

SPIRE photometer pipelines and data products

Speaker: Pasquale Panuzzo CEA Saclay Irfu SAp pasquale.panuzzo@cea.fr on behalf of SPIRE ICC

esa

Pipeline development & validation

- The development of pipelines is distributed between several institutes based on their expertises. Algorithms and development plans are specified by the ICC.
- The SPIRE Configuration Control Board is in charge of supervising the development SPIRE software.
- Automatic testing of pipeline tasks is performed every night. In addition, the pipelines are tested by an ESAC operator every few weeks.
- Beginning in the Summer 2008, the SPIRE ICC began a **Scientific Validation** activity to review the algorithms, documentation and implementation of pipelines.

SPIRE Pipeline implementation

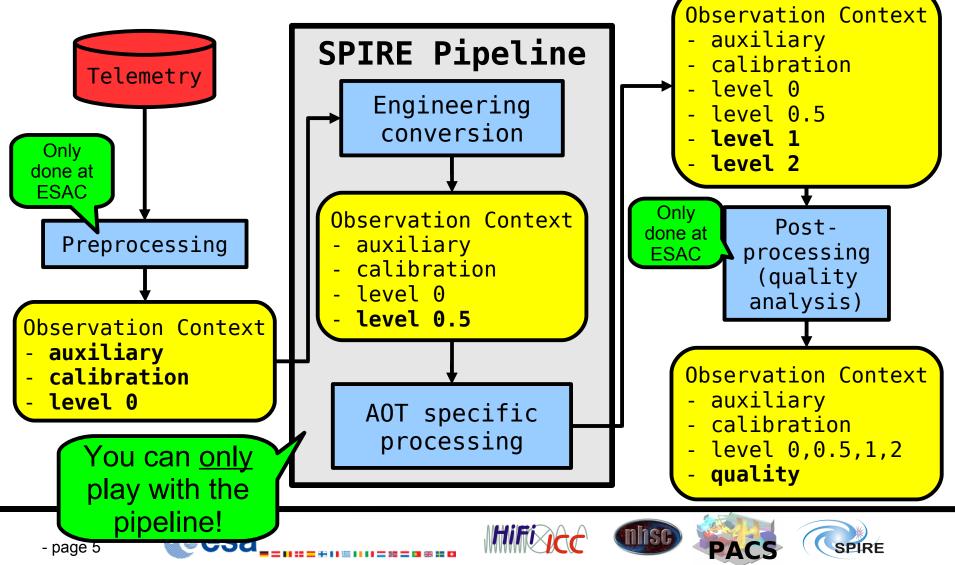
- The pipelines are implemented as a sequence of Tasks each performing a specific process/correction on to data.
- All Tasks are written in **Java** (mainly for performance)
- Each pipeline is implemented as a Jython script that passes data (in form of Products) between Tasks. No computation is carried out in pipeline scripts
- There is one pipeline script for each instrument mode
- Pipelines and tasks will be flexible enough to allow users to carry out Interactive Analysis using different strategies.

esa

Photometer pipelines status

- Almost all tasks written and implemented in the pipelines!
- Issues requiring attention:
 - Ensure that tasks and pipelines are user-friendly for IA
 - Moving coordinate frames for targets with large motion
 - Calibration files to be update after launch (PV phase)
- Functionalities and documentation being reviewed and tested as part of an ongoing Science Validation process
 - We will have good confidence in the pipelines flow and algorithms at launch!

- page 4



SPIRE global data flow

Observational Context

Contains all the data associated to an observation

Auxiliary Context Calibration Context

- Pointing Product
- SIAM Product
- Ephemeris Product
- Uplink Product

•

Photometer Cal Context

- Calibration Product
- Calibration Product

•

Spectrometer Cal Context

- Calibration Product
- Calibration Product
-

Level 0 Context

Building Block Context **Raw** Phot/Spec Detector Timeline **Raw** Nominal Housekeeping Timeline **Raw**

Building Block Context Raw Phot/Spec Detector Timeline Raw Nominal Housekeeping Timeline Raw

Level 0.5 Context

Building Block Context

- Phot./Spec Detector Timeline
- Nominal Housekeeping Timeline

•

.....

