

SPIRE Spectrometer Pipelines and Data Products

Ed Polehampton

RAL/University of Lethbridge

on behalf of the SPIRE ICC

esa

Pipeline development & validation

- The development of pipelines is distributed between several institutes. Algorithms and development plans are specified by the ICC
- A SPIRE Configuration Control Board supervises the development
- Automatic unit testing is performed every night and pipelines are tested by an ESAC operator every few weeks
- In the Summer, the ICC started a Scientific Validation process to review algorithms, documentation and implementation of pipelines

SPIRE Pipeline implementation

- The pipelines are implemented as a sequence of Tasks each performing a specific process/correction on the data
- All Tasks are written in Java (mainly for performance reasons)
 → No computation is carried out in the pipeline scripts
- The pipeline is implemented as a Jython script that passes data (in the form of Products) between Tasks
- There is one pipeline script for each instrument mode
- Tasks are flexible enough to allow the Interactive Analysis user to apply different strategies

Current Pipeline Status

- Almost all tasks written and implemented in the pipeline
- Issues requiring attention:
 - User friendliness for Interactive Analysis
 - Some modules require optimisation (*Deglitch tasks*)
 - Calibration files to be updated after launch (*PV phase*)
 - Spectral Mapping implementation to be completed
 - Moving coordinate frames for targets with large motion
- Functionality & documentation currently being reviewed as part of Scientific Validation process
 - Will have good confidence in the flow of modules and algorithms at launch!

SPIRE global data flow

Observational Context Raw Data, Pipeline Processed (Level 0.5, Level 1, Level 2)

Auxiliary Context Calibration Context Level 0 Context **Building Block Context** Photometer Cal Context · Raw Detector Timeline Product Calibration Product Pointing Product • Raw Housekeeping Timeline Calibration Product • Raw • SIAM Product **Building Block Context Spectrometer Cal Context** • Raw Detector Timeline Product **Calibration Product** · Raw Housekeeping Timeline **Calibration Product** • Raw Level 2 Context Level 0.5 Context Level 1 Context **Building Block Context** Processed Data Product Processed Data Product Detector Timeline Product Housekeeping Timeline Product e.g. e.g. Spectral Data Cube Spec Detector Interferogram Spec Detector Spectrum **Building Block Context** Detector Timeline Product Housekeeping Timeline Product

Quality Product

.....

Observational Context Log

The Spectrometer **Pipeline**

- **Bolometer** processing common with SPIRE Photometer
- Spectrometer pipeline works in Volts
- **3 stages of processing:**
 - *Time* Domain
 - Spatial Domain
 - (*Mirror position*)
 - Spectral Domain

Data Product Levels

Spectrometer Mechanism Scans

Beam entry from telescope

SCAL source *A blackbody that mimics the telescope emission*

SSW

SLW

SMEC motion changes path length

Reminder of Observing Modes

Pointing	•Single •Raster	Move telescope	
Spatial Resolution	•Sparse •Intermediate •Full	Move BSM (1, 4 or 16 positions)	
Spectral Resolution	•Low •Medium •High	Scan the SMEC different distances	
<i>Repetitions</i> = pairs	number of scan (forward+reverse)		HIGH

Minimum of 2

Path Difference

Observation Building Blocks

• SPIRE observations are divided into *Building Blocks*:

- Each basic instrument operation is contained in a separate building block
- The data that you get are also divided per building block.

page 11

Building Block Data

• The data you get reflect the observation structure:

Data structure summary

- Product: the basic Herschel data container
 metadata + tables -----> can be saved to FITS
- **Context:** a "wrapper" containing a collection of Products (or collection of other contexts c.f. a directory structure)
- **Building Block**: a unit of SPIRE data related to one instrument operation
- Level xxx: reflecting different stages of processing by the pipeline

Common Engineering Conversion

- Engineering Conversion is common to all SPIRE pipelines
- Converts raw telemetry values (Level 0) into engineering values

(Level 0.5) e.g. voltages, resistances, temperatures

 Level 0.5 will be the best starting point for interactive analysis

Level 0.5 Detector Timelines structure

- A Photometer/Spectrometer Detector Timeline (PDT or SDT) contains 3 main tables: voltage, resistance and mask.
- These tables contain a column with the sample time (in TAI), and a column for each channel
- The mask table contains the flags for each sample

