
The HIFI User's Manual
Hifi Editorial Board:

Max Avruch

Adwin Boogert

Tony Marston

Carolyn McCoey

Michael Olberg

Miriam Rengel

Russ Shipman

The HIFI User's Manual
Hifi Editorial Board:
Max Avruch
Adwin Boogert
Tony Marston
Carolyn McCoey
Michael Olberg
Miriam Rengel
Russ Shipman

iii

Table of Contents
1. Data Primer .. 1

1.1. Data frames ... 1
1.2. Data Products ... 1
1.3. Contexts .. 1

1.3.1. Herschel Observation Context ... 2
2. Running the HIFI pipeline .. 3

2.1. How to run the HifiPipeline task for Astronomers ... 3
2.1.1. HifiPipeline task in the GUI ... 3
2.1.2. HifiPipeline in the command line .. 6

2.2. HifiPipeline tasks for Calibration Scientists ... 7
2.2.1. Expert hifiPipeline task ... 7
2.2.2. Individual pipeline tasks .. 8

2.3. Running the Pipeline step by step ... 9
2.4. How to customise pipeline algorithms .. 9

3. Flags in HIFI data ... 10
3.1. Channel flags ... 10
3.2. Column rowflags ... 10

4. Quality Flags .. 14
5. Viewing Spectra .. 17

5.1. Introduction .. 17
5.2. Basic Spectrum Viewing: the PlotXY Package .. 17
5.3. Viewing with SpectrumPlot ... 18
5.4. The SpectrumExplorer Package ... 19

6. Changing to LSB/USB and Velocity ... 22
6.1. Changing HIFI Frequency Scales ... 22

6.1.1. Changing Spectral Views ... 22
6.1.2. Change Spectral Views from the command line .. 22

7. Mathematical Operations on Spectra ... 24
8. HIFI Standing Wave Removal Tool .. 25

8.1. Introduction FitHifiFringe ... 25
8.2. Running FitHifiFringe .. 25

9. Fitting Spectra .. 26
10. Sideband Deconvolution .. 27

10.1. Running the Deconvolution Tool .. 29
10.2. Viewing Deconvolution Results ... 31

11. How to make a spectral cube ... 34
11.1. Making a Spectral Cube via the command line .. 34
11.2. Using Gridding Task .. 38
11.3. Using the GUI to make a Spectral Cube .. 40

12. Trend Analysis .. 42
13. Memory Issues .. 43
14. Notes for Calibration Scientists .. 45

14.1. Input/Output of Spectra .. 45
14.1.1. Accessing Spectra ... 45
14.1.2. Exporting Spectra .. 49

14.2. Database, Binstruct and MIB ... 50
14.3. Accessing Versant Database .. 52
14.4. Accessing Versant Database with Web Interface .. 52
14.5. How to configure the CIB (for use on a non-ICC cluster machine) 53
14.6. Navigating HIFI Products: How to get a spectrum data set from an ObsContext 54
14.7. HIFI Housekeeping .. 54

14.7.1. Introduction ... 54
14.7.2. Accessing Housekeeping .. 55
14.7.3. Viewing Housekeeping .. 60

1

Chapter 1. Data Primer
A short introduction to the structure of Herschel HIFI data storage.

1.1. Data frames
The Herschel spacecraft stores data onboard (up two days' worth) until transmited to Earth. Science
data, such as a WBS spectrometer readout, come naturally in sets, or Frames. Data frames are
packetized for transmission from HSO to Earth. Along with House Keeping (HK) data they are
downlinked to the tracking station and thence to the Mission Operation Center (MOC) at ESOC in
Darmstadt, or to the latter directly. The data packets then flow from the MOC to the Herschel Science
Center (HSC) at ESA's European Space Astronomy Centre (ESAC) in Madrid. The HIFI ICC copies
the data from HSC, as well.

At ESAC, the data packets are 'ingested' into a database and the science data frames are reconstituted.

The combination of HK and science data creates a 'Level 0 Observational Data Product.'

1.2. Data Products
refs: Herschel_Data_Product_Document_partI_v0.95.pdf, [ftp://ftp.rssd.esa.int/pub/HERSCHEL/
csdt/releases/doc/ia/pal/doc/guide/html/pal-guide.html]

A Herschel Data Product consists of metadata keywords, tables with the actual data, and the history of
the processing that generated the product. There are various product types (Observation, Calibration,
Auxiliary, Quality Control, User Generated). The types of Observation Data Products:

1. Level -1: Raw data packets, separate HK and science frames as described above.

2. Level 0: HK and science frames grouped by time and building block ID (and perhaps other
parameters?). As close to raw data as the as the typical user would find useful to be.

3. Level 0.5: data processed to an intermediate point adequate for inspection; for HIFI they are
processed such that backend (spectrometer) effects are removed, essentially a frequency calibration.

4. Level 1: Detector readouts calibrated and converted to physical units, in principle instrument and
observatory independent; for HIFI, essentially an intensity calibration. It is expected that Level 1
data processing can be performed without human intervention.

5. Level 2: scientific analysis can be performed. These data products are at a publishable quality level
and should be suitable for Virtual Observatory access.

6. Level 3: These are the publishable science products with level 2 data products as input. Possibly
combined with theoretical models, other observations, laboratory data, catalogues, etc. Formats
should be Virtual Observatory compatible and these data products should be suitable for Virtual
Observatory access.

1.3. Contexts
A Context is a subclass of Product, a structure containing references to Products and necessary
metadata. A Context can contain Contexts, giving rise to Context 'trees.' Types:

1. ListContexts (for grouping products into sequences or lists, hardly used)

2. MapContexts (for grouping products into key,value dictionaries)

http://www.esa.int/esaMI/Operations/SEMO4HZTIVE_1.html#subhead7
http://www.esa.int/SPECIALS/Operations/SEM8YCSMTWE_0.html
http://www.sron.rug.nl/%7Ewikiman/wikis/HifiIlt/DataPrimer?action=AttachFile&do=get&target=Herschel_Data_Product_Document_partI_v0.95.pdf
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/pal/doc/guide/html/pal-guide.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/ia/pal/doc/guide/html/pal-guide.html

Data Primer

2

1.3.1. Herschel Observation Context
A MapContext instance serves as the organisational product unit for the Herschel Data Processing
system. It contains the following contexts:

1. Level-0, Level-0.5, Level-1, Level-2, & Level-3(optional) Contexts

2. Calibration Context

3. Auxiliary Context

4. Quality Context

5. Browse product

6. Trend Analysis Context

7. optional Telemetry Context: not by default, only when the HSC deems it necessary because of a
serious problem in the processing to level-0 data.

The uses of these Contexts will be described in Chapter 2.

Note that the descriptive modifiers "Product" and "Context" are often dropped conversationally.

3

Chapter 2. Running the HIFI pipeline
HIFI data is automatically processed through the HIFI pipeline before it can be accessed from the the
Herschel Science Archive (HSA). The HIFI pipeline is used for processing data received from one
or more of the four HIFI spectrometers into calibrated spectra or spectral cubes that are suitable for
interactive analysis. The pipeline comprises four stages of processing:

1. Take data from the satellite and minimally manipulate it into time ordered Data Frames (a
HifiTimeline, or HTP, for each spectrometer). This is a Level 0 data Product, which is the least
processed data available to Astronomers.

2. Remove backend instrumental effects - essentially a frequency calibration. There are separate
pipelines for the WBS and HRS spectrometers, and the result is a Level 0.5 Product.

3. Application of observing mode specific calibrations, i.e., subtraction of reference and off positions
and intensity calibration using Hot/Cold loads. This is done by the Level 1 pipeline and resulting
Level 1 Products are sets of frequency and intensity calibrated spectra.

4. The Level 2 pipeline removes further instrumental effects, such as standing waves, baseline slopes
and offsets. Spectra are deconvolved and, depending on the observing mode, averaged or gridded
into spectral cubes.

It is expected, especially in the early stages of the mission, that Level 2 products will need to
be regenerated interactively by the Astronomer. Indeed, you may wish to re-run all or part of the
pipeline to change defaults, use your own, or examine each step of processing. To that end, the
ObservationContext that is obtained from the HSA contains, along with the Level 0-2 data Products,
everything you need to reprocess your observations - calibration products, satellite data - as well
quality, trend analysis, logging, and history products, which you can use to identify any problems with
your data or its processing.

The following section explains how to re-run the pipeline using the HifiPipeline task. There are some
aspects to using the HifiPipeline task that are only likely to be useful for calibration scientists and
software engineers when looking at test or calibration data, and those are covered in the section after.
However, if you get very involved in running the pipeline you may find some of this section to be
useful.

The final section of this chapter describes your options when stepping through the pipeline (i.e.,
running each step manually) up to Level 1. Further processing steps, such as removal of standing
waves or making cubes, have dedicated chapters elsewhere in this manual.

2.1. How to run the HifiPipeline task for
Astronomers

The HifiPipeline task links together the four stages of the pipeline described above and it can be used to
reprocess ObservationContexts up to any Level, for any choice of spectrometer(s) and polarisation(s).
You can also make your own algorithms - or modify the ones provided in the scripts/hifi/
Pipeline directory in the installation directory of HIPE - and apply them to the pipeline. The
HifiPipeline task can, of course, be run both from the GUI and the command line: we deal with the
GUI first.

2.1.1. HifiPipeline task in the GUI
The HifiPipeline task is run from the GUI in the following fashion:

1. • Click once on an Observation Context in the Variables pane and the "hifiPipeline" Task will
appear in the "Applicable Tasks" folder, double click on it to open the Task dialogue in the Editor
view.

Running the HIFI pipeline

4

• Alternatively, open the "hifiPipeline" Task by double-clicking on it under the Hifi Category in
the Tasks view.

• A "Hifi Pipeline" View is also available from the HIPE Window menu (under Show View) but
it is not fully implemented yet.

The hifiPipelineTask appears in the "Applicable" Folder in the Tasks view after clicking on the
Observation Context (MyObs) in the variable view.

Figure 2.1. HIFI pipeline task: default view

Running the HIFI pipeline

5

2. The default (or basic) dialogue allows you to re-process an already existing observation context,
e.g. from the Herschel Science Archive, through the pipeline.

• The way the data is to be reprocessed is defined in the Input section:

a. If the hifiPipeline Task was opened from the "Applicable Tasks" folder then the Observation
Context selected in the Variables View will automatically be loaded into the Task dialogue, and
you will see its name by the observation context bullet, which will be green. Alternatively, drag
the name of the observation context to be reprocessed from the Variables view to the observation
context bullet.

b. Select the spectrometers you wish to process data for by checking the desired instrument(s) and
polarisation(s). Both H and V polarisations of both the Wide Band Spectrometer (WBS) and
High Resolution Spectrometer (HRS) are checked by default.

c. Select which levels to (re-)process from and to via the drop-down menus. By default the pipeline
will process level 0 data up to level 2. If you are accessing data from the ICC database, you can
process raw data (option -1). Data taken from the Herschel Science Archive (HSA) can be re-
processed from level 0 (option 0) to levels 0.5 (option 0.5), 1 (option 1), or 2 (option 2)

If you try to re-process from a higher Level data than exists in the Observation Context then the
hifiPipelineTask will automatically select the highest existing Level. For example, if you try to
re-process from Level 0.5 to 1 but the ObservationContext only contains a Level 0 product then
the pipeline will automatically run from Level 0 to Level 1.

d. Ignore the entries for database and obsid; these can only be used by calibration scientists and
should be removed in the future.

e. At the moment, to supply your own algorithm to the pipeline (see Section 2.4) you must toggle
to the expert view, where you can load a new algorithm from file. The ways you might want
to modify the pipeline algorithms are discussed in Section 2.3. See the notes below about
customizing pipeline algoriths.

• In the Output section, choose the name of the observation context that will be produced or use
the HIPE default, obsOut. The observation context contains all the products generated by the
pipeline task and should be stored in a pool in your lstore (~/.hcss/lstore/hifi-pipeline) to be able
to access it in a future session. The variable obs is also produced in order that the pipeline can
be re-run without the need to reset IO parameters.

• Click on "accept" to run the pipeline. The status ("running" if all is well, error messages if not)
and the progress of the pipeline are given in the Info section at the bottom of the Task dialogue.

Running the HIFI pipeline

6

In this example, an already processed observation, 'Myobs', is being re-processed from Level 0.5
up to Level 1, both polarisations of the WBS spectrometer have been selected.

Figure 2.2. HIFI pipeline task: default view

2.1.2. HifiPipeline in the command line

Below are some examples of running the HifiPipeline task from the command line, once again it is
assumed that an ObservationContext called Myobs has been loaded into the session.

Reprocess an ObservationContext up to Level 2 for all spectrometers
MyNewobs = hifiPipeline(obs=Myobs)
#
Reprocess Myobs from Level 0.5 to Level 1, for all spectrometers
MyNewobs = hifiPipeline(obs=Myobs, FromLevel=0.5, UpToLevel=1)
#

Running the HIFI pipeline

7

Now reprocess MyNewobs (which now contains data only up to Level 1) but only for
the WBS.
WBS-H and WBS-V are the horizontal and vertical polarizations, respectively.
MyEvenNewerobs = hifiPipeline(obs=MyNewobs, apids=['WBS-H', -'WBS-V'])
#
Reprocess Myobs from Level 0 to Level 0.5 for only horizontal polarization data
MyNewobs = hifiPipeline(obs=Myobs, apids=['WBS-H','WBS-V'], FromLevel=0,
UpToLevel=0.5)
#
Now include your own algorithm for the Level 1 pipeline, for all spectrometers,
from Level 0 to 1
MyNewobs = hifiPipeline(obs=Myobs, FromLevel=0, UpToLevel=1, level1Algo=$full_path/
mylevel1Algo.py)
#
Now the pipeline went wonky and you want to reset it!
hifiPipeline = hifiPipelineTask()
#

• The exact ordering of the arguments does not matter.