Building Block Context

- Phot./Spec Detector Timeline
- Nominal Housekeeping Timeline
 - Quality Product
 - Observational Context Log

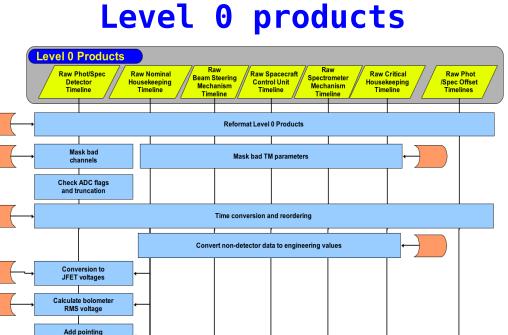
Level 1 Context

• Processed Data Product

e.g.

Photometer Scan Product Pointed Photometer Product Spec Detector Interferogram Spec Detector Spectrum Level 2 Context

Processed Data Product


e.g.

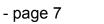
Photometer Map Product Jiggled Photometer Product Spectral Data Cube

Engineering Conversion stage

- Engineering conversion processing stage is common to all SPIRE pipelines.
- Converts raw telemetry values (Level 0 products) into engineering values, e.g. ADUs into voltages, resistances, temperatures...(Level 0.5)
- Level 0.5 data will be the **best starting point** for your interactive analysis.

Level 0.5 products

Spacecraft


Control Unit

Timeline

Spectrometer

Mechanism

Timeline

meta data

Detector

Timeline

Level 0.5 Products

Nominal

Housekeeping

Timeline

Beam Steering

Mechanism

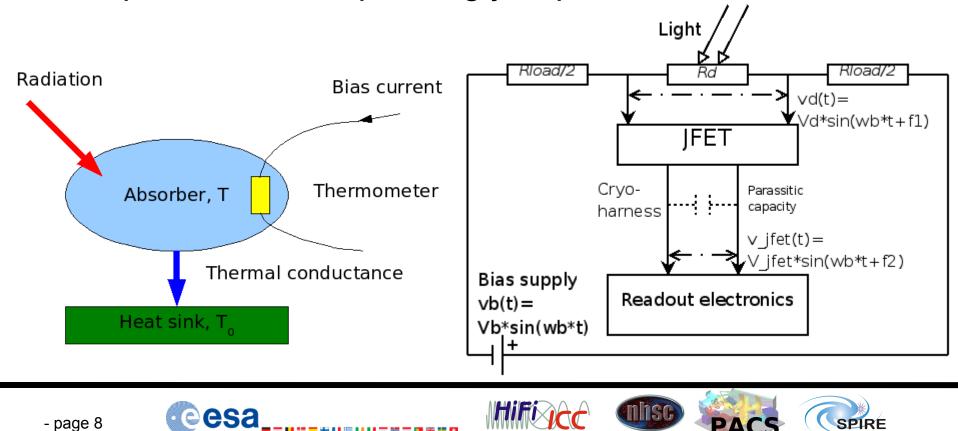
Timeline

Critical

Housekeeping

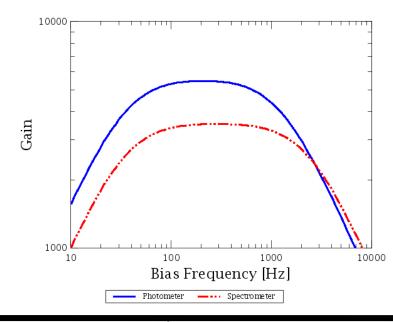
Timeline

Phot/Spec


Offset

Timelines

SPIRE detectors


 SPIRE detectors are basically resistors whose resistance is dependent on the temperature. The temperature correspondingly depends on the flux.

