsi d=5861, spectroneter="whs-h")

To retrieve system temperature and bandpass/gain determined in a Hot-Cold measurement:

al | hot =Sel ecScans() (spectra, val i dbbs=Intl b([2223])
al | col d=Sel ecScans() (spectra, val i dbbs=I ntl b([2222])
hot =Si ngl eHi fi Spectrun(al | hot)

col d=Si ngl eHi fi Spectrun{all col d)

ct =Conput eTsys()

noi se=ct (hot, col d, et a_hot =0. 96)

gamma=ct . gamm

To compute the system temperature using Hot-Cold load results from the HRS:

t = Radi oMetry()
t (observati on=268494774)

To compute system temperature using Hot-Cold load results from the WBS (across the IF band):

t = RWbs_Hot Col d_f ast _bare()
t (observati on=268494774)

To compute the WBS | F noise temperature (across the | F band):

t = Wbs_I FNoi se()
i fout =t (observati on=268494774)

From the retrieved data frames and HK data a HIFI timeline product can be created. A
HifiTimelineProduct is an extension of HifiProduct. It also contains a summary table and a listing of
the types of the HSDs.

df = AccessDat aFraneTask() (api ds=[1030, 1031], obsi d=268435473)
ht p=Hi fi Ti mel i nePr oduct (df, hk)

Togetstart andend time: Fi neTi me start [INPUT, OPTIONAL, default=null] and
FineTi me end [| NPUT, OPTI ONAL, default=null], respectively

To retrieve the HK packets containing Gascell information from a database:

» Use AccessPacketTask on apid 2025 for the provided obsid. You should also provide a database
name (full version, including the server name). If you do not, then the query will be applied to the
current database. This task instantiates AccessPacketTask only once.

Example:

obsi ds = [268449660, 268449664, 268449665, 268449670]
database = -'ilt_fm2 prop@ccdb.sron.rug.nl 0 READ
accessGascel | Hk = AccessGascel | Hk()
accessGascel | Hk. db = dat abase

56

Notes for Calibration Scientists

for obsid in obsids:
hk_pack = accessGascel | Hk(obsid = obsi d)
print -'obsid, obsid, -'has', |en(hk_pack), -' gascell packets.'

To convert HK packets containing Gascell information into a table use the hk_tools.spy and
tables_tools.spy routinesto create the table. Thelist of the gascell HK parameters which are tabul ated
are given in the Chapter 3 of DP Commands.

Togenerateatabledataset of theHK data: Tabl eDat aset sel ect ed [QUTPUT, OPTI ONAL,
def aul t =None]

To create atabladataset of HRSHK converted values (with as many columnsas HRSHK mnemonics
exist):

from herschel . hifi.hrs.task inport *
hk = HrsGet HKTask() (api d=1028, obsi d=268435622, type="All")

Helper class for defining the GUI components for AccessHkParamTask:
ahpt = AccessHkPar amTask()

ahpt (db=ilt_fm5 prop@ccdb. sron.rug.nl, obsi d=268505167,
api d=2017, parans = ["FPU roomtenp", "FPU shutter_tenp"])

To store HK information in a PAL: Hk_St ore() (obsi d=1732, |store="HK data",
desc="Di pl exer scan HK")

As mentioned in the Chapter 4 of the Generic Pipeline description, some HK data are important for
the Generic Pipeline. The following HK data are important when processing the generic pipeline:

* LO-frequency ("LoFrequency"): Generaly, for grouping comparable spectra or to check and
identify phases in the FSwitch observations.

 Chopper position ("Chopper"): To check and identify phases.
» Buffer ("buffer"): Alternative to check and identify phases.

» Observation time ("obs time"): For interpolating possibly drifting intensity scales (hot/cold
measurements) or "background” obtained by blank sky measurements.

» Hot/Cold load temperature("hot_cold"): Used in the intensity calibration (determination of the
bandpass and the system temperature).

A list of helpers class for defining the GUI components for the following generic tasks:

» AccessDataFrameTask: Allowsaccessto DataFramesin the database. Helpers: AccessComponents,
AccessDataFrameComponents.

o AccessPacketTask: Allows access to TmSourcePackets in the database. Helper:
AccessComponents, AccessPacketComponents.