Index	sampl	eTi	SSWR1 [SSWA4 [SSWA3 []	SSWA2 [SSWA1 [SSWDP1	SSWB3	I SSWB2	2 🛛 SSWE	31 🛛 SSWC	3 🛛 🖉 SSWC2	2 0	
0	1.54429	946 0	0		0	0	0	0	0	0	0	0	0		
1	1.54429	946 0	0		0	0	0	0	0	0	0	0	0		
2	1.5442(0 310	مل			٥			_ ما			ام			
3	1.5442	Index	sampleTi	SSWR1	[Ω] SSWA4 [Ω	2] SSWA3	[Ω] SSWA2	: [Ω] SSWA	1 [Ω] SSWD	P1 SSWE	33 [Q] SSV	/B2 [Ω] SSW	B1 [Ω] SSW0	C3 [Ω] SSWC2 [Ω]	
4	1.5442	0	1.5442946	5340542.	0 2318341.8	2111265	.2 2170215	5.2 235270	3.5 624136	1.0 22318	63.0 2026	746.2 17858	48.0 18150	57.1 2164659.8 2	
5	1.5442	1	1.5442946	5340606.	0 2322028.2	2115278	.5 2175085	5.8 235783	8.5 624132	5.5 22369	74.0 2032	328.2 17915	49.6 18202	85.6 2171830.8 2	
6	1.5442	2	1.5442946	, Forestan	<u>- leeeteepe</u>		<u>- lotztog</u>		n n len ten	<u>+ e - leesse</u>	10.0 10000			<u>aa latzagaa la</u>	
7	1.5442	3	1.5442946	Index	sampleTi S	SWR1 [M]	SSWA4 [M]	SSWA3 [M]	SSWA2 [M]	SSWA1 [M]	SSWDP1	SSWB3 [M]	SSWB2 [M]	SSWB1 [M] SSWC3	3 M SSWC2 M
8	1.5442	4	1.5442946	0 1	.5442946 0.0	052852 0	.0026414 0	0.0024572	0.0024788	0.0026621	0.0058856	0.0025411	0.0023081	0.0020923 0.00208	99 0.0024352 0
9	1.5442	5	1.5442946	1 1	.5442946 0.0	052853 0	.0026451 0	0.0024614	0.0024837	0.0026672	0.0058855	0.0025462	0.0023138	0.0020984 0.00209	54 0.0024424 0
10	1.5442	6	1.5442946	2 1	.5442946 0.0	052852 0	.0026450 0	0.0024612	0.0024835	0.0026671	0.0058856	0.0025461	0.0023138	0.0020984 0.00209	54 0.0024426 0
11	1 5442	7	1.5442946	3 1	.5442946 0.0	052852 0	.0026450 0	0.0024610	0.0024834	0.0026671	0.0058855	0.0025462	0.0023138	0.0020982 0.00209	51 0.0024426 0
12	1 5442	8	1.5442946	4 1	.5442946 0.0	052852 0	.0026449 0	0.0024613	0.0024837	0.0026670	0.0058854	0.0025460	0.0023138	0.0020982 0.00209	52 0.0024424 0
13	1.5442	9	1.5442946	5 1	.5442946 0.0	052851 0	.0026449 0	0.0024614	0.0024838	0.0026667	0.0058855	0.0025460	0.0023137	0.00209833 0.00209	54 0.0024423 0
14	1.5442	10	1.5442946	6 1	.5442946 0.0	052851 0	.0026450 0	0.0024614	0.0024840	0.0026665	0.0058856	0.0025459	0.0023136	0.0020984 0.00209	51 0.0024422 0
15	1.5442	11	1 5442946	7 1	.5442946 0.0	052852 0	.0026447 0	0.0024615	0.0024837	0.0026663	0.0058855	0.0025460	0.0023134	0.0020983 0.00209	51 0.0024422 0
16	1.5442	12	1 5442946	8 1	.5442946 0.0	052852 0	.0026447 0	0.0024615	0.0024836	0.0026666	0.0058857	0.0025462	0.0023135	0.0020981 0.00209	53 0.0024423 0
10	1.3442	13	1 5442946	9 1	.5442946 0.0	052852 0	.0026448 0	0.0024615	0.0024838	0.0026671	0.0058856	0.0025462	0.0023137 (0.0020981 0.00209	54 0.0024424 0
		14	1 5442946	10 1	.5442946 0.0	052851 0	.0026450 0	0.0024613	0.0024836	0.0026673	0.0058855	0.0025461	0.0023139	0.0020983 0.00209	55 0.0024426 0
		15	1.5442946	11 1	.5442946 0.0	052853 0	.0026447 0	0.0024612	0.0024836	0.0026671	0.0058853	0.0025464	0.0023140	0.0020981 0.00209	54 0.0024424 0
		16	1.5442946	12 1	.5442946 0.0	052851 0	.0026448 0	0.0024612	0.0024836	0.0026670	0.0058854	0.0025463	0.0023138	0.0020983 0.00209	54 0.0024425 0
		10	1.3442340	13 1	.5442946 0.0	052851 0	.0026449 0	0.0024613	0.0024838	0.00266627	0.0058856	0.0025460	0.0023134	0.0020983 0.00209	52 0.0024423 0
				14 1	.5442946 0.0	052853 0	.0026449 0	0.0024613	0.0024837	0.0026664	0.0058858	0.0025461	0.0023134	0.0020984 0.00209	52 0.0024420 0
				15 1	.5442946 0.0	052852 0	.0026450 0	0.0024614	0.0024837	0.00266694	0.0058855	0.0025460	0.0023134	0.0020983 0.00209	53 0.0024422 0
				16 1	.5442946 0.0	052852 0	.0026450 0).0024613	0.0024837	0.0026670	0.0058857	0.0025461	0.0023136	0.0020982 0.00209	53 0.0024423 0
													mboo		