Convert raw ADUs to JFET voltages

- $V_{\text{JFET-RMS}} = 5 \cdot (\text{DATA-16384 + 52428.8 \cdot OFF}) / (G(\omega_{b}) \cdot 65535)$
 - DATA = raw detector readout (from 0 to 65535)
 - OFF = ADC offset (from 0 to 15)
 - $G(\omega_b)$ = readout electronics gain
- $G(\omega_{b})$ constants are stored in the channel gains calibration product
- Nominal photometer bias frequency: 131Hz

From JFET to detector voltages

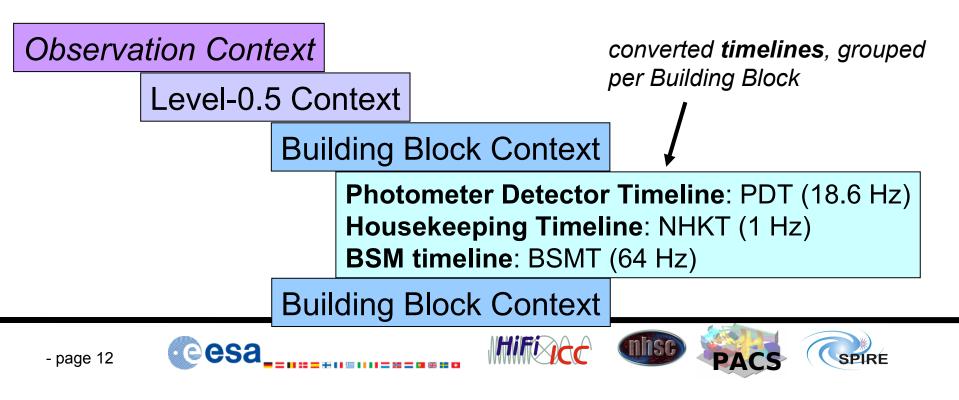
- The voltage at the JFET output (V_{JFET-RMS}) shall be corrected to compute the real detector voltage
- $V_{d-RMS} = V_{JFET-RMS} / [H_{JFET} | H_{H}(\omega_{b}) | \cos(\Delta \phi)]$

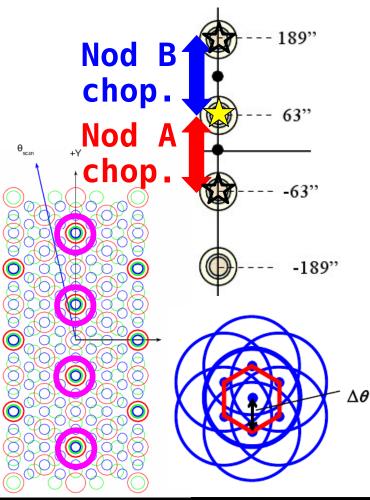
$$-$$
 H_{JFET} is the JFET gain (=0.96)

- $H_{H}(\omega_{b})$ is the cryo-harness transfer function
- $\Delta\phi$ is the phase shift introduced by the harness
- $R_d = R_L V_{d-RMS} / (V_{b-RMS} V_{d-RMS})$
- Calculated in an iterative procedure

Level 0.5 Detector Timelines structure

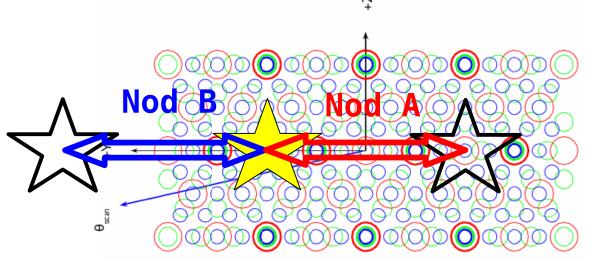
- A Photometer/Spectrometer Detector Timeline (PDT or SDT) contains 3 main tables: voltage, resistance and mask.
- These tables contain a first column with the sample time (in TAI), and a column for each channel
- The mask table contains the flags for each sample