» AccessHkParamTask: Allows direct parameter retrieval from TmSourcePackets in the database(s).
Helper: AccessHkParamComponent.

A description of the helpersis given in Chapter 3 of the User Manual.
Some parameter names:

* FPU_room_temp

» FPU_shooter_temp

Example of how to retrieve them:

57

Notes for Calibration Scientists

from herschel . hifi.generic.task inport AccessHkParanTask

ahpt = AccessHkPar anlrask()

ahpt (db=ilt_fm5_prop@ccdb. sron.rug.nl, obsid=268505167, api d=2017, parans =
["FPU_roomtenmp", " FPU shooter_tenp"])

conposi t e=ahpt . par anr esul t

print conposite

14.7.2.1. Useful examples

1.- Accessing HK information for agiven ObsID. Product: Table [time, FPU Temperature]

Warning
O HcssConnection.get() task passes all the dataframesinto the user's JIDE session. This can
be memory intensive.

I mport needed packages

from herschel . access inport *

from herschel . access. util inport *

from herschel . bi nstruct inport *

from herschel . pus inport *

Access HK packets associated with Cbsl D = 1400

pk = Packet Access(1400)

Connect to the default database to find the packets

hk_set = HcssConnecti on. get (pk)

Create an enpty Java array list -- needed for the Packet Sequence routine bel ow.
arrList = java.util.ArrayList()

Loop around adding the HK dataset into the array arrList

for x in range(len(hk_set)):

arrList.add(hk_set[x])

Look at our array

print arrlList

-...but to get sonething sensible we need packets in a tine order.

pseq = Packet Sequence(arrList)

Get a listing of the paraneter types contained in

print pseq

Find packets in the sequence which contain information on tenperatures within
the focal plane unit (FPU)

seq_FPU_Tenp = pseq. sel ect (TypeEqual s(" FPU_Tenper at ures"))

Find out parameters contained in the sel ected packets by obtaining the HK
paraneter nanes fromthe first selected packet in the sequence

par _FPU Tenp = seq_FPU_Tenp[0] . get Par anet er sCont ai ned()

Print out to the DP session the names of all the parameters contained
print par_FPU Tenp

Choose the FPU Tenperature paraneter you want to get info on...and get a tine
ordered set of HK data for it

The output file plot_fpu_hk is a Tabl eDataset with one colum for time (a
Fi neti ne of m croseconds since 1 January 1958)

and one for the value of the parameter (RAWrather than engineering value). Here
we choose the paraneter FPU b_body_top for the table

output and get the converted values (in degrees K)

pl ot _fpu_hk = seq_FPU_Tenp. get Convert edMeasures(["FPU_b_body_t op"])

time = Doubl eld(pl ot _fpu_hKk[O].data/1000000.0) # puts tinme into seconds
data = Doubl eld(pl ot _f pu_hk[1] . dat a)

Plot the tineline of the HK data over the tine period of the observation
(obsi d=1400) by plotting the table

p = Plot XY(time, data, style=Style(line=8, color=Col or.bl ack))

Resize the wi ndow

p. hei ght = 400

p. wi dt h=600

G ve a |layer/legend nane. ..

p[0] . name="ti me plot"

-...and add a title

p.title.text="FPU t enperature"”

2.- Accessing HK data for a given time period (covering several ObslDs). Product: a plot time vs.
Mixer Voltage.

58

Notes for Calibration Scientists

Note

@ If you choose to sample long time period data this will prove to be memory intensive.