• What is an apid? "Application Program IDentifier": it is what the pipeline calls spectrometers.

• Note that to implement your own algorithm, you must load the algorithm script from wherever you
saved it into HIPE and compile it (run it with >>) before you run the pipeline (see 2.4).

2.2. HifiPipeline tasks for Calibration
Scientists

2.2.1. Expert hifiPipeline task
By toggling the "expert" button on the hifiPipeline task GUI, you may additionally control more
detailed aspects of the pipeline set-up. There are code examples of their usage below.

Unless you specify otherwise when running the pipeline, it will look for the database (db), calibration
pool (and aux pool for flight data) that you specify in your user.props file. See Section 14.2 for
information about configuring your setup and the ICC databases.

Note that in the case that a database has been regenerated, you will need to delete your /.hcss/pal_cache
in order to run the pipeline or generate an HTP. This is worth trying if you have difficulties after any
major changes in database or configuration.

Access the ICC simulations database and run the pipeline to generate an
observation context ('obs')
from scratch
obs = hifiPipeline(obsid=268435702, db="ds3@iccdb2.sron.rug.nl 0 READ")
#
If the obsid is 10 integers long (i.e. after SOVT) then append an L
obs = hifiPipeline(obsid = 3221226279L, db="sovt2_fm_1_prop@iccdb1.sron.rug.nl 0
READ")
#
Process for a selection of spectrometers
obs = hifiPipeline(obsid = 3221226279L, db="sovt2_fm_1_prop@iccdb1.sron.rug.nl 0
READ",
apids=['WBS-H','HRS-V'])
#
Select the level to process to (from raw (-1) Level 1 (1) here)
obs = hifiPipeline(obsid = 3221226279L, db="sovt2_fm_1_prop@iccdb1.sron.rug.nl 0
READ",
FromLevel=-1, UpToLevel=1)
#
If there is an ObsContext (Myobs) in the session, you can reprocess it from an
existing Level,

Running the HIFI pipeline

8

e.g Level 0.5 to 1
obs = hifiPipeline(obs = Myobs, FromLevel=0.5, UpToLevel=1)
#
If the calibration tree is updated, you can re-populate the calibration products
in Myobs using:
obs = hifiPipeline(obs=Myobs, cal=1)

#For ILT data, provide the obsMode name -- the data itself does not have it:
obs = hifiPipeline(obsid=268516902, db="ilt_fm_5_prop@iccdb1.sron.rug.nl 0 READ",
obsMode="HifiPointModeLoadChop")
#
Use a different tmVersion than the default in your user.props file
obs = hifiPipeline(obsid=268439922, db="ilt_par_5_prop@iccdb.sron.rug.nl 0 READ",
tmVersion="ilt-par")
#
You can edit the algorithm of the pipeline tasks and use them in place of the
default algorithms,
see Section 2.4
obs = hifiPipeline(obsid=1342179306L, db="hifi_icc_ops_1@iccdb1.sron.rug.nl 0
READ", wbsAlgo=myWbsAlgo,
hrsAlgo=myHrsAlgo,Level1Algo=myLevel1Algo)
#
Provide your own palStore to which the pipeline will write to:
obs = hifiPipeline(obsid=1342179306L, db="hifi_icc_ops_1@iccdb1.sron.rug.nl 0
READ", palStore = myStore)
#
Clear CachedStoreHandler to avoid a block due to none closed stores. Note, this
closes ALL stores
available in this cache and may affect other applications running in the session.
obs = hifiPipeline(obsid=1342179306L, db="hifi_icc_ops_1@iccdb1.sron.rug.nl 0
READ", clearCachedStoreHandler=1)
#
If pipeline task is not behaving as you expect you could try a reset:
from herschel.hifi.pipelin import HifiPipelineTask
hifiPipeline = HifiPipelineTask()

2.2.2. Individual pipeline tasks

In addition to using the HifiPipeline task, one can run the underlying pipeline tasks too. These tasks
handle ObservationContexts as well as HTPs, which can make using them more efficient to test one
stage of the pipeline. The API for each of the tasks is identical and their functionalities are summarised
in the examples below. GUI forms are also available.

Note

The Generic pipeline task is deprecated and the Level 1 and Level 2 pipeline tasks should
be used instead

Create a Level 0.5 HTP for WBS-H from raw data
htp=wbsPipelineTask(obsid=3221226570L, apid=1030,
db="sovt2_fm_1_prop@iccdb1.sron.rug.nl 0 READ")
#
and then pass that to the Level 1 pipeline task
htp=level1PipelineTask(htp=htp, apid=1030)
#
Create a Level 0.5 HTP for the HRS-H from an existing HTP, using your own
algorithm
htp=hrsPipelineTask(htp=htp, apid=1028 -, algo=myHrsAlgo)
#
and pass that to the Level 1 pipeline, and defining your own palStore to write
the output to
htp = level1PipelineTask(htp=htp, apid=1028, palStore= myStore)
#
Pass an existing ObservationContext to the Level2PipelineTask
obs = level2PipelineTask(obs=obs)

Running the HIFI pipeline

9

2.3. Running the Pipeline step by step
• Running the pipeline (or one part of the pipeline) step by step allows you to inspect the results of

each step and change the default parameters of the pipeline. If you wish to create your own algorithm
(which must be written in jython) for a part of the pipeline, then this will likely be your first step.

• It is not expected that there will be much need to customise the spectrometer pipelines (up to Level
0.5) and indeed there are only a steps of the spectrometer pipelines that have some options. It is
more likely that you may wish to play with how off and reference spectra are subtracted in the Level
1 pipeline, although it is expected that the dafault settings should work well.

• To step through the pipeline you must work directly on the appropriate level HifiTimeLine (HTP -
the dataset containing all the spectra, including calibration spectra, made during an observation for
a given spectrometer). So the first thing you must do is extract the HTP you want to work on from
your ObservationContext, see Section 14.6 for how to do this.

• When you select an HTP in the Variables view in HIPE you will notice that many tasks with names
like DoWbsDark, mkFreqGrid. These are the names of all of the steps in the HIFI pipeline; mk...
signifies a step where a calibration product is being made, Do... is a step where a calibration is
applied. You can step through the pipeline using these tasks or (more efficiently) use and modify
the scripts that are supplied with the software in the scripts/hifi/Pipeline directory in the
installation directory of HIPE

• For information on the steps of each level of the pipeline (their names, the order to run them in, and
what options you can change) see the HIFI Pipeline Specification document in the help, also here
if you have access to the HIFI ICC pages.

2.4. How to customise pipeline algorithms
1. The pipeline algorithm scripts can be found in:

• WBS. $BuildDir/scripts/hifi/pipeline/wbs/WbsPipelineAlgo.py

• HRS. $BuildDir/scripts/hifi/pipeline/hrs/HrsPipelineAlgo.py

• Level 1. $BuildDir/scripts/hifi/pipeline/generic/Level1PipelineAlgo.py

• Level 2. $BuildDir/scripts/hifi/pipeline/generic/Level2PipelineAlgo.py

2. Open the algorithim you wish to customise in the editor, edit it (and save!)

3. Compile your algorithm by running the script with >>

4. Apply the algorithm to the pipeline as described in the sections above.

http://www.sron.rug.nl/docserver/wiki/doku.php?id=docbook:hifi-pipeline1

10

Chapter 3. Flags in HIFI data
Flags (also called masks) are identifiers of specific issues with the data, such as saturated pixels or a
possible spur, that can affect the quality of the final product. Flags are used to identify affected data
and to make a caution during its processing.

A Flag has a defined name and a value, which specifies the nature of the flag. The flags are divided
into two categories, depending on whether they apply to an individual channel (pixel), or to a complete
Dataframe. They are called channel f lags, and column rowflags, respectively.

Note

There are also Quality Flags, which are found in the Quality Product in the
ObservationContaxt and are used to provide you with means to make a quick assessment
of the quality of your data, they are discussed in chapter Chapter 4

3.1. Channel flags
Channel (or pixel) flags apply to individual pixels and are added as a column in the HTP. Their names
are also added to the metadata of a dataset during processing and this is used for the history of the
pipeline; it also means that you can tell that, e,g., the WBS pipeline has been applied if you see things
like "isMasked" and "checkZero" in the metadata.

For each pixel there are 32 flags which can be set, currently 8 are defined, and the definition of the
mask bits and values in HIFI data is given here:

Flag Name Value Description

Bad pixel 0 If this bit is set, the sample
contains a bad pixel

Saturated pixel 1 If this bit is set, the sample was
saturated

Not observed 2 If this bit is set, the sample is
not observed

Not Calibrated 3 If this bit is set, the sample is
not calibrated

In overlap region 4 If this bit is set, the sample is
in the subband overlap region.
I.e. it can be seen better in the
adjacent subband.

Glitch detected 5 If this bit is set, the sample is
not observed

Dark pixel 6 If this bit is set, the sample is
used to measure the dark

Spur candidate 7 If this bit is set, the sample is
a candidate to be a spur. It is a
'candidate' since not all things
flagged by the spurfinder are
necessarily spurs

3.2. Column rowflags
Column rowflags (the "rowflag" column in the HIFI spectrum TableDataset) apply to the complete
Dataframes (DF) or rows in a HifiSpectrumDataset (HSD).

Flags in HIFI data

11

For bit n the value is computed according to value=2(n-1). The first 5 bits are about the packets from
which the DataFrame (DF) is reconstructed, and are unlikely to ever occur. Below is a table showing
the current names and values of HIFI rowflags:

Flag Name Bit Value Description

PacketOrder 1 1 Error in the
packet order while
constructing the
DataFrame

PacketLength 2 2 Error in the packet
length while
constructing the
DataFrame

TooMuchData 3 4 More data than can be
fit in a DataFrame

FirstPacket 4 8 Error in the start packet
while constructing the
DataFrame

NoBlocks 5 16 No block information
present while
constructing the
DataFrame

spare 6 32

spare 7 64

UnalignedHK 8 128 HK could not
be aligned with
DataFrames. When the
columns "df_transfer"
and "hk_transfer" in
the TableDataset are
different, bit 8 is set

noChopper 9 256 No valid Chopper
information. Set when
the flagbit is zero in the
DFs, extracted from the
HK packets if possible

noComChop 10 512 No valid Commanded
Chopper information.
Set when the flagbit
is ero in the DFs,
extracted from the HK
packets if possible

noFreqMon 11 1024 No valid Frequency
Monitor information.
Set when the flagbit
is zero in the DFs,
extracted from the HK
packets if possible

noLoCodeOffset 12 2048 No valid LO code
offset information. Set
when the flagbit is zero
in the DFs, extracted

Flags in HIFI data

12

Flag Name Bit Value Description

from the HK packets if
possible

noLoCodeMain 13 4096 No valid LO code main
information. Set when
the flagbit is zero in the
DFs, extracted from the
HK packets if possible.

BbidCorrection 14 8192 Correction of Bbid, see
SPR 1963. Not relevant
any more. It was during
SOVT testing, but the
onboard software has
been corrected since

MixerCurrentDeviation 15 16384 Difference in
mixer currents
exceeds tolerance
when applying
DoRefSubtract.

MixerCurrentDeviation 16 32768 Difference in
mixer currents
exceeds tolerance
when applying
DoOffSubtract.

MixerCurrentDeviation 17 65536 Difference in
mixer currents
exceeds tolerance
when applying
DoFluxHotCold or
MkFluxHotCold.

NoHotColdCalibration 18 131072 Division by the
bandpass has not been
carried through

Flags in HIFI data

13

Caption: Example of a HIFI spectrum TableDataset, which contains the "rowflag" column with a value
of 256.

14

Chapter 4. Quality Flags
Quality Flags are raised during standard processing of HIFI data. Flags should be created from every
processing step of the pipeline, from the initial creation of the HifiTimelineProduct (Level 0), through
to the final product of Level2 processing. If all goes well, the flags will have their default values but
if a certain processing step is unable to perform the action it was designed for the flag will take a
different value. If the pipeline produces a flag other than the default value, this flag is promoted to the
Quality Report. Thus the quality report is by definition a list of things identified as have gone wrong.
A quality report is found from the ObservationContext:

obs.refs["quality"].product

Please note the difference between a quality flag and flagging data. In flagging data you identify that,
for example, a given channel sample is saturated; if those channels are saturated repeatedly during the
observation then the quality flag "SATURATEDNUMBER" wil be raised.

Below is a list of the current available types of quality flags for the HIFI pipeline, for each level. The
format below gives flag name, flag description, and flag default value.

Level O Quality Flags.

Quality Flags

UNALIGNED_HK("unalignedHKdata","Percentage of Dataframes which have unaligned HK",
0.0)

NOCHOPPER("noChopperHKdata","Percentage of DFs having no chopper information", 0.0)

NOCOMCHOP("noCommandedChopperHKdata","Percentage of DFs having no commanded
chopper information", 0.0)

NOFREQMON("noFrequencyMonitorHKdata", "Percentage of DFs having no frequency monitor
information", 0.0)

NOLCOFFS("noLoCodeOffsetHKdata","Percentage of DFs having no LO Code offset
information", 0.0)

NOLCMAIN("noLoCodeMainHKdata","Percentage of DFs having no LO Code main
information", 0.0)

BBID_CORRECTION("bbidCorrection","Percentage of Bbids corrected according to commanded
Bbids", 0.0)

DATAFRAMES_OUTOFORDER("dataframesOutOfOrder","Unordered or duplicate Dataframes
found", false)

MISSING_DATA("missingData","Less data found than expected", false)

SURPLUS_DATA("surplusData","More data found than expected", false)

Level 0.5 Quality Flags: WBS.