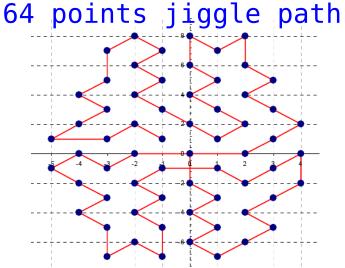

sampleTime [TAI] PSWF 1.6071967670 0 1.6071967670 0	R1[] PSWD16[] 0 0	PSWT1[] 129 0 129 0	PSWB16[] 0 0	PSWC15 [] F 0 0	2	PSWD15[] 80 C 80 C	PSWB15 [])	PSWC14[] 0 0	d	
1.607196 sampleTime 1.607196 1.60719676 1.607196 1.60719676	7 5250873.5	PSWD16 [Ω] PS	102949 28	WB16 [Ω] PS 76428.8 360 76351.0 360	85223.5 27	89554.2 -1	80418	PSWB15 [Ω] F 2976251.5 3 2976188.2 3	143544.8 3	
1.607196 1.60719676 1.607196 1.60719676 1.607196 1.60719676 1.607196 1.60719676 1.607196 1.60719676 1.607196 1.60719676 1.607196 1.60719676	8 1.6071967670 8 1.6071967670 8 1.6071967677	0.005254 0.005254 0.005254	0.003523 0.003523	0.010026 0.010025 0.010025	PSWB16 [V] 0.003232 0.003232 0.003232 0.003232	PSWC15 [V] 0.003966 0.003966 0.003966 0.003966	· •	2.40433. 2.40433. 2.40433.	0.003320 0.003320	0.003500C 0.003500C 0.003500C
1.607196 1.60719676 1.60719676 1.60719676 1.60719676	8 1.6071967680 8 1.6071967683 8 1.6071967684	0.005254 0.005254 0.005254	0.003523 0.003523 0.003523		0.003232 0.003232 0.003232 0.003232	0.003966 0.003966 0.003966 0.003966	. 0.003155 . 0.003155 . 0.003155 . 0.003155	2.40433. 2.40433. 2.40433.		0.003500 C 0.003500 C 0.003500 C
1 60710676		0.005254 0.005254 0.005254	0.003523 0.003523	0.010025 0.010025 0.010025	0.003232 0.003232 0.003232	0.003966 0.003966 0.003966 0.003966	. 0.003155 . 0.003155 . 0.003155	2.40433. 2.40433.	0.003320 0.003320 0.0033207	0.003500 0 0.003500 0 0.003500 0
- nage 11	Cesa		0.0000222	0.010025			-1 (IIISG)		


SPIRE Building Blocks

- SPIRE observations are composed of building blocks (BB). The instrument performs a single basic operation in each BB (e.g. execute a scan line in a map).
- The data you will receive in Level 0 context and Level 0.5 context are divided into these building blocks.