I nmport needed packages for handling databases and HK data
from herschel . access inport *
from herschel . access. util inport *
from herschel . bi nstruct inport *
from herschel . pus inport *
And this package deals with tines.
from herschel . share.fltdyn.time inport *
Enter a start and stop tine for HK infornation. W enter Java Dates, given as
year (-1900), Mnth (-1),
day, hour, minute, second. Qur start_time is therefore 01:10:00 on 25 Cctober 2004
start_tine = java.util.Date(104, 9, 25, 1, 10, 0)
stop_tine is 01:15:00 on the sane day
stop_tinme = java.util.Date(104, 9, 25, 1, 15,0)
Need to convert final nunbers into a FineTine used in database.
start_1 = DateConverter.dateToFi neTi me(start_tinme)
Date/time of start for plotted data
prod_date = DateConverter.fineTi mreToDate(start_1)
Ditto for stop tine
stop_1 = DateConverter. dateToFi neTi ne(stop_ti ne)
end_date = DateConverter.fineTi neToDat e(stop_1)
Initialize some paraneters
pk=0
hk_set = 0
Get object ready for sorting packets.
pseq = Packet Sequence()
Set up the query for accessing packets of HK data. Here we ask for packets with
an API D of 1026, which carries
H FI HK data. The database identified by the user's properties is accessed for
packets of this type
between the given start and stop FineTines.
pk = Packet Access(1026,start_1,stop_1)
Now we know where to | ook, we can get the packets! First we create an array with
the packets in
hk_set = HcssConnecti on. get (pk)
-...then we loop over the array to get the contents and
put packets into our packet sequence
for x in range(len(hk_set)):
pseq. add(PusTnSour cePacket (hk_set [x] . get Contents()))
Now we get the paraneters in the packets that we can plot.
seq_H FI _HK = pseq. sel ect (TypeEqual s("H FI _HK rev_3"))
Pick out sone of them
menoni ¢cs = ["HF_AHL_MXMG V', -"HF_AV1_MXMG V']
-...and get their converted (physical unit) neasurenents. -"plot_HFI_HK' is a
Tabl eDat aset with a first colum neasuring tinme
and the next 2 columms hol ding the HK paraneter values at those tinmes. W can
now pl ot any of the paraneters versus
time, or against each other, by picking out the appropriate colum of the table.
Pl ot _H FI _HK = seq_HI FI _HK. get Convert edMeasur es(rmenoni cs)
This is what to do to set up the plot. Since time is in mcroseconds we convert
it to seconds first.
Cet the first colum and divide by 1 nmillion
time = plot_H FI_HK[O].data/1000000. 0

Measure tine on the plot fromthe beginning of the observation....W subtract
the initial tine value
plot_time =time -- time[0]

Plot the two voltages contained in colums 2 and 4

h_voltage = plot_H FI _HK[1].data

v_voltage = plot_H FI _HK[2].data

Plot the data

p = Plot XY(plot_tine, h_voltage, style=Style(line=8, color=Color. bl ack))
Resize the wi ndow

p. hei ght = 400

p. wi dt h=600

Change the | egend

p[0].nane = -"H M xer Plot"

Change the axis |abels...

59

Notes for Calibration Scientists

p.xaxis.title.text="Tinme (hours)"
p.yaxis.title.text="M xer voltage [V]"
-...and add a title
p.title.text="Plot of Mxer Voltages. Start: -"+str(prod_date)+\
-"End: -"+str(end_date)
Now we can al so overlay the second voltage trend in bl ue.
p[1] =Layer XY(pl ot _ti me, v_voltage, nane= -"V Mxer Plot", \
styl e=Styl e(col or=Col or. bl ue))

14.7.3. Viewing Housekeeping

There are several waysto display the dataframes:

1-

dd = Di spl ayDat aFr ameTask()
dd. dat af r ame=df [0]
dd.gui =1

2.-

browse_df = BrowseDf Query() (gui=1)

#f eedback datafranes back into your session using:
df s = browse_df. query

df = browse_df. sel ect ed

feedback datafranes back into your session using:
df s = browse_df. query

df = browse_df. sel ect ed

3.-

#t0 pass an existing store this task shoul d reuse:
df s = AccessDat aFranmeTask() (store=nyStore, -.....)

TheBrowseHK task isused to display HK data associated with an observation stored in any accessable
database. To change to a new database type the name of the database into the local database text field
located on the database tab. The fastest way to access data from the database is to |ookup data using
a specific obsid. If the times in the time selector panel are the same the script will automatically get
the begin and end time of the observation and add it to the query string. If the times are different this
will override the automatic process and search the database based on those times. The execute button
is used to aquire data from the database. The exit button is used to close the application.

interactive node (Database: ilt_dm 10 obsid: 268435762)

interactive node (Database: ilt_fm2 obsid: 268435480)

from herschel . hifi.generic.task. BrowseHk inport *

hkBrowser = BrowseHk()

hkBr owser ()

This only brings up the browser. Once sel ections are nmade, and the
execute button is pressed, then one can export pk-parans(s) in their
sessi on

resul ti ng_pks = hkBrowser.query -// array[TnSour cePacket]!!
sel ected_pk = hkBrowser.sel ected -// Tabl eDat aset!!