Quality Flags

COMBFLAG(QWbsFreq.VALIDATE,"Flag for all COMB of the observation",false)

ZEROFLAG(QWbsZero.VALIDATE , "Flag for all Zero of the observation",false)

SPIKENUMBER(QWbsSpikes.NUMBER, "Maximum number of spikes detected in a Comb", 0)

SATURATEDNUMBER("pixelSaturated","Maximum number of saturated pixel detected in a
single spectrum",0l)

SDARKFLAG("darkFlag","Spectrum contains saturated dark ",false)

BADPIXELS("badPixels","Number of channels marked as BAD due repeated saturations",0l)

Quality Flags

15

Level 0.5 Quality Flags: HRS.

Quality Flags

NOQDC("noQDC", "No Quantization Distortion Correction could be processed.",false)

FASTQDC("fastQDC", "Fast Quantization Distortion Correction processed. Not optimal.",false)

NOPOWCOR("noPowerCorrection","No Power Correction could be processed.",false)

Level 1.0 Quality Flags.

Check data structure.

Quality Flags

OBSERVINGMODE("observingMode","Observing mode not recognized - consult the pipeline
configuration xml file.", false)

UNKNOWNBBTYPE("unknownBbType","Bbtype not known.", false)

Check freq grid.

Quality Flags

FREQUENCYDRIFT("maxFreqDrift", "Unacceptable maximum drift in the frequency grid
detected.", false)

FREQUENCYCHECKS("noFreqChecks", "Frequency checks and/or frequency grouping failed.",
false)

Check phases.

Quality Flags

CHOPPERPATTERN("chopperPattern", "Pattern observed for the Chopper not as expected in all
datasets.", false)

CHOPPERVALUES("chopperValues", "Number of distinct Chopper values not as expected in all
datasets.", false)

LOFPATTERN("lofPattern", "Pattern observed for the LoFrequency not as expected in all
datasets.", false)

LOFVALUES("lofValues", "Number of distinct LOF values not as expected in all datasets.", false)

BUFFERPATTERN("bufferPattern", "Pattern observed for the buffer not as expected in all
datasets.", false)

BUFFERVALUES("bufferValues", "Number of distinct buffer values not as expected in all
datasets.", false)

PHASECHECKS("noPhaseChecks", "Not all phase checks could not be carried through or
completed.", false)

Hot/cold-calibration.

Quality Flags

HOTCOLDDATA("hotcoldData","Data measured from hot and cold loads not sufficient for hot/
cold calibration.", false)

TSYSFLAG("tsysFlag","Hot/cold calibration not successful.", false)

INTENSITYCALIBRATION("intensityCalibration", "Intensity calibration not or not for all
spectra carried through.", false)

Channel weights.

Quality Flags

16

Quality Flags

CHANNELWEIGHTSFLAG("channelWeights","Problem occurred while computing channel-
dependent weights. No weights added.", false)

Reference subtraction.

Quality Flags

REFSUBTRACTIONFLAG("refSubtraction", "Reference subtraction not processed - maybe
identification of phases not successful.", false)

Off smooth.

Quality Flags

NOOFFBASELINE("noBaseline", "No off baseline could be calculated.", false)

Off subtraction.

Quality Flags

ONOFFSEQUENCE("onoffSequence","ON/OFF datasets not in expected sequence (...-ON-OFF-
ON-OFF-... or ...-ON-OFF-OFF-ON-ON-....", false)

ONOFFPAIRSIZE("onoffLength", "Some ON/OFF dataset pairs found with unequal number of
rows.", false)

ONOFFPROCESSING("onoffProcessing", "More ON- than OFF-datasets found in the data - not
all ON-datasets could be processed with OFF-dataset(s).", false)

OFFBASELINESUBTRACTION("offBaselineSubtraction", "No off baseline subtraction carried
through since no off baseline data available.", false)

DATALOSSINAVERAGE("average", "Some data has been lost while computing the average over
many datasets.", false)

17

Chapter 5. Viewing Spectra

5.1. Introduction
HIFI spectra can be visualised in several ways, at various levels of sophistication and user-friendliness.
Here the PlotXY and SpectrumExplorer packages are described.

5.2. Basic Spectrum Viewing: the PlotXY
Package

PlotXY() is the basic package to plot arrays of data points in the HCSS, and it can be used to plot
HIFI spectra as well. It has a lot of options, making the plots highly configurable. Here is an example
of plotting a HIFI spectrum:

• Get the frequency and flux data to be plotted from the spectrumdataset 'sd':

freq=sd.getWave().get(0)

flux=sd.getFlux().get(0)

• The simplest possible plot:

out=PlotXY(freq, flux)

• When plotting multiple spectrum datasets, say 'sd1' and 'sd2' in one figure:

#get the wavelengths and fluxes to be plotted

freq1=sd1.getWave().get(0)

flux1=sd1.getFlux().get(0)

freq2=sd2.getWave().get(0)

flux2=sd2.getFlux().get(0)

#create the plot variable

p=PlotXY()

#create the plots in batch mode

p.batch=1

#define the layer variable

ll=[]

#remove any non-numbers (NaN's, Infinites etc.)

valid=flux1.where(IS_FINITE)

#create layer for first plot

l=LayerXY(freq1[valid],flux1[valid])

#append to layer variable

Viewing Spectra

18

ll.append(l)

#repeat the above for the 2nd plot to be overlaid

valid=flux2.where(IS_FINITE)

l=LayerXY(freq2[valid],flux2[valid])

ll.append(l)

#define the plot layers that have just been created

p.layers=ll

#get out of batch mode. This actually creates the plot

p.batch=0

• And this is how some common features of the plot are modified.

p.setYrange([0, 1.5])

p.setTitleText("This is an example plot")

5.3. Viewing with SpectrumPlot
It is also possible to display spectra without taking apart the data format as is described in the previous
section. All Herschel spectra types can be displayed with the SpectrumPlot package.

If spectrum is a Herschel Spectral type (Spectrum1d, Spectrum2d) then:

splot=SpectrumPlot(spectrum, useFrame=1)

will simply display the spectrum along with some standard header information. The useFrame=1
allows for the possiblility of creating a plot without actually viewing it at first, but as the last step. The
SpectrumPlot module is build on PlotXY, and so many of the features you would use in PlotXY you
can also use for SpectrumPlot. Below are a few examples:

from herschel.ia.toolbox.spectrum.gui import SpectrumPlot
from herschel.ia.gui.plot.renderer.StyleEngine.ChartType import HISTOGRAM,LINECHART
#
#
Creating the plot
sp=SpectrumPlot(spectrum,useFrame=1)
#
#
adding a second spectrum to the plot
sp.add(spectrum2)
#
#Start
fresh again
p = SpectrumPlot(spectrum, useFrame=1)
#
#get
graphs
g0 = p.getGraphs()[0]
g2 = p.getGraphs()[2]
#
#display as line graph or histogram
g0.layer.style.chartType = HISTOGRAM
g2.layer.style.chartType
= LINECHART
#

Viewing Spectra

19

#add
annotations
g0.layer.addAnnotation(Annotation(4000,1,"My
annotation"))
g0.layer.addAnnotation(Annotation(5000,0.98,"My
annotation"))
#
#select
a range of data
g0.layer.xaxis.addMarker(AxisMarker(4200,4400))
g2.layer.xaxis.addMarker(AxisMarker(6000,6500))

These last lines will produce the following plot:

Figure 5.1.

5.4. The SpectrumExplorer Package
The SpectrumExplorer package allows one to visualize HIFI, PACS, and SPIRE SpectrumDatasets in
a userfriendly, interactive way. To activate it, click on a SpectrumDataset in the Variables window with
the right mouse button and select 'Open With' and 'Spectrum Explorer'. This will plot the spectrum.
If the SpectrumDataset is wrapped in an ObservationContext or a TimelineProduct, double-click on it
in the Variables window and then click down the product tree to the desired SpectrumDataset. Then
you will see something like this:

Viewing Spectra

20

In the shown example of the HIFI instrument, individual WBS sub-bands or scans can be plotted by
clicking on the appropriate boxes in the bottom panel and removed by double-clicking. The plot can
be modified interactively or other actions can be performed after clicking the appropriate button at

Viewing Spectra

21

the top panel. The same actions can also be selected by clicking the right mouse button on the plot
window. From left to right:

• button 1: new... (file, script)

• button 2: save the plot to a file. One can chose from a number of file formats.

• button 3: print the plot.

• button 4: this is the default mode when SpectrumExplorer is started. Change the horizontal and
vertical plot ranges by drawing a rectangular box using the left mouse button. Also, one can scroll
the spectrum along the horizontal and vertical axes by clicking on an axis with the left mouse button
and then moving the mouse or using the mouse wheel. Control-left mouse button will un-zoom the
plot (or use the Zoom option under the right mouse button).

• button 5: highlight a plotted spectrum by clicking on it with the left mouse button. Then with the
right mouse button, under 'Spectrum' chose an operation to be applied to the selected spectrum.
Subsequently a GUI for the particular operation will appear. Enter any details and click on 'Accept'
in the GUI. Note that currently this will only work if the dataset was selected directly from the
Variables window, not from the ObservationContext or TimelineProduct tree. In the latter case,
create a variable first by dragging the dataset from the Outline window to the Variables window.

• button 6: highlight spectral ranges by using the left or middle mouse buttons. This will create a
vertical grey bar. In the near future (likely HIPE 1.2) all sorts of tasks can be applied to the marked
area(s), e.g. flagging datapoints and fitting lines and Gaussians.

• button 7: select specific data points with the left mouse button. In the near future (likely HIPE 1.2)
one will be able to flag or remove these points.

• button 8: click on a spectrum and drag it to another or a new panel (note that dragging to the left
and top of the original panel is mot possible). The spectrum can also be dragged to the Variables
window where is will be stored as a new variable.

• button 9: pan through the spectrum by clicking the left mouse button and moving the mouse.

• button 10: only show the active plot panel, and change the axis ratio in order to fit the screen. Click
button 7 again to show all panels.

• button 11: add (or remove) a grid to the plot

• button 12: display or hide the plot legend

• button 13: switch between line and histogram mode

• button 14: apply a filter to the attributes of a SpectrumDataset, such as chopper position, flags, etc.
The filter GUI will appear at the bottom right of the SpectrumExplorer window. Attributes can be
selected from a drop down menu. The filter values can be entered as ranges, e.g. sequence numbers
18-20 can be selected by entering '18-20' or '19+/-2' under 'filter'.

• button 15: any plot parameter (plot range, titles, colors etc.) can be modified in the same way as
for the PlotXY() package.

Finally, it is also possible to...

• ...overplot multiple SpectrumDatasets. If the dataset is listed in the Variables window, click and
drag it to the area under the SpectrumExplorer plot window, and a new tab for that dataset will
appear that can be selected subsequently.

• ...add, remove, or invert axes by right-mouse clicking on an axis. In the future it will be possible to
change the units of the axis as well (e.g. USB/LSB/IF/Vlsr for HIFI).

22

Chapter 6. Changing to LSB/USB and
Velocity

6.1. Changing HIFI Frequency Scales
In practice there at two methods of altering the HIFI frequency scales: using the Spectrum Explorer
GUI or from the command line. These two approaches differ in one fundamental way. The
command line tasks will actually change the data, by resetting the frequency to upper/lower sideband
representation or velocity. The GUI only changes what is seen in the SpectrumExplorer, the data
themselves are not changed.

There are four fundamental ways of representing the frequency scale for HIFI: the intermediate
frequency (default), the upper sideband frequency, the lower sideband frequency, or by velocity.

One final note, currently the HIFI pipeline is providing the "final" spectra represented in both USB
and LSB. The level 2 product names are tagged LSB or USB it is still possible from these spectra to
transform back to IF or the other sideband.

6.1.1. Changing Spectral Views
The SpectrumExplorer provides internal means of viewing spectra. These views are only for display
purposes and do not change the data.

6.1.1.1. LSB/USB

Assuming you have activated a spectrum in a SpectrumExplorer window. To move between a spectrum
seen in the Intermediate Frequency, USB or LSB, right mouse click on the frequency access (not the
title of the access, but the axis itself). A pull down menu for the access will appear.

6.1.1.2. Velocity

6.1.2. Change Spectral Views from the command line

6.1.2.1. LSB/USB

The task to convert the actual frequency scale in a HifiTimelineProduct or HifiSpectrumDataset is
called ConvertFrequencyTask. Assuming spectrum is the variable name for a HifiSpectrumDataset
with the frequency scale of the data in expressed as IF frequencies.

cft=ConvertFrequencyTask()
cft(sds=spectrum,to="lsbfrequency")

Of course, it is also possible to convert to the upper sideband. for this the keyword is "usbfrequency".

cft(sds=spectrum, to='usbfrequency')

To convert back to the IF, use:

cft(sds=spectrum, to='frequency')

Changing to LSB/USB and Velocity

23

The ConvertFrequencyTask works equally well on the HifiTimelineProduct itself. In this case all the
internal HifiSpectrumDatasets are converted. This is not something you should do in the early stages
(before level 0.5) of the HIFI pipeline. For example on a level 1 HifiTimelineProduct:

cft=ConvertFrequencyTask()
cft(htp=hifitimelineproduct, to='frequency')

Note

Direct application of the ConvertFrequencyTask changes the data listed in the spectrum.
Conversion back to the original IF scale is possible, just use the to='frequency' option.

6.1.2.2. Velocity

The ConvertFreqencyTask also works to convert the frequency scale to a velocity scale once given
the reference frequency.

cft=ConvertFrequencyTask()
cft(sds=spectrum,to='velocity',reference=576.268,inupper=False)

In the above example, I had to specify the reference frequency in GHz and whether this reference
frequency is for the upper (inupper=True) or lower (inupper=False) sideband.