Point Source Observing Mode

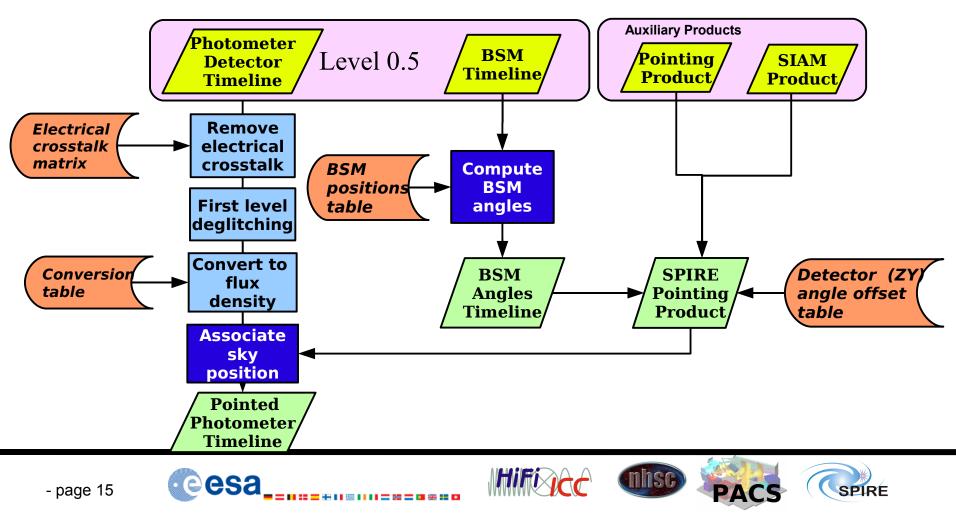



- Optimized for compact sources
- The instrument chops by ±63" with the BSM to remove background (sky and telescope).
- The telescope performs one or more ABBA nodding sequences to remove asymmetries in optics and in telescope background
- A 7-point mini-map ($\Delta \Theta$ =6", i.e. 1/3 of PSW detector beam) is made with the BSM to ensure that the source signal and position can be estimated

Small Map Observing Mode

- Optimized for imaging of a small (4'x4') field
- 64 jiggle positions are made to create a fully sampled map
- 4 AB nodding sequences with 16 jiggle positions each.
- Chopper throw is $\pm 120"$ (therefore in nod position B, the observed field is chopped outside the array.)

- page 14



Point Source & Small Map pipeline

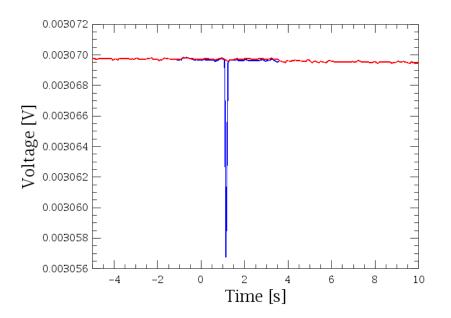
• First pipeline stage flowchart

Remove Electrical crosstalk

- Electrical crosstalk arise from:
 - Capacitative/inductive coupling between readout channels
 - Change in applied bias voltage due to loading of bias supply
- Assuming that crosstalk is linear and constant we have:

$$\begin{bmatrix} V_{1}^{c} \\ V_{2}^{c} \\ V_{3}^{c} \\ \cdots \end{bmatrix} = \begin{bmatrix} 1 e_{21} e_{31} \cdots \\ e_{12} 1 e_{23} \cdots \\ e_{13} e_{23} 1 \cdots \\ \cdots \end{bmatrix} \begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \\ \cdots \end{bmatrix}$$

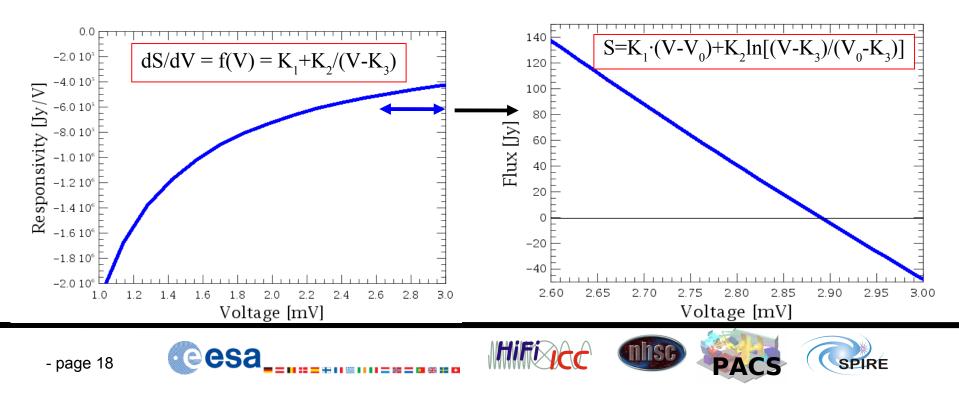
 Analysis of data taken during instrument tests suggest that crosstalk is very small



First level deglitching

- Effects are rather simple
 - No change in responsivity
- Deglitching algorithm is based on regularity & wavelets analysis (see poster)
- Same algorithm used in spectrometer and photometer pipelines
- Glitches are identified and removed
- Signal reconstruction not yet optimized