HHHHHH

The array of TmSourcePackets (HK data) returned from the query to the database:
Array(TrnSour cePacket) query [OQUTPUT, OPTI ONAL, def aul t =None]

To create a TableDataset of HRS HK converted valuess hk = HrsGet HKTask()
(api d=1028, obsi d=268435622, type="All") or aternatevely Tabl eDat aset
sel ected [QUTPUT, OPTI ONAL, defaul t =None]

60

Notes for Calibration Scientists

To plot astream of HK data:

#ln a new -.py file add the lines (call it gl aHkPl ot. py)
from herschel . hifi.generic.process. hkpl ot inport *

Dat aFl owivnager (hkPl ot ())

Thr ead. sl eep(315360000) #one year in seconds

#Then fromthe termi nal wi ndow type the follow ng

j yl aunch gl aHkPI ot . py

To plot and export atime series of HIFI HK data for a selected ObslD

HkPl otter () (obsid = obsid, apid = apid)
HkPl otter () (obsid, apid)

There is an aternative task to plot HK data, which is interactive, in order to analyze and plot WBS
functional test: WhsCheckFt .

61

	The HIFI User's Manual
	Table of Contents
	Chapter 1. Data Primer
	1.1. Data frames
	1.2. Data Products
	1.3. Contexts
	1.3.1. Herschel Observation Context

	Chapter 2. Running the HIFI pipeline
	2.1. How to run the HifiPipeline task for Astronomers
	2.1.1. HifiPipeline task in the GUI
	2.1.2. HifiPipeline in the command line

	2.2. HifiPipeline tasks for Calibration Scientists
	2.2.1. Expert hifiPipeline task
	2.2.2. Individual pipeline tasks

	2.3. Running the Pipeline step by step
	2.4. How to customise pipeline algorithms

	Chapter 3. Flags in HIFI data
	3.1. Channel flags
	3.2. Column rowflags

	Chapter 4. Quality Flags
	Chapter 5. Viewing Spectra
	5.1. Introduction
	5.2. Basic Spectrum Viewing: the PlotXY Package
	5.3. Viewing with SpectrumPlot
	5.4. The SpectrumExplorer Package

	Chapter 6. Changing to LSB/USB and Velocity
	6.1. Changing HIFI Frequency Scales
	6.1.1. Changing Spectral Views
	6.1.1.1. LSB/USB
	6.1.1.2. Velocity

	6.1.2. Change Spectral Views from the command line
	6.1.2.1. LSB/USB
	6.1.2.2. Velocity
	6.1.2.3. Review of ConvertFrequencyTask

	Chapter 7. Mathematical Operations on Spectra
	Chapter 8. HIFI Standing Wave Removal Tool
	8.1. Introduction FitHifiFringe
	8.2. Running FitHifiFringe

	Chapter 9. Fitting Spectra
	Chapter 10. Sideband Deconvolution
	10.1. Running the Deconvolution Tool
	10.2. Viewing Deconvolution Results

	Chapter 11. How to make a spectral cube
	11.1. Making a Spectral Cube via the command line
	11.2. Using Gridding Task
	11.3. Using the GUI to make a Spectral Cube

	Chapter 12. Trend Analysis
	Chapter 13. Memory Issues
	Chapter 14. Notes for Calibration Scientists
	14.1. Input/Output of Spectra
	14.1.1. Accessing Spectra
	14.1.1.1. Accessing Spectra in a DbPool
	Product Pools
	Product Access Layer

	14.1.1.2. Accessing Spectra in Local Pool
	14.1.1.3. Accessing Fits Files

	14.1.2. Exporting Spectra
	14.1.2.1. Export to Local Pool
	14.1.2.2. Export to Fits File

	14.2. Database, Binstruct and MIB
	14.3. Accessing Versant Database
	14.4. Accessing Versant Database with Web Interface
	14.5. How to configure the CIB (for use on a non-ICC cluster machine)
	14.6. Navigating HIFI Products: How to get a spectrum data set from an ObsContext
	14.7. HIFI Housekeeping
	14.7.1. Introduction
	14.7.2. Accessing Housekeeping
	14.7.2.1. Useful examples

	14.7.3. Viewing Housekeeping