Another call to ConvertFrequencyTask using "to = 'frequency'" will undo the change to velocity as
well.

6.1.2.3. Review of ConvertFrequencyTask

The ConvertFrequencyTask works on HifiSpectrumDatasets or HifiTimelineProducts. The task uses
the keywords "sds" for HifiSpectrumDataset and "htp" for HifiTimelineProducts. The conversion of
frequencies is done using the "to" keyword. The following table shows the various possibilities:

to= Description Other keywords necessary

frequency Converts to the Intermediate
Frequency scale.

None

usbfrequency Converts to the Upper side band
Frequency scale.

None

lsbfrequency Converts to the lower side band
Frequency scale.

None

velocity Converts to the velocity scale in
km/s

reference=reference frequency,
inupper=(True or False)

24

Chapter 7. Mathematical Operations
on Spectra

Please see the Data Analysis Guide for more up-to-date information.

25

Chapter 8. HIFI Standing Wave
Removal Tool

8.1. Introduction FitHifiFringe
FitHifiFringe is a tool to remove standing waves from level 1 and level 2 HIFI spectra. It makes use
of the general sine wave fitting task FitFringe, but has been adapted to read HIFI SpectrumDatasets,
and provide input and defaults applicable to HIFI spectra. For details on the sine wave fitting method,
please consult the FitFringe manual.

FitHifiFringe is being tested on PV data. It can be applied to all bands, with the caveat that the standing
waves in HEB bands 6 and 7 are not sine waves, and hence can only be fitted in an approximate way
by fitting a combination of many sine waves.

Also note that presently FitHifiFringe can only be applied to WBS, not HRS, spectra.

8.2. Running FitHifiFringe
FitHifiFringe can be run by clicking on a WBS level 1 or 2 SpectrumDataset variable and then double-
clicking on the applicable task. Alternatively it can be run on the command line as follows:

fhf = FitHifiFringe()

sds_out = fhf(sds1=sds_in,nfringes=2,midcycle=150.)

The input sds_in is a WBS level 1 or level 2 SpectrumDataset. The output sds_out SpectrumDataset
is identical to the input, but with the fitted sine waves subtracted from the flux columns.

The following input parameters are allowed:

• nfringes: number of sine waves to be fitted [DEFAULT: 1]

• midcycle: This is an important parameter the user can supply. It is the typical standing wave period
in the spectrum (in MHz). Any structure with periods much longer than that will be considered
baseline, and no sine waves will be fitted to it. Any narrow peaks (spurs, emission or absorption
lines) will be masked. [DEFAULT: 176 MHz]

• cycle: start of sine wave period search range [DEFAULT: 2727 MHz]

• plot=False: only show plot of end-result for each scan [DEFAULT: 3 plots per scan: (1) period
versus Chi^2 (2) a before/after plot including the line mask (3) the before/after plot and the
subtracted sine wave]

• ncycle: number of cycles to check [DEFAULT: 450]

• averscan=True: determine standing waves on average of all scans, and then subtract this from each
scan [DEFAULT: process each scan separately] NOTE: this option only available in HIPE > 1.2

26

Chapter 9. Fitting Spectra
Please see the Spectrum Fitting chapter in the Data Analysis Guide.

27

Chapter 10. Sideband Deconvolution
The deconvolution tool is the post-Level 2 processor to separate the "folded" double sideband (DSB)
data inherently produced by the heterodyne process into a single sideband (SSB) result. See the figure
below. Fluxes (F_DSB) in the DSB spectrum are given by:

F_DSB(nu_IF) = g_u*F_sky(nu_LO+nu_IF) + g_l*F_sky(nu_LO-nu_IF)

where nu_LO+/-nu_IF are sky frequencies, and g_l and g_u are sideband gain (imbalance) factors,
typically close to 1. The deconvolution is used to reduce WBS Spectral Surveys, which are collections
of observations taken at many LO settings so as to constrain the solution. The algorithm finds a SSB
solution that best models the observed DSB observations through iterative chi-square minimization
(Comito and Schilke 2002). The algorithm automatically runs twice, first with gain factors set to 1.0
for stability, and then a second time, starting with the SSB solution of the first run, but this time
allowing the gain values to be optimized as well.

Sideband Deconvolution

28

Sideband Deconvolution

29

The deconvolution tool is run AFTER the level 2 pipeline in HCSS 1.2. The level 2 pipeline performs
the following tasks:

• splits the data into upper and lower sideband representations

• applies a gain correction specific to the LO frequency and sideband of the spectra

• corrects frequencies for spacecraft radial velocities

• resamples the spectra onto a fixed grid. For WBS this is done at 0.5 MHz spacing, with the first
frequency snapped to the nearest 0.5 MHz

Any HIFI observation context will contain Level 2 products if run through the standard product
generation.

10.1. Running the Deconvolution Tool
Assuming the observation context is named "MyObsContext", the user can run the deconvolution task
on the command line with the default parameters by simply invoking:

 result=DoDeconvolution()(obs=MyObsContext)

The default parameters can be modified as follows:

result=DoDeconvolution()(obs=MyObsContext,
polarization=1,max_iterations=200,
tolerance=0.001,channel_weighting = True)

• max_iterations: Tells decon to stop after a specified number of interations if it has not converged
by then

• tolerance: Specifies the tolerance of the solution. Lower values means it takes longer to converge

• bin_size : Tells deconvolution to bin data into a specified size (in Mhz). Effectively smooths the
input

• polarization : Observations contexts store H and V polarizations. You can specify which to reduce
with this option. 0=H, 1=V

• channel_weighting : Toggles whether or not the deconvolution uses the weight values in the data

The Deconvolution Tool can also be run from a GUI by clicking on the the obs context in the
"Variables" window, then double clicking 'doDeconvolution' in the "Task" list.

Sideband Deconvolution

30

Sideband Deconvolution

31

Like other GUIs in the system, once the 'Accept' button is hit, the command line version is written in
the console window so users know exactly how the task was called. This output can be cut and paste
into user scripts for repeatability.

10.2. Viewing Deconvolution Results
• The output product result can be viewed with the product viewer.

• The single sideband result (ssb) is a dataset that can be viewed with the SpectrumExplorer. On the
command line, it can be extracted from the product as follows: ssb=decon_result["ssb"]
This contains the deconvolved spectrum, and is the primary output of the tool.

• The dataset "gain" can be viewed with dataset inspector. On the command line, it can be extracted
from the product with: gains=decon_result["gain"] The deconvolution tool can estimate
the sideband gains due to the redundant nature of the data taking. These estimates are stored per
LO tuning in this product.

• The meta data added to ssb includes number of iterations and the tolerance, as can be seen in the
HIPE screenshot below.

Sideband Deconvolution

32

Sideband Deconvolution

33

34

Chapter 11. How to make a spectral
cube

Spectral cubes from OTF mapping observations are produced as part of the SPG pipeline and are a level
2 product. However, re-processing of spectral cubes from a Level 2 product is likely desirable; this is
done using the doGridding Task after calibrations of baseline, sideband gain, and antenna temperature.

The default operation of the task is to select the science datasets from an HTP and create a cube for each
given spectrometer subband. Each slice of the cube is produced by computing a two dimensional grid
covering the area of the sky observed in a mapping mode. For each pixel in the grid, the task computes a
normalized Gaussian convolution of those spectra (equally weighted) falling in the convolution kernel
around that pixel. After running the task you will have an array of cubes, one for each subband.

The SimpleCube product can be analyzed with the CubeSpectrumAnalysisToolbox.

11.1. Making a Spectral Cube via the
command line

As a part of the automated (SPG) pipeline, Dogridding handles ObservationContexts but if you are
making a cube yourself then you should use a Level-2 HifiTimelineProduct (HTP). As of HCSS 1.0,
the HTP contains the satellite pointing information required to run the task but if you are using old data
you must also supply the pointing, SIAM and uplink products. Some examples of usage are below

• Data selection:

Make cubes for all the subbands, then display the first one:

cubes = doGridding(htp=htp)
cubes_count = len(cubes)
cube = cubes[0]
Display(cube)

Or you might automatically create a separate variable for each cube as in the following routine:

get a separate variable for each cube computed for each subband
for subband in range(len(cubes)):
 cube = cubes[subband]
 subband = cube.meta['subband'].value
 cube_name = -"cube_%d" % subband
 vars()[cube_name] = cube

The medata of each cube will include a "subband" parameter stating the subband of the spectra
which was used to compute the cube. This can be checked with,

print cube.meta['subband']

• You may select just a part of the spectrum for each subband to be processed, that is, to generate the
cube for a range of the channels of the given spectra. This can be done by providing a "channels"
input, which is an Int2d array. This has to contain as many rows as subbands are to be processed.
Each row must have two elements, the start and end channel to be read.

The next example shows how to create a cube for the first and fourth subbands of a given
spectrometer, reading just the channels 200 to 1200 in the first one, and the channels 400 to 700
in the second:

How to make a spectral cube

35

channelRanges = Intd2()
channelRanges.append(Int1d([200,1200]), 0) # 0 means append row wise
channelRanges.append(Int1d([400,700]), 0)

cubes = doGridding(htp=htp, subband = Int1d([1,4]), channels=channelRanges)

• Select datasets by type: the default action is to take the science data sets that are on the source and
this is normally sufficient. However, there may be observations where the dataset type to be read
to make the cube has a different dataset type (e.g. an engineering observations whose type is called
"other", instead of "science"). You can also select the off positions too.

cubes = doGridding(htp=htp, datasetType="science", ignoreOffs=false)

• Select some datasets by index instead of picking all the "science" datasets (datasetType is ignored if
this is used): here we select subbbands 2 and 4, and datasets 3, 4, and 5 from the HTP. The weighting
can also be specified to be "equal" (this is default) or that computed in DoChannelWeights in the
Level 1 pipeline ("selection"):

cubes = doGridding(htp=htp, subbands=Int1d([2,4]), datasetIndices=([3,4,5]),
weightMode="selection")
cubes = doGridding(htp=htp, subbands=Int1d([2,4]),
dataset_indices=Int1d([3,4,5]), weightMode="selection")
cube_subband_2 = cubes[0]
cube_subband_4 = cubes[1]

• Geometry:

Specify the (antenna) beam size:

You can specify which is the half power beam width of the instrument i.e. the beam width. In the
case of HIFI, case the beam is symmetric hence a single value is needed. However, one might in
principle provide two different sizes along the x and y axis, thus specifying the dimensions of an
elliptical beam.

When this input is not provided the gridding task computes a default value for the HIFI beam size,
based on a known function of the observed frequency. At present the formula used for the default
case is:

HPBW = 75.44726 * wavelength[mm]

specify the size of the beam
cubes = doGridding(htp=htp,beam=Double1d([15.4]))

specify the size of the beam. In this case the beam is wider along the
vertical axis.
cubes = griddingTask(htp=htp,beam=Double1d([10., 20.]))

If the beam size is specified, and the pixel size is not specified, the pixel size will be function of the
beam size taking into account the Nyquist criterion and the smooth factor (if any given). Usually,
for nyquist sampling, the default pixel size becomes half the beam size.

• Specify the type of filter:

By default the convolution is performed with a gaussian filter function, however, the user can specify
other filter types.

cubes = doGridding(htp=htp, filterType="box")

At present the available filter functions are box function (best for Raster maps) and a Gaussian
function (best for OTF). Other filter functions maybe added in next releases.

How to make a spectral cube

36

the default filter type is gaussian
cubes = doGridding(htp=htp, filterType="gaussian")

• Specify the parameters of the filter along each axis:

The parameters that characterize each filter can be modified. For example, to use a box filter with
a different length:

parameters = [Double1d([0.5]), Double1d([1.5])]
cubes =
doGridding(htp=htp,weightMode="equal",filterType="box",filterParams=parameters)

The next example specifies the parameters length and sigma of the Gaussian filter function, when
using a gaussian filter (default case).

the -"influence area" is the area surrounding a grid point
where the algorithm must pick up all the available data points.
influence_area = 1.95 # length in pixels
sigma of the gaussian function times SQRT(2)
sigma_sqrt2 = 0.3 # in pixels
xFilterParameters = Double1d([influence_area, sigma_sqrt2])
default case:
influence_area = 1.8; sigma_sqrt2 = 0.36
yFilterParameters = Double1d([influence_area, sigma_sqrt2])

cubes = doGridding(htp=htp,filterType="gaussian", xFilterParams=
xFilterParameters, yFilterParams = yFilterParameters)

it is also possible to pass both set of parameters in a single input:
parameters = [Double1d([1.8,0.4]), Double1d([1.6,0.3])]
cubes =
doGridding(htp=htp,weightMode="equal",filterType="gaussian",filterParams=parameters)

The following example modifies the default parameters of the box filters (their length):

customize a box filter i.e. set the length of the pixel, measured in pixels
parameters = [Double1d([0.5]), Double1d([1.5])]
cubes =
doGridding(htp=htp,weightMode="equal",filterType="box",filterParams=parameters)

Note: bear in mind that the default values of each type of filter are thought to optimize the
convolution.

• Specify the size of the pixels:

The user can choose a pixel size different from the pixel size computed by default (based on other
inputs and on the angular dimensions of the observed area).