 Using wavelets, this method is also possible on modulated data



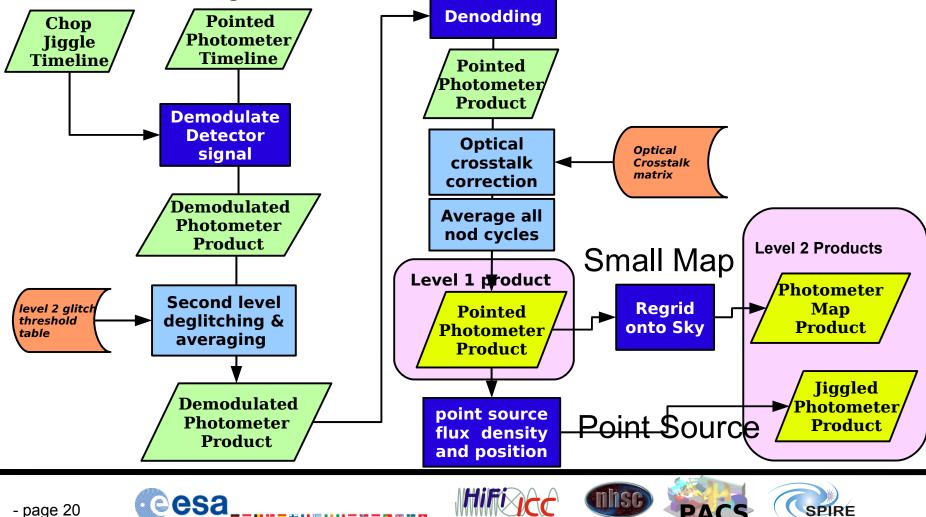
Photometer Flux Conversion

- Responsivity dS/dV was calculated with a bolometer model

 Good fit with an analytical function f(V,K₁,K₂,K₃)
 - Integrating f(V) gives the flux, S
- Constants V₀, K₁, K₂ & K₃ contained in calibration product

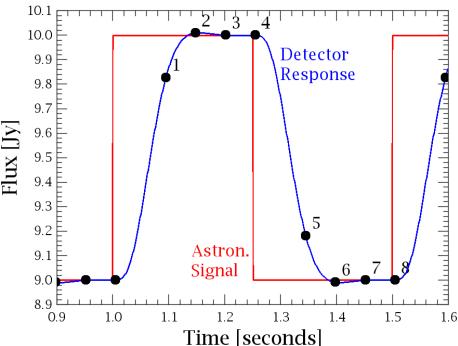
Associate Sky Positions

- To know the position in sky where each detector is looking, we require:
 - The Herschel Pointing Product
 - The SIAM Product
 - position of SPIRE reference aperture w.r.t. spacecraft pointing
 - The Detector Angular Offset
 - Detector positions with respect to the SPIRE reference aperture
 - The BSM Angle Timeline
 - Positional shift introduced by the Beam Steering Mirror
- For each time sample, the RA & Dec of each detector is computed
 - Two additional tables, **ra** and **dec**, are attached to the timelines



Point Source & Small Map pipeline

Second stage flowchart



Demodulation

- The instrument chops to remove the background, so we must demodulate
- 4 detector samples are taken per chopper position
 - sampling not regular in time
- Demodulation follows we a simple approach: $S_{k} = [(s_{2} + s_{3} + s_{4}) - (s_{6} + s_{7} + s_{8})]/3$
- Fitting detector response with a model is under study
 - One flux value per chop cycle – Several cycles per jiggle position $\rightarrow S_k$ with k=0...N_{chop}

S(L,B)

S(R,B)

S(R,A)

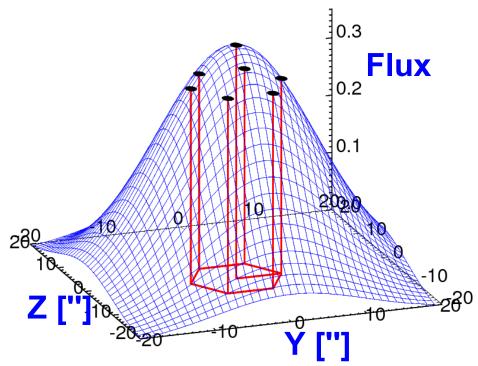
Jiggle averaging & Denodding

- Demodulation will give S_{k,j} = S(L) S(R) for each chop cycle k and jiggle position j
- 2nd level deglitching flags outliers
- Jiggle Averaging on chop cycles _ $S_j = (\Sigma_k S_{k,j})/N_{chop}$
- Denodding:
 - For Point Source: $S = [S_{A1} + S_{A2} S_{B1} S_{B2}]/4$