Timeline Modifications 1

- 1st Level Deglitching
 Identification & Reconstruction of glitched samples
 uses a Wavelet method to identify glitches (see poster)
- Electrical Crosstalk

Correction for detector crosstalk due to electronics (very small effect)

Non-Linearity Correction

Linearization of detector response to strong optical loads

Clipping Correction

Reconstruction of "clipped" points at ZPD (for strong sources)

(ZPD=zero path difference)

Most sources will be in linear regime

these modules not significant

page 16

Timeline Modifications 2

Time Domain Phase Correction

Correct for time delay in detector signal (due to the freq. resp. of the filters & thermal resp. of detectors)

correct in the *timeline* using a convolution:

 $\boldsymbol{V}_{\text{TDPC}}(t) = \boldsymbol{V}(t) \ \Box \ \boldsymbol{T}(t)$

This applies a **phase shift** to align **forward** and **reverse** scans when converted to **interferogram space**

Bath Temperature Correction

Correction for fluctuations due to temperature drifts in detector base plate

May not be necessary – temp fluctuations not on short enough timescale to affect optical band in spectrum

Create Interferogram

Timelines -----> Interferogram

- Convert *Mechanical Path Difference* to *Optical Path Difference*
- Interpolate SMEC position to a regularly-spaced OPD grid
- Interpolate detector voltage to regularly-spaced OPD grid
- Assign **pointing** information per scan per detector

Modify Interferogram 1

SCAL, Telescope & Beamsplitter correction

Removes the **background**, which includes the telescope and SCAL emission

• Subtraction of reference interferogram measured on blank sky

Modify Interferogram 2

Baseline Correction

Corrects for Vignetting in off axis detectors

• Polynomial or Fourier Component fit

2nd Level Deglitch

Comparison of samples from different scans

• Glitch sample replaced using average from other scans

Phase =

Modify Interferogram 3

Phase Correction

Corrects any remaining error in **ZPD** position

Imaginary part of spectrum Real part of spectrum

aim is to reduce imaginary part to zero

Split correction into linear and non-linear parts:

Output is a corrected interferogram

Low & Medium res: applied in *spectral* domain:

High res: applied in *interferogram* domain:

$$\boldsymbol{V}_{\text{corrected}}(x) = \mathsf{F}\mathsf{T}^{-1}\left[\boldsymbol{V}(\sigma) \times e^{-i\left(\boldsymbol{\varphi}_{\text{corr}}(\sigma)\right)}\right]$$

$$V_{\text{corrected}}(x) = V(x) \Box FT^{-1} e^{i(\varphi_{\text{corr}}(\sigma))}$$

difference due to fact that only **double sided** part of interferogram used to calculate phase in High res. case

Modify Interferogram 4

Apodisation

Tapers the edges of the interferogramto reduce ringing in line profile(at a cost to spectral resolution)

Effect on instrument line profile:

Can treat an apodised spectral line as a Gaussian to good accuracy (<5%)

A set of apodisation kernels are available for interactive use:

Fourier Transform of Interferogram

Interferogram

Spectrum

• Before transform, interferogram is **padded** with zeros

Fixes the wavenumber grid for all spectra to be: 0.25 cm⁻¹ (Low); 0.05 cm⁻¹ (Medium); 0.01 cm⁻¹ (High) [c.f. spectral resolutions: 1.0 cm⁻¹, 0.25 cm⁻¹ and 0.04 cm⁻¹]

Phase correction has been applied (i.e. interferogram is symmetric about ZPD) therefore use single-sided transform

$$\boldsymbol{V}(\sigma) = \mathsf{FT}\left[\boldsymbol{V}(x)\right]_{0}^{L}$$

FFT algorithm is "FFTPACK"

shape of **Relative Spectral Response Function** (RSRF) still to be removed

Modify Spectra

Flux Conversion

Correction for **RSRF** & conversion to astronomical units Derived from measurements of Astronomical standard sources

Optical Crosstalk

Correction for detector optical crosstalk by applying *crosstalk matrix*

Spectral Averaging

Average of all scans on wavenumber by wavenumber basis to produce final spectrum *(also keep forward & reverse scans separate for comparison)*

Spectral Mapping

Spatial Regridding

Applied only for intermediate or full sampling

(1 beam or 1/2 beam spacing)

2D convolution of beam FOV with measured map

-> regularly gridded spectral cube

Summary of output Data Products

Level 1 product

For *each detector* in *each band*:

one Table containing the *spectrum* in units of *Flux Density vs. Wavenumber*

averaged over different scans both unapodised & apodised versions

includes uncertainty per point and mask

Level 2 product

Only for intermediate (*1 beam spacing*) and fully sampled (*1/2 beam spacing*) maps

The Level 1 product is regularly gridded into a 3D spectral cube with axes longitude, latitude and Wavenumber

One cube for each band (SSW/ SLW)

Note: the interferograms are also supplied with the Level-1 products

Some Points to Consider...

Spectral shape

- Apodisation
- Fringing
- Averaging scans/scan directions
- Deglitching algorithm
- Merging different bands

Mapping

- Gridding algorithm
- Dead pixels
- Extended sources

Strong sources

Clipping reconstruction