The pixel size must be given in seconds of arc. For example, to assign a pixel size of 20 arcsec along
both axes the user can specify the pixelSize input

cubes =
doGridding(htp=htp,weightMode="selection",filterType="gaussian",pixelSize=Double1d([15]))

And to assign a different pixel size along the x and y axis, the given Double1d must have two
elements. For example, to get pixels 15 arcsec wide and 25 tall, the pixelSize input should be
Double1d([15,25]):

How to make a spectral cube

37

cubes =
doGridding(htp=htp,weightMode="selection",filterType="gaussian",pixelSize=Double1d([15,25]))

By default the pixel size is computed so that it is optimal, based on the other parameters given to
the task. If neither beam size nor smooth factor have been provided, the task will compute a default
HPBW and then it will choose pixel size equal to the half of this HPBW, i.e. it will assume that the
sampling was done with following the nyquist criterion. The default pixel size will be the biggest
of the values (HPBW/4) and (HPBW/(2*smoothFactor)). By default the smoothFactor is 1.0 (no
smoothing factor applied), so that the default pixel size becomes the half of the beam size.

If the map dimensions in pixels were specified, the pixel size will be simply the division of the area
actually observed by the number of pixels specified in the map size parameter.

If an smooth factor is provided, the pixel size will be the largest of HPBW/4 and
(HPBW/2)*smoothFactor

• Specify the dimensions of the map:

The user can specify the size of the map, in pixels, by means of the mapSize parameter. For example:

cubes = doGridding(htp=htp, mapSize=Int1d([10,20]))
cube = cubes[0]

will create a cube 10 pixels wide and 20 pixels high. When this parameter is not specified the task
computes the optimal dimensions taking into account the (antenna) beam size as well as the area
of the sky covered by the input spectra.

• Specify the reference pixel

The user can specify which is the reference pixel of the grid. It is also possible to define the
coordinates of that reference pixel. If the latter is not provided the reference pixel will provide the
coordinates, measured in pixels, of the projection centre, which is, in its turn, computed as the center
of the coordinates of the input spectra (usually the centre of the map). Hence if the user provides a
reference pixel, the user is defining where, in the regular grid, lies the centre of the observed area.

Please note that the convention for the pixels computed for the regular grid of the output cubes is
that the (0,0) pixel corresponds to the center of bottom-most, left-most pixel of the regular grid.
Please note that this differs in -1 from the usual convention for FITS images, where the center of
the bottom-most, left-most pixel has coordinates (1.0, 1.0).

If the user specifies only this refPixel input and the user does not specify the coordinates of that
pixel, this will computed so that it gets the pixel coordinates of the centre of the input spectra.

For example, if we want to force that the reference pixel is the pixel (3.5 , 4.0), then the refPixel
input will be Double1d([3.5, 4.]). If no refPixelCoordinates are provided, then the centre of the
coordinates of the input spectra will be locate at the pixel (3.5, 4.0) of the regular grid i.e. at the
FITS pixel (4.5, 5.0) from the bottom-most, left-most pixel of the cube. This means that the value
of the CRPXI1 parameter of the result cube will be equal to 4.5 and the value of the CRPIX2
parameter will be equal to 5.0 (remind that the cube header uses the usual FITS convention about
pixel coordinates).

cubes = doGridding(htp=htp,refPixel = Double1d([3.5, 4.0]))

By setting both refPixel and the refPixelCoordinates input explained below, the user can place
the regular grid at any arbitray location, although the user is adviced to let the task automatically
compute these so that the grid is located at a suitable place fully covering the observed spectra.

• Specify the coordinates of the reference pixel:

How to make a spectral cube

38

In addition to choosing a reference pixel, the user can also specify its celestial coordinates i.e. the
longitude and latitude of the point chosen as the reference pixel of the cubes to be made by the
gridding task.

For instance, to make that the reference pixel is located at the coordinates (RA,DEC) = (308.9,
40.36) degrees, a refPixelCoordinates input can be provided with these coordinates. Let's say, in
addition, that the user wants that these reference pixel is the (0,0) pixel located at the bottom left
corner of the image. Then refPixel = (0,0). Then the user should call doGridding like in the following
example:

refPixel = Double1d([0,0])
longitude = 307.9
latitude = 40.36
refPixelCoordinates = Double1d([longitude, latitude])
cubes = doGridding(htp=htp,refPixel=Double1d([0,0]),
refPixelCoordinates=Double1d([longitude, latitude]))
or:
cubes = doGridding(htp=htp,refPixel=refPixel,
refPixelCoordinates=refPixelCoordinates)

#one can check that cubes[i].wcs.crval1 == longitude and cube[i].wcs.crval2 ==
latitude:
print cubes[i].wcs.crval1 == longitude # 1, True
print cube[i].wcs.crval2 == latitude # 1, True

Please note that if only the refPixelCoordinates input is provided, the user will be choosing the
coordinates of the centre of the map.

By setting both refPixel and refPixelCoordinates the user can place the regular grid at any arbitrary
location, although the user is adviced to let the task automatically compute these so that the grid is
located at a suitable place fully covering the observed spectra.

11.2. Using Gridding Task
Another task is available, called GriddingTask, to make cubes of images. It works with any dataset
or product that happens to implement the SpectrumContainer or SpectrumContainerBox interfaces.
It can also work with a collection of SpectrumContainer's. Said without using the Java jargon means
that it can accept various simple inputs, such as an Spectrum2d or an Spectrum1d since these are
SpectrumContainers.

You may also creat your own collection of datasets, and pass it to the GriddingTask in order to provide
the spectra to be read to make a cube by performing an spatial regridding (a convolution) of these
spectra onto a regular grid computed based on the coordinates of the given spectra (and on optional
inputs about the shape of the grid which can be given by the end users).

GriddingTask and the Spectrum Toolbox. The user can make use of the spectrum selection tools
of the spectrum toolbox, to perform any selection of spectra followed by the usage of the GriddingTask
to create a cube for each segment of the spectra in these selections. The following example shows how
to combine SelectSpectrum with the GriddingTask:

first, create an instance of the SelectSpectrum task
selector = herschel.hifi.pipeline.util.tools.SelectSpectrum()
use SelectSpectrum to get a single HifiSpectrumDataset with the spectra that
fulfill certain criteria
e.g. here one selects those spectra where its containing dataset has bbtype
equal to 6022.
selected = selector(htp=htp, selection_lookup={'bbtype':[6022]},
return_single_ds=Boolean.TRUE -)
one might have a glance at the spectra in the -"selection" dataset e.g. in the
TablePlotter

How to make a spectral cube

39

cube = griddingTask(selected)
cubes = griddingTask.cubes

Making a SpectralSimpleCube with the GriddingTask .

#---
make a dataset with all the spectra from all the science datasets
(isLine == true => bbtype == 6022)
#---
selector = herschel.hifi.pipeline.util.tools.SelectSpectrum()
selected = selector(htp=htp, selection_lookup={'bbtype':[6022]},
return_single_ds=Boolean.TRUE -)

scienceOnIndices = htp.summary['isLine'].data.where(\
htp.summary['isLine'].data == Boolean.TRUE)
bbid = htp.summary['Bbid'].data[scienceOnIndices]

#another way of selecting...

selected = selector(htp=htp, \
 selection_lookup={'bbtype':bbid[0]}, \
 return_single_ds=Boolean.TRUE -)

#---
the gridding task that can work with any SpectrumContainer or collection of
SpectrumContainers, like the selected above
#---

cube = griddingTask(container=selected)

#get a point spectrum from this selection,
ds_spectrum = selected.getPointSpectrum(1)
ds_segment = ds_spectrum.getSegment(3) # read its third subband -: get
SpectralSegment.
plotSegment = PlotXY(ds_segment.wave,ds_segment.flux,xtitle='Frequency
(MHz)',ytitle='Intensity')

#---
now let's play with the result cubes
#
#
each cube is a SpectralSimpleCube which in its turn is an SpectrumContainer
hence we profit all the spectrum toolboxes: arithmetics, statistics, etc.
and we can e.g.directly obtain a point spectrum as for any other SpectrumContainer

row = 0; column = 10;
spectrum = cube.getPointSpectrum(row,column)

print spectrum.getLongitude()
print spectrum.getLatitude()

print spectrum.segmentIndices
you can check that the cube, hence its spectra has a single -"segment" or subband

segment = spectrum.getSegment(0)
or...
segment = spectrum.getSegment(spectrum.segmentIndices[0])

plotSpectrum = PlotXY(segment.getWave(),segment.getFlux(),xtitle='Frequency
(MHz)',ytitle='Intensity')

There are several ways to visualize a cube such as
the CubeSpectrumAnalysisToolbox:

cat = CubeSpectrumAnalysisToolbox(cube)

you can also visualize it with the SpectrumExplorer,
since the cube is an SpectrumContainer

or simply display it as a cube of images:

How to make a spectral cube

40

display = Display(cube)

Optional inputs for the GriddingTask.

Most of the optional inputs of the DoGridding task are also applicable to the griddingTask namely:
weightMode, filterType, mapSize, refPixel, refPixelCoordinates, pixelSize, smoothFactor, filterType,
filterParams, detail, extrapolate and the input Wcs

In addition, there are other optional inputs which are specific to this task, namely container and
containerBox

11.3. Using the GUI to make a Spectral Cube
The doGridding Task can be found in the "Applicable" folder of the Tasks view when an HTP is
selected in the variable view; double-click on it to open the dialogue in the Editor View. The GUI is
still a prototype and it is recommended to use the command line to run DoGridding for the time being.

How to make a spectral cube

41

Figure 11.1. The doGridding task GUI form

42

Chapter 12. Trend Analysis
To be written

43

Chapter 13. Memory Issues
On occasion, one can run into the java heap space error when using HCSS software, especially
when running the pipeline. Here are some things to help:

1. User release. Choose the "Advance" installation and increase the maximum amount of memory
available to HIPE (the "User" installation allocates 1 Gb by default).

2. Modify the memory allocation (java.vm.memory.min and java.vm.memory.max) in
${install.dir}/installed.properties

3. The "garbage collection" command System.gc() is also useful to force clearing memory. HIPE
will automatically do this when memory becomes too full.

4. Swap Store Properties: It is possible to use the hard disk as swap space to preserve the
memory available in HIPE. The following properties are defined to preserve computer memory.
This becomes especially useful when pipeline processing long observations on a laptop, or on a pc
with a 32 bit Operating System (TBC) and with average or limited memories capacities. However,
any Task that uses or changes any HifiProduct (e.g., HifiTimelineProduct) will benefit from the
use of swap space.

The following properties can be defined (in the user.props file or using the "Hifi Product" tab
in propgen) to set or to configure the Swap mechanism.

• hcss.hifi.pipeline.product.memory = true: Setting the value of this property to "true"
enables the swap mechanism. Note that the default value is "false".

• hcss.hifi.pipeline.product.swapstore = "swapStore". This is the name of the LocalStore
where the temporary data will be saved. The default location is:${user.home}/.hcss/
lstore/swapStore .

• hcss.hifi.pipeline.product.swapratio = 0.25: This property determines how much the swap
mechanism is used and is used to set the threshold level of free memory. When a new dataset is
set or retrieved from the HifiProduct, the HifiProduct will check the size of the dataset and the
free memory in the system. If the condition:

(memory free)*swapratio < dataset size

is met, then all the floating datasets contained in the HifiProduct will be saved in the swap store.

This property should have value between 0 and 1 and has a default value of 0.25.

If the value is 0 all datasets will be always stored in the swap store. This is safe, but it could
create performance delay (in the time needed to process the pipeline) due to the access time to
the hard disk.

In the case of long observations, setting the property to 1 could be dangerous because memory
problems (like Java.heap.space exception), may still occur, although the pipeline will
try to have the best performance possible.

• hcss.hifi.pipeline.product.savedisk = true: This property determines whether an existing
observation in the swap store should be overwritten or not. It is strongly suggested to keep the
value = true, otherwise the space used in the hard disk will increase in proportion to the number
of times a product is saved in the swap store.

Note

SwapUtil Class: At the moment, the pipeline does not clean the swap store after
the processing. To avoid the swap store completely filling the hard disk when many

Memory Issues

44

observations are processed, it is suggested one manually remove the swap store by
either deleting the swapStore directory, or in HIPE:

from herschel.hifi.pipeline.product import SwapUtil
SwapUtil.delete()

45

Chapter 14. Notes for Calibration
Scientists

14.1. Input/Output of Spectra
14.1.1. Accessing Spectra

HIFI spectra can be stored in various formats, and there are various ways to access them.

14.1.1.1. Accessing Spectra in a DbPool

At the ICC, HIFI pre- and post-pipeline data are stored in online databases called DbPools, and can
be retrieved relatively easily and stored locally.

Product Pools

A Product Pool or Pool is a database where Products are stored. The database is implemented in
different ways, for example as a directory tree on disk (a LocalStore product pool), or a Versant
database (a DbPool). What matters is that they can talk to the software in the Product Access Layer
(PAL) of HCSS. Let's consider concrete examples of HCSS routines for data processing. A useful
page when pondering jython scripts for HCSS: [ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/
doc/api/index.html]

Product Access Layer

One should not work directly with pools. The ProductStorage interface is meant to satisfy your need
to query, load, and save products in pools. A set of methods residing in herschel.ia.pal are meant to
provide a uniform interface between you and the data you want, which may be located far-flung pools.

The PAL can talk to several types of pools, some of which are: CachedPool, DbPool, HsaPool,
LocalStore (note despite the name, it's a pool, not to be confused with the ProductStorage class
mentioned below). A DbPool is a Versant database, usually remote but not necessarily. A LocalStore
is a database in the form of a directory structure full of FITS files on a disk mounted on the user's
machine. A CachedPool is, unsurprisingly, a locally cached copy of products and metadata retrieved
from remote pools.

The methods in herschel.ia.pal.ProductStorage() provide an interface to pools.

 HIPE> from herschel.ia.pal import *
 HIPE> store = ProductStorage()

"store" is ready to accept and interface with pools I choose to register within it.