_ For Small Map: $S = [S_A - S_B]/2$

- Output is a Level 1 product for Point Source and Small Map observations
 - Contains one flux per jiggle position per detector

- page 22

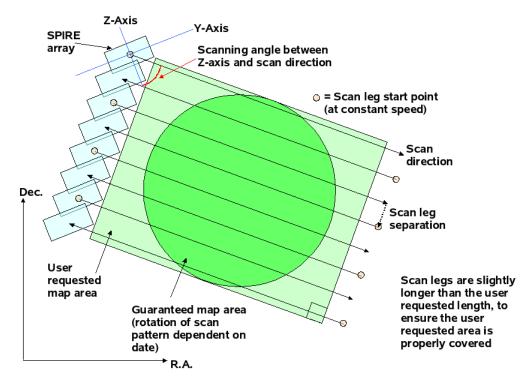


Point source photometry

- The flux measured by the **Primary** detector in the 7 jiggle position.
- This final step performs a 2D fitting of the 7 fluxes with a known profile.
- The total flux and position of the source is determined.
- Level 2 product contains the flux of the source in each band, the measured position and fit quality
- No imaging is planned for this observing mode

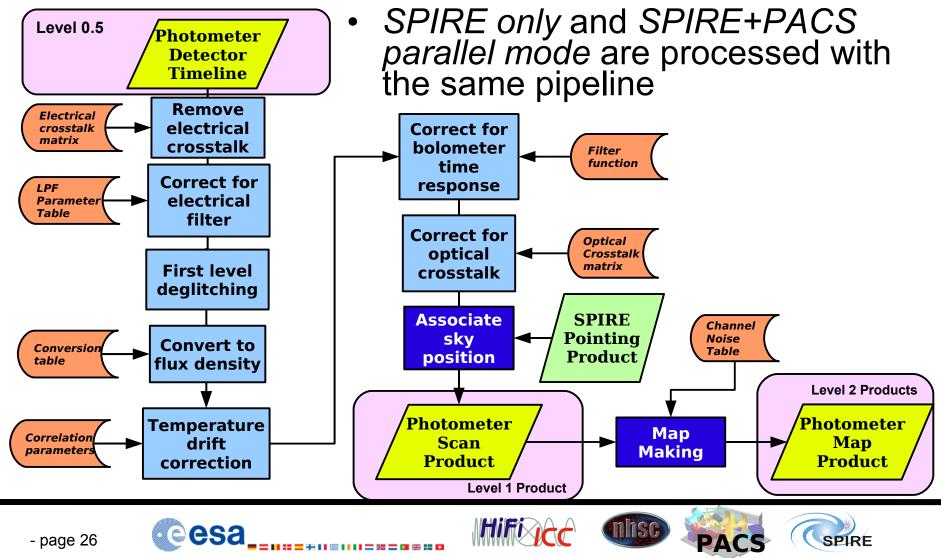
Regrid (Naïve Map making)

- Final step of Small Map pipeline is to regrid data onto sky
- Re-griding (or Naïve map making) consists in:
 - For each sample, assign the flux to the nearest pixel
 - For each pixel, average on the assigned fluxes
- MADmap type methods cannot be used since the signal is not measured at a single time
- For Small Map observations, the Level 2 products are 3 images, one for each band.
- Source extraction and photometry are not part of the pipeline and are left to the astronomer
 - See presentations from Anthony Smith on source extraction, and Sara Regibo on aperture photometry