How do I grab a pool and stick it into store? Use the PoolManager. If I take a shot in the dark:

 HIPE> firstpool = PoolManager.getPool('foo')
 HIPE> store.register(firstpool)
 HIPE> print store.getPools()
 [herschel.ia.pal.pool.lstore.FitsProductPool:foo]

What happened: hipe looked at the property 'hcss.ia.pal.pool.foo'

ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html
ftp://ftp.rssd.esa.int/pub/HERSCHEL/csdt/releases/doc/api/index.html

Notes for Calibration Scientists

46

 HIPE> from herschel.share.util import Configuration
 HIPE> print Configuration.getConfigurationProperty("hcss.ia.pal.pool.foo")
 None

Because in this case it is not defined, a new Product Pool of type hcss.ia.pal.defaulttype was created
and put in store:

 HIPE> print Configuration.getConfigurationProperty("hcss.ia.pal.defaulttype")
 lstore

By the way, these config variables are also visible using the propgen gui.

Let's connect to a remote pool, a versant database at the SRON ICC. I might think I can use the
PoolManager getPool() method again after changing hcss.ia.pal.defaulttype to "db"

 HIPE> Configuration.setProperty("hcss.ia.pal.defaulttype","db")
 HIPE> print Configuration.getConfigurationProperty("hcss.ia.pal.defaulttype")
 db

and perhaps other settings, but it doesn't work, in my experience.

Use the DbPool class. The important Configuration parameters for DbPool methods are
var.database.devel and var.database.server

 HIPE> print Configuration.getConfigurationProperty("var.database.devel")
 hifi_icc_ops_1@iccdb1.sron.rug.nl XYZ READ
 HIPE> print Configuration.getConfigurationProperty("var.database.server")
 @iccdb1.sron.rug.nl

But don't change these. Instead, create a new configuration property, associate it with the DbPool, and
register it in the store:

 HIPE>
Configuration.setProperty("interesting_db", -"hifi_ops_obs_icc_1@iccdb1.sron.rug.nl
0 READ")
 HIPE> store.register(DbPool.getInstance("interesting_db"))

Now I can peruse the product pools in my product storage:

 HIPE> print store.getPools()
 [herschel.ia.pal.pool.lstore.FitsProductPool:foo,
herschel.ia.pal.pool.db.DbPool@3be4a2c]

The first pool you register is automatically your 'prime' pool and is writable:

 HIPE> print store.getWritablePool()
 herschel.ia.pal.pool.lstore.FitsProductPool:foo

NOTE! There seems to be a bug preventing reading and writing from the same store. In my experience,
writing to pool foo will fail. Open a second store and register foo there.

So, finally, let's take some data products from the dbpool and save them in our localstore pool for
offline use. There is a gui, but I can't recommend it, I haven't figured out how to use it.

Notes for Calibration Scientists

47

 HIPE> result = browseProduct(store)

I prefer the command-line.

How are products in the pool identified? By URNs (Universal Resource Name). A product always
has a urn. You may also 'tag' products, and you may find some convenient tags have been created
for you (they have). But being naive, let's get a list of all ObservationContexts in our store.
Remember, ObservationContexts are the basic units of Herschel data processing. Pools are databases,
so it's not surprising that we can query them. For information on query formats, see package
herschel.ia.pal.query: [http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/api/
herschel/ia/pal/query/package-summary.html#package_description]

 HIPE> q = Query(ObservationContext,"p","1")
 HIPE> qresult = store.select(q)

This will return a list of all objects of type ObservationContext in all pools registered in store. It's
actually a list of ProductRefs - references to ObservationContexts. That's to conserve memory. DON'T
do a query on type Product on the current database, it will take hours if not days to return. The "p" is
just a placeholder, used in more selective queries (see link above).

qresult is a list of ProductRefs:

 HIPE> print qresult[0]
 urn:db_hifi_ops_obs_icc_1:herschel.ia.obs.ObservationContext:39036
 HIPE> a = qresult[0]
 HIPE> print a.__class__
 herschel.ia.pal.ProductRef
 HIPE> print a.meta
 {type=OBS,creator=HifiPipeline,creationDate=2009-08-15T16:50:23.224000
TAI (1629046223224000),description=another
observation...,instrument=HIFI,modelName=FLIGHT,
 startDate=2009-08-01T21:43:16.000000 TAI
(1627854196000000),endDate=2009-08-01T21:49:40.000000 TAI (1627854580000000),

obsState=LEVEL0_PROCESSED,obsid=1342181162,odNumber=80,obsMode=HifiEngSwitchonLO,origin=Instrument
Control Centre,aorLabel=Calibration_mo_13-SwitchonLO4a-OD80,
 aot=HifiEngSwitchonLO,equinox=2000.0,missionConfig=MC_H19_P13_S17_PV,object=No
Pointing,raDeSys=ICRS,ra=309.79251954150624,dec=68.0193187761005,posAngle=358.13260329747203,
 raNominal=0.0,decNominal=0.0,telescope=Herschel Space
Observatory,observer=unknown,proposal=Calibration_pvhifi_8,pointingMode=No-pointing}

Probably, there's an ObsID in which you're interested, for example 1342181163:

 HIPE> from herschel.ia.numeric import *
 HIPE> obsids = Long1d([(i.meta["obsid"].value) for i in qresult])
 HIPE> print obsids
 [1342181162L, 1342180840L, -... -, 1342180571L]
 HIPE> idx = obsids.where(obsids == 1342181163L)
 HIPE> my_obscontext = qresult[idx.toInt1d()[0]].product
 HIPE> print my_obscontext.__class__
 herschel.ia.obs.ObservationContext
 HIPE> print my_obscontext
 {description="another observation...", meta=[type, creator, creationDate,
description, instrument, modelName, startDate, endDate,
 obsState, obsid, odNumber, obsMode, origin, aorLabel, aot, equinox,
missionConfig, object, raDeSys, ra, dec, posAngle, raNominal,
 decNominal, telescope, observer, proposal, pointingMode], datasets=[History],
history=None, refs=[auxiliary,calibration,level0,level0_5,
 level1,level2,logObsContext,quality,trendAnalysis]}

http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/api/herschel/ia/pal/query/package-summary.html#package_description
http://www.rssd.esa.int/SD-general/Projects/Herschel/hscdt/releases/doc/api/herschel/ia/pal/query/package-summary.html#package_description

Notes for Calibration Scientists

48

Or another way, using the tag "observations" which has been created in the current database by Peer:

 HIPE> observations = store.load(store.getUrnFromTag("observations")).product
 -"observations" is a MapContext, a hash of ObservationContexts indexed by
ObservationID keys:
 HIPE> my_2nd_obscontext = observations.getProduct("1342181163L")

Now save the observationcontext to our localstore pool. There's a rub here: remember that an
observation context contains references to other contexts. Those references might point to products in
pools we have not yet registered. If you try to save the observationcontext now it will fail for want
of being able to access these other data.

At present, you must register the dbpools for at least the Auxiliary and Calibration contexts:

 HIPE> Configuration.setProperty("aux_dbpool","hifi_ops_aux@iccdb1.sron.rug.nl 0
READ")
 HIPE> aux = DbPool.getInstance("aux_dbpool")
 HIPE> Configuration.setProperty("cal_dbpool","hifi_ops_cal@iccdb1.sron.rug.nl 0
READ")
 HIPE> cal = DbPool.getInstance("cal_dbpool")
 HIPE> store.register(cal)
 HIPE> store.register(aux)

Further, there seems to be a bug (SPR HCSS-7885) loading and saving to the same store. If you try
to save to the prime pool in your store, it will fail silently. Until this is fixed, create a second store in
which you have only your local store for saving, and write to that:

 HIPE> store2 = ProductStorage()
 HIPE> writepool = PoolManager.getPool('write_pool')
 HIPE> store2.register(writepool)
 HIPE> store2.save(my_obscontext)

14.1.1.2. Accessing Spectra in Local Pool

By default, spectral products are stored on a local disk in 'local store' format in the directory .hcss/
lstore/. The user can modify the format and storage location by adding the following properties to
the configuration files in the user's .hcss directory (usually .hcss/user.props) before starting the HIPE
session:

#store data in a local store ('lstore')

hcss.ia.pal.defaulttype = lstore

#default location of data storage

hcss.ia.pal.pool.lstore.dir = ${user.home}/.hcss/lstore

Regardless of data format or location, spectra are loaded into the HIPE session with the following
three steps:

1. register the pools of interest, so they can be accessed. For example if pools 'test1' and 'test2' exist,
they are registered as follows:

storage = ProductStorage()

pool1 = PoolManager.getPool("test1")

pool2 = PoolManager.getPool("test2")

http://herschel.esac.esa.int/jira/browse/HCSS-7885

Notes for Calibration Scientists

49

storage.register(pool1)

storage.register(pool2)

2. obtain the unique 'urn' reference numbers of the spectrum products of interest. This can be obtained

• interactively:

result=browseProduct(storage)

• from the command line

query = Query("creator == 'my name'")

result = storage.select(query)

3. finally, load the spectral products. In this case, the first one in the list of returned urn's:

prod = storage.load(result[0].urn).product

14.1.1.3. Accessing Fits Files

Fits files can be loaded from disk as follows:

fa=FitsArchive()

prod = fa.load("filename")

14.1.2. Exporting Spectra
HIFI spectra can be stored in various ways. While users may import data from the HSA or, for
calibration scientists, the Versant database (section "Accessing Versant Database"), they usually store
their products on a local disk in one of the following ways.

14.1.2.1. Export to Local Pool

Spectra can be stored in fits format in a 'local store'. Set up this storage, and its location, in the
configuration files in the user's .hcss directory:

#store data as local store ('lstore')

hcss.ia.pal.defaulttype = lstore

#default locations of data storage

hcss.ia.pal.pool.lstore.dir = ${user.home}/.hcss/lstore

To export spectra, first create a pool called, e.g., 'test', and then save the product in it:

storage = ProductStorage()

pool = PoolManager.getPool("test")

storage.register(pool)

storage.save(product)

14.1.2.2. Export to Fits File

To export spectra to fits files, issue the following HIPE commands:

Notes for Calibration Scientists

50

fa=FitsArchive()

fa.save("filename", product)

14.2. Database, Binstruct and MIB
HIFI data are uniquely labeled by an obsid and are stored in HIFI ICC Versant Databases. Go to the
Download page from the ICC internal pages to download Versant software. See the Databases page
to find which database an obsid is associated with, and ICC Database contents for information about
the observation.

Databases are named according to the data's test environment, for example IST data is held in databases
labelled ist_fm_x_prop (x is an integer), while simulator data is stored in ds3, and flight data
in hifi_ops_obs_x.

• You can change database within HIPE by, for example:

from herschel.share.util import Configuration
Configuration.setProperty("var.database.devel", hifi_icc_ops_1@iccdb1.sron.rug.nl
0 READ)

• You can also set your preferred default database in the user.props file in your .hcss directory.
For example:

Set simulator database as default
var.database.devel = ds3@iccdb2.sron.rug.nl 0 READ

The hifi-cal database contains calibration information needed to process data through the pipeline.
There are two ways of getting this information into a Herschel DP session:

1. Use the databases at the HIFI ICC, a developer version of HIPE should be configured to do this. If
you have a problem, check that this line is in your properties file:

hcss.binstruct.hifi.mib.pal.database = hifi-cal@iccdb1.sron.rug.nl 0 READ

2. Or install the hifi-cal locally on your machine from a copy of that at the ICC. First, download
the local store copy of the MIB (hifi-cal) from the ICC download page. and unpack this in your
.hcss directory.

Current MIB (13 Sept 2009) . Use hifi-cal-26-Jun-2009.tgz

Next, change the Binstruct property in user.props so that it will look for a local copy of the database:

Comment out setting that points to ICC database
#hcss.binstruct.hifi.factory = herschel.hifi.share.binstruct.HifiBinstructFactory
hcss.binstruct.hifi.factory = herschel.binstruct.DefaultBinstructFactory
hcss.binstruct.hifi.mib.pal.poolname = hifi-cal
#
FOR 1.1 Track ALSO INCLUDE
hcss.ia.obs.cal.release = developer

This will now point to a local pool to get the MIB (Mission Information Base) needed to create
the HifiTimelineProduct.

MIB Updates

Please note that each time the MIB (or calibrations) is updated these will be present in the
database hifi-cal_dev but, if you are using a local pool, you will have to update it
yourself. Do this by reloading the hifi-cal from the hifi-icc pages.

http://www.sron.rug.nl/hifi_icc/protected/index.html
http://www.sron.rug.nl/hifi_icc/protected/databases/Hifi-Database-Listing.html
http://www.sron.rug.nl/hifi_icc/protected/userinfo/download
http://www.sron.rug.nl/hifi_icc/protected/userinfo/download/hifi-cal-17-Aug-MOC-3-2009.tgz

Notes for Calibration Scientists

51

The MIB data are needed to define and interpret uplink commands and downlink housekeeping.
The housekeeping is interpreted using the binstruct module and are associated with a MIB via the
TmVersion tables, which map a MIB to a period in time. We have different tm-version tables for
each test environment (e.g., "ilt-qm", "ilt-fm", "ilt-par", "ist-fm"). You can set the tmversion with the
following binstruct property:

hcss.binstruct.hifi.mib.pal.tm_version_map = ilt-fm

The TmVersion to apply per database is as follows:

Table 14.1. TMVersions to apply

Database tm_version table MIB type

ilt_par_* ilt-par hcss.binstruct.hifi.services
=
herschel.binstruct.mib.MibPalServices

ilt_fm_* ilt-fm hcss.binstruct.hifi.services
=
herschel.binstruct.mib.MibPalServices

ist_fm_* ist-fm hcss.binstruct.hifi.services
=
herschel.binstruct.mib.MibPalServices

sovt_* ist-all hcss.binstruct.services
=
herschel.binstruct.hpsdb.HpsdbPalServices

hifi_icc_ops_1, ds* flight hcss.binstruct.services
=
herschel.binstruct.hpsdb.HpsdbPalServices

Note that the binstruct properties for the test environments have an additional substring (hifi) to
make them ICC dependent. The TmVersion tables for sovt_ and hifi_icc_ops_1 data are
merged so satellite housekeeping can also be inspected.

The automatic use of the different tmVersion tables to associate HouseKeeping data via its mission
configuration name will be available when SPR 2111 is implemented.

In the meantime, use the following workaround to change the MIB on the fly

#workaround allowing to compare data distributed over the different setups:
#assume tmversion is by default -"ilt-fm", i.e. mydb is one of the ilt databases
tmversion = Configuration.getProperty('hcss.binstruct.mib.pal.tm_version_map')
apply this data, for ex:
hdf = accessDataFrameTask(obsid = myobsid, apid = myapid, db
= -"ilt_fm_5_prop@iccdb.sron.rug.nl 0 READ")
hk = accessPacketTask(obsid = myobsid, apid = myapid, db
= -"ilt_fm_5_prop@iccdb.sron.rug.nl 0 READ")
htp = HifiTimelineProduct(hdf,hk)
now switch to next instrument setup:
Configuration.setProperty('hcss.binstruct.mib.pal.tm_version_map', -"ist-fm")
Now important reset binstruct:
from hcss.binstruct import InstrumentProperties
InstrumentProperties.getInstance().initialize()
#
continue with data available in one of the -"ist-fm" databases
hdf = accessDataFrameTask(obsid = myobsid, apid = myapid, db
= -"ist_fm_4_prop@iccdb.sron.rug.nl 0 READ")
hk = accessPacketTask(obsid = myobsid, apid = myapid, db
= -"ist_fm_4_prop@iccdb.sron.rug.nl 0 READ")
htp = HifiTimelineProduct(hdf,hk)
#
that's it!

Notes for Calibration Scientists

52

14.3. Accessing Versant Database
Level 0 spectra are obtained from the Versant database as follows:

1. before starting HIPE, set the relevant server and database in $HOME/.hcss/default.props or in
$HOME/.hcss/myconfig. For example:

var.database.server = @iccdb.sron.rug.nl 0 READ

var.database.devel = ilt_fm_5_prop${var.database.server}

2. then in HIPE, set the obsid to be retrieved: obsid=268494774

3. get the housekeeping data: hk=AccessPacketTask()(obsid=obsid, apid=1026)

4. get the data frames: df=AccessDataFrameTask()(obsid=obsid, apid=1030). The
meaning of common APIDs:

 apid=1028 HRS prime/horizontal polarization
 apid=1029 HRS prime/vertical polarization
 apid=1030 WBS prime/horizontal polarization
 apid=1031 WBS prime/vertical polarization

5. next step is often the creation of a HifiTimeline product from the retrieved data frames and
housekeeping data:

htp=HifiTimelineProduct(df,hk)

6. note that steps c., d., and e. can be very slow, if run on computers located far away from the Versant
database, even for obsids with short integration times.

14.4. Accessing Versant Database with Web
Interface

The ICC databases can now be accessed using a web interface (especially useful for Mac users!) using
CIB 1.1, or newer.

To use the web interface, the following properties must be set in your user.props file:

hcss.access.connection=herschel.access.net.NetworkConnection
hcss.access.authentication=true
hcss.access.url=http://129.125.20.1:8181/hcss/tm

Dataframes and packets are accessed as above and an HTP can then be generated but, for the moment, it
is not properly formed and successfully stepping through the pipeline will require some manipulation.
The first time you do this a pop-up will ask for a username and password (contact Kevin for these),
which will then be stored in encrypted format in your Hipe.props file.

It is not possible to run the pipeline task via the web interface; however, the ICC product pools can
be accessed by the following:

from herschel.ia.pal.pool.http import HttpClientPool
pool = HttpClientPool ("http://129.125.20.1:8181/hcss/pal", -"sim3-
obs@iccdb1.sron.rug.nl 0 READ", -"username", -"password")
storage = ProductStorage (pool)
storage.authenticate()

Notes for Calibration Scientists

53

ref = storage.select (Query (ObservationContext, -"1"))

print ref

will return a list of urns. To load an Observation Context into your session, here the 5th in the list, use:

obs = storage.load(ref[4].urn).product

14.5. How to configure the CIB (for use on a
non-ICC cluster machine)

1. The CIB is correctly configured on the ICC cluster machines but to use it on your own machine
you need to set the property path manually. Here is one way to do it:

• Install build of choice and make a soft link between it and a generically named target, e.g.,

ln -s hcss.icc.hifi-1.1.1627 hcss.icc.hifi-current

• In your .cshrc/.tcshrc file add

setenv HCSS_PROPS ${HOME}/.hcss/user.props:${HOME}/
hcss.icc.hifi-current/config/hifi-new.props

For bash, export HCSS_PROPS=${HOME}/.hcss/user.props:${HOME}/
hcss.icc.hifi-current/config/hifi.props

• For builds earlier than 1624 you also need to set in your .hcss/user.props

var.hifi.dir=var.hcss.dir

2. To run the pipeline you should then only need:

obs=hifiPipeline(obsid=obsid, db=database)

3. In order to use a local MIB and auxilliary data from the ICC, put in your .hcss/user.props file:

hcss.ia.pal.store.spgstore = {pipelineout, cal-local, aux-icc}

Other options:

• cal-icc, uses calibration from ICC (default)

• cal-hsa, uses calibration from the HSA pool

• aux-hsa, uses auxiliary data from the HSA pool

The scripts these options invoke can be found in the config directory and adapted if need be for,
e.g., databases at the NHSC or Cologne.

4. Some other properties maybe useful to set in .hcss/user.props:

Allocate memory to HIPE
java.vm.memory.min=64m
java.vm.memory.max=1900m
#
Set up pipeline stores
hcss.ia.pal.store.spgstore={pipelineout, cal-local, aux-icc}
#
Access to HSA (needed for cal-hsa, or aux-hsa)
hcss.ia.pal.pool.hsa.haio.login_usr= # Contact ICC for username
hcss.ia.pal.pool.hsa.haio.login_pwd= # Contact ICC for password

Notes for Calibration Scientists

54

hcss.ia.pal.pool.hsa.haio.apply_authentication=true

14.6. Navigating HIFI Products: How to get a
spectrum data set from an ObsContext

The following script shows how to extract an ObservationContext from the Flight Products database
pool at the ICC:

from herschel.share.util import Configuration

Configuration.setProperty("hifi-obs","hifi_ops_obs_1@iccdb1.sron.rug.nl
0 READ")

storage = ProductStorage()
storage.register(DbPool.getInstance("hifi-obs"))
#below I retrieved the urn number from the internal database listing
that Kevin provides for
hifi_ops_obs_1
urn="urn:db_0_10090:herschel.ia.obs.ObservationContext:24256"
urn="urn:db_0_10090:herschel.ia.obs.ObservationContext:42136"
#
#The next step loads the reference
ref=storage.load(urn)
#
#The final step will actually download the ObservationContext into your
HIPE session
Note at this step you can retrieve all levels of HIFI pipeline
processing, AUX product and Quality #Products. All these products are
not yet loaded in your session, but they will be once you request
#them.
obs=ref.product
#
To get the LoTrendTable which is produce for every observation
lotrend=obs.refs["trendAnalysis"].product.refs["LoTrendTable"].product["dataset"]

To get the HIFI level1 timeline product for WBS-H
htp_wbsh=obs.refs["level1"].product.refs["WBS-H"].product

14.7. HIFI Housekeeping

14.7.1. Introduction
Data from onboard sensors monitoring HIFI or Herschel performance are stored in the databases along
with the science data. They are available to 'expert' users who have access to the raw data packets, but
are not visible to the 'general user,' ie. you must have access privileges to a database at the HSC or ICC.

Telemetry (TM) data are produced on board the spacecraft and collected and processed by the
Spacecraft Management Unit (SMU). TM is formmatted in compliance with the CCSDS-compatible
ESA Packet Telemetry Standard. TM is prioritized based on content for downlink during the
Daily Telecommunication Period (DTCP). There are four types of TM packets stored on board:
Telecommand verification packets, event packets, Housekeeping (HK) packets, and Science packets.

TMIngestion is the processing of raw telemetry packets into TmSourcePackets and storage in the
operational database at the HSC (see here also). All TM packets are stored in the HSC database; in
addition, TM packets containing science data are processed to produce Data Frames which are then
also stored in the HSC database. The format of TMSourcePackets can be found here . The HIFI-
specific HK packets are described in this document.

The Housekeeping (HK) section walks through some basic guidelines to accessing, viewing, and
exporting HK data.

http://herschel.be/twiki/bin/view/Hcss/TmIngestion
http://herschel.be/twiki/bin/view/Hcss/TmSourcePacket

Notes for Calibration Scientists

55

See also Chapter 3. "DP Commands" of the User's Reference Manual for more examples.

14.7.2. Accessing Housekeeping
HK data can be both digital and analog and has some similarities in structure with the dataframes
packets. Two methods for obtaining HK data are described here: (a) command line, in which case
HK packets and science Dataframes are queried from the database and stored in an array or table,
and (b) a GUI created by the the script ObservationSelector(), available in the user-scripts area of the
'expert' HIPE installation. At the time of writing, the GUI method fails due to recent code changes
in HCSS, so beware.

A brief description of how to get Level 0 data is given in Section 14.1.1. Data frames in the database
are basically accessed after setting the relevant server and database.

As described in the HIFI HK ICD document, the APIDs for periodic HK data are 1026 (Primary chain)
and 1027 (Redundant), and for essential HK data 1024 (P) and 1025 (R).

The HIFI backend APIDs are HRS-H:1028, HRS-V:1029, WBS-H: 1030, and WBS-V:1031.

To put all the periodic HK data for HRS-H (P) for a certain obsid into a TableDataset:

from herschel.hifi.hrs import *
obsid=3221226629L
apid = 1028
hkapid = 1026
db = -"sovt2_fm_4_prop@iccdb1.sron.rug.nl 0 READ"
hk = accessPacketTask(obsid = obsid, apid = hkapid, db = db)
hkDataset = HrsHK().createHKDataset(apid, -"All", hk)

To view the HK data in a graphical table:

HrsHKViewTask()(model="FM", apid=apid, hk_list=hk)

To create a TimelineProduct from the HK and Data Frames:

df = accessDataFrameTask(obsid=obsid, apid=apid)
htp = HifiTimelineProduct(df, hk)

A set of convenience scripts for accessing HK data is available in the user-supplied scripts directory.
These scripts will be installed with HIPE if you choose the 'Expert' installation. For example,

from herschel.hifi.scripts.users.volker import all

NOTE: code examples below this point are obsolete. Update coming.

dataframes = ObservationSelector() (obsid, spectrometer, gui).

To display the values of all digital and analog HK values of the HRS into a JTable:

from herschel.hifi.hrs.task.import *
hkDataset = HrsGetHKTask() (apid=1028, obsid=268494774)
HrsViewHKTask() (model="FM", apid=1028, hk=hkDataset)

To print to an ASCII table file information on periodic HK for LO during an observation:

lo = LO_HK_dump()
t(268494774,5,10)

Notes for Calibration Scientists

56

To print to ASCII table file spectra taken with either WBS. ASCII table spectra also accompanied by
a set of useful HK data

t = WBS_Export_ascii()
t(observation=268494774, plot="V")

To read and select data set for an spectrometer (wbs or hrs):
observation=ReadObservation()(obsid=5861, spectrometer="wbs-h")

To retrieve system temperature and bandpass/gain determined in a Hot-Cold measurement:

allhot=SelecScans()(spectra,validbbs=Intlb([2223])
allcold=SelecScans()(spectra,validbbs=Intlb([2222])
hot=SingleHifiSpectrum(allhot)
cold=SingleHifiSpectrum(allcold)
ct=ComputeTsys()
noise=ct(hot,cold,eta_hot=0.96)
gamma=ct.gamma

To compute the system temperature using Hot-Cold load results from the HRS:

t = RadioMetry()
t(observation=268494774)

To compute system temperature using Hot-Cold load results from the WBS (across the IF band):

t = RWbs_HotCold_fast_bare()
t(observation=268494774)

To compute the WBS IF noise temperature (across the IF band):

t = Wbs_IFNoise()
ifout=t(observation=268494774)

From the retrieved data frames and HK data a HIFI timeline product can be created. A
HifiTimelineProduct is an extension of HifiProduct. It also contains a summary table and a listing of
the types of the HSDs.

df = AccessDataFrameTask()(apids=[1030,1031],obsid=268435473)

htp=HifiTimelineProduct(df,hk)

To get start and end time: FineTime start [INPUT, OPTIONAL, default=null] and
FineTime end [INPUT, OPTIONAL, default=null], respectively

To retrieve the HK packets containing Gascell information from a database:

• Use AccessPacketTask on apid 2025 for the provided obsid. You should also provide a database
name (full version, including the server name). If you do not, then the query will be applied to the
current database. This task instantiates AccessPacketTask only once.

Example:

obsids = [268449660, 268449664, 268449665, 268449670]
database = -'ilt_fm_2_prop@iccdb.sron.rug.nl 0 READ'
accessGascellHk = AccessGascellHk()
accessGascellHk.db = database

Notes for Calibration Scientists

57

for obsid in obsids:
hk_pack = accessGascellHk(obsid = obsid)
print -'obsid', obsid, -'has', len(hk_pack), -' gascell packets.'