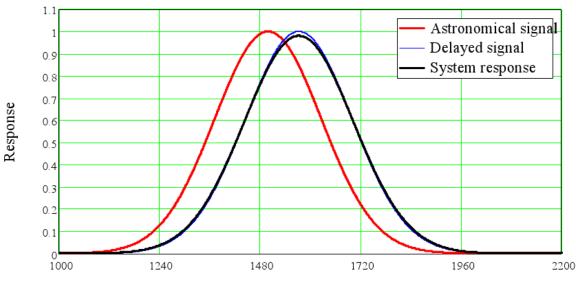
Large Map (& Parallel) Observing Mode

- Optimized for observations of large fields
- Performed by moving the telescope at constant speed
- The scan direction shall be at a "magic" angle (42.4°) from the array axis
- If only SPIRE is used, it is possible to cross-linking in a single observation
- Sampling rate 18.6Hz (10Hz in parallel mode)



Herschel DP workshop – ESAC 4th 5th Dec 2008 - P. Panuzzo

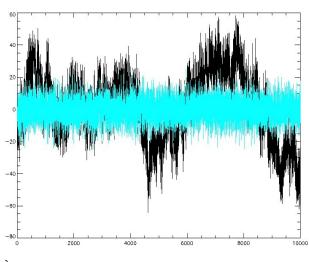
Level 0.5 Products


Large Map (& Parallel) Pipeline

Electrical filter correction

- The low pass filter in readout electronics changes the response of the system. In the case of scanning on a source in the beam, the effect is a delayed signal slightly attenuated (~2%)
- Two options:
 - Transform in frequency domain, divide by the electrical filter function and retransform back
 - Make a simple time shift (backup option)

Time (ms)



Temperature drift correction

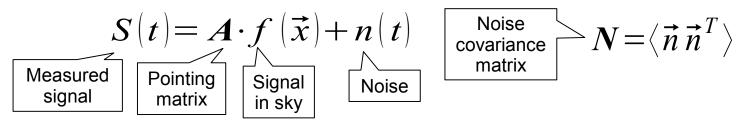
- Most of low frequency noise in SPIRE detectors is due to the drift of the detector arrays temperature
- Temperature drift can be corrected using the signal of thermistors (V_{th}) or dark detectors that are on each array
- Thermistor signal shall be smoothed

$$S_{corr}(t) = S(t) - \left\{ A \cdot \left[\overline{V}_{th}(t) - V_0 \right] + B \cdot \left[\overline{V}_{th}(t) - V_0 \right]^2 \right\}$$

Bolometer response correction

- Thermal capacity of bolometers changes system response
- Correction uses same approach as Electrical Filter Correction

- page 28



Map making (MADmap)

- Default map making algorithm for Large Map is MADmap (Cantalupo, 2002)
- MADmap is a Maximum likelihood method:

Reconstructed map $f(\vec{x}) = (A^T N^{-1} A)^{-1} A^T N^{-1} \vec{S}$

- Limitations: noise shall be Gaussian, additive and not spatially correlated
- Temperature drift correction makes this algorithm good for SPIRE

Cross-linking in Parallel mode

- Cross-linking is not possible in a single Parallel mode observation
 - Typically 2 observations with perpendicular scanning directions have to be requested
- ESA processing is observation-based i.e. each observation is processed independently
- You will need to combine the 2 observations and execute the map making by yourself!
- However, it will be shown in the demo!!

Data volumes & requirements

- Data volumes assuming Large Map observations:
 - Telemetry: 43 MB/hour
 - Level 0 products: 90 MB/hour
 - Level 0.5 products: 430 MB/hour
 - Level 1 products: 560 MB/hour
 - Level 2 products: 90 MB/hour (just a guess!)
- Time needed to process data on 2GHz computer: ~1/5 of observation length (not linear!)
- · Memory requirements are difficult to quantify
 - Smart usage of PAL heavily decreases memory needs
 - 2GB seems enough for 7 hours long observations

The End

- The SPIRE developers team hopes you will enjoy playing with SPIRE pipelines!
- Any feedback is very welcome!
- Any question??