To convert HK packets containing Gascell information into a table use the hk_tools.spy and
tables_tools.spy routines to create the table. The list of the gascell HK parameters which are tabulated
are given in the Chapter 3 of DP Commands.

To generate a table data set of the HK data: TableDataset selected [OUTPUT, OPTIONAL,
default=None]

To create a tabla data set of HRS HK converted values (with as many columns as HRS HK mnemonics
exist):

from herschel.hifi.hrs.task import *
hk = HrsGetHKTask()(apid=1028, obsid=268435622, type="All")

Helper class for defining the GUI components for AccessHkParamTask:

ahpt = AccessHkParamTask()

ahpt(db=ilt_fm_5_prop@iccdb.sron.rug.nl, obsid=268505167,
apid=2017, params = ["FPU_room_temp", "FPU_shutter_temp"])

To store HK information in a PAL: Hk_Store()(obsid=1732, lstore="HK_data",
desc="Diplexer scan HK")

As mentioned in the Chapter 4 of the Generic Pipeline description, some HK data are important for
the Generic Pipeline. The following HK data are important when processing the generic pipeline:

• LO-frequency ("LoFrequency"): Generally, for grouping comparable spectra or to check and
identify phases in the FSwitch observations.

• Chopper position ("Chopper"): To check and identify phases.

• Buffer ("buffer"): Alternative to check and identify phases.

• Observation time ("obs time"): For interpolating possibly drifting intensity scales (hot/cold
measurements) or "background" obtained by blank sky measurements.

• Hot/Cold load temperature("hot_cold"): Used in the intensity calibration (determination of the
bandpass and the system temperature).

A list of helpers class for defining the GUI components for the following generic tasks:

• AccessDataFrameTask: Allows access to DataFrames in the database. Helpers: AccessComponents,
AccessDataFrameComponents.

• AccessPacketTask: Allows access to TmSourcePackets in the database. Helper:
AccessComponents, AccessPacketComponents.

• AccessHkParamTask: Allows direct parameter retrieval from TmSourcePackets in the database(s).
Helper: AccessHkParamComponent.

A description of the helpers is given in Chapter 3 of the User Manual.

Some parameter names:

• FPU_room_temp

• FPU_shooter_temp

Example of how to retrieve them:

Notes for Calibration Scientists

58

from herschel.hifi.generic.task import AccessHkParamTask
ahpt = AccessHkParamTask()
ahpt(db=ilt_fm_5_prop@iccdb.sron.rug.nl, obsid=268505167, apid=2017, params =
["FPU_room_temp","FPU_shooter_temp"])
composite=ahpt.paramresult
print composite

14.7.2.1. Useful examples

1.- Accessing HK information for a given ObsID. Product: Table [time, FPU Temperature]

Warning

HcssConnection.get() task passes all the dataframes into the user's JIDE session. This can
be memory intensive.

Import needed packages
from herschel.access import *
from herschel.access.util import *
from herschel.binstruct import *
from herschel.pus import *
Access HK packets associated with ObsID = 1400
pk = PacketAccess(1400)
Connect to the default database to find the packets
hk_set = HcssConnection.get(pk)
Create an empty Java array list -- needed for the PacketSequence routine below.
arrList = java.util.ArrayList()
Loop around adding the HK dataset into the array arrList
for x in range(len(hk_set)):
arrList.add(hk_set[x])
Look at our array
print arrList
-...but to get something sensible we need packets in a time order.
pseq = PacketSequence(arrList)
Get a listing of the parameter types contained in
print pseq
Find packets in the sequence which contain information on temperatures within
the focal plane unit (FPU)
seq_FPU_Temp = pseq.select(TypeEquals("FPU_Temperatures"))
Find out parameters contained in the selected packets by obtaining the HK
parameter names from the first selected packet in the sequence
par_FPU_Temp = seq_FPU_Temp[0].getParametersContained()
Print out to the DP session the names of all the parameters contained
print par_FPU_Temp
Choose the FPU Temperature parameter you want to get info on...and get a time
ordered set of HK data for it
The output file plot_fpu_hk is a TableDataset with one column for time (a
Finetime of microseconds since 1 January 1958)
and one for the value of the parameter (RAW rather than engineering value). Here
we choose the parameter FPU_b_body_top for the table
output and get the converted values (in degrees K)
plot_fpu_hk = seq_FPU_Temp.getConvertedMeasures(["FPU_b_body_top"])
time = Double1d(plot_fpu_hk[0].data/1000000.0) # puts time into seconds
data = Double1d(plot_fpu_hk[1].data)
Plot the timeline of the HK data over the time period of the observation
(obsid=1400) by plotting the table
p = PlotXY(time, data, style=Style(line=8, color=Color.black))
Resize the window
p.height = 400
p.width=600
Give a layer/legend name...
p[0].name="time plot"
-...and add a title
p.title.text="FPU temperature"

2.- Accessing HK data for a given time period (covering several ObsIDs). Product: a plot time vs.
Mixer Voltage.

Notes for Calibration Scientists

59

Note

If you choose to sample long time period data this will prove to be memory intensive.

Import needed packages for handling databases and HK data
from herschel.access import *
from herschel.access.util import *
from herschel.binstruct import *
from herschel.pus import *
And this package deals with times.
from herschel.share.fltdyn.time import *
Enter a start and stop time for HK information. We enter Java Dates, given as
year (-1900), Month (-1),
day, hour, minute, second. Our start_time is therefore 01:10:00 on 25 October 2004
start_time = java.util.Date(104, 9, 25, 1, 10, 0)
stop_time is 01:15:00 on the same day
stop_time = java.util.Date(104, 9, 25, 1, 15,0)
Need to convert final numbers into a FineTime used in database.
start_1 = DateConverter.dateToFineTime(start_time)
Date/time of start for plotted data
prod_date = DateConverter.fineTimeToDate(start_1)
Ditto for stop time
stop_1 = DateConverter.dateToFineTime(stop_time)
end_date = DateConverter.fineTimeToDate(stop_1)
Initialize some parameters
pk=0
hk_set = 0
Get object ready for sorting packets.
pseq = PacketSequence()
Set up the query for accessing packets of HK data. Here we ask for packets with
an APID of 1026, which carries
HIFI HK data. The database identified by the user's properties is accessed for
packets of this type
between the given start and stop FineTimes.
pk = PacketAccess(1026,start_1,stop_1)
Now we know where to look, we can get the packets! First we create an array with
the packets in
hk_set = HcssConnection.get(pk)
-...then we loop over the array to get the contents and
put packets into our packet sequence
for x in range(len(hk_set)):
 pseq.add(PusTmSourcePacket(hk_set[x].getContents()))
Now we get the parameters in the packets that we can plot.
seq_HIFI_HK = pseq.select(TypeEquals("HIFI_HK_rev_3"))
Pick out some of them
mnemonics = ["HF_AH1_MXMG_V", -"HF_AV1_MXMG_V"]
-...and get their converted (physical unit) measurements. -"plot_HIFI_HK" is a
TableDataset with a first column measuring time
and the next 2 columns holding the HK parameter values at those times. We can
now plot any of the parameters versus
time, or against each other, by picking out the appropriate column of the table.
Plot_HIFI_HK = seq_HIFI_HK.getConvertedMeasures(mnemonics)
This is what to do to set up the plot. Since time is in microseconds we convert
it to seconds first.
Get the first column and divide by 1 million
time = plot_HIFI_HK[0].data/1000000.0
Measure time on the plot from the beginning of the observation....We subtract
the initial time value
plot_time = time -- time[0]
Plot the two voltages contained in columns 2 and 4
h_voltage = plot_HIFI_HK[1].data
v_voltage = plot_HIFI_HK[2].data
Plot the data
p = PlotXY(plot_time, h_voltage, style=Style(line=8, color=Color.black))
Resize the window
p.height = 400
p.width=600
Change the legend
p[0].name = -"H Mixer Plot"
Change the axis labels...

Notes for Calibration Scientists

60

p.xaxis.title.text="Time (hours)"
p.yaxis.title.text="Mixer voltage [V]"
-...and add a title
p.title.text="Plot of Mixer Voltages. Start: -"+str(prod_date)+\
 -"End: -"+str(end_date)
Now we can also overlay the second voltage trend in blue.
p[1]=LayerXY(plot_time, v_voltage, name= -"V Mixer Plot", \
 style=Style(color=Color.blue))

14.7.3. Viewing Housekeeping
There are several ways to display the dataframes:

1.-

dd = DisplayDataFrameTask()
dd.dataframe=df[0]
dd.gui = 1

2.-

browse_df = BrowseDfQuery()(gui=1)
#feedback dataframes back into your session using:
dfs = browse_df.query
df = browse_df.selected
feedback dataframes back into your session using:
dfs = browse_df.query
df = browse_df.selected

3.-

#to pass an existing store this task should reuse:
dfs = AccessDataFrameTask()(store=myStore, -.....)

The BrowseHK task is used to display HK data associated with an observation stored in any accessable
database. To change to a new database type the name of the database into the local database text field
located on the database tab. The fastest way to access data from the database is to lookup data using
a specific obsid. If the times in the time selector panel are the same the script will automatically get
the begin and end time of the observation and add it to the query string. If the times are different this
will override the automatic process and search the database based on those times. The execute button
is used to aquire data from the database. The exit button is used to close the application.

interactive mode (Database: ilt_dm_10 obsid: 268435762)
interactive mode (Database: ilt_fm_2 obsid: 268435480)
from herschel.hifi.generic.task.BrowseHk import *
hkBrowser = BrowseHk()
hkBrowser()
This only brings up the browser. Once selections are made, and the
execute button is pressed, then one can export pk-params(s) in their
session
#
resulting_pks = hkBrowser.query -// array[TmSourcePacket]!!
selected_pk = hkBrowser.selected -// TableDataset!!

The array of TmSourcePackets (HK data) returned from the query to the database:
Array(TmSourcePacket) query [OUTPUT, OPTIONAL, default=None]

To create a TableDataset of HRS HK converted values: hk = HrsGetHKTask()
(apid=1028, obsid=268435622, type="All") or alternatevely TableDataset
selected [OUTPUT, OPTIONAL, default=None]

Notes for Calibration Scientists

61

To plot a stream of HK data:

#In a new -.py file add the lines (call it qlaHkPlot.py)
from herschel.hifi.generic.process.hkplot import *
DataFlowManager(hkPlot())
Thread.sleep(315360000) #one year in seconds
#Then from the terminal window type the following
jylaunch qlaHkPlot.py

To plot and export a time series of HIFI HK data for a selected ObsID

HkPlotter()(obsid = obsid, apid = apid)
HkPlotter()(obsid, apid)

There is an alternative task to plot HK data, which is interactive, in order to analyze and plot WBS
functional test: WbsCheckFt .

	The HIFI User's Manual
	Table of Contents
	Chapter 1. Data Primer
	1.1. Data frames
	1.2. Data Products
	1.3. Contexts
	1.3.1. Herschel Observation Context

	Chapter 2. Running the HIFI pipeline
	2.1. How to run the HifiPipeline task for Astronomers
	2.1.1. HifiPipeline task in the GUI
	2.1.2. HifiPipeline in the command line

	2.2. HifiPipeline tasks for Calibration Scientists
	2.2.1. Expert hifiPipeline task
	2.2.2. Individual pipeline tasks

	2.3. Running the Pipeline step by step
	2.4. How to customise pipeline algorithms

	Chapter 3. Flags in HIFI data
	3.1. Channel flags
	3.2. Column rowflags

	Chapter 4. Quality Flags
	Chapter 5. Viewing Spectra
	5.1. Introduction
	5.2. Basic Spectrum Viewing: the PlotXY Package
	5.3. Viewing with SpectrumPlot
	5.4. The SpectrumExplorer Package

	Chapter 6. Changing to LSB/USB and Velocity
	6.1. Changing HIFI Frequency Scales
	6.1.1. Changing Spectral Views
	6.1.1.1. LSB/USB
	6.1.1.2. Velocity

	6.1.2. Change Spectral Views from the command line
	6.1.2.1. LSB/USB
	6.1.2.2. Velocity
	6.1.2.3. Review of ConvertFrequencyTask

	Chapter 7. Mathematical Operations on Spectra
	Chapter 8. HIFI Standing Wave Removal Tool
	8.1. Introduction FitHifiFringe
	8.2. Running FitHifiFringe

	Chapter 9. Fitting Spectra
	Chapter 10. Sideband Deconvolution
	10.1. Running the Deconvolution Tool
	10.2. Viewing Deconvolution Results

	Chapter 11. How to make a spectral cube
	11.1. Making a Spectral Cube via the command line
	11.2. Using Gridding Task
	11.3. Using the GUI to make a Spectral Cube

	Chapter 12. Trend Analysis
	Chapter 13. Memory Issues
	Chapter 14. Notes for Calibration Scientists
	14.1. Input/Output of Spectra
	14.1.1. Accessing Spectra
	14.1.1.1. Accessing Spectra in a DbPool
	Product Pools
	Product Access Layer

	14.1.1.2. Accessing Spectra in Local Pool
	14.1.1.3. Accessing Fits Files

	14.1.2. Exporting Spectra
	14.1.2.1. Export to Local Pool
	14.1.2.2. Export to Fits File

	14.2. Database, Binstruct and MIB
	14.3. Accessing Versant Database
	14.4. Accessing Versant Database with Web Interface
	14.5. How to configure the CIB (for use on a non-ICC cluster machine)
	14.6. Navigating HIFI Products: How to get a spectrum data set from an ObsContext
	14.7. HIFI Housekeeping
	14.7.1. Introduction
	14.7.2. Accessing Housekeeping
	14.7.2.1. Useful examples

	14.7.3. Viewing Housekeeping

